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A Primal-Dual Newton Method for Distributed Quadratic Programming

Emil Klintberg, Sebastien Gros

Abstract— This paper considers the problem of solving
Quadratic Programs (QP) arising in the context of distributed
optimization and optimal control. A dual decomposition ap-
proach is used, where the problem is decomposed and solved
in parallel, while the coupling constraints are enforced via ma-
nipulating the dual variables. In this paper, the local problems
are solved using a primal-dual interior point method and the
dual variables are updated using a Newton iteration, providing
a fast convergence rate. Linear predictors for the local primal-
dual variables and the dual variables are introduced to help the
convergence of the algorithm. We observe a fast and consistent
practical convergence for the proposed algorithm.

I. INTRODUCTION

We consider a strictly convex decomposable Quadratic
Program of the form

min
x

N∑
k=1

1

2
xTkHkxk + cTk xx (1a)

s.t.
N∑
k=1

Ckxk = d (1b)

xk ∈ Xk (1c)

where, for all k ∈ {1, . . . , N}, xk ∈ Rnk are the decision
variables with x = [xT1 , . . . , x

T
N ]T ∈ Rn. Moreover, Hk ∈

Rnk×nk are positive definite, i.e. for all k ∈ {1, . . . , N},
Hk � 0, the sets Xk = {xk ∈ Rnk |Akxk = bk, Fkxk ≤ ek}
are polyhedral, Ak ∈ Rlk×nk , bk ∈ Rlk , Fk ∈ Rmk×nk ,
ek ∈ Rmk , Ck ∈ Rp×nk and d ∈ Rp yield the coupling
constraints.

Problems in the form (1) arise in many applications of
optimization and optimal control. They arise when Nonlinear
Programs with decomposable cost functions are solved via
Sequential Quadratic Programming (SQP) type methods [1];
or when Model Predictive Control (MPC) is applied to a
set of sparsely interconnected subsystems, where the control
problem is ultimately formulated as a QP whose structure
reflects the distributed nature of the problem; and similarly
in Nonlinear Model Predictive Control (NMPC) once the
dynamics of the subsystems are discretized via e.g. multiple
shooting methods [2], [3].

There are several methods described in the literature to
solve (1) centrally, e.g. [4], [5] where the inherent sparsity
structure of a distributed problem is exploited. However,
centralized methods are not useful once the problem data
does not fit into the shared memory. Moreover, when the
system is geographically distributed or when subsystems do
not want to share sensitive information, it can be highly
impractical to centralize the data of the problem. In a
distributed framework, a subsystem is aware of the connected

subsystems, but has a very limited knowledge of their inner
state, hence avoiding both heavy long-distance communica-
tion and the sharing of sensitive data.

In this paper, we treat the coupling constraints (1b) using
a Lagrangian relaxation [6] and decompose (1) into low-
dimensional subproblems that can be solved independently.
Lagrangian relaxation is used in many different contexts
to tackle convex large scale problems, e.g. the authors in
[7] propose a coordinate ascent approach to solve matrix
problems. In [8], [9], [10] a gradient method, whereas in [11],
[12], [13], a fast gradient method is used in order to attain
dual optimality. All these methods make use of only first
order derivatives to obtain a search direction and thus their
theoretical and practical convergence cannot be faster than
sublinear. In the context of active-set methods, the authors
of [14], [15], [16], [17] overcome this limitation by using
second-order derivatives in the dual space. However, the dual
Hessian can be singular if a poor initial guess is used for the
dual variables, and hence possibly leading to an inconsistent
Newton system. In [17], this issue was avoided by relaxing
the local inequality constraints with an L2 penalty.

In [18], it was proved that adding self-concordant barrier
terms to the Lagrange function of a generic convex problem
render a self-concordant dual function. Hence, in the context
of interior point methods, it is possible to use Newton’s
method to efficiently trace the central path. This result was
used in [19], where a method based on inexact solutions of
the primal subproblems was suggested.

In this paper, we aim to improve the results of [18], [19] in
the context of Quadratic Programming by introducing linear
predictors and by using a primal-dual interior method instead
of barrier methods. Primal-dual methods are often preferred
over barrier methods for their numerical robustness. E.g. in
[20], a very fast and robust implementation of the primal-dual
interior point method is proposed for solving non-distributed
QPs. Likewise, in this paper, the local QPs arising from
the Lagrange relaxation are solved locally via a primal-dual
interior point method. The local factorisations are re-used
to form the dual Hessian alongside linear predictors for the
local primal-dual variables and for the dual variables at a
negligible computational cost. We show that the predictors
improve the convergence of the algorithm. Our method can
be viewed as an extension of [20] to a distributed framework.

