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Global Safety Assessment of Concrete Structures using Nonlinear Finite Element 

Analysis 

 

Master of Science Thesis in the Master’s Programme Structural Engineering and 

Building Technology  

MATTIAS BLOMFORS 

Department of Civil and Environmental Engineering 

Division of Structural Engineering 

Concrete Structures 

Chalmers University of Technology 

 

ABSTRACT 

To increase the efficiency of new structures and to perform safety evaluations of 

existing structures the nonlinear behavior of reinforced concrete should be modelled 

and analyzed. It is unclear if the safety formats for nonlinear analysis in present 

design codes correctly assess the probability of failure for indeterminate structures 

subjected to loading in several directions. In this thesis the safety formats for 

nonlinear analysis in Model Code 2010 have been evaluated for a reinforced concrete 

portal frame subjected to vertical and horizontal loading. The frame was designed 

according to Eurocode 2 based on linear elastic analysis. The design load carrying 

capacity was determined for the safety format Estimation of COefficient of Variance 

of resistance (ECOV), the Global Resistance Factor method (GRFm) and Partial 

Safety Factor method (PSF). Two load histories were studied, differing by which of 

the loads that were applied first. The results were compared in terms of the probability 

of failure assessed by applying the first order reliability method to a response surface 

fitted to results from nonlinear FE analyses. The ECOV safety format was found not 

to satisfy the intended probability of failure of 0.1% when the vertical load was 

applied first. The other safety formats all met the intended safety level and yielded 

design resistances 6-8% below the linear elastic design load for both load histories. 

The results indicate that the load history of the structure is important when it comes to 

safety evaluation. It was concluded that more research is required regarding the 

loading of complex structures and how it affects the safety level. 

 

Key words: reinforced concrete, nonlinear finite element analysis, safety formats, 

first order reliability method, response surface. 
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1 Introduction 

Large concrete structures exposed to a variety of loads acting in different directions, 

e.g. dams and offshore concrete structures, must be designed to meet requirements 

regarding structural capacity and reliability for a certain design life time. The design 

must also be feasible with respect to constructability. 

 

1.1 Background 

In engineering practice today the designs of large concrete structures are often 

verified using global linear finite element analyses (LFEA), Brekke et. al. (1994). 

Large solid elements are used in the analyses to reduce the number of elements, i.e. 

computational time. These analyses can therefore be described as large scale analyses. 

Due to the nature of the linear analysis, load effects caused by various loads can be 

superimposed. Load combination is typically done after the LFEA using a post-

processing program which also designs the structure. 

 

1.2 Problem description 

In reality reinforced concrete structures show nonlinear material behavior when 

subjected to increasing load. This is mainly due to cracking of concrete and yielding 

of reinforcement steel. The concrete can crack even for small loads, which changes 

the stiffness properties of the material and stresses are redistributed to sections with 

higher stiffness. This behavior is not represented by a LFEA.  

An analysis that recognizes the nonlinear behavior of reinforced concrete is required 

to accurately represent the stress distribution, i.e. a Nonlinear Finite Element Analysis 

(NLFEA). Efforts are put towards finding a general, robust and stable solution 

strategy for conducting NLFEA, focusing on material behavior and reliability, Engen 

et. al. (2014). 

The traditional design process using LFEA involves control of the utilization ratio 

(UR) locally in each design section to ensure safety. The material strength is scaled 

down and the load effect is scaled up using pertinent partial factors to obtain design 

values which are used for UR calculations. However, a global NLFEA reveals the 

capacity of the structure to which all sections contribute. Since a NLFEA yields the 

global response of a structure, the safety should be checked globally. Further research 

is needed to validate the safety formats in the design and model codes for structures 

with complex failure modes, Cervenka (2013).  

 

1.3 Aim 

One aim of this thesis is to provide an overview of the safety formats used today for 

global safety assessments using NLFEA. Another aim is to examine and compare the 

applicability of the different safety formats on more complex structures through case 

studies. The studied safety formats will be those in fib Model Code 2010 fib (2013). 
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1.4 Limitations 

The thesis does not set out to develop a new safety format, but rather compare 

existing safety formats. Developing a new safety format requires substantial 

experience and time; therefore it is beyond the scope of the thesis. Furthermore, no 

practical experiments will be performed during this project.  

 

1.5 Method 

First a literature review is conducted to gain knowledge in the topic. Efforts will be 

put towards finding data from a relevant practical experiment that can be used for 

verification of computer models. 

The next step is to establish a nonlinear finite element model (NLFEM) of a fairly 

complex structure which is verified or "benchmarked" using the experimental data. 

Following the design approach suggested by Engen et. al. (2014) a structure, similar 

to the one verified but larger, is to be designed using LFEM software and an in-house 

post-processor. A large scale NLFEM of the design is established and then used for 

comparing the different safety formats’ impact on the global safety assessment. 

An assessment of the structural capacity is made by means of fitting a response 

surface to the implicit limit state function and applying second moment methods. This 

serves as a base for comparison of the different safety formats. 
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2 Safety assessment using nonlinear FEA 

This chapter will present a theoretical basis for global safety assessment using 

nonlinear finite element analyses. The element method itself is presented briefly, 

followed by a background of structural reliability. Furthermore, the safety formats for 

NLFEA in the Model Code 2010 fib (2013) will be described. Different ways of 

evaluating the reliability of a structure is also accounted for. 

 

2.1 The finite element method for reinforced concrete 

The finite element method (FEM) is widely used in many fields of engineering and is 

a method to numerically solve field problems, Cook et. al. (2001). In civil engineering 

the stresses and displacements in a structure is often of interest. These can be 

described mathematically by differential equations. A model of the structure is 

divided into finite elements, in contrast to the infinitesimal elements used in calculus. 

The points that connect the finite elements to each other are called nodes and the 

arrangement of nodes and elements is called a mesh. The displacements are found at 

the nodes (i.e. node quantities) while the stress distribution varies over the elements 

(i.e. field quantities). In the FEM the stress variation over each element is 

approximated, often as a polynomial distribution, and the weak solutions to the 

differential equations are found. Therefore the element method does not provide an 

exact solution, however the mesh structure can be arranged in such a way that 

sufficient accuracy in the calculations is achieved.  

Reinforced concrete is a composite material made of concrete and steel, and the 

material model for particularly concrete is complex. This causes the finite element 

analysis of reinforced concrete to sometimes be more involved than for example 

structural steel, which is easier to model material wise. For example, for a reinforced 

concrete structure a more detailed finite element model might yield less accurate 

results if the material model is unable to describe the concrete material in sufficient 

detail. The following sections will give an overview of linear and nonlinear finite 

element analysis. A computational model will also be accounted for.  

 

2.1.1 Linear finite element analysis 

In a linear finite element analysis (LFEA) the materials are assumed to show linear 

elastic behavior and the assumption of small deflections is implemented, Hinton et.al. 

(1992). The solution in a LFEA is obtained in a one-step calculation since material 

properties, geometry and boundary conditions are not varying with the load level. 

Moreover, the load effects from several loads can be combined according to the 

principle of superposition. This methodology has proven efficient in traditional design 

of reinforced concrete.  

A well performed linear finite element analysis often yields a reasonable idealized 

stress field, which can be used in design. However, if an accurate response of a 

structure is sought the model needs to be more realistic. 
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2.1.2 Nonlinear finite element analysis 

In order to represent the true behavior of a structure, nonlinearities need to be 

included in the analysis, Hinton et.al. (1992). Three important sources of nonlinearity 

are material, geometry and boundary conditions. The nonlinear behavior of the 

material is perhaps the most intuitive, e.g. concrete cracking and/or reinforcement 

steel yielding. Geometrical nonlinearity is when a structure deforms under loading 

and the change in geometry alters the structural resistance. Geometrical nonlinearity is 

pronounced in slender columns where deflections greatly influence the capacity. 

Boundary nonlinearities are present when the reactions from the boundary change 

nonlinearly due to increased loading. Reaction forces employed by means of friction 

can be an example of nonlinear boundary conditions. 

  

2.1.3  Strategy for structural Finite Element modelling 

This section will briefly present the elements of a computational model used for finite 

element analysis. The presentation is found in Hinton et.al. (1992) where it describes 

NLFEA. Here it is modified to also apply for LFEA and to treat the solution strategy 

in more detail. An overview of a typical computational model can be seen in Figure 

2.1 below. 

 

Figure 2.1  FEA computational model 

 

2.1.3.1 Structural model 

The first step when setting up a FE-model is to form a clear idea of the sought 

outcome. This will be of help when choosing how to idealize the structure. Depending 

on the goal with the analysis it might be best to use 1-D elements (beams, columns, 

cables etc.), 2-D (e.g. shells, walls) or 3-D elements. A combination of these types 

should also be considered. Further, clear goals with the analysis also help to decide 

how much structural detail that should be included in the model. It is also important to 

consider what the key features of the loading and boundary conditions are and how to 

Structural 
model 

•Statement of objectives 

•Structural idealization 

•Loading  

•Boundary conditions 

•Types of nonlinearities (NLFEA) 

Solution 
strategy 

•Constitutive relation (material level) 

•Compatibility (element level) 

•Equilibrium (structural level) 

Post-
processing 

•Benchmark check 
(NLFEA) 

•Model validation 

•Interpret results 
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include these in the computational model. It can be advisable to exploit symmetries in 

the structural system in order to simplify the FE-model. However, one should be 

aware of such simplifications influence on the global response. In case of a nonlinear 

analysis, there are more considerations to be made. These include identification of the 

type(s) of nonlinearity, e.g. concerning boundary, geometry and material.  

 

2.1.3.2 Solution strategy 

The solution strategy for FEA includes the constitutive relation on material level, 

compatibility between strain and displacement on element level and equilibrium 

between internal and external forces on structural level. See Figure 2.2 below for an 

illustration. 

 

Figure 2.2  Depiction of FEM solution strategy by Engen (2014) 

 

The linear elastic material model follows Hooke’s law, i.e. the stiffness is independent 

of the stress level. In contrast, a nonlinear material model must be able to represent 

the real material with sufficient accuracy and in reality the stiffness is very much 

dependent of the stress state. Note that the solution strategy for NLFEA depicted in 
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Figure 2.2 is for small deformation only, i.e. geometrical nonlinearities are 

disregarded. 

The continuous structural model principally described in Section 2.1.3.1 is to be 

discretized in order to obtain a finite number of degrees of freedom (D.O.F.). The type 

of unknowns should also be chosen, often displacements but other formulations are 

also used. The type of elements to be used should be decided, e.g. beam, shell or 

volumetric. The next step is to divide the structural model into elements, i.e. construct 

a mesh. The size of the elements can be varied in order to ensure adequate resolution 

of the results. For example, complex geometries can require smaller elements, i.e. 

denser mesh, in certain regions in order for the numerical approximation over the 

elements to be reasonable. The element stiffness matrices are constructed using the 

pertinent material stiffness matrices. 

From the element stiffness matrices global stiffness matrices are assembled. In the 

case of LFEA, where the stiffness is independent of the stress, the equilibrium 

equations can be solved in one step and the nodal solution is obtained directly. For 

nonlinear analysis, however, the stiffness is dependent on the stress state in the 

material. Thus the equilibrium equations need to be solved in an iterative process. 

Nonlinear analyses are often performed using a scheme that gradually increases the 

load or node displacement. For each increment, equilibrium equations are obtained 

and solved. The Newton-Raphson method, or methods based in it, is commonly used 

to iteratively solve the system of equations. For each iteration the system of equations 

is updated with respect to the nonlinearities, e.g. changed element stiffness properties 

or large deformations. The iterations continue until a convergence criterion is 

fulfilled. It can for example be a tolerance put on the out of balance forces or 

incremental displacements. When the solution has converged for one load (or node 

displacement) step, an incremental increase of the load is applied and the iterative 

process continues. There must also be a criterion identifying divergence. Such a 

criterion can consist of comparing the magnitude of a reference displacement with the 

load increase. If the displacement is too large compared to the displacement caused by 

the prior load steps, the divergence criterion is fulfilled and the analysis is ended. The 

output data to be saved for post-processing needs to be selected. This is necessary 

since large amount of data is generated in the iterative process, much of which is not 

interesting for further use. What data to save is closely related to the objectives of the 

analysis described in Section 2.1.3.1. 

 

2.1.3.3 Post-processing 

The computational model needs to be validated in order to ensure meaningful results. 

This can be performed with different levels of depth depending on the user’s 

experience from similar analyses. One way to validate the model is by benchmarking. 

That is, comparing the response of the computer model to known results from tables 

or practical experiments. Once sufficient confidence has been gained of the model 

yielding reasonable results, the analysis can be run for the loading conditions and 

material parameters of interest. The results from the analysis should be examined and 

engineering judgment should be employed. The typical output from a FEA are plots 

of deformed mesh, principal stresses and load-displacements plots. This output is 

common for both LFEA and NLFEA. In case of NLFEA, plots of plasticity zones and 

crack patterns is often also of interest. Previously defined components of the computer 
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model, e.g. element type, mesh, convergence criteria etc. might need to be changed in 

order to improve the analysis. 

 

2.2 Background for structural reliability 

This section serves to provide a background for reliability assessment of structures. 

The principles of limit state design will first be presented and then the concept of 

basic variables will be explained. Deterministic and probabilistic measures of limit 

state violation are presented and the concept of uncertainties and how they are 

accounted for will be described. Lastly considerations regarding the reliability levels 

of structures are accounted for. 

 

2.2.1 Principles of limit state design 

When a structure is subjected to a certain applied load it will respond in terms of 

internal stresses. The response is governed by the nature and magnitude of the load 

and the strength, stiffness and shape of the structure. The requirements put on the 

structure define if the response is acceptable or not, these are called limit states. There 

are two main types of limit states, considering the ultimate capacity and serviceability 

respectively. They are presented in more detail below. 

 

2.2.1.1 Ultimate limit states 

The ultimate limit state (ULS) relates to the maximum load carrying capacity of a 

structure but also the maximum deformability. Excess of an ultimate limit state is 

generally irreversible, meaning that failure occurs at the first violation. Below are 

some examples of ultimate limit states, JCSS (2001) and CEN (2008): 

 maximum resistance capacity reached in sections, members or connections 

followed by excessive deformation or rupture 

 loss of equilibrium in a part of the structure or the entire structure, leading to 

rigid body movement 

 time dependent rupture of connections or members, e.g. fatigue induced 

rupture 

 abrupt change of structural system, e.g. snap through failure 

 

2.2.1.2 Serviceability limit state 

The serviceability limit states (SLS) correspond, as the name implies, to the 

requirements put on the structure in service. Some examples are presented below, 

JCSS (2001):  

 local damage that may reduce the durability or affect the appearance of an 

element in the structure, load carrying or not, e.g. excessive cracks in concrete 

 deflections  

 fatigue induced damage or damage due to other time dependent effects 

 inadmissible deformations affecting the functionality or appearance to an 

unacceptable extent 

 excessive vibrations which can disturb people and equipment 
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The violation of the serviceability limit state might be reversible. For example 

deflections might be non-permanent and retract to admissible levels once the situation 

causing the deflection is over. The conditions of failure with respect to the 

serviceability limit state should be specified. For example the number of times, or the 

duration, for which a certain deformation limit is allowed to be exceeded, JCSS 

(2001). 

Structural reliability assessment aims to determine, using calculations and predictions, 

the probability of limit state violation at any stage of a structure’s life time. Moreover, 

structural safety assessment is connected to the ultimate limit state of the structure. 

The probability of a limit state violation is the numerical value of the chance of it 

occurring. This value can be determined through long-term measurements of the event 

occurring on similar structures, but this is rarely used in practice. This is due to the 

long time span required for such measurements and the difficulty to find 

representative structures. The common procedure in practice is to use frequency 

observations of more general character, e.g. regarding structural properties, elements 

or materials, together with subjective estimates together in order to calculate the 

reliability using probabilistic calculations, Melchers (1999). 

 

2.2.2 Basic variables 

The behavior and safety of a structure can be described in terms of physical properties 

such as material strengths, dimensions, loads and weight etc. These are random in 

nature and pertain to the so called basic variables.  

A wide definition of the basic variables also includes the parameters which 

characterize the model itself and sometimes also parameters describing the 

requirements on the structure.  The basic variables are assumed to carry all the input 

data required for the analysis model, JCSS (2001).  

