
Large Eddy Simulation of flow around a
Gas Turbine Outlet Guide Vane

Master’s Thesis in Fluid Dynamics

ANSUMAN PRADHAN

Department of Applied Mechanics

Division of Fluid Dynamics

Chalmers University of Technology
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Sweden
Tel. +46 (0)31-772 1000

Reproservice / Department of Applied Mechanics
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Abstract

Engineering flows in the practical world are chaotic and comprise of many different scales
of motion due to the influence of ambient noise or disturbances. Such disturbances have
a significant impact on the nature of flow close to the boundaries/walls. To simulate
such flows near the boundaries correctly constitutes an important aspect of designing
and product development processes. In the present thesis flow around a low-pressure
turbine outlet guide vane (LPT-OGV) is studied using Large Eddy Simulations (LES).
Effort is made to capture the boundary layer transition over the guide vane, which has
a crucial impact on the heat transfer characteristics at the vane walls. The results are
compared with experimental studies performed on the OGV at the department. Previ-
ous simulations based on this experimental study was performed via RANS (Reynolds
averaged Navier Stokes) modelling approach. It is the first time that LES is being
used. A finite volume method based in-house solver in Fortran, called CALC-LES, is
used for performing simulations. The computational grid is created using another in-
house meshing utility, called G3DMESH. The solver of CALC-LES uses a geometric
multigrid algorithm to solve the pressure (poisson) equation. In the present thesis, this
implementation is studied thoroughly and modifications are made to render it operable
for boundary conditions similar to that of the present problem. Two different subgrid
scale (SGS) models are used for performing comparative studies – the Smagorinsky-Lilly
model and the Germano-Lilly dynamic model. The present simulations fail to capture
the transition in the boundary layer over the OGV. The pressure distribution corrobo