The paper is organized as follows. In Section II, dual
decomposition with second-order information is introduced
and a proof showing that relaxing the local inequality con-
straint with a general smooth and convex function yields a
non-singular dual Hessian. Section III presents the proposed
relaxation and how to efficiently compute the necessary vec-



tors and matrices. Section IV presents the proposed Newton
method. Section V deals with experimental results obtained
with the proposed algorithm.

Contribution: This paper contains three contributions. First
and second, we show that local matrix factorizations, ob-
tained from taking local primal-dual Newton steps, can be
re-used to compute the dual Hessian and linear predictors
for the local primal-dual variables and the dual variables.
Third, we use this novel ingredients to form a distributed
primal-dual interior point algorithm.

II. DUAL DECOMPOSITION WITH SECOND-ORDER
INFORMATION

In this section, we introduce the second-order dual decom-
position approach. We recall the issue of having a singular
dual Hessian and show that it can be avoided by relaxing
local inequality constraints using any twice differentiable
barrier function.

A. Dual decomposition

We introduce the dual variables λ ∈ Rp corresponding
to the coupling constraints (1b) and define the Lagrange
function as

L(x, λ) =

N∑
k=1

(
1

2
xTkHkxk+cTk xx)+λT (

N∑
k=1

Ckxk−d) (2)

Note that L(x, λ) is separable in x, i.e.

L(x, λ) =

N∑
k=1

Lk(xk, λ) (3)

with

Lk(xk, λ) =
1

2
xTkHkxk + cTk xk + λT (Ckxk −

1

N
d) (4)

The dual function d(λ) = −minx∈X L(x, λ) can thus be
evaluated in parallel as

d(λ) = −
N∑
k=1

min
xk∈Xk

Lk(xk, λ) (5)

Hence, evaluating (5) involves solving local subproblems of
the form

min
xk

1

2
xTkHkxk + cTk xk + λTCkxk

s.t. Akxk = bk, Fkxk ≤ ek
(6)

Since (1) is strictly convex, d(λ) is convex and continu-
ously differentiable, but not twice differentiable. However,
the Hessian of d(λ) is a piecewise constant matrix and
change with the active-set [17].

The non-smooth dual problem then reads

min
λ
d(λ) (7)

from which solution, the solution to our original problem (1)
can be recovered according to strong duality [21].

Strict convexity also implies that the gradient of d(λ) is
given by the residual of the coupling constraints [22], i.e.

∇d(λ) = −
N∑
k=1

Ckx
∗
k(λ) + d (8)

where x∗k(λ) = arg minxk∈Xk
Lk(xk, λ). The dual Hessian

is then given by

∇2d(λ) = −
N∑
k=1

Ck
∂x∗k(λ)

∂λ
(9)

A Newton direction ∆λ in the dual space can then be
obtained as a solution to the Newton system

∇2d(λ)∆λ+∇d(λ) = 0 (10)

B. Singularity of the dual Hessian

It has been observed that the dual Hessian (9) can be sin-
gular for some λ, consequently making the Newton system
inconsistent [17]. This happens when the active local inequal-
ity constraints (1c) together with the coupling constraints
(1b) are linearly dependent [17], and is thus an inherent
drawback when active-set methods are used in the second-
order dual decomposition approach. This issue was solved in
[17] by relaxing the local inequality constraints with an L2

penalty. In this paper, we extend the proof provided in [17]
by showing that we can achieve a nonsingular dual Hessian
in any convex problem by relaxing the local inequality
constraints using a twice differentiable and convex barrier
function.

Consider a general convex problem, with objective func-
tion f(x) and inequality constraints relaxed with a twice
differentiable convex barrier function φ(x). Its dual function,
written on a compact form, is

d(λ, τ) = −
(

minx f(x) + λTCx+ τφ(x)
s.t. Ax = b

)
, (11)

where τ will be referred to as the barrier parameter and C
summarizes all coupling constraints.

Lemma 1: For any λ and τ > 0 the Hessian of the dual
function d(λ, τ) is non-singular.

Proof: The dual Hessian is given by

∇2
λλd(λ, τ) = −C ∂x

∗(λ, τ)

∂λ
(12)

where ∂x∗(λ,τ)
∂λ is the solution to[

∇2f(x) + τ∇2φ(x) AT

A 0

] [
∂x
∂λ
∂µ
∂λ

]
= −

[
CT

0

]
(13)

where µ represents dual variables corresponding to the
equality constraints and ∇2f(x) and ∇2φ(x) are evaluated
at x∗(λ, τ). If we let N be the null space of A, the dual
Hessian is given by

∇2
λλd(λ, τ) = CN(NT (∇2f(x) + τ∇2φ(x))N)−1NTCT

(14)
which is never singular provided that the original problem is
feasible.