The basic variables can be described as random variables with suitable probability 

distributions. What particular distribution to assign to a basic variable is often chosen 

based on observed data and experience. The central limit theorem is also used to 

justify the use of a normal distribution. That is, when several different components, 

regardless of the distributions, together form a basic variable it can be assumed to be 

normally distributed, Melchers (1999).  

Furthermore, the basic variables are not limited to random variables, they can also be 

random processes, i.e. the evolution of the random variables over time, or random 

fields, e.g. material properties varies within a sample. There are standardizations in 

the JCSS Probabilistic Model Code, JCSS (2001) for the probability distributions of 

the basic variables depending on the class of the structural design problem. 

 

2.2.3 Deterministic measures of structural reliability 

A simplified way to check the reliability of a structure is to consider a special case 

where the basic variables are treated as deterministic. The values are derived from 

their probabilistic properties and are used directly in the calculations. Three measures 

for conducting such controls are presented below.  
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2.2.3.1 Factor of safety 

A factor of safety is used to reduce the capacity of the material on the sectional level 

of a structure. It is typically used with linear elastic stress analysis and the limit state 

criterion is presented below:  

𝜎𝑖(𝑥) ≤ 𝜎𝑝𝑖  and  𝜎𝑝𝑖 =
𝜎𝑢𝑖

𝐹
 (2.1)  

where 𝜎𝑖(𝑥) is the i-th stress component in the point x of the structure and 𝜎𝑝𝑖 is the 

maximum permissible stress or design stress. The value of 𝜎𝑢𝑖 is based on the material 

strength, and the safety factor F reduces 𝜎𝑢𝑖 to obtain the design stress. The safety 

factor value differs between construction materials and is regulated in the building 

codes. Typically a code committee decides the safety factor value based on 

experiments, experience and economy but sometimes also politics influence the 

decision, Melchers (1999).  

The linear elastic stresses, obtained from e.g. LFEA, do not accurately describe the 

actual stress distribution in the structure, which has been stated previously. The stress 

field is changed due to stress concentration and redistribution along with boundary 

and physical size effects. Also the permissible stresses are obtained by linear scaling 

down the ultimate capacity, even though it is typically reached in the nonlinear region. 

The calculation can therefore be described as a conservative estimate rather than a 

precise calculation of the utilization of the section, Melchers (1999). 

 

2.2.3.2 Load factor 

The load factor approach was originally developed to be used in the plastic theory of 

structures. The loads are increased using a factor 𝜆, which corresponds to how many 

times the set of loads must be multiplied in order to cause collapse of the structure. 

Here the strength of the structure is determined by using the plastic resistances. The 

structure is considered to have failed or collapsed when the external work exceeds the 

internal work, see equation (2.2) below: 

𝑊𝑅(𝑹𝑃) ≤ 𝑊𝑄(𝜆𝑸) (2.2) 

where 𝑹𝑃 contains the plastic resistances, 𝜆 is the load factor and 𝑸 contains all the 

applied loads. 𝑊𝑅 and 𝑊𝑄are the internal and external work respectively. The 

principal difference between the “factor of safety” and the “load factor” reliability 

measures is in which reference level they are applied. The prior is applied on the 

sectional level while the latter is applied on the structural level, Melchers (1999). 

 

2.2.3.3 Partial factor 

The “partial factor” measure of safety is developed from the two previously 

mentioned measures. It yields a limit state on member design level as presented in 

equation (2.3) below: 

𝜙𝑖𝑅𝑖 ≤ 𝛾𝐷𝑖𝑆𝐷𝑖 + 𝛾𝐿𝑖𝑆𝐿𝑖 + ⋯ (2.3) 

where the index 𝑖 represent the limit state, 𝑅 is the member resistance and 𝜙 is the 

partial factor pertinent to 𝑅. Further, 𝑆𝐷 and 𝑆𝐿 are the load effects from the dead and 

live load and 𝛾𝐷 and 𝛾𝑆 are the partial factors. This safety format is an improvement 
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of the previously treated since it separates the uncertainty corresponding to dead and 

live loads as well as including a factor for modelling and construction uncertainty of 

the resistance. 

The same safety format applied to plastic collapse on the structural level is presented 

in equation (2.4) below: 

𝑊𝑅(𝜙𝑹) ≤ 𝑊𝑄(𝛾𝐷𝑸𝐷 + 𝛾𝐿𝑸𝐿 + ⋯ )  (2.4) 

where 𝑹 and 𝑸 are vectors containing the resistances and loads and 𝜙 and 𝛾 are the 

partial factors. Note that the partial factors differs between member and structural 

level, i.e. between equations (2.3) and (2.4). This since for example load redistribution 

is included in the latter expression and should be reflected in the partial factors.  

 

2.2.4 Probabilistic measures of structural reliability 

The probability of failure is a central part of reliability assessment. It is not possible to 

obtain using the deterministic measures of failure presented above. A probabilistic 

measure of limit state violation is more complex and enables assessment of the 

probability of failure. 

In order to describe the limit state function a simple case will first be presented and 

then a general approach will be introduced. Consider the case of a structure with a 

certain resistance (𝑅) subjected to a certain load effect (𝑆), which are both 

independent random variables. The probability of failure can for the simple case be 

written as:  

𝑝𝑓 = 𝑃(𝑅 ≤ 𝑆) = 𝑃(𝑅 − 𝑆 ≤ 0) (2.5) 

where 𝑝𝑓is the probability of failure, R is the resistance and S is the load effect. Or 

more generally as: 

𝑝𝑓 = 𝑃[𝐺(𝑅, 𝑆) ≤ 0] (2.6) 

where 𝐺 is generally known as the limit state function. The bivariate (joint) 

probability density function of the resistance and load effect, 𝑓𝑅𝑆(𝑟, 𝑠), can be used to 

calculate the failure probability. If the resistance and load effect are assumed 

independent the following is true, Melchers (1999): 

𝑝𝑓 = 𝑃(𝑅 − 𝑆 ≤ 0) = ∬ 𝑓𝑅𝑆(𝑟, 𝑠)
𝐷

𝑑𝑟𝑑𝑠 (2.7) 

𝑝𝑓 = ∫ ∫ 𝑓𝑅(𝑟)𝑓𝑆(𝑠)
𝑠≥𝑟

−∞

∞

−∞
𝑑𝑟 𝑑𝑠 (2.8)  

where 𝐷 represents the failure domain. Knowing that the cumulative distribution 

function is: 

𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥) = ∫ 𝑓𝑋(𝑦)
𝑥

−∞
𝑑𝑦 (2.9) 

provided that 𝑥 ≥ 𝑦 the probability of failure can be written as: 

𝑝𝑓 = ∫ 𝐹𝑅(𝑥)𝑓𝑆(𝑥)
∞

−∞
𝑑𝑥 (2.10) 
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where 𝐹𝑅(𝑥) is the cumulative distribution function (cdf) of the resistance and 𝑓𝑆(𝑥) is 

the probability density function (pdf) of the load effect. equation (2.10) is an 

intuitively attracting way to describe failure since 𝐹𝑅(𝑥) is the probability of a 

resistance lower than 𝑥 and 𝑓𝑆(𝑥) corresponds to 𝑥 ≤ 𝑆 ≤ 𝑥 + ∆𝑥 when ∆𝑥 → 0. In 

other words, the probability of the event where the load effect exceeds the resistance 

is integrated over the entire domain to obtain the probability of failure. 

An illustration of the probability functions for load effect and resistance are depicted 

in Figure 2.3 below. The failure density, i.e. the integrand of equation (2.10), is also 

shown. The area under the failure density curve represents the probability of failure. 

 

Figure 2.3  Depiction of a probability of failure calculation, adopted from Melchers 

(1999) 

 

The basic case presented above needs to be generalized in order to be adequate for 

practical considerations. Both the load effect and the resistance will most probably be 

functions of several variables, each of which can be random. It is also possible that the 

resistance and the load effect are dependent, i.e. influence each other. This is the case 

when one or several loads contradict failure, e.g. in an overturning situation. A 

generalized approach is needed and the convolution integral in equation (2.10) is 

primarily for illustration.  

The generalized limit state function can be described as a function of all the basic 

variables related to it. In analogy with the simple example treated earlier, the 

resistance can be written as 𝑅 = 𝐺𝑅(𝑿) where 𝑿 is the vector containing the basic 

variables. The load effect can be written analogously. The model uncertainty should 

also be included. The probability density functions of these expressions can be 

integrated over the pertinent basic variables and be used to construct the convolution 

integral. But this is typically not done. Instead of having 𝑅 and 𝑆 separated, they are 

incorporated in equation (2.6) and the generalized limit state function (or performance 

function) can be written as: 

𝐺(𝑿) = 𝐺(𝐺𝑅(𝑿), 𝐺𝑆(𝑿), 𝐺𝜃(𝑿))  (2.11) 
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and thus the limit 𝐺 > 0 represent the safe domain while 𝐺 ≤ 0 represent failure. 𝐺𝜃 

represents the model uncertainty. It should be noted that the generalized limit state 

function typically only contains 𝑅 and 𝑆 implicitly.  

This probability of failure is evaluated in the same manner as described earlier, but the 

mathematics are now more complex: 

𝑝𝑓 = 𝑃[𝐺(𝑿) ≤ 0] = ∫ 𝑓𝑿(𝒙)𝑑𝒙
𝐺(𝑿)≤0

 (2.12) 

where 𝑓𝑿(𝒙) is the bivariate probability density function of the n-dimensional vector 

𝑿 containing the basic variables. Numerical integration is used in practical cases to 

calculate the probability of failure, Melchers (1999).  

 

2.2.5 Uncertainties 

Uncertainties originating from all important sources must be evaluated and included 

in the model of basic variables. The uncertainties can be characterized as, JCSS 

(2001): 

 inherent physical or mechanical uncertainty, e.g. material and geometry 

uncertainties 

 statistical uncertainty, e.g. when few observations form the base for design 

decisions 

 model uncertainties 

The material uncertainties are taken into account by modelling the material as random 

variables following some distribution. Also geometry is treated in a similar manner. 

All types of uncertainties where statistical estimators (e.g. sample mean and standard 

deviation) are used to find a suitable probability density functions are subjected to 

statistical uncertainty. This since the observations does not perfectly represent the 

actual variable. Several types of uncertainties can be present for the same basic 

variable. For example load modelling is based on statistical data and thus stained with 

statistical uncertainty. But it is also regarded as a simplification of reality and 

pertinent to the model uncertainties. 

The modelling uncertainty is a very important part describing that a predicted solution 

obtained via a computational model will generally differ from the true solution. This 

might be due to lack of knowledge or simplifying assumptions. Some common 

simplifying assumptions are for example idealizations of the structure and selections 

of what loads to use in the analyses. In order to calibrate the model, model uncertainty 

parameters with certain statistical properties are included. The parameters describing 

the model uncertainty can be derived from experiments or observations. However, it 

was found by Schlune (2011) that the model uncertainty is hard to assess for difficult 

to model failure modes. Ideally, when the model uncertainty parameters are 

implemented in the computational model, it should on average predict the solutions 

correctly. It can be noted that many models in the design codes are intended to yield 

conservative results, i.e. they have an intentional bias which should be considered 

when comparing results gained using different methods. 
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2.2.6 Reliability level  

The generalized reliability index is typically used as a reliability measure. The 

definition is corresponding to a certain probability of failure, based on a standardized 

normal distribution (standard Gaussian distribution). It can be described as the 

number of standard deviations (equal to unity in a standardized Gaussian distribution) 

away from the mean value (i.e. zero for said distribution) corresponding to the 

probability of failure. It is written as, JCSS (2001): 

𝛽 = −𝛷−1(𝑃𝑓) (2.13) 

where 𝑃𝑓is the probability of failure and Φ−1 is the inverse Gaussian distribution. The 

probability of failure should be calculated from the standardized joint distribution of 

the basic variables including modelling uncertainty as well as statistical uncertainty. 

A differentiation is made between component reliability and system reliability. As the 

names imply the component reliability is related to failure of a single component 

while the latter is associated with system failure. Systems can also be divided into 

redundant and non-redundant systems. Failure occurring in one component of a 

redundant system does not mean failure of the entire system, but it does in a non-

redundant system. Probabilistic structural design is conducted primarily with respect 

to component failure, but the consequences of system failure are often more severe, 

JCSS (2001). 

 

2.2.6.1 Target reliability 

The consequences of a possible failure are central when determining the target 

reliability. More specifically, risk of personal injury and death together with economic 

and societal losses should be included in the assessment. Also the cost and effort to 

decrease the probability of failure should be considered when determining the target 

reliability level fib (2013). This is not uncontroversial since the probability of 

casualties and injuries are compared with the cost of reducing the risk. 

Recommendations for target reliability levels for different limit states and reference 

periods are available in the for example the Model Code 2010, fib (2013) and 

Eurocode 1990, CEN (2008). 

 

2.3 Safety formats for nonlinear analysis 

In order to verify the adequacy of a structure, it must be checked that the limit state 

function is satisfied. Traditionally checks on sectional level are conducted using 

partial coefficients, derived from the probability density functions of the basic 

variables. These checks have limited applicability to nonlinear analysis since the real 

behavior of the structure is sought, and it is not reflected by altering the sectional 

capacities and load effects. Another approach should be taken for NLFEA. The most 

probable, i.e. mean, resistance of the structure should be used as a reference for the 

safety evaluation. Since the basic variables contributing to the resistance are uncertain 

and vary randomly, the resistance is also random with a certain variation. There are 

also uncertainties related to the modelling which need to be addressed. The purpose of 

the safety formats is to account for these uncertainties and yield a design according to 

the chosen safety level, fib (2013).  



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:163 
14 

The design condition used is as follows: 

𝐹𝑑 ≤ 𝑅𝑑 ,   𝑅𝑑 =
𝑅𝑚

𝛾𝑅
∗ 𝛾𝑅𝑑

 (2.14) 

where 𝐹𝑑 is the design value of actions, 𝑅𝑑 is the design resistance, 𝑅𝑚 is the mean 

resistance, 𝛾𝑅
∗  is the global safety factor and 𝛾𝑅𝑑 is the model uncertainty factor. 

There are several safety formats described in the Model Code that can be used to 

evaluate 𝑅𝑑. They are presented in the following sections.  

 

2.3.1 Probabilistic method 

When the probabilistic method is used, the design resistance is evaluated explicitly 

according to a specified safety index or probability of failure.  

𝑅𝑑 =
1

𝛾𝑅𝑑
𝑅(𝛼𝛽),   𝛾𝑅𝑑 > 1 (2.15) 

where 𝛾𝑅𝑑 is the modelling uncertainty factor and 𝑅(𝛼𝛽) is the resistance obtained 

from nonlinear analyses when all uncertainties are included. The uncertainties are 

those connected to the resistance side of the design equation, namely the geometry 

and materials properties and conceivably others depending on the situation. The 

resistance corresponding to the safety index 𝛽, directly transferable to a probability of 

failure, is used in the above equation. The safety index is reduced by a sensitivity 

factor 𝛼 since only the resistance side of the design condition is treated.  

A short description of how to perform a probabilistic analysis following the Model 

Code 2010 provisions is found in Section 2.4.4. 

 

2.3.2 Global resistance method 

For the global resistance method the design resistance is estimated with a simplified 

probabilistic approach. There are two methods included in the Model Code 2010, of 

which the second is more involved. Both methods are presented in the two following 

subsections. 

 

2.3.2.1 Global resistance factor method (GRFm) 

In the GRFm the mean resistances are used for the material properties. The difference 

in uncertainty between reinforcement steel and concrete is accounted for to achieve a 

common global safety factor for the mean strength of both steel and concrete. The 

design resistance is formulated as: 

𝑅𝑑 =
𝑟(𝑓𝑚,… )

𝛾𝑅𝛾𝑅𝑑
 (2.16) 

where the function 𝑟 represents the resistance obtained from nonlinear analysis with 

mean input material parameters. The safety factors for resistance and model 

uncertainty, 𝛾𝑅 and 𝛾𝑅𝑑, are here given as 1.2 and 1.06 respectively. The mean 

reinforcement steel properties can be approximated from the characteristic values as: 

𝑓𝑦𝑚 = 1.1𝑓𝑦𝑘 (2.17) 
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The concrete properties to be used in the analysis can be calculated as: 

𝑓𝑐𝑓 = 1.1𝛼𝑐𝑓𝑓𝑐𝑓𝑘
𝛾𝑆

𝛾𝐶
  (2.18)  

where 𝑓𝑐𝑓 is the concrete strength parameter. The reduction originates from the 

common global safety factor, here used for the both steel and concrete. Since the steel 

and concrete partial factors are formulated for the same failure probability but 

concrete have larger variability, concrete requires a larger safety margin. This is 

adjusted for in the expression above. Furthermore, 0.85 ≤ 𝛼𝑐𝑓 ≤ 1.0 is a factor 

accounting for sustained load and unfavorable load application effects and 𝑓𝑐𝑓𝑘 is the 

characteristic concrete property. 

 

2.3.2.2 Method of estimation of a coefficient of variance of resistance (ECOV) 

This safety format is based on research suggesting that the randomness of the 

resistance can be described as a lognormal distribution with two parameters. The two 

parameters are the mean resistance and the variance of the resistance. These two 

parameters are sufficient to describe the lognormal distribution. Other parameters 

such as the quantiles of the resistance distribution, typically the 5% quantile that 

correspond to the resistance using characteristic material input, can be derived from 

this distribution. Since the variance of the resistance is typically unknown, two 

NLFEA are conducted. One performed with mean input parameters for the material 

data and one with characteristic values. From these resistances it is possible to 

estimate the coefficient of variance of resistance. This can be put in mathematical 

terms as:  

𝑅𝑚 = 𝑟(𝑓𝑚, … ),   𝑅𝑘 = 𝑟(𝑓𝑘, … ) (2.19) 

where 𝑟 is the resistance from nonlinear analyses with mean and characteristic values 

as material input parameters respectively. As stated above, describing the resistance as 

a two parameter lognormal distribution enables determining the coefficient of 

variation of resistance as: 

𝑉𝑅 =
1

1.65
𝑙𝑛 (

𝑅𝑚

𝑅𝑘
) (2.20) 

where 𝑉𝑅 is the coefficient of variation of resistance for a characteristic value with 5% 

probability. The factor for global resistance 𝛾𝑅 can be calculated as follows: 

𝛾𝑅 = 𝑒𝑥𝑝 (𝛼𝑅𝛽𝑉𝑅) (2.21) 

where 𝛼𝑅is a weight factor for the reliability index, 𝛽. The design value for the 

resistance can be calculated as: 

𝑅𝑑 =
𝑅𝑚

𝛾𝑅𝑑𝛾𝑅
 (2.22) 

where the model uncertainty 𝛾𝑅𝑑 is suggested as 1.06 for numerical models with well 

documented validity. A higher value should be used for the model uncertainty if the 

prior requirement is not fulfilled.    
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2.3.3 Partial factor method 

According to the partial factor method, the nonlinear analysis is performed using the 

deterministic design values derived from the random material parameters. Using so 

highly reduced material parameters, this approach does not capture the global safety 

and does not well describe the structural response of the structure. It can also cause 

the structure to fail in a distorted mode, not reflecting the actual behavior according to 

Cervenka (2013). Nevertheless, case studies suggest that the partial factor method can 

be used as a blunt but safe estimate. In mathematical terms, the design resistance is 

obtained as: 

𝑅𝑑 = 𝑟(𝑓𝑑, … ) (2.23) 

where 𝑟 represents the nonlinear analysis for the design value 𝑓𝑑 of the input 

parameters. It should be noted that the model uncertainty factor 𝛾𝑅𝑑 is not included in 

the expression above. This since it is typically included in the partial safety factor 𝛾𝑀 

for the materials and thus also in the design values. 

 

2.3.4 Discussion regarding safety formats 

General for all the safety formats above is that they do not always account properly 

for the model uncertainty, especially for difficult to model failure modes, Schlune 

(2011). The probabilistic method is the most accurate, but it is not feasible in most 

practical application due to the vast amount of uncertainties to be included in the 

analyses. The partial factor method is, as stated earlier, not advised for NLFEA due to 

the low material strengths used. The global resistance factor method is an extension of 

the partial factor method where the mean values are obtained from the characteristic 

values. The ECOV method uses both the mean and characteristic material strengths in 

the analyses. But for both methods, the concrete strengths are determined by testing 

specially cured samples. The mean strengths of in situ concrete can be lower and have 

larger variability than the tested samples, but this is disregarded. The reliability level 

of the structure can as a consequence of this be lower than intended, Schlune (2011). 

 

2.4 Reliability analysis of structures 

The assessment of the reliability of a structure is not easily conducted. It is a vast 

topic spanning from defining “failure” of a structure to occur to making sophisticated 

computer simulations and evaluating the results. Further, there may be several failure 

modes on sectional level, which in some combinations will lead to structural failure. 

This section treats several ways of evaluating the integral expression for failure 

probability previously presented in equation (2.12). 

Analytical evaluation of the integral describing probability of failure is generally not 

possible in practical applications. Conventional techniques for numerical integration 

are possible to use, but their applicability in practical situation is limited, Melchers 

(1999). Round off errors and the so called “curse of dimensionality” are the main 

limitations of numerical integration measures. The latter means the rapid increase in 

computational demands when the number of dimensions in the integration space 

increases. The practical limit is often taken as 5 dimensions, and that is when 

simplified regions are used to confine the integration space, Davis et. al. (1975). 
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Other methods have been developed for integration in many dimensions which also 

accommodates any type of distributions for the random input variables. These 

numerical solution strategies for evaluating the probability integral are commonly 

known as Monte Carlo simulations or just simulations, Melchers (1999). Section 2.4.1 

aims to give a general overview of the Monte Carlo simulation techniques. 

Another approach can be taken when evaluating the convolution integral in equation 

(2.10). Instead of using simulations, the integrand can be simplified. The so called 

First Order Reliability Method (FORM) and Second Order Reliability Method 

(SORM) use this methodology in order to assess the probability of failure. An 

overview of these methods will be given in Section 2.4.2. 

Furthermore, an implicit limit state function, obtained from e.g. FEA, can be 

approximated by fitting a so called response surface to a set of evaluations of the 

implicit function. This results in a closed form, differentiable expression which can be 

used for both Monte Carlo simulations and FORM/SORM. The concept of the 

procedure is presented in Section 2.4.3 below. 

 

2.4.1 Monte Carlo simulations 

The Monte Carlo techniques involve sampling values of the basic variables in order to 

conduct many simulated experiments. The input variables for the limit state function 

are randomly (or rather pseudo randomly) collected from their probabilistic 

distributions. Every realization of the random variables is checked against the limit 

state and the probability of failure can be calculated as: 

𝑝𝑓 ≈
𝑛(𝐺(𝒙𝑖)≤0)

𝑁
 (2.25) 

where 𝑛(𝐺(𝒙𝑖) ≤ 0) is the number of virtual experiments (or trials) where the limit 

state is violated and 𝑁 is the total number of trials. The number of virtual experiments 

conducted governs the accuracy of the estimation of 𝑝𝑓 and is logically dependent on 

the evaluated function. It has been suggested that around 10 000 - 20 000 simulations 

are needed to reach a 95% confidence limit, Melchers (1999).  

 

2.4.1.1 Sampling of basic variables 

The basic variables for evaluating the limit state function can be sampled in different 

ways. The most adequate and simplest way to sample the basic variables is simply to 

generate them from their distributions, with the sampling center located at the origin 

in the standard Gaussian space (i.e. u-space). This type of sampling is known as crude 

Monte Carlo sampling, and is very time consuming and computing expensive. This is 

because in reliability analyses the tail of the limit state functions is studied, i.e. very 

small probabilities of failure are of interest. A vast amount of realizations of the basic 

variables and corresponding evaluations of the limit state function are required to 

have enough data for a good representation in the tail region, Olsson et. al. (2003).  

Importance sampling is often used in order to reduce the number of simulations 

needed to obtain the desired result. One way to do this is to position the sampling 

center at the design point on the failure surface instead of the origin in the u-space. 

The design point is often found using a search algorithm for the Gaussian space where 

gradients are used to locate the design point. This requires the basic variable to be 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:163 
18 

transformable to said space, and also for the failure surface to be differentiable. This 

is not always the case. The design point can also be found from updating the sampling 

center based on previous samplings, a procedure that is generally applicable but may 

be less effective.  

When the design point is the sampling center, approximately half the realizations will 

yield failure. The probability of failure in case of importance sampling can be 

calculated as the sum of the weight factors for the realizations causing failure divided 

by the total number of realizations, Olsson et. al. (2003). That is in mathematical 

terms: 

𝑝𝑓 =
1

𝑁
∑ (𝑊(�̃�𝑖)|(𝑔(�̃�𝑖) < 0))𝑁 

𝑖=1  (2.26) 

where N is the number of realizations, �̃�𝑖 is the realization of the importance sampling 

distribution, 𝑔(�̃�𝑖) < 0 is the failure criterion and 𝑊(�̃�𝑖) is the weight factor 

corresponding to the importance sampling. The weight factor can be calculated as: 

𝑊(�̃�𝑖) =
𝜙𝒖(�̃�𝑖)

ℎ𝒗(�̃�𝑖)
 (2.27) 

where 𝜙𝒖(�̃�𝑖) is the joint probability density function of the set 𝒖 of the stochastic 

variables in the u-space and ℎ𝒗(�̃�𝑖) is called the importance sampling probability 

density function. Many distribution types can be used for the importance sampling 

pdf, the simplest is a multi-dimensional Gaussian distribution with unit standard 

deviation, Olsson et. al. (2003). However, this might not be the most effective 

sampling function as the optimal choice is a function that minimizes the variance of 

𝑝𝑓, Melchers (1999). 

For a structural system the with several limit state functions the importance sampling 

function should preferably have several modes, each assigned a certain weight 

coefficient. The weight coefficients are used to rank the sampling function modes by 

importance depending on the importance of the corresponding limit state.  

 

2.4.1.2 Latin hypercube importance sampling  

The Latin hypercube sampling method is a sampling plan which can be employed for 

Monte Carlo simulations, Olsson et. al. (2003). First, the method will be presented in 

its simplest form, and then its application to importance sampling will be explained. It 

should be mentioned that there are several alterations and versions of Latin hypercube 

sampling. The precise measures of these are beyond the scope of this thesis, where 

instead an overview and explanation of the concept is provided.  

The basic sampling plan is represented by a matrix which is constructed as: 

𝑺 =
1

𝑁
(𝑷 − 𝑹) (2.28) 

where 𝑁 is the number of realizations, 𝑷 is a matrix of size 𝑁 × 𝐾 where 𝐾 is the 

number of stochastic variables. Each of the columns in the 𝑷 matrix contains a 

random permutation of the numbers 1,2, … 𝑁. The permutation matrix 𝑷 is typically 

modified to avoid spurious correlation of sampling plan, a procedure involving the 

covariance matrix and Cholesky decomposition. The matrix 𝑹 is of the same size, 

𝑁 × 𝐾, but each element consists of an independent random value from the uniform 

(0,1) distribution.  
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In order to make this clearer, a basic example for a sampling of two basic variables 

and five realizations is shown in Figure 2.4 below. The simple example is from 

Olsson et. al. (2003). 

 

Figure 2.4  Basic LHS sampling plan for two basic variables and five realizations, 

from Olsson et. al. (2003)  

 

The sampling plan, described by 𝑺, is transformed into standard Gaussians variables 

to obtain realizations in the u-space centered at the origin. This is done as: 

�̂�𝑖𝑗 = 𝛷−1(𝑠𝑖𝑗) (2.29) 

It should be noted that other distributions can be used for the importance sampling 

distribution. In case of other distributions, the sampling plan 𝑺 is mapped using the 

pertinent inverse cdf. In this case however, the vector �̂�𝑖 = [�̂�𝑖1 �̂�𝑖2 … �̂�𝑖𝑗] is 

centered at the origin of the u-space and moved to the design point by adding the 

design point position vector, 𝒎, for each realization. That is: 

�̃�𝑖 = �̂�𝑖 + 𝒎 (2.30) 

where �̃�i is the sample centered at the design point. The probability of failure can now 

be calculated according to equation (2.26) but the weight factor is now given as: 

 𝑊(�̃�𝑖) =
𝜙𝒖(�̃�𝑖)

𝜙𝒖(�̂�𝑖)
 (2.31) 

where ϕ𝐮 is the standard Gaussian pdf of 𝐾-dimensions, centered at the origin of the 

u-space.  

 

2.4.2 First and second order reliability method (FORM/SORM) 

The first order reliability method is based on the first order second moment 

methodology. The reliability index is calculated as the length of the vector between 

the approximation of the limit state surface and the origin in the normalized space, 

Zhao & Ono (1999). The basic variables in the limit state function are represented by 

their first and second moments only. That is, their expected value and standard 

deviation. Possible skew and flatness of the random variables are ignored and they 

can be represented by standard normal distributions. Random variables with other 

distributions can be transformed into standard normal variables, using more or less 

involved techniques depending on the type of random variable. A deeper discussion 
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on the transformations will not be held here, but can be found in Melchers (1999). The 

basic calculations behind the second moment concept are presented below. 

If the basic variables are transformed into standard normal distributions from other 

distribution types, the term failure probability should be used with caution. Following 

the notation in Melchers (1999), it is instead called the nominal probability of failure, 

𝑝𝑓𝑁. Considering the simple limit state 𝑍 = 𝑅 − 𝑆 where both 𝑅 and 𝑍 are 

represented by normal distributions, the nominal probability of failure can be written 

as: 

𝑝𝑓𝑁 = 𝛷(−𝛽)  𝑎𝑛𝑑  𝛽 =
𝜇𝑍

𝜎𝑍
 (2.32) 

where Φ is the standard normal distribution and 𝛽 is the reliability index. In case of 

several basic random variables the limit state function can be approximated as: 

𝐺(𝑿) = 𝑍(𝑿) = 𝑎0 + 𝑎1𝑋1 + 𝑎2𝑋2 + ⋯ + 𝑎𝑛𝑋𝑛 (2.33) 

where 𝑍(𝑿) is normally distributed and the reliability index can be calculated using 

equation (2.32). 

In most cases the limit state function 𝐺(𝒙) = 0 is nonlinear, but it can be linearized in 

order to more easily obtain the mean and standard deviation. It is usually performed 

by a first order Taylor series expansion of 𝐺(𝒙) = 0 around a certain point. This gives 

rise to the name “first order reliability method”. The point is preferably chosen as the 

point of maximum likelihood of the limit state function, which is where failure is most 

likely to occur.  

The so called Hasofer–Lind transformation is often used for transforming the random 

variables to standard normal form with mean value zero and unit variance, i.e. 

𝑁(0,1). It is done by the performing the simple operation: 

𝑌𝑖 =
𝑋𝑖−𝜇𝑋𝑖

𝜎𝑋𝑖

 (2.34) 

The limit state function must also be transformed accordingly and is expressed on 

standardized normal form as 𝑔(𝒚) = 0, Melchers (1999). In an n-dimensional 

standard normal space, when 𝑔(𝒚) = 0, the reliability index can be calculated as: 

𝛽 = 𝑚𝑖𝑛(∑ 𝑦𝑖
2𝑛

𝑖=1 )1/2 (2.35) 

The point, 𝒚, satisfying the above expression is known as the design point for the 

FORM method. It is typically found using an iterative procedure (i.e. in case of 

nonlinear limit state function). 

In cases when the limit state function is regarded too nonlinear for a linear 

approximation surface to be adequate, a second order polynomial can be used as 

approximation for the failure surface. 

The results from a finite element analysis do not yield an explicit expression for the 

failure surface, thus the FORM/SORM methods cannot be implemented directly. But 

there are measures to apply the methods to FEA results; one involves a so called 

response surface. It is presented in the following section. 
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2.4.3 Response surface 

In many practical applications, such as finite element analysis, the limit state is given 

implicitly. The limit state surface is not explicitly described by a set of equations, 

instead the boundary between the safe and failure domain must be revealed by several 

numerical analyses with different input values. The input values can either be random 

or sampled according to some scheme, Melchers (1999).  

Even though the limit state surface is only given implicitly, a suitable function can be 

fitted to a set of results obtained from analyses performed with different deterministic 

input values for the basic variables. The fitted closed form function is differentiable 

and now represents a tractable approximation of the failure surface, i.e. the response 

surface. It should be determined with greater accuracy close to the design point, with 

lower accuracy accepted elsewhere, in order to yield a reasonable estimation of the 

probability of structural failure.  