It should however be understood, that this result also
follows from [18], where it was formally proved that adding
a self-concordant barrier to the Lagrangian yields a self-
concordant dual function.

III. RELAXING CONSTRAINTS AND COMPUTING
DERIVATIVES

In this section, we reformulate the constraint relaxation
strategy to a primal-dual interior point framework. Then we
present how the dual Hessian and gradient can be computed
efficiently. We also introduce a predictor, that re-uses factor-
izations from the primal-dual framework, to update variables
by exploiting sensitivity information.

A. Constraint relaxation in a primal-dual framework

Consider a local subproblem (6), with inequality con-
straints relaxed with a self-concordant log-barrier

min
xk

1

2
xTkHkxk + cTk xk + λTCkxk

− τ
mk∑
i=1

log([ek − Fkxk]i)

s.t. Akxk = bk

(15)

where [ek−Fkxk]i represents row i of ek−Fkxk. The relaxed
subproblem (15) results in the following KKT-conditions

Hkxk + ck + CTk λ+ τFTk vk +ATk µk = 0

Akxk = bk, Fkxk < ek
(16)

where element i of vk is given by 1/[ek − Fkxk]i. By
introducing the variable yk = τvk, the primal-dual interior-
point KKT conditions, equivalent to (16), are

rk(wk, λ, τ) =

 rDk(wk, λ)
rPk(wk)
rCk(wk, τ)

 = 0

yk > 0, Fkxk − ek < 0

(17)

where we use the notation wk = [xTk , µ
T
k , y

T
k ]T for the local

primal-dual variables and rk(wk, λ, τ) is given by

rDk(wk, λ) = Hkxk + ck + CTk λ+ FTk yk +ATk µk

rPk(wk) = Akxk − bk
rCk(wk, τ) = Yk(ek − Fkxk)− τ1

(18)

where Yk = diag(yk).
Note that (17) defines the central path [21] associated to

(6) parametrized by the scalar τ . The solution of (17), for
a given λ and τ , is computed by taking local Newton steps
∆xk, ∆µk, ∆yk given by Hk ATk FTk

Ak 0 0
−YkFk 0 Mk

 ∆xk
∆µk
∆yk

 = −

 rDk
rPk
rCk

 (19)

where Mk = diag(ek − Fkxk), while ensuring Fkxk < ek
and y > 0. Moreover, note that (15) and (17) have the same
solution x∗k(λ, τ).

B. Gradient and Hessian of the dual function

To compute Newton directions ∆λ in the dual space of λ,
the dual Hessian and gradient are required. Since the relaxed
problem (15) is strictly convex, the gradient and Hessian of
its dual problem are obtained from (8) and (9) respectively,
evaluated at x∗k(λ, τ). The sensitivity ∂x∗

k(λ,τ)
∂λ required in (9)

is given by the linear system Hk ATk FTk
Ak 0 0
−Y ∗k Fk 0 M∗k

 ∂xk

∂λ
∂µk

∂λ
∂yk
∂λ

 = −

 CTk
0
0

 (20)

where Y ∗k and M∗k represent Yk and Mk evaluated at
x∗k(λ, τ).

The system (20) requires the factorization of the matrix
used in the local Newton steps (19). The factorization used
at the last Newton step can therefore be re-used in (20). This
procedure provides the exact Hessian via (9) if (17) is solved
exactly.

C. Predictor

Updates of the barrier parameter τ move the primal-dual
solution of (17) along the central path. In this subsection, we
introduce a first-order predictor to update the local primal-
dual variables wk and the dual variables λ, to account for
the change of the solution upon a change of τ .

The sensitivity of the local solutions w∗k (λ, τ) to a change
in τ is given by the linear system Hk ATk FTk

Ak 0 0
−Y ∗k Fk 0 M∗k

 ∂xk

∂τ
∂µk

∂τ
∂yk
∂τ

 =

 0
0
1

 (21)

Using the solutions of (20) and (21), the local primal-dual
variables can hence be updated following an update of the
dual variable λ and/or of the barrier parameter τ using

w+
k = wk + α

(
∂wk
∂τ

∆τ +
∂wk
∂λ

∆λ

)
(22)

where α ∈ (0, 1] is chosen such that Fkx+k < ek and y+ > 0.
Additionally, the sensitivity of the dual gradient with

respect to τ follows from (21), which allows for constructing
a predictor for λ upon an update of the barrier parameter τ .
Indeed, using

∇2
λτd(λ, τ) = −

N∑
k=1

Ck
∂x∗k(λ)

∂τ
(23)

after an update ∆τ of the barrier parameter, the dual vari-
ables λ can be updated using

∆λ = −(∇2
λλd(λ, τ))−1∇2

λτd(λ, τ)∆τ (24)

Note that the system (21) requires the same factorization
as (20), thus the factorization of (19) used at the last Newton
step and re-used in (20), can therefore be re-used also in (21).
The procedure is inspired by Mehrotra’s predictor-corrector
method [23], but is different in the sense that it allows for
performing the factorization of (20) on an updated primal-
dual point. The local primal-dual updates (22) together with
the dual update (24) will be referred to as a predictor step.



IV. ALGORITHM

In this section, we present three different versions of
the proposed algorithm. First, a full convergence approach
similar to a standard barrier method. Second, a method where
only one Newton step on λ is performed for each update of
τ . Third, a fast path-following approach that can be viewed
as an extension of [20] to a distributed framework.

A. Full convergence
As a starting point, a basic algorithm is formulated where

a sequence of dual problems minλ d(λ, τ) are solved with
decreasing values of τ . We summarize the most important
steps in Algorithm 1. The local primal-dual problems are
solved to full convergence to find Newton directions for λ,
until ‖∇λd(λ, τ)‖ ≤ ε1 is achieved (Step 2-7). The barrier
parameter is then reduced and the procedure is restarted.

Note that the last local factorizations of (19) are re-used
in Step 4 (to compute ∇2

λλd(λ, τ)) and in Steps 7, 11, 13 (to
perform predictor steps). Moreover, Step 3 (solving the local

Algorithm 1: Basic algorithm

Input : λ(0), τ > 0, ε1, ε2
1 while τ > ε2 do
2 while ‖∇λd(λ, τ)‖ > ε1 do
3 Solve the local primal-dual systems, using (19)
4 Compute ∇2

λλd(λ, τ) and ∇λd(λ, τ), using (8)
and (9)

5 Solve ∇2
λλd(λ, τ)∆λ = −∇λd(λ, τ)

6 λ+ = λ+ t∆λ
7 Perform local primal-dual predictor step (22)
8 end
9 Compute ∇2

λτd(λ, τ) in a distributed fashion, using
(23)

10 Choose α ∈ (0, 1] such that Fkx+k < ek and y+k > 0
11 Solve ∇2

λλd(λ, τ)∆λ = −∇2
λτd(λ, τ)∆τ

12 τ+ = τ + ∆τ , λ+ = λ+ ∆λ
13 Perform local primal-dual predictor step (22)
14 end

primal-dual systems) and Steps 7, 10, 13 (performing local
primal-dual predictor steps) in Algorithm 1 can be performed
in a completely distributed fashion.

The algorithm is terminated when primal feasibility is
achieved up to ε1 and x∗(λ, τ) is no more than ε2m-
suboptimal [21]. Algorithm 1 is tested in Sec. V.

B. Path-following
Algorithm 1 can be modified by updating τ at every

update of the dual variables λ, i.e. without checking the
condition ‖∇λd(λ, τ)‖ ≤ ε1. The procedure is summarized
in Algorithm 2.

Note that Algorithm 2 is divided into two phases: first, a
centring phase brings the variables to the neighborhood of the
central path, then a path-following is performed. The barrier
parameter τ should be updated carefully enough, so the
iterates are not leaving the region of quadratic convergence.
Algorithm 2 is tested in Sec. V.

Algorithm 2: Path-following
Input : λ(0), τ > 0, ε1, ε2, ε3

1 Centering: Perform Steps 2-8 of Alg. 1
2 while ‖∇λd(λ, τ)‖ > ε3 or τ > ε2 do
3 Solve the local primal-dual systems, using (19)
4 Compute ∇2

λλd(λ, τ), ∇λd(λ, τ) and ∇2
λτd(λ, τ),

using (8), (9) and (23)
5 Solve

∇2
λλd(λ, τ)∆λ = −∇λd(λ, τ)−∇2

λτd(λ, τ)∆τ
6 τ+ = τ + ∆τ , λ+ = λ+ ∆λ
7 Choose α such that Fkx+k < ek and y+k > 0
8 Perform local primal-dual predictor step (22)
9 end

C. Fast path-following
Algorithm 2 can be reduced to a full central path neigh-

borhood method [24]. In the path-following phase, instead of
iterating the local primal-dual problems to full convergence,
only one Newton iteration is performed before updating λ.
Note that since (17) is not solved to full convergence, an in-
exact dual gradient ∇λd̂(λ, τ) and dual Hessian ∇2

λλd̂(λ, τ)
are used to compute the updates in the dual space.