The concept of constructing a response surface is presented below based on Bucher & 

Bourgund (1990) and Melchers (1999). The implicit limit state function of the 

structure is given as 𝐺(𝑿) and it can be evaluated for discrete values of 𝑿 = 𝒙. 

Consider a set of points in the 𝒙-space denoted �̅� and evaluate 𝐺(�̅�). A response 

surface, �̅�(𝒙), can be determined as the best fit of an n-degree polynomial in respect 

to 𝐺(�̅�). A second order polynomial is typically used for the response surface and it 

can be mathematically described as: 

�̅�(𝑿) = 𝐴 + 𝑿𝑇𝑩 + 𝑿𝑇𝑪𝑿 (2.36) 

where A, 𝑩 and 𝑪 are regression coefficients on scalar, vector and a matrix form 

obtained from conducting numerical analyses with input parameters chosen according 

to some strategy. The determination of the coefficients based on evaluation of the 

implicit limit state can be described as by Rajashekhar & Ellingwood (1993): 

𝐺(𝒙) = 𝑫𝒅 + 𝒆 (2.37) 

where 𝑫 contains constants together with linear, quadratic and cross combinations of 

𝑥𝑗. The matrix 𝒅 contains the regression coefficients and 𝒆 is the error vector, 

containing both lack of fit errors and experimental errors. The error vector is assumed 

to have zero mean value and therefore vanishes when assessing the expected value of 

𝒅. The expected value of the regression coefficients can be determined as, 

Rajashekhar & Ellingwood (1993): 

𝐸(𝒅) = (𝑫𝑇𝑫)−1𝑫𝑇𝐺(𝒙) (2.38) 

The experimental design strategy should reflect that it is, as previously stated most 

important to have an accurate approximation close to the design point in order to get a 

fair assessment of the probability of failure. An iterative procedure suggested by 

Bucher & Bourgund (1990) is presented below. 

As the design point is not known, the mean values of the basic variables can be used 

in a first set of numerical experiments and a first iteration design point can be 

determined. New input values for the basic variables can be determined based on the 

location of the design point, and the iterative procedure can be repeated until the 

design point and thus the response surface have stabilized. When the cross 

combinations of x are neglected, the expression for the polynomial can be put into 

mathematical term as: 
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 �̅�(𝒙) = 𝑎 + ∑ 𝑏𝑖𝑥𝑖
𝑛
𝑖=1 + ∑ 𝑐𝑖𝑥𝑖

2𝑛
𝑖=1  (2.39) 

were 𝑎, 𝑏𝑖 and 𝑐𝑖 are the regression coefficients to be determined. The suggested way 

of obtaining the coefficients involves linear interpolation between the axes of the 

basic variables. It is suggested that the values are chosen initially as the mean values 

along with values incorporating the standard deviation of the variable. That is, 𝑥𝑖 = �̅�𝑖 

and 𝑥𝑖 = �̅�𝑖 ± 𝑓𝑖𝜎𝑖 where 𝑓𝑖 is a factor (𝑓𝑖 = 3 is suggested as starting value) and 𝜎𝑖 is 

the standard deviation. When the value of the implicit limit state function is evaluated 

2𝑛 + 1 times for the 𝑥𝑖 values, the coefficients can be determined through solving the 

linear equation system. A starting value of the design point can be established from 

�̅�(𝒙) = 0, assuming that 𝑿 consists of uncorrelated Gaussian random variables. Using 

it as input in the expression below, a new center of approximation point, 𝒙𝑀, can be 

determined.  

𝒙𝑀𝑖+1
= 𝒙𝑀𝑖

+ (𝒙𝑀𝑖−1
− 𝒙𝑀𝑖

)
𝑔(𝒙𝑀𝑖

)

𝑔(𝒙𝑀𝑖
)−𝑔(𝒙𝑀𝑖−1

)
 (2.40) 

where the new center of interpolation is determined through linear interpolation. The 

procedure of constructing the response surface according to equation (2.39) is 

repeated. This procedure can be repeated until sufficiently stable 𝒙𝑀 is achieved. The 

number of iterations required depends on the shape of the actual limit state surface. 

An illustration of the procedure can be seen in Figure 2.5 below. 

  

 

Figure 2.5  Depiction of the procedure suggested by Bucher et. al. (1990) 

 

In some cases it is not appropriate to neglect the mixed 𝑥-terms, since the 

approximation then would be too gross. In that case, mixed terms can be included in 

the expression for the response surface as: 

�̅�(𝒙) = 𝑎 + ∑ 𝑏𝑖𝑥𝑖
𝑛
𝑖=1 + ∑ 𝑐𝑖𝑥𝑖

2𝑛
𝑖=1 + ∑ ∑ 𝑑𝑖𝑗𝑥𝑖𝑥𝑗𝑖≠𝑗  (2.41) 

where the last summation term incorporates the cross combinations of 𝑥 needed for 

sufficient accuracy, Bucher & Bourgund (1990).  

The response surfaces are closed form, differentiable functions of the basic variables. 

They can therefore be used to conduct FORM and SORM evaluations on results 

gained from finite element analyses. 
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2.4.4 Procedure suggested in Model Code 2010 

The procedure for conducting a nonlinear probabilistic analysis, in order to obtain the 

design resistance, is briefly presented below. First a resistance function is developed 

and described by a numerical model. The model should enable deterministic analysis 

based on a set of input parameters and it should be based on a nonlinear finite element 

method. Then the basic input variables for the resistance function are randomized 

from their probabilistic properties. Two common approaches are to either randomize 

the basic input parameters between samples or to randomize them within each sample. 

The sample here means the structure to be analyzed. The analysis of the resistance can 

now be performed. A common way to conduct this probabilistic analysis is by means 

of the Latin Hypercube Sampling method (LHS), based on Monte Carlo sampling. 

This analysis yields the resistance of the structure, described by probabilistic 

parameters such as the distribution type along with its mean value and standard 

deviation. The design value corresponding to the target reliability index or probability 

of failure can be obtained directly from the resistance distribution function. 
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3 Case study – comparison of safety formats  

This chapter presents the case study performed in order to compare results obtained 

from the different safety formats in the Model Code 2010, fib (2013), which were 

presented in Section 2.3. 

 

3.1 Solution strategy for NLFEA 

A nonlinear finite element model can be set up in many different ways. For example 

the structural idealization, the type of elements used and the mesh division are 

decisions made by the analyst. Also the analysis can be performed in different ways, 

for example different iterative solution strategies can be used and the analysis can be 

either force or displacement controlled. The model assumptions should be verified by 

checking that the model can produce accurate results. Typically a linear elastic 

analysis has been performed prior to the nonlinear. The resulting stress fields from the 

LFEA can be used as a comparison in the first step. They will of course differ 

markedly in many cases, but can be useful as a first comparison. To assess how well 

the nonlinear analysis represents the actual behavior of the structure, a benchmark 

study can be performed. This is basically a comparison between the NLFEA results 

and data from a physical experiment. 

 

3.1.1 Portal frame experiment 

The benchmarking of the NLFEA in this project is made against the data from an 

experiment on a portal frame, Seraj & Kotsovos et. al. (1995 & 1999). 

The frame had a height of 1.800 m high and was 2.868 m wide in outer dimensions. 

The reinforcement design of the frame was based on a linear elastic analysis 

performed with a vertical load at midspan of the beam member with a magnitude of 

24 kN along with a horizontal load of 20 kN on the upper-left corner. The elastic 

analysis was performed based on centerline dimensions. The resulting shear and 

moment diagrams are presented in Figure 3.1 below.  

 

Figure 3.1  Elastic analysis of the studied frame, loaded vertically and horizontally. 

(a) and (b) are shear and moment diagrams, respectively from Kotsovos 

& Pavlovic (1999) 

 

The frame was designed using the compressive force path method suggested by 

Kotsovos & Pavlovic (1999). The frame was cast using a concrete mix with cube 
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strength of 45 MPa and the strength was estimated to 48 MPa on test day Seraj et. al. 

(1995). It is the test day value that is most representative for tested structures typically 

and thus it will be used in this NLFEA analysis. The other concrete properties were 

estimated from the mean strength according to the Model Code 2010 fib (2013). The 

main steel reinforcement was all of diameter 𝜙 = 10 𝑚𝑚 and had yield strength 

𝑓𝑦𝑘 = 560 𝑀𝑃𝑎 and ultimate strength 𝑓𝑢𝑘 = 680 𝑀𝑃𝑎. All the material properties for 

concrete and reinforcement steel used in the model are presented in Table 3.1 and 

Table 3.2 below. 

Table 3.1  Material properties of concrete used in the FE-model, where fcm,cube is 

the concrete mean cube strength, fcm is the mean cylinder strength and 

fctm is the mean tensile strength. Ec,i and Ec,r are the initial and reduced 

elasticity moduli,Gf and Gc are the fracture energy in tension and 

compression respectively and ν is the Poisson’s ratio  

 𝑓𝑐𝑚,𝑐𝑢𝑏𝑒 

[MPa] 

𝑓𝑐𝑚 

[MPa] 

𝑓𝑐𝑡𝑚 

[MPa] 

𝐸𝑐,𝑖 

[GPa] 

𝐸𝑐,𝑟 

[GPa] 

𝐺𝑓 

[N/m] 

𝐺𝑐 

[N/m] 

𝜈 

[ - ] 

Concrete 48 38 2.896 33.551 29.738 140.5 250𝐺𝑓 0.15 

 

Table 3.2  Material properties and dimensions of the reinforcement used in the 

FE-model, where E is the elasticity modulus, fy and fu are the yield and 

ultimate strength. ϕ and As are the reinforcement diameter and area 

respectively and εy and εu are the yield and ultimate strain 

 𝐸 

[GPa] 

𝑓𝑦 

[MPa] 

𝑓𝑢 

[MPa] 

𝜙 

[mm] 

𝐴𝑠 

[mm2] 

𝜖𝑦 

[ - ] 

𝜖𝑢 

[ - ] 

Main 

reinforcement 
200 560 680 10 78,54 0.0028 0.1166 

Shear 

reinforcement 
200 460 510 1.5 1.77 0.0023 0.1175 

 

The dimensions of the frame along with the reinforcement information are presented 

in Figure 3.2. Joint and loading regions are indicated A-E in the same figure. 
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Figure 3.2  Dimensions (in mm) and reinforcement layout of the portal frame from 

Kotsovos & Pavlovic (1999) 

 

The footings of the portal frame were fixed to the floor by means of post tensioning. 

When testing the structural capacity of the frame, first the vertical load was applied at 

point C and incrementally increased to 23.69 kN. Without further increasing the 

vertical load, the lateral load was applied at point B in increments until failure 

occurred at 19.95 kN. Even though the aim was to keep the vertical load constant it 

increased during application of the horizontal loading due to swaying of the frame 

since the vertical load was applied by a tension jack. The actual vertical load at the 

time of failure was estimated to 33.68 kN based on strain measurements in the 

reinforcement steel and the assumption that the moment in the beam at point C is 

proportional to the vertical loading. This gives a ratio of 
∆𝐹𝑉

∆𝐹𝐻
≈ 0.5 between the 

horizontal load and the additional vertical load due to the sway effect. The results 

from the experiment are compared with those obtained from a NLFEA in Section 

3.1.4.1. 

 

3.1.2 Collapse analysis of frame 

A kinematic collapse analysis of the frame was conducted serving as an upper 

estimate of the load carrying capacity of the concrete frame. The capacity is used for 

comparison with the result from the NLFEA and the experimental values. The 

analysis was made based on the plastic moment capacity of the members of the frame 

and the possible mechanisms that can form. The procedure described by Cook & 

Young (1999) was followed and calculations can be found in appendix I. The 
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comparison between the collapse loads and the NLFEA results can be found in 

Section 3.1.4.2. 

 

3.1.3 Setup of the NLFE-model 

The FE-software DIANA v.9.4.4 developed by TNO DIANA (2014) was used for the 

analyses. The finite element model was set up using 20 node volume elements with 

quadratic interpolation for the concrete and embedded truss elements for the 

reinforcement. The mesh was chosen relatively coarse with 3 elements over the height 

of the frame members and 2 elements over the width. The structure was modelled as 

fixed against translations in all three dimension at the ends of the column footings (i.e. 

at A and E). The nodes on the x – z plane (see Figure 3.3 for coordinate system) 

located in the center of the frame depth are fixed in the y direction. Since there is no 

load in this direction, it should not have any physical effect. However, it was done in 

order to decrease the possibility of spurious deformations thus achieving better 

convergence. The two loads were both applied as pressure loads in the pertinent 

directions. The surfaces over which the loads are distributed were 90x90 mm for the 

vertical load and 90x150 mm for the horizontal load. Note that the loading plates were 

not modelled and that the loads were applied directly to the concrete. The mesh along 

with the loads (in purple) and the boundary conditions (in red) can be seen in Figure 

3.3 below. 

 

Figure 3.3  FE - mesh with loads and boundary conditions 

 

A linear elastic analysis was first made, comparing the results with the linear elastic 

analysis presented in the paper by Seraj et. al. (1995). The results were also compared 

with those obtained from a simple frame analysis made in MATLAB using the 

toolbox CALFEM from Lund University (2004). The bending moments in the frame 

along with shear and normal forces were checked and the values from Seraj et. al.’s 

paper agreed well with the values from both the MATLAB and FE-model.  
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The reinforcement bars were now added to the FE-model. Information about the 

placement of the bars is found in Figure 3.2. The corner reinforcement was not clearly 

specified in the information about the experiment. Anchorage of the reinforcement 

bars and ductility requirements are the main concerns in practice which is why special 

detailing typically is required in the corner regions. However, since embedded 

reinforcement bars with no slip between reinforcement and concrete are used in the 

FE-model these practical issues are overcome even with simple theoretical 

reinforcement placement in the corners.  

 

Figure 3.4  Main and shear reinforcement 

 

When conducting nonlinear finite element analyses it is suitable to start linear 

elastically and introduce nonlinearities progressively. If several nonlinearities are 

introduced at the same time it is difficult to find any sources of errors. It is highly 

probable that several such errors will have to be resolved before the NLFEA works 

properly. 

The nonlinear material model for the concrete follows the guidelines provided by the 

Dutch ministry of infrastructure, Rijkswaterstaat (2012) and a bilinear elastic-plastic 

model including strain hardening was chosen for the reinforcement. More information 

about the material models is presented later in this chapter in Section 3.1.5. 

The first nonlinearity to be introduced to the model was the material model of the 

concrete, still keeping the reinforcement behavior elastic and disregarding geometrical 

nonlinearities. Once the NLFEA was able to run without diverging for the case of 

only nonlinear behavior in the concrete, plasticity in the reinforcement was 

introduced. Lastly, geometrical nonlinearities were included in the model in a similar 

procedure.  

When the NLFEA has produced convergent results, the work of interpreting the 

response of the structure begins. Each of the load steps was checked with respect to a 

couple of aspects, which are briefly presented here. The concrete stress fields were 

checked in order to make sure the structure carries the load in a physically reasonable 
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way. Also the reinforcement stresses were checked along with the crack pattern in the 

concrete. Further the propagation of the cracks were checked, e.g. that the modelled 

structure cracks first at the locations of highest elastic moments. For the unconverged 

load steps at the end of the analysis it was found useful to plot the residual forces in 

the nodes. This allows insight in the problem regions of the structure, i.e. the regions 

preventing convergence of the solution. 

After the analysis had been assessed and reasonable behavior of the structure had been 

determined, MATLAB was used in order to post-process the output from the analysis. 

For each load step a large amount of information was stored in a database. The analyst 

can chose what data to store based on the aim of the analysis. The data that were 

extracted from the output file and post-processed in MATLAB were support 

reactions, displacements and reinforcement stresses. This information was used to 

construct force-displacement and reinforcement strain plots to compare to the results 

from the experiment presented in Section 3.1.1. 

 

3.1.4 Benchmarking results 

The ability of the nonlinear FEM to represent the behavior of the concrete frame is 

presented in this section. The results from NLFEA using different model setups are 

compared to the plastic capacity of the frame calculated in Section 3.1.2 and also to 

the results from the physical experiment presented in Section 3.1.1 above. The model 

setups differ regarding the coarseness of the mesh and the load increment size. 

 

3.1.4.1 Comparison with experiment 

A working NLFEA has been set up according to the procedure presented in Section 

3.1.3 above. As there are many possible working parameter settings for the analysis 

and they do not all yield good results, a comparison between the experimental results 

and the NLFEA results for different model setups is presented in this section. 

Comparative force-deflection plots are presented for the best of the studied model 

setups with regards to the accuracy of the predicted capacity. 

For NLFEA of concrete structures, as mentioned earlier, it is not as simple as 

increasing the mesh resolution to obtain more accurate results. This since the accuracy 

of the analyses is dependent on how well the material model for concrete represents 

the actual behavior. Furthermore, the analysis time is of course greatly dependent on 

the number of integration points and thus the number of elements. So it is preferred to 

use as few elements as possible, provided that the model performs well.  

The incremental increase in loading is also of interest. Large increments reduce the 

number of calculations since the final load is reached in fewer steps, but can cause the 

analysis to diverge. Therefore an increment size that agrees with the experimental 

results but that still is computationally economic is sought.  

A comparative study between different number of elements over the thickness 

(E.O.T.) as well as load increment size is presented in Table 3.3 below. The initial 

vertical load (𝐹𝑉 = 23.7 𝑘𝑁) was applied in 5% increments for all cases, i.e. 5% of 

the target load in each increment. Then the horizontal load 𝐹𝐻 was applied in either 

5% or 2% increments. The additional vertical load due to the sway effect of the frame, 

∆𝐹𝑉 = 0.5∆𝐹𝐻 as described earlier, was added simultaneously. The resisting force 

was calculated by summarizing the support reactions. When failure occurred the 
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resisting forces from the last converged load step were used to construct the table 

below.  

Table 3.3  Comparison between different E.O.T. and load step increments 

 

FEXP 

FNLFEA (FNLFEA/ FEXP) 

2 E.O.T. 3 E.O.T. 4 E.O.T. 

Load step  5% 2% 5% 2% 5% 2% 

𝐹𝑉,𝑚𝑎𝑥  33.7 34.9 37.2 33.2 34.8 32.1 31.9 

𝐹𝐻,𝑚𝑎𝑥  20.0 
23.0 

(116%) 

27.3 

(137%) 

19.0 

(95%) 

22.4 

(112%) 

17.0 

(85%) 

16.4 

(82%) 

𝐹𝑁𝐿𝐹𝐸𝐴,𝑡𝑜𝑡 - 
57.9 

(108%) 

64.5 

(120%) 

52.2 

(96%) 

57.2 

(107%) 

49.1 

(92%) 

48.3 

(90%) 

 

As can be seen in Table 3.3, the analysis setup with 3 E.O.T. and 5% load increments 

yields results closest to the experimental values. With this setup the difference 

between the analysis and the experimental results is 5% for the horizontal load and 

4% for the total load. 

The analysis results from the 3 E.O.T. and 5% load increments are presented in more 

detail below. The data has been post processed in MATLAB and the same software 

has been used to construct the plots. 

The top subplot of Figure 3.5 shows the vertical deflection at midspan of the top beam 

subjected to the first added vertical load. The bottom subplot shows the horizontal 

deflection in the top right corner for the horizontal load. Note that the two loads are 

treated separately in this figure. The results from the NLFEA imply a higher stiffness 

than what the experimental results show for the vertical load. For the horizontal load 

however, the NLFEA shows similar stiffness as the experiment. The frame in the 

practical experiment deflects much more horizontally than the NLFEA frame but 

carries only marginally more load. 
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Figure 3.5  Force-displacement relations: (above) vertically at midspan of the top 

beam and (below) horizontally at upper right corner 

 

The strain in the reinforcement steel at midspan of the top beam is presented in Figure 

3.6 below. In this plot, the total load is used and it can be noted that the application of 

the horizontal load starts at 24 kN. The NLFEA results are regarded to agree 

reasonably well with the experimental values.  
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Figure 3.6  Strain in midspan top reinforcement 

 

A similar plot is shown in Figure 3.7 below, but here the strain in the bottom 

reinforcement is presented. The results agree very well until the horizontal load is 

applied and the experimental strain in the reinforcement stays roughly constant 

between 24 and 36 kN. The strain in the experiment is then increased rapidly and the 

end value agrees well with the NLFEA. This behavior originates from the sway effect 

of the experimental frame, which is not accurately represented by assuming a linear 

increase of the vertical load in the NLFEA. Even though the strain in the midspan 

reinforcement is not perfectly represented by the NLFEA during the entire load 

history due to this simplification the end value is close to the experimental value and 

the result is deemed satisfying. The yield strain of the reinforcement steel is 2.8 ‰ 

and it is clearly seen in aforementioned figure. 
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Figure 3.7  Strain in midspan bottom reinforcement 

 

The strain in the reinforcement located at the right hand side column support is 

presented in Figure 3.8 below. Here the horizontal load is particularly of interest, and 

therefore the vertical load is omitted. However, the effect of the vertical load can be 

seen as the nonzero strain value when the horizontal load is zero. The results agree 

well except for when the horizontal load approaches the maximum value, where the 

experiment shows a much more ductile behavior. 
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Figure 3.8  Strain in the reinforcement at the lower right support. Bulleted line 

represents NLFEA and blue line experiment 

 

The failure mechanism was the same in the NLFEA as in the experiment; flexural 

failure occurred at the supports as well as the top right corner. The results from the 

comparison are considered satisfying even if the deflection differs quite a bit. It is not 

unusual for a NLFEA to show a stiffer behavior than reality. Further it is also found 

uncommon for a NLFEA to accurately yield both the ultimate capacity and the 

stiffness in the same analysis. A possible explanation for this is that correct stiffness 

representation requires a more accurate analysis which is more sensitive, and 

therefore more likely to experience converge problems at load levels close to the 

ultimate experimental capacity. This might therefore rather be a product of numerical 

difficulties than an inability of the model to represent both the ultimate strength and 

stiffness at the same time. 

 

3.1.4.2 Comparison with plastic capacity  

The collapse loads was calculated based on theory of plasticity as described in Section 

3.1.2 above. The results were used for comparison against the results from the 

NLFEA for the three considered load cases, that is only horizontal, only vertical and a 

combination of both. They are represented by mechanism 1, 2 and 3 respectively. The 

collapse loads of the NLFEA were investigated by simply loading the frame 

horizontally, vertically and with a combination of both and thereby obtain a maximum 

loading. It should be noted that the collapse load calculated by means of hand 

calculations only considers failure in bending, which may not always be the case. 

However, the results from the analyses were studied and the failure was determined to 
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be due to bending, not shear, for all mechanisms. An overview of the comparison can 

be seen in Table 3.4 below. 

Table 3.4  Comparative table between collapse load from hand calculations and 

NLFEA using DIANA 

 Mechanism 1 Mechanism 2 Mechanism 3 

𝑃𝐻 [kN] 𝑃𝑉 [kN] 𝑃𝑉 [kN] 𝑃𝐻 [kN] 

Plasticity analysis 30,8 43,5 23,7 23,5 

NLFEA 30,8 39,2 23,7 15,0 

Difference  0% -10% 0% -36% 

 

The results from the NLFEA agree well with the plastic capacity calculated using 

collapse analysis for mechanism 1 and 2. For those mechanisms only one of the loads 

contributes to the external work. The difference is larger for mechanism 3 where both 

loads contribute to the external work. This kinematic collapse analysis provides an 

upper bound solution and thus lower NLFEA results are expected, which is also the 

case. 

 

3.1.4.3 Model uncertainty 

There is always a factor of model uncertainty present when an idealized model is 

used. This causes the results obtained by the model to differ from reality to a certain 

extent. A statically indeterminate structure is more difficult to model and therefore the 

model uncertainty can be higher. The maximum capacities from the NLFEA 

presented above differ about 5-10% compared to the experimental data and the 

collapse analysis and it is regarded reasonable. Furthermore, the capacities predicted 

by the NLFEA are lower than the upper bound estimates, which is crucial.  

 

3.1.5 Chosen solution strategy  

The chosen solution strategy is based on the benchmarking results and is presented in 

this section. The information about the properties chosen is found from the DIANA 

User’s Manual published by TNO DIANA (2012).  

The choices regarding the material models for concrete and reinforcement steel are 

presented in Table 3.5 below. Many choices are based on a trial and error basis but for 

some properties preset values are used. Those properties are indicated with ᶲ. 
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Table 3.5  Information about constitutive properties implemented in the solution 

strategy, properties where preset values are used are marked withᶲ  

Property  Choice in DIANA Comment 

Fixed crack modelᶲ Totcrk fixed Physically appealing crack 

model, stress strain relationship is 

evaluated in a coordinate system 

which is fixed upon cracking. 

Tension softeningᶲ  Exponential  Concrete softens exponentially 

once the tensile capacity is 

reached based on fracture energy 

and crack bandwidth. 

Crushing behavior of 

concreteᶲ 

Parabolic Parabolic diagram based on 

fracture energy and crack 

bandwidth. 

Lateral influence of 

crackingᶲ 

VC1993 Perpendicular tensile strains 

reduce the concrete compressive 

strength according to Vecchio & 

Collins (1993) 

Influence of lateral 

confinementᶲ 

Vecchi Confinement increase the 

concrete compressive strength 

according to Selby & Vecchio 

(1997) 

Shear retention  Constant Constant shear retention curve 

after cracking, retention factor is 

chosen to 0.1 for computational 

stability reasons 

Poisson’s ratio reduction Damage Poisson’s ratio reduced after 

cracking 

Plasticity model for 

reinforcement steel 

Hardening Von Mises plasticity model with 

tensile hardening 

 

The choices regarding the compatibility on element level, e.g. element types and 

numerical integration scheme are presented in Table 3.6 below. 
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Table 3.6  Information about compatibility properties implemented in the solution 

strategy, properties where preset values are used are marked withᶲ 

Property  Choice in DIANA Comment 

Element type, concreteᶲ CHX60 20-node isoparametric solid brick 

element with quadratic 

interpolation between nodes 

Element type, 

reinforcementᶲ 

Standard embedded 

truss elements 

Perfect bond between 

reinforcement and concrete, 

justified by large scale analysis 

and anchorage assumptions, 

strains computed from 

displacement fields of mother 

(concrete) elements  

Integration method 3x3x3 Gauss points Full integration was found to yield 

better convergence  

Geometrically nonlinear Total Lagrange Uses undeformed geometry as 

reference for strains and stresses 

 

The choices regarding equilibrium on a structural level are presented in Table 3.7 

below. 

 

Table 3.7  Information about equilibrium properties implemented in the solution 

strategy 

Property  Choice in DIANA Comment 

Load increments 5% of target total 

load for both 

vertical load and 

horizontal load 

The values found to be adequate 

from the benchmarking analysis 

Iteration method Modified and 

regular Newton –

Raphson, max. 100 

iterations 

A well-known iteration procedure, 

regular NR used when divergence 

occurred for modified NR 

Convergence criteria Relative energy 

variation 0.1%, 

relative out of 

balance force 1% 

Relatively strict convergence 

criteria 
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3.2 Design using LFEA ANSYS/MultiCon 

In order to follow the approach suggested by Engen (2014) a frame with realistic 

dimensions was designed using LFEA with partial safety factors on the materials. In 

this procedure, the structure is designed based on nonlinear sectional resistance, but 

using the linear elastic distribution of cross-sectional forces and moments in the 

structure for the given load case. The linear elastic stress field is one out of many 

possible stress distributions in equilibrium, and it is considered conservative to design 

for it if sufficient stress redistribution capacity is provided. A concrete of class C45/55 

is used along with B500 reinforcement. The design of the structure is conducted using 

Multiconsult’s in-house post processor MultiCon, Brekke et. al. (1994), and in 

compliance with the provisions given in Eurocode.  

 

3.2.1 Frame properties and loading 

First the dimensions of the frame are chosen. In order to put the larger frame in a 

context it is considered to act as support for a bridge in a location where an ordinary 

column support is not possible. The supporting girder for the bridge is therefore 

prolonged a horizontal distance before the vertical columns connect it to the ground. It 

is, as the benchmarked example, subjected to an initial vertical load followed by a 

horizontal load. The vertical load can be thought of as the dead load from the 

supported bridge, and the horizontal load can be seen as markedly simplified 

earthquake loading. It should be stressed that this is merely a way of putting the 

structure in a context and that the structure is not designed to sustain the loads from 

neither an actual bridge nor an earthquake. 

The geometry of the frame is chosen to have ratios between the member dimensions 

consistent with those of the benchmarked case. The width and height of the frame is 

10 and 6 m respectively. The top girder has a height of 1 m while the columns have a 

thickness of 0.8 m. All members of the frame have a common width of 0.5 m. The 

labelling of the structural parts together with the dimensions can be seen Figure 3.9. 
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Figure 3.9  Dimensions and labeling of the frame designed using LFEA and 

MultiCon 

 

The vertical load on the frame is 𝑃1 = 800 𝑘𝑁 and the horizontal load is 𝑃2 =
675 𝑘𝑁, keeping the ratio between the loads as in the benchmarked example.  

 

3.2.2  Modelling in ANSYS 

The model for the linear FE-analysis is set up in ANSYS 14.5 developed by ANSYS 

(2014) using solid 3D-elements with 8 nodes and enhanced strain formulation. The 

latter meaning a certain number of inaccessible internal degrees of freedom are 

introduced to prevent shear locking for bending dominated problems. Further, zero 

mass surface elements were placed on the outer surfaces of the body in order to 

accommodate easy load application. The loads are applied as pressures on the surface 

elements, over an area of (0.5 x 0.5) m
2
 for the vertical load and (1.0 x 0.5) m

2
 for the 

horizontal load. The pressures are chosen such that the resulting forces equal unit 

loads of 1 kN each.  

When unit loads were used in the LFEA, they are scaled up in the postprocessor in 

order to represent the desired loads. An advantage with this procedure, made possible 

by linear superpositioning, is that there is no need to run additional finite element 

analyses if the loads are changed. They can simply be changed in the postprocessor. 

For such a simple case as this, the time required for a linear analysis is very short. But 

for a large analysis with millions of D.O.F.’s and vast amount of loads the time 

required to conduct even a linear analysis can be substantial. 

 

3.2.3 Design using in-house postprocessor MultiCon 

The frame is designed for the ultimate limit state using the provisions stated in the 

Eurocode 0 and 2, CEN (2008) & (2005) respectively. 
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The geometry of the structure and the results from the LFEA are imported into the 

postprocessor. Each finite element is represented by a set of two sectional coordinates. 

A plot of the imported structure can be seen in Figure 3.10 below. 

 

Figure 3.10  Geometry in MultiCon 

 

The unit loads are scaled up to equal the aforementioned loads of 800 kN and 675 kN 

in the vertical and horizontal directions respectively. The vertical load is considered 

permanent while the horizontal load is considered a variable load. The design load 

combinations are given as shown in Table 3.8 below. The expressions become more 

complex when several permanent and variable loads are included, but those 

expressions are not needed for this case and thus not presented in the table. For this 

simple set of only two loads, it is clear that equation (6.10) in Eurocode 0 will govern 

the critical design load. 
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Table 3.8  ULS load combinations according to Eurocode 0 (EC0), CEN (2008) 

for the cases when the load contribution is unfavorable 

Equation in EC0 Permanent load Variable load 

(6.10) 𝛾𝐺𝐺 = 1,35𝐺 𝛾𝑄𝑄 = 1,5𝑄 

(6.10a) 𝛾𝐺𝐺 = 1,35𝐺 𝛾𝑄𝜓𝑄 = 1,5 ∙ 0,7𝑄 

(6.10b) 𝜉𝛾𝐺𝐺 = 0,85 ∙ 1,35𝐺 𝛾𝑄𝑄 = 1,5𝑄 

 

The stresses in the finite elements’ integration points resulting from the design load 

combination are integrated to cross-sectional forces in the postprocessor. Moments are 

calculated together with normal and shear forces based on linear elastic theory.  

A number of construction code dependent parameters need to be specified before the 

sectional design module of the postprocessor can be used. These are for example 

material strengths, minimum reinforcement amounts and concrete cover. The 

postprocessor designs the reinforcement on a sectional level for the design moments 

and sectional forces previously calculated. This is done by dividing the section into 

several layers, with a force resultant in each layer. Moments, normal and shear forces 

are then calculated in an iterative process to represent the nonlinear material behavior 

in the cross sectional resistance calculations. Note the difference between NLFEA, 

where structural behavior on global level is simulated. The required bending and shear 

reinforcement amounts are output from the postprocessor, as well as utilization ratios 

for the reinforcement and concrete. The input parameters for the design are presented 

in Table 3.9 below. 
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Table 3.9  Cover and reinforcement input parameters for postprocessor MultiCon 

Parameter Value Comment 

Concrete cover 50 mm Conservatively chosen 

Longitudinal bar diameters  ϕ16, ϕ20, ϕ25, ϕ28, ϕ32 8ϕ16 satisfies 

minimum requirement 

Transversal bar diameters ϕ10, ϕ12, ϕ14, ϕ16, 

ϕ20, ϕ25 

 

Minimum clear distance 

between bars 

32 mm Dep. on bar diameter, 

conservatively chosen 

Minimum long. reinforcement 

amount 

1421 mm
2
 (beam) 

1200 mm
2
 (columns) 

 

Minimum shear reinforcement 

amount 

600 mm
2
/m (beam) 

ϕmin= 8 mm (columns)  

Minimum area for 

beam and diameter for 

column 

Maximum stirrup spacing 900 & 600 mm (beam) 

400 mm (columns) 

Longitudinally and 

transversally for beam 

(width is 500 mm so  

latter automatically 

fulfilled) 

 

An overview of the longitudinal reinforcement of the designed frame can be seen in 

Figure 3.11 below. It should be noted that the reinforcement in the corners is not 

representative of a construction that were to be built. Special reinforcement detailing 

is typically used in the corners to ensure proper anchorage. The choice of using 

embedded reinforcement in the NLFEA is based on the assumption of no anchorage 

slip and it is deemed adequate for the purpose of ULS capacity checking. The 

reinforcement is placed symmetrically in the frame, mirrored around a vertical line 

through the midspan of the beam section.  
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Figure 3.11  Longitudinal reinforcement overview 

 

The longitudinal bars are placed so that the concrete cover to the outermost 

reinforcement, i.e. the hooped stirrups, is 50 mm. Furthermore it should be noted that 

in some locations the reinforcement is placed in two layers. The clear distance 

between the layers is 50 mm.  

The stirrup placing in the frame is depicted in Figure 3.12 below.  

 

Figure 3.12  Shear reinforcement overview 

 

The reinforcement in the designed frame as it is modelled in DIANA is depicted in 

Figure 3.13.  
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Figure 3.13  Designed reinforcement plot from DIANA 

 

3.3 Safety assessment of designed frame using different 

safety formats 

Safety evaluations of the designed frame using the different, previously presented, 

safety formats for NLFEA are presented in this section. This is made to compare the 

results from the safety formats. The frame is modelled in DIANA using the key 

properties, such as mesh division and load increments, as were found suitable in 

Section 3.1.4. Then the ultimate design resistance is evaluated using the three main 

safety formats in the Model Code 2010, fib (2013). That is the deterministic format 

(partial safety factor method) and the two semi-probabilistic formats (GRFm and 

ECOV). They are all described in detail in Section 2.3. 

 

3.3.1 Modelling consideration in DIANA 

A preprocessor was developed in MATLAB to set up the input file for the NLFE-

model DIANA. The choice of developing a preprocessor instead of writing the code 

directly was justified by acknowledging the many repetitive features of the model 

(reinforcement bars and stirrups) and valuing the possibility to swiftly change the 

geometry and reinforcement. 

The reinforcement is placed solely based on the output from MultiCon thus neglecting 

constructability considerations. The reinforcement placing varies over the length of 

the columns and the beam as the reinforcement diameters change. The placement 

keeps the distance from the concrete surface to the outermost reinforcement equal to 

the concrete cover of 50 mm. The characteristic diameters of the reinforcement bars 

are used to describe the reinforcement bars place in the concrete members, in 

compliance with the MultiCon design. The characteristic bar diameter includes the 

ribs on the bars and it thus the relevant measure for when placing the reinforcement. 
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For the capacity calculations however, it is logical to use the nominal diameters of the 

reinforcement as the ribs only provide bond to the concrete. 

 

3.3.2 Checking the DIANA model  

Once the FE-model of the frame designed in ANSYS/MultiCon had been set up, a 

first elastic check was conducted by comparing the moments and displacements with 

those obtained from simple frame analyses. The agreement was found to be within a 

few percent, which is regarded satisfying. Identical results are hindered by 

uncertainties due to result extraction from the FE-analysis, where bending moments 

cannot be extracted directly for solid elements but have to be calculated from Gauss 

point stresses in the studied sections. Furthermore, the reinforcement placed in the 

FE-model but not included in the simple frame analysis, will affect the stiffness 

properties of the members and cause differences in elastic behavior between the 

methods. 

The plastic capacity was checked by hand calculations for the case of a vertical load. 

The check was done in a different manner for this case compared to the benchmarked 

frame, this since the reinforcement layout in the designed frame gives rise to hinges 

forming at other locations. A static approach was found to yield more reasonable 

results than a kinematic approach for this case. The collapse load was approached 

from below using a static approach by choosing a moment distribution in equilibrium. 

For the case of only a vertical load applied at midspan of the top beam, the first 

mechanism will form due to plastic hinges at three sections of the frame. One of the 

hinges forms just below the loading point and the other two form in each column. The 

hinges in the columns are located a distance down from the top where the 

reinforcement amount changes to a lesser amount than above. An overview of the 

frame and the hinge formation can be seen in Figure 3.14 below. 

 

Figure 3.14  Overview of the moment distribution and plastic hinge formation where 

Mp,b and Mp,c are the plastic moment capacities in the beam and 

columns sections respectively 
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Yielding will first take place at the mid span of the top beam for the given sectional 

resistances, thus a plastic hinge attaining constant moment will be formed there. 

Thereafter the load is increased and the moment is assumed to elsewhere increase 

linear elastically. The difference between the mid span moment and the corner 

moments is 𝑃𝐿/4 due to equilibrium consideration and the ratio between the corner 

moments and the support moment is also constant and found from elastic analysis. 

This enables the moment along the columns to be described using linear functions 

dependent only on the load and the location of the studied section. With the moment 

capacity and location of the plastic hinges in the columns known, the load required to 

form the three hinges can be solved for.  

The lower bound solution found from the static approach above is rather conservative. 

This since the two corner sections of the frame support each other when the plastic 

hinges have been formed. To collapse the frame, either the corners need to be bent to 

a smaller angle than 90 degrees and/or the columns need to deflect outwards at the 

hinges. This additional resistance is not accounted for in the lower bound solution 

above, so the expected value of the load from NLFEA is well above the results 

obtained here. This agrees with the result from NLFEA where the maximum vertical 

load is roughly 50% higher than the lower bound load calculated above. 

 

3.3.3 Loading and behavior of frame 

The load application plan for the frame is to first apply one of the loads in increments. 

This phase is called load sequence 1. A load sequence consists of 20 increments each 

applying of 5% of the load in question. Thereafter the other characteristic load is 

applied, called load sequence 2. Once both characteristic loads have been applied they 

are magnified simultaneously until reaching their design values at the end of load 

sequence 3. If the structure is able to carry more load than the design loads, the 

vertical and horizontal loads are scaled up until failure occurs. The main load history 

consists of first applying the vertical load followed by the horizontal load. An 

alternative load history is also studied in which the horizontal load is applied first 

followed by the vertical load. This load history is referred to as the inverted load 

history. An illustration of the loading process can be found in Figure 3.15 below. It 

should be noted that many load histories can be considered, e.g. Pimentel et. al. 

(2014) suggests a linear increase of the loads using a common load factor from the 

beginning of the loading. 
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Figure 3.15  Illustration of the loading sequences, the solid line and bulleted line 

represents the first and second load respectively 

 

Computational problems arose in parts of the frame which were cracked in tension 

and later compressed during the load history. Unreasonable divergence occurred after 

large residuals forces were found in the problem regions. It was found that changing 

the iteration method, from modified to regular Newton-Raphson method before the 

cracked parts were subjected to compression, relieved the problem. The new iteration 

method was used for the remaining load increments. 

 

3.3.3.1 Structural behavior of the frame for main load history 

The structural behavior of the frame subjected to the main load history is presented in 

this section. Load sequence information can be found in Table 3.10 below. 
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Table 3.10  Loading sequence information for main load history 

Loading 

sequence 
Load 

Increment 

size 

No. of 

increments 

Iteration 

method in 

DIANA 

Max. no. 

of 

iterations 

1 Vertical 5% 20 

Modified 

NR, first 

tangent 

“tangent” 

100 

2a Horizontal 5% 5 

Modified 

NR, first 

tangent 

“tangent” 

100 

2b Horizontal 5% 15 

Regular NR, 

first tangent 

“linear”  

100 

3 
Vertical and 

horizontal 
5% Max. possible 

Regular NR, 

first tangent 

“linear” 

100 

 

For all the different safety formats the behavior of the frame until it reaches failure is 

similar. The first cracks appear in the beam just below the vertical load during load 

sequence 1. At the end of load sequence 1 the vertical characteristic load has been 

applied and cracks have formed in the outer corner regions and on the insides of the 

column in their supported end. This is depicted in Figure 3.16 below. 
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Figure 3.16  Deformed shape and crack pattern at the end of load sequence 1, with 

the vertical load applied to its characteristic value 

 

When the horizontal load is being applied in sequence 2, cracks form below the 

existing ones in the outer side of both columns. For the left column these start from 

the foundation while they for the right column propagate downward from the corner. 

Also the interior side cracks develop in the lower portion of the right column. 

Furthermore, since the right corner is displaced to the right, cracks form in the upper 

right part of the beam and the outer upper right column. Additional cracks form on the 

left of the existing cracks on the bottom side of the beam at midspan. To illustrate the 

cracking more clearly, a plot from the end of load sequence 2 is presented in Figure 

3.17 below. 
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Figure 3.17  Deformed shape and crack pattern at the end of load sequence 2, with 

both the vertical and horizontal load applied to their characteristic 

values (vertical load first) 

 

The same tendency of the crack formation was present until failure. It occurs for load 

levels between 94-137% for the main load history, depending on the material strength 

parameters used. The ultimate strength of neither the main nor the shear reinforcement 

was reached at the end of the analysis when the numerical integration diverged. The 

main reinforcement was however yielding in several places including the bottom left 

and right columns, top right column and midspan and left side portion of the beam. 

Yielding in stirrups only occur approximately one third way up in the right column. 

The stresses in the main reinforcement for the last converged load step in sequence 3 

is depicted Figure 3.18 below. 
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Figure 3.18  Reinforcement stresses at last converged load step, blue and red 

indicate compressive and tensile stresses respectively 

 

The concrete compressive stresses are very high in the interior side of the upper right 

corner of the frame due to the geometry which causes a stress concentration. Also the 

outer lower portion of the right column is subjected to high compressive stresses. It 

should be noted that stresses well above the uniaxial compressive strength are present 

in some parts of the structure. It is however reasonable due to the confinement of the 

concrete.  

In order to verify that the divergence originates from an actual compression failure of 

the concrete, the stress strain relation for the most stressed element was studied. The 

element was located on the interior side of the right column, adjacent to the corner. 

The stress values are extracted from a Gauss point close to the concrete surface since 

these are subjected to less confinement than the interior points and will thus fail first. 

Failure of concrete in one Gauss point does not automatically yield structural failure, 

but when sufficiently many integration points have failed the analysis cannot find 

equilibrium and the structure collapses. The stress-strain curve from the studied Gauss 

point in the aforementioned concrete element is presented in Figure 3.19 below. The 

parabolic shape of the concrete stress strain curve is a bit distorted. This is considered 

to be due to the cracking behavior of the concrete which influences the Gauss point 

stresses from which the principal stress is calculated. In order to make the depiction 

more clear the load increments after failure occurred in the studied Gauss point are 

excluded. 
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Figure 3.19  Stress-strain diagram for concrete element in interior part of upper 

right corner for the load increment until just before failure 

 

In conclusion, the ultimate capacity was reached after the reinforcement yielded at 

several locations but the structural failure was caused by concrete in the top right 

corner failing in compression. 

 

3.3.3.2 Structural behavior of the frame for inverse load history 

The structural behavior of the frame subjected to the inverse load history is presented 

in this section. Load sequence information is presented in Table 3.11 below. 
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Table 3.11  Loading sequence information for inverse load history 

Loading 

sequence 
Load 

Increment 

size 

No. of 

increments 

Iteration 

method in 

DIANA 

Max. no. 

of 

iterations 

1 Horizontal 5% 20 

Modified NR, 

first tangent 

“tangent” 

100 

2 Vertical 5% 20 

Regular NR, 

first tangent 

“linear” 

100 

3 
Vertical and 

horizontal 
5% Max. possible 

Regular NR, 

first tangent 

“linear” 

100 

 

The crack pattern at the end of the horizontal load application is presented in Figure 

3.20 below. The upper left corner is subjected to an opening deformation and the 

upper right corner is subjected to a closing deformation. Also the column supports 

resists the horizontal load. This is clearly reflected in the crack pattern. 

 

Figure 3.20  Deformed shape and crack pattern at the end of load sequence 1, with 

the horizontal load applied to its characteristic value 

 

The deformed shape and crack pattern after application of the vertical load are 

presented in Figure 3.21 below. Note the difference in structural behavior due to the 

load history, cf. Figure 3.17. In contrast to the case of the main load history, the 

outside left corner do not crack when subjected to both characteristic loads when the 
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horizontal load is applied first. Logically the interior side of the upper left is not 

cracked for the main load history but for the inverse load history. 

 

Figure 3.21  Deformed shape and crack pattern at the end of load sequence 2, with 

both the vertical and horizontal load applied to their characteristic 

values (horizontal load first) 

 

3.3.3.3 Method of estimation of a coefficient of variance of resistance (ECOV) 

For the ECOV safety format two separate NLFEA are performed, using the mean and 

the characteristic material strength properties, respectively. The material strength 

parameters for concrete are calculated according to the Model Code 2010, fib (2013). 

The formulas for these material strength parameters are based on the mean 

compressive strength. The characteristic values are obtained using the characteristic 

compressive strength as a fictional mean value of the compressive strength in the 

calculations. This gives the characteristic levels of the material properties such as 

tensile strength and fracture energy. It is not clearly stated in the Model Code 2010 

how to obtain the characteristic values and other ways of determining them could also 

be considered. For the reinforcement steel a Young’s modulus of 200 GPa is used for 

both cases. This is a choice made by the author and reflects that the elasticity of steel 

is little dependent on the yield and ultimate strength. The reinforcement steel strength 

properties are found from Norwegian Standard NS3573. The input parameters for the 

analyses are presented in Table 3.12 below. 
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Table 3.12  Table of mean and characteristic material strength parameters used for 

ECOV analyses  

Steel 

Mean values Characteristic values 

𝐸𝑠𝑚 200 000 MPa 𝐸𝑠𝑘  200 000 MPa 

𝑓𝑦𝑚 533 MPa 𝑓𝑦𝑘 500 MPa 

𝑓𝑢𝑚 628 MPa 𝑓𝑢𝑘 600 MPa 

𝜀𝑢𝑚   0.1171 [ - ] 𝜀𝑢𝑘    0.1170 [ - ] 

Concrete 

Mean values Characteristic values 

𝐸𝑐𝑚 37 486 MPa 𝐸𝑐𝑘 35 496 MPa 

𝑓𝑐𝑚 53.0 MPa 𝑓𝑐𝑘 45.0 MPa 

𝑓𝑐𝑡𝑚 3.80 MPa 𝑓𝑐𝑡𝑘 3.33 MPa 

𝐺𝑓𝑚 149.2 N/m 𝐺𝑓𝑘  144.8 N/m 

𝐺𝑐𝑚 37 294 N/m 𝐺𝑐𝑘 36 211 N/m 

 

Generally the two analyses give a similar response for both sets of parameters. In the 

uncracked stage it is almost identical. As the load increased a somewhat stiffer 

behavior can be seen in the frame analyzed using the mean values. The ultimate 

capacity of said frame is also higher than that of the frame analyzed using the 

characteristic strength parameters. The results from the analyses for the main load 

history are presented in Figure 3.22 and Figure 3.23 below. The first figure shows the 

vertical force versus the vertical displacements at midspan while the second shows the 

horizontal force and horizontal displacement at the right corner. Load sequences 2 and 

1 respectively have been left out in the plots for clarity. 
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Figure 3.22  Vertical force vs vertical deflection for ECOV analyses for the main 

load history  
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Figure 3.23  Horizontal force vs horizontal deflection for ECOV analyses for the 

main load history 

 

3.3.3.4 Global resistance factor method (GRFm) 

In the global resistance factor method one single analysis is performed using the mean 

values of the material strength parameters. Information concerning how these should 

be determined has been presented previously in Section 2.3.2.1. The input parameters 

for the analysis are presented in Table 3.13 below. 

Table 3.13  Mean material strength parameters used for GRFm analyses 

Steel 

𝐸𝑠𝑚 220 000 MPa 

𝑓𝑦𝑚 550 MPa 

𝑓𝑢𝑚 660 MPa 

𝜀𝑢𝑚    0.1170 [ - ] 

Concrete 

𝐸𝑐𝑚 30 171 MPa 

𝑓𝑐𝑚 31.5 MPa 

𝑓𝑐𝑡𝑚 2.83 MPa 

𝐺𝑓𝑚 123.1 N/m 

𝐺𝑐𝑚 30 779 N/m 
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The vertical force versus vertical displacement at midspan for the NLFEA based on 

the mean values from the global resistance factor method is shown in Figure 3.24 

below. The results are again from a frame subjected to the main load history. Load 

sequence 2 is omitted for clarity since the horizontal load applied in said sequence 

only marginally affects the vertical displacement at midspan.  

 

Figure 3.24  Vertical force vs vertical deflection for GRFm analysis for the main 

load history 
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The horizontal force versus the horizontal displacement from the considered analysis 

is presented in Figure 3.25 below. 

 

Figure 3.25  Horizontal force vs horizontal deflection for GRFm analysis for the 

main load history 

 

3.3.3.5 Partial safety factor method (PSF) 

The partial safety factor method uses the design values of the strength parameters as 

input for the NLFEA. It should be noted that the model uncertainty is typically 

incorporated in the partial coefficient for the materials and is therefore reflected in the 

design values. The input parameters for the analysis are presented in Table 3.14 

below. 
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Table 3.14  Design material strength parameters used for PSF analysis 

Steel 

𝐸𝑠𝑑  173 913 MPa 

𝑓𝑦𝑑 435 MPa 

𝑓𝑢𝑑 522 MPa 

𝜀𝑢𝑑 0.1170 [ - ] 

Concrete 

𝐸𝑐𝑑  23 664 MPa 

𝑓𝑐𝑑 30.0 MPa 

𝑓𝑐𝑡𝑑 2.22 MPa 

𝐺𝑓𝑑  96.6 N/m 

𝐺𝑐𝑑 24 141 N/m 

 

In Figure 3.26 below, the vertical force at midspan is plotted against the vertical 

displacement at the same location. Again load sequence 2 is omitted for clarity. 

 

Figure 3.26  Vertical force vs vertical deflection for PSF analysis for the main load 

history 

 

The horizontal force plotted versus the horizontal displacement at the right corner of 

the frame can be seen in Figure 3.27 below. The load corresponding to a displacement 

of 6 mm is deviating markedly from the otherwise linear behavior. It is assumed to be 

caused by a numerical error. 
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Figure 3.27  Horizontal force vs horizontal displacement for PSF analysis for the 

main load history 

 

3.3.3.6 Comparison between the main and inverted load history 

Plots of the last load sequences are used to compare the frame response for the two 

studied load histories. It is made for a frame analyzed with mean strength parameters 

from the ECOV analysis. As can be seen in Figure 3.28, depicting the vertical force – 

displacement, the frame shows similar stiffness both cases. The vertical displacement 

at the beginning of load sequence 3 is however larger for the main load history case 

where the vertical characteristic load is applied first. This is reasonable since the 

inverse case cause the beam to deflect upwards due to the rigidity of the right corner. 

For both load histories the frame show ductile behavior when the failure is imminent. 
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Figure 3.28  Load history comparison for the vertical load in load sequence 3 

 

In case of the horizontal load-deflection relation, as presented in Figure 3.29 below, 

the frame shows almost identical results for both load histories. The inverse load case 

has a little larger horizontal displacement at the start of load sequence 3, but has 

initially larger stiffnes so that the displacement is the same at a displacement of 

around 40 mm. The stiffness is thereafter decreased for the frame subjected to the  

inverse load history and when the ultimate capacity is reached the displacement is 

again larger. The frame with mean strength properties is able to carry marginally 

larger vertical and horizontal loads in the case with the inverse load history. This is 

not the case with the frame analyzed with the characteristic strength properties. 
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Figure 3.29  Load history comparison for the horizontal load in load sequence 3 

 

3.3.4 Comparison between safety formats 

In this section the design resistances of the structure corresponding to a probability of 

failure of 0.1% are presented for the three safety formats and the two different load 

histories. The calculations follow the procedure presented in Section 2.3. 

A choice has to be made regarding what measure to use to define the structural 

resistance. Since one of the loads is considered permanent while the other is variable 

and they act in orthogonal directions the choice is not trivial to make. Here it was 

chosen to use the total load applied to the structure as the measure of resistance.  

Because the ratio between the permanent and variable load was kept constant in the 

loading process, scaled by their corresponding load factor, the total load was found to 

be the most reasonable choice. 

The design resistances for the safety formats corresponding to the main load history, 

where the vertical load is applied first are presented in Table 3.15 below. The frame 

was designed for a total load of 2093 kN. 
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Table 3.15  Design resistances calculated according to the three studied safety 

formats for the main load history 

 Rm [kN] Rk [kN] VR γR γRd Rd [kN] 

ECOV 2864 2614 0.055 1.18 1.06 2284 

GRFm 2492 - - 1.2 1.06 1959 

PSFm - - - - - 1967 

 

The design resistances for the case of the inverted load history where the horizontal 

load is applied first are presented in Table 3.16 below. Note that the design resistance 

according to the ECOV format is decreased for this load history. This is because the 

analysis based on the characteristic values had a lower capacity, which increased the 

coefficient of variation and thus the design resistance. An interesting observation is 

that, between the main and inverse load history, Rm increases while Rk decreases. The 

results could be explained by the inverse load history being more dependent on the 

concrete strength than the main load history, together with the larger percental 

difference between mean and characteristic values for concrete compared to the steel.  

Table 3.16  Design resistances calculated according to the three studied safety 

formats for the inverted load history 

 Rm [kN] Rk [kN] VR γR γRd Rd [kN] 

ECOV 2923 2402 0.119 1.437 1.06 1920 

GRFm 2491 - - 1.2 1.06 1959 

PSFm - - - - - 1939 

 

It should be clearly noted that the total design loads presented above are only valid for 

similar loading conditions and load histories. For other constellations of loads and 

different load histories new analyses has to be made and design resistances calculated. 

 

3.4 Response surface and reliability assessment 

The implementation of the response surface methodology presented in Section 2.4.3 

together with application of FORM/SORM as presented in Section 2.4.2 is accounted 

for below. The results are also presented. 

 

3.4.1 Construction of the response surface 

The procedure for response surface construction proposed by Zhao & Qiu (2013) is 

principally followed in this project. The aim is to first find a control point which 
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serves as a starting position when finding the initial center point located on the limit 

state surface. This point is in the center of the set used to fit the response surface. 

Finding the center point is an iterative procedure with a convergence criterion put on 

𝐺(𝑿) ≈ 0. Once the center point is found several analyses are run for the basic 

variables located near said point. The implicit limit state function (LSF) is given as 

the total load carrying capacity from NLFEA minus the design loads: 

𝐺(𝑿) = 𝑅𝑡𝑜𝑡(𝑿) − (1,35𝐹𝑉 + 1,5𝐹𝐻) = 𝑅𝑡𝑜𝑡(𝑿) − 𝑅𝑑  (3.1)  

The basic variables are chosen as few as possible due to the time consuming process 

of evaluating the function in equation 3.1 by means of NLFEA. The basic variables 

included are the compressive strength of concrete and the yield strength of the 

reinforcement steel. From these values the other material parameters are estimated 

using Model Code 2010 fib (2013) for concrete and the relationship between yield and 

ultimate strength of reinforcement steel is given by NS 3576-3 Norwegian Standard 

(2012). The coefficients of variation for concrete and reinforcement steel are taken as 

0.20 and 0.10 respectively, as described by Schlune et. al. (2012) and Pimentel et. al. 

(2014). For both the main and the inverse load history a response surface is 

constructed for each of the design loads according to the safety formats, yielding a 

total of eight surfaces. 

The basic variables and the corresponding evaluations of the implicit limit state 

function is the initial set of data points. A response surface is fitted based on these 

data points. A second order polynomial including cross terms are used for the fitting 

which is performed using the least square method in MATLAB.  

Since a response surface is described by a closed form equation, the first order 

reliability method can be used to calculate the Hasofer-Lind safety index β and the 

design point. For this a MATLAB script is used, constructed by Kostandyan et. al. 

(2013). The design point is located where the combination of the basic variables will 

most likely lead to failure. More evaluations of the LSF from equation 3.1 are run for 

values around the design point in order to increase the accuracy in the area. The 

FORM and also SORM are used to determine the final design point, the safety indices 

and the corresponding probabilities of failure. 

 

3.4.2 Results from response surface analysis 

A total of eight different response surfaces were constructed using the design 

resistances given by the safety formats. The response surface for the design resistance 

obtained with ECOV for the main load history is depicted together with data points in 

Figure 3.30 below. Note that more data points were used but they are hidden behind 

the surface. 
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Figure 3.30  Response surface for the design resistance obtained with ECOV for the 

main load history 

 

The most interesting part of the surface is the contour line where g̅(𝐗) = 0 since it 

divides the space between the safe and the failure region. A contour plot of the 

response surface corresponding to the previously mentioned case is depicted in Figure 

3.31 below. The design point obtained by FORM is also included. 

For the main load history the design point, where failure is most probable to occur, is 

located where both the concrete and the reinforcement have lower strength than their 

mean values.  
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Figure 3.31  Contour plot for the design resistance obtained using ECOV for the 

main load history 

 

A similar plot but for the inverse load history is depicted in Figure 3.32 below. For 

this case the design point is located where the steel has a higher capacity than the 

mean value but the concrete has a substantially decreased value compared to the 

mean. 
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Figure 3.32  Contour plot for the design resistance obtained using ECOV for the 

inverse load history 

 

The resulting safety indices and corresponding failure probabilities obtained by 

FORM and SORM for the safety formats are presented in Table 3.17 below. 

Furthermore, the load used in the linear elastic design is also presented. The intended 

safety index for the safety formats is 𝛽 = 0.8 ∙ 3.8 = 3.04 as described in Section 2.3. 

This corresponds to a probability of failure of 10
-3

.  

For the main load history the ECOV safety format implies a design resistance that is 

too high which leads to a lower safety index than intended. The other safety formats 

are well on the safe side. The difference between the FORM and SORM safety indices 

is small for all cases, which is expected due to an uncomplicated failure surface. 
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Table 3.17  Safety indices and probabilities of failure for main load history based 

on the safety formats’ and linear elastic design loads 

 βFORM (𝑝𝑓) βSORM (𝑝𝑓) 

ECOV 2.47 (6.71 ∙ 10−3) 2.45 (7.09 ∙ 10−3) 

GRFm 4.06 (2.45 ∙ 10−5) 4.06 (2.48 ∙ 10−5) 

PSF 4.02 (2.92 ∙ 10−5) 4.02 (2.97 ∙ 10−5) 

LFEA 3.39 (3.50 ∙ 10−4) 3.38 (3.62 ∙ 10−4) 

 

The safety indices and failure probabilities for the inverse load history are presented 

in Table 3.18 below. All the safety formats in Model Code 2010, fib (2013) produce 

design load that is above the target safety index for this load history. All the design 

loads except ECOV yield a smaller safety index when the frame is first loaded 

horizontally. 

 

Table 3.18  Safety indices and probabilities of failure for inverse load history based 

on the safety formats’ and linear elastic design loads 

 βFORM (𝑝𝑓) βSORM (𝑝𝑓) 

ECOV 3.72 (1.01 ∙ 10−4) 3.67 (1.24 ∙ 10−4) 

GRFm 3.60 (1.61 ∙ 10−4) 3.53 (2.04 ∙ 10−4) 

PSF 3.66 (1.27 ∙ 10−4) 3.60 (1.58 ∙ 10−4) 

LFEA 3.14 (8.51 ∙ 10−4) 3.02 (1.27 ∙ 10−3) 
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4 Discussion 

As stated in the introduction it is of great importance to be able to make accurate 

assessments of reinforced concrete structures. This enables making new structures 

more efficient and thereby reducing the material cost and environmental impact. 

Moreover, assessment of the increasing number of existing structures approaching the 

end of their service lives is another important field; determining if they are still safe 

for use and/or if their service life can be prolonged by restrictions or rehabilitation. It 

is clear that also this analysis application has environmental and monetary benefits. A 

central question is therefore if the safety formats for nonlinear analysis in present 

design codes correctly assess the probability of failure. 

The matter of determining the ultimate capacity from the analyses is not trivial. It 

depends largely on the convergence criteria used for the equilibrium iterations. For all 

the analyses presented in this thesis a relatively strict convergence criterion was used 

as accounted for in Section 3.1.5. For consistence the ultimate capacity of the frame 

was always determined as the resistance for the last converged load step, without 

regard to possible close-to-converged subsequent steps before divergence. One could 

argue that the structure has not failed until divergence occurs in the iterations, since it 

is in fact close to equilibrium even if the out of balance energy and forces exceed the 

convergence criterion. The unconverged load steps may not be realistic with respect to 

how the structure would respond on sectional level and perhaps include spurious 

deformations etc., even if global equilibrium almost is fulfilled.  

Therefore it remains unclear if the global equilibrium could be fulfilled with a 

physically feasible response on a sectional level; hence these load increments are 

excluded. 

Very limited information is provided in Model Code 2010 (fib 2013) regarding how 

the structural resistance should be defined when used in the safety formats. It is 

logically dependent on the structure’s present loading situation, but the resistance is 

also influenced by previous load situations. The frame considered in this project has a 

simple load situation, but nevertheless questions arise what measure to use for the 

safety formats. In this project the total load carrying capacity was used irrespective of 

the directions of the separate loads, keeping the same ratio between the permanent and 

variable load. Many other cases could also be used. For example as in the 

benchmarking example in Section 3.1.1, where the maximum horizontal load for a 

given vertical load was used. If cyclic loading and other time dependent aspects are 

included in the analyses the question of how to define the structural resistance is not 

so straight forward.  

The loading history was also found to be important judging by the performed NLFEA. 

In general the loading capacity was somewhat lower for the inverse load history 

compared to the main. Applying the horizontal load first causes the frame to deflect 

laterally. When the vertical load is then applied, as well as when both loads are scaled 

up thereafter, the frame behaves differently than for the main load history. The loads 

are carried in a way that further increases the concrete stress in the interior side of the 

upper right corner of the frame. This exemplifies the importance of considering the 

load history in nonlinear analyses. For a case where both the structure and loading 

situation is more complex this is a topic requiring careful considerations. Preferably 

the load history should include all loads that the structure has been subjected to during 

its life, including the construction phase. Moreover it is important that the loads are 

applied in the correct order. For example, consider a post-tensioned concrete beam 
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which is to be analyzed to determine the maximum midspan point load that can be 

applied. The NLFEA should include the loads originating from removal of the 

formwork and application of the prestressing as well as other time dependent effects 

before the vertical point load is introduced in the analysis.   

Since it is desired to increase the use of nonlinear analyses in engineering applications 

there should be more descriptive guidelines. These should treat aspects such as how to 

define the design resistance as well as acceptable simplifications of the structural 

model and loading history. 

In the safety assessment that was performed, the response surface was fitted using a 

second order polynomial. The failure mode was compression failure in the concrete in 

the upper right corner for all the analyses close to the design point. Thus the ultimate 

capacity was much dependent on the concrete strength. A higher order polynomial 

failure surface was considered unnecessary due to the simple ultimate limit behavior. 

For a second order polynomial surface, SORM should be able to represent the 

probability of failure adequately since it approached the surface with a second order 

Taylor expansion around the design point. Therefore it was considered unnecessary to 

use Monte Carlo simulations with importance sampling as considered earlier in the 

project. Only two basic variables were included for the safety assessment, i.e. 

concrete compressive strength and steel yield strength. The other material parameters 

were calculated based on these values and provided as input in the analyses. This is 

similar to assuming full correlation between the strength properties. In reality the 

strength parameters are correlated, for example the compressive and tensile strength, 

but not 100%. But for this relatively simple safety assessment it is considered 

adequate to make this simplification. Furthermore, it was considered to treat the frame 

dimensions, reinforcement placing and load application points as random variables 

following some distributions. This was however excluded due to the vast amount of 

time required to generate the many new required models. It should also be pointed out 

that the number of analyses needed to be run increase exponentially with the number 

of basic variables included in the study. It would nevertheless be very interesting to 

see what impact it would have on the safety to treat the aforementioned parameters as 

random.  

It was found that the failure probabilities for the frame were very much dependent on 

the type of distribution the basic variables follow. The normal distribution is often a 

good choice if the quality control during manufacturing is sufficient to ensure a low 

coefficient of variation, otherwise the lognormal distribution is a better choice 

according to Ghosh (1991). Since the frame designed in this thesis is not built in 

reality, this is of little help when choosing a distribution. Further, it could be argued 

that the concrete compressive strength should follow a normal distribution since the 

other concrete properties are approximated based on said strength. However a 

comparison was made between a normal and a lognormal distribution for the concrete 

properties, with 0.15 and 0.2 as the coefficient of variation respectively, and the 

difference was found to be small. This suggests that the use of lognormal material 

strength properties as used in the thesis is an adequate choice. The reason for 

comparing the results using normal and lognormal distributions for different 

coefficients of variation is that a normal distribution is typically used when the level 

of certainty is higher, as described above. 

The design resistance obtained using ECOV did not reach the intended safety index 

for the main load history, i.e. when the vertical load is applied first. The design 

resistance was found to be significantly higher for this safety format and said load 
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history than for the other safety formats. This was mostly due to a low coefficient of 

variation. It was obtained due to a small difference in capacity between analyses using 

mean and characteristic material strength parameters, leading to a low factor of safety 

resulting in a high design load. All safety formats except for ECOV reached a lower 

safety index for the inverse load history compared to the main. This points out, as 

stated earlier, that the load history is very important in nonlinear analyses. 
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5 Conclusions and suggestions for further work 

Even though nonlinear finite element analyses (NLFEA) has been performed in 

research settings for many years it is yet to be used extensively in engineering 

practice. This due to several reasons, for example the inability to superimpose loads 

leading to vast computational time but also the lack of safety formats surely leading to 

the intended safety level as well as sufficient guidance. 

The author suggests that the safety formats in Model Code 2010, fib (2013) are 

evaluated for more complex structures. The ECOV safety format was found not to 

meet the intended safety level for one of the studied load histories. It points out the 

importance of load history considerations when it comes to NLFEA. Therefore it 

would be of interest to assess the safety level of the safety formats applied to e.g. a 

shell structure subjected to a broad variety of loading conditions. Different types of 

failure modes should be included and preferably also their effect on the modelling 

uncertainty. Other safety formats that more objectively include the failure mode and 

modelling uncertainty are perhaps needed, since the generality of a safety format 

might lead to excessive conservatism in some cases. 

Furthermore a framework of engineering guidelines for NLFEA is desired. These 

should treat all aspects important to conduct accurate NLFEA. Questions have been 

raised during this thesis regarding how to treat the load history but also how to define 

the design resistance. If the guidelines should be accessible for engineers to use in 

practice, it is of great importance but also a great challenge, to present simplifications 

that can be made in the models and analyses. It requires substantial research to prove 

which simplifications that can be done conservatively without degrading the accuracy 

to such an extent that the purpose of NLFEA is extinguished. 
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7 Appendices 



A. Kinematic collapse analysis of benchmarked frame 
  



Mechanism 1 

In Figure 1 below, the notation of the loads, dimensions and member numbers can be seen. 

The moment capacities of the members are usually independent of the mechanism forming. 

The moment capacities are 13.27 kNm for members 1 and 3 and 16.57 kNm for member 2. 

Since the capacity is lower for member 1 and 3 than for member 2, yielding at point B and D 

corresponds to yielding of the first mentioned members. 

 

Figure 1 Locations of plastic hinges for mechanism 1 presented as bullets 

Only the load 𝑃2 performs any work in this mechanism, and the collapse load can be 

calculated as: 

𝑃2 =
4 ∙ 𝑀1

𝑙𝑧
= 30.77 𝑘𝑁 

Mechanism 2 

The plastic hinges for this mechanism are at B, C and D as can be seen in Figure 2. 

 

Figure 2 Locations of plastic hinges for mechanism 2 presented as bullets 

Only the load 𝑃1 performs any work, and the collapse load can be calculated as: 



𝑃1 =
(2 ∙ 𝑀1 + 2 ∙ 𝑀2) ∙ 2

𝑙𝑥
= 43.52 𝑘𝑁 

Mechanism 3 

Plastic hinges form at A, C and D for mechanism 3, which can be seen in Figure 3. Both of 

the loads perform work in this collapse mechanism, therefore it is necessary to determine a 

pair of loads that cause failure. Since the vertical load in the practical experiment is originally 

23.69 kN, this value is chosen for 𝑃1.  

 

Figure 3 Locations of plastic hinges for mechanism 3 are presented as bullets 

The load 𝑃2 causing failure given that 𝑃1 = 23.69 𝑘𝑁 can be calculated as: 

𝑃2 =
2∙𝑀1+2∙𝑀2−𝑃1∙

𝑙𝑥
2

𝑙𝑧
= 15.76 𝑘𝑁  

 

 

 



LOAD CARRYING CAPACITY OF VERTICALLY AND HORIZONTALLY LOADED FRAME

Frame properties:
≔lx =(( −2868 125)) ⎛⎝ ⋅2.743 10

3 ⎞⎠ “width, centerline value”

≔lz =
⎛
⎜⎝

−1800 ――
150

2

⎞
⎟⎠

⎛⎝ ⋅1.725 10
3 ⎞⎠ “height, centerline value”

≔P1 23.69 “vertical load, not causing any yield”

Material parameters:

≔fcm 38 ≔Ecm 29738 ≔εc1 2.3 10
−3

“Model Code 2010”

≔fym 560 ≔Es 200000 ≔εy =――
fym

Es

0.003

≔ϕ 10 ≔α =――
Es

Ecm

6.725

Cross section parameters:

Cross section member 1 and 3:
≔w1 90 ≔h1 125 ≔cc1 15 ≔d1.top cc1 ≔d1.bottom =−h1 cc1 110

Cross section member 2:
≔w2 90 ≔h2 150 ≔cc2 15 ≔d2.top cc2 ≔d2.bottom =−h2 cc2 135

A 3
⋅ ((10 ))

2

A 3
⋅ ((10 ))

2



≔As.top ⋅3 ―――――
⋅ ((10 ))

4
≔As.bot ⋅3 ―――――

⋅ ((10 ))

4

Plastic moment capacity of cross sections:
“Assume concrete failure limits the capacity”

Plastic moment capacity of member 1 and 3:

≔x 25.085 Iterated compression block height to obtain 
force equilibrium in cross section

≔εs1.bottom =⎛⎝ −d1.bottom x⎞⎠ ―――
0.0035

x
0.012 ≔fs1.bottom min ⎛⎝ ,⋅Es εs1.bottom 560 ⎞⎠

≔εs1.top =⎛⎝ −d1.top x⎞⎠ ―――
0.0035

x
−0.001 ≔fs1.top =⋅Es εs1.top −281.423

≔Cc1 =⋅⋅⋅⋅0.85 fcm w1 0.9 x 65.63

≔Cs1 =⋅As.top fs1.top −66.309

≔T1 =⋅As.bot fs1.bottom 131.947 =−Cc1 Cs1 131.939

Moment around concrete compressive force resultant
≔M1 =+⋅⋅As.bot fs1.bottom ⎛⎝ −d1.bottom ⋅0.45 x⎞⎠ ⋅⋅As.top fs1.top ⎛⎝ −⋅0.45 x d1.top⎞⎠ 13.271 ⋅

Plastic moment capacity of member 2:

≔x 25.085 Iterated compression block height to obtain 
force equilibrium in cross section

≔εs2.bottom =⎛⎝ −d2.bottom x⎞⎠ ―――
0.0035

x
0.015 ≔fs2.bottom min ⎛⎝ ,⋅Es εs2.bottom 560 ⎞⎠

≔εs2.top =⎛⎝ −d2.top x⎞⎠ ―――
0.0035

x
−0.001

≔fs2.top =⋅Es εs2.top −281.423

≔Cc2 =⋅⋅⋅⋅0.85 fcm w2 0.9 x 65.63

≔Cs2 =⋅As.top fs2.top −66.309

≔T2 =⋅As.bot fs2.bottom 131.947 =−Cc2 Cs2 131.939

Moment around concrete compressive force resultant
≔M2 =+⋅⋅As.bot fs2.bottom ⎛⎝ −d2.bottom ⋅0.45 x⎞⎠ ⋅⋅As.top fs2.top ⎛⎝ −⋅0.45 x d2.top⎞⎠ 16.57 ⋅

Pl ti it di t ll th Ad h f t i l (C k & Y )



Plastic capacity according to collapse theory, e.g. Adv mech of materials (Cook & Young) 

−⋅P2 ⎛⎝ ⋅ly θ⎞⎠ ⋅M1 (( +++θ θ θ θ))

≔P2 =――
⋅M1 4

lz
30.773

Mechanism 2, hinges at B, C, D:

−−⋅P1.check
⎛
⎜
⎝

⋅―
lx

2
θ

⎞
⎟
⎠

⋅M1 (( +θ θ)) M2 (( ⋅2 θ))

≔P1.check =――――――
⋅⎛⎝ +⋅M1 2 ⋅M2 2⎞⎠ 2

lx
43.515



Mechanism 3, hinges at A, C, D,E:

−−+⋅P1
⎛
⎜
⎝

⋅―
lx

2
θ

⎞
⎟
⎠

⋅⋅P2 lz θ ⋅M1 (( ++θ θ θ)) M2 (( ⋅2 θ))

≔P2 =―――――――

−+⋅M1 3 ⋅M2 2 ⋅P1 ―
lx

2

lz
23.455



B. Static collapse analysis of designed frame 
 



LOAD CARRYING CAPACITY OF VERTICALLY LOADED FRAME
Frame properties:
≔l =−10000 800 ⎛⎝ ⋅9.2 10

3 ⎞⎠ Approximated beam span length, mid column

≔cc 50 Concrete cover

Material parameters:

≔fcm 53 ≔Ecm 37486 ≔εc1 2.3 10
−3 Model Code 2010

≔fym 533 ≔Es 220000 ≔εy =――
fym

Es

0.002

≔α =――
Es

Ecm

5.869

Reinforcement bars:
≔ϕ10 10 ≔ϕ10.k 12

≔ϕ12 12 ≔ϕ12.k 14

≔ϕ14 14 ≔ϕ14.k 16

≔ϕ16 16 ≔ϕ16.k 18

≔ϕ20 20 ≔ϕ20.k 24

≔ϕ28 28 ≔ϕ28.k 32

≔ϕ32 32 ≔ϕ32.k 36

Cross section parameters:
Cross section 1 and 3:

≔w1 500 ≔h1 800

≔cc1c =++cc ϕ20.k ――
ϕ16.k

2
83 ≔cc1t =++cc ϕ20.k ――

ϕ16.k

2
83

≔d'1 =cc1c 83 ≔d1 =−h1 cc1t 717

≔As.1c =⋅8 ――――
⋅ ⎛⎝ϕ16⎞⎠

2

4
⎛⎝ ⋅1.608 10

3 ⎞⎠
2

≔As.1t =⋅8 ――――
⋅ ⎛⎝ϕ16⎞⎠

2

4
⎛⎝ ⋅1.608 10

3 ⎞⎠
2

Cross section 2:
≔w2 500 ≔h2 1000

≔cc2c =++cc ϕ20.k ――
ϕ16.k

2
83 ≔cc2t =++cc ϕ20.k ――

ϕ28.k

2
90

≔d'2 =cc2c 83 ≔d2 =−h2 cc2t 910

≔As.2t =⋅7 ――――
⋅ ⎛⎝ϕ28⎞⎠

2

4
⎛⎝ ⋅4.31 10

3 ⎞⎠
2

≔As.2c =⋅8 ――――
⋅ ⎛⎝ϕ16⎞⎠

2

4
⎛⎝ ⋅1.608 10

3 ⎞⎠
2



Plastic moment capacity of cross sections:
“Assume concrete failure limits the capacity”

Plastic moment capacity of member 1 and 3:

≔x1 61.3 Iterated compression block height to 
obtain force equilibrium in cross section

≔εs1c =―――
⎛⎝ −x1 d'1⎞⎠

x1
0.0035 −0.001 Compression reinforcement 

strain/stress
≔fs1c =min ⎛⎝ ,⋅Es εs1c 500 ⎞⎠ −272.577

≔εs1t =―
d1

x1
0.0035 0.041 Tensile reinforcement strain/

stress
≔fs1t =min ⎛⎝ ,abs ⎛⎝ ⋅Es εs1t⎞⎠ 500 ⎞⎠ 500

≔Cc1 =⋅⋅⋅⋅0.85 fcm w1 0.9 x1
⎛⎝ ⋅1.243 10

3 ⎞⎠

≔Cs1 =⋅As.1c fs1c −438.44

≔T1 =⋅As.1t fs1t 804.248

=−+Cc1 Cs1 T1 0.017

Moment around concrete compressive force resultant
≔M1 =+⋅T1 ⎛⎝ −d1 ⋅0.45 x1⎞⎠ ⋅Cs1 ⎛⎝ −⋅0.45 x1 d'1⎞⎠ 578.757 ⋅

Plastic moment capacity of member 2:

≔x2 97.32 Iterated compression block height to 
obtain force equilibrium in cross section

≔εs2c =―――
⎛⎝ −x2 d'2⎞⎠

x2
0.0035 ⋅5.15 10

−4 Compression reinforcement 
strain/stress

≔fs2c =min ⎛⎝ ,⋅Es εs2c 500 ⎞⎠ 113.3

≔εs2t =―
d2

x2
0.0035 0.033 Tensile reinforcement strain/

stress
≔fs2t =min ⎛⎝ ,abs ⎛⎝ ⋅Es εs2t⎞⎠ 500 ⎞⎠ 500

C 0 85 f 0 9 ⎛1 973 10
3 ⎞



≔Cc2 =⋅⋅⋅⋅0.85 fcm w2 0.9 x2
⎛⎝ ⋅1.973 10

3 ⎞⎠

≔Cs2 =⋅As.2c fs2c 182.243

≔T2 =⋅As.2t fs2t
⎛⎝ ⋅2.155 10

3 ⎞⎠

=−+Cc2 Cs2 T2 0.03

Moment around concrete compressive force resultant
≔M2 =+⋅T2 ⎛⎝ −d2 ⋅0.45 x2⎞⎠ ⋅Cs2 ⎛⎝ −⋅0.45 x2 d'2⎞⎠

⎛⎝ ⋅1.86 10
3 ⎞⎠ ⋅

Static analysis, assuming linear elastic moment distribution between hinges. Gives lower 
bound solution, equilibrium satisfied. Based on"Handboken Bygg, Allmänna grunder".

R l ti b t id t d t



Relation between midspan moment and corner moment

+MC MD equals ――
⋅P lx

4

Plastic moment at midspan of beam
≔MC M2

Relation between corner moment and bottom column moment
≔P 1328.95 ≔lx 9.2 ≔ly 5.5 ≔xh 1.9

≔MD −――
⋅P lx

4
MC ≔m MD

≔ME −――
MD

2.02
Taken from linear elastic frame calculations, valid for 
these geometry, load and stiffness properties

≔k ―――
−ME MD

ly
=+⋅k xh m 578.755 ⋅ Moment in critical section, where 

reinforcement amount changes

=M1 578.757 ⋅ Plastic capacity of column in 
bending