The algorithm requires a very limited additional com-
putational burden compared to a primal-dual interior point
method deployed on a single central QP of a size comparable
to a subproblem. This suggests that the algorithm could be
used to develop a fast distributed QP solver.

Even though we do not state a proof of convergence, note
that thanks to the predictor of Step 8 in Algorithm 2, rk is,
at a first-order approximation, unaffected by the updates of
λ and τ . The local Newton steps then reduce ‖rk‖ while the
updates on λ improve ‖∇λd̂(λ, τ)‖ with limited disturbance
on the local residual ‖rk‖.

V. EXPERIMENTAL RESULTS

To show numerical features of the proposed algorithms
randomly generated problems are used, with N = 50
subproblems, n = 1000 variables in total, p = 50 coupling
constraints, 1000 inequality constraints and 750 equality
constraints. All algorithms were implemented in Python
using the Message Passing Interface (MPI) protocol.

To compare the performance of the algorithms, the total
amount of local Newton iterations are counted, i.e. the
number of factorizations of the local KKT matrices that
needs to be computed. The proposed stopping criterion was
‖∇λd(λ, τ)‖∞ < 10−6 and τ < 10−6.

A. Algorithm 1
In Algorithm 1, many unnecessary iterations are performed

for achieving the full convergence of both the local and the
dual problems when a large τ is used, thus hindering the
overall convergence of the algorithm.

The convergence is illustrated in Figure 1 for the proposed
problem. Here 24 Newton iterations on the dual variables λ
and an average of 43.38 total local iterations per subproblem
are needed to solve the problem to the desired accuracy.



Fig. 1. Illustration of the convergence of the basic algorithm. The blue
line represents ‖∇λd(λ, τ)‖ and the green line represents τ .

B. Fast path-following vs path-following
Numerical tests indicate that both the path-following meth-

ods require significantly fewer iterations than Algorithm 1.
It is also, in general, possible to update the barrier parameter
τ quite aggressively before the convergence is seriously
hindered. Moreover, for reasonable update rules of τ , the
path-following method often only takes one local iteration
before updating λ, which then collapses into the fast path-
following method. This indicates that the predictor step is a
good warm start for the local Newton iterations.

The convergence of the fast path-following method for 50
randomly generated problems, with the previously described
dimensions, is visualized in Figure 2. A very consistent
convergence is obtained on all the tested problems.

Fig. 2. Illustration of the convergence of the fast path-following. The blue
lines represent ‖∇λd̂(λ, τ)‖ and the green line represents τ .

C. Benefits of predictor step
This subsection deals with the effects of the predictor step

presented in Section III-C. Numerical tests indicate that the
step is useful in all three methods, here is however the fast
path-following method used as an example.

The performance of the fast path-following algorithm with
and without the predictor step, with a quite conservative up-
date of τ , is visualized in Figure 3 and Figure 4 respectively.

Fig. 3. Illustration of the convergence of the fast path-following algorithm
with predictor steps. The blue line represents ‖∇λd̂(λ, τ)‖ and the green
line represents τ .

Fig. 4. Illustration of the convergence of the fast path-following algorithm
without predictor steps. The blue line represents ‖∇λd̂(λ, τ)‖ and the green
line represents τ .

First, it should be observed that even for a modest up-
date rate of the barrier parameter, the predictor step helps
achieving a better convergence. The relative difference is
in general bigger for more aggressive update rules, but it
should be mentioned that even without the predictor step,
the algorithm does most often converge even for extreme
updates of τ .

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we consider the problem of solving dis-
tributed Quadratic Programs efficiently and improve on the
results of [12], [19] by introducing linear predictors ex-
ploiting sensitivity information. In the proposed algorithm, a
primal-dual interior point method is used to solve the local
subproblems, and a Newton iteration is used to update the



dual variables. Predictors for the local primal-dual variables
and the dual variables are introduced to improve the con-
vergence. The resulting algorithm shows fast, consistent and
robust practical convergence on the problems tested. Since
local factorizations are re-used to form the dual Hessian and
the predictors, the proposed algorithm requires a very limited
additional computation burden when compared to a primal-
dual interior point method deployed on a single Quadratic
Program. This suggests that the proposed algorithm could
be used to develop a fast distributed QP solver.

Future work will consider the possibility of designing
an adaptive update of the barrier parameter and studying
formally the convergence of the algorithm. The communi-
cation burden involved in the proposed algorithm will also
be investigated.
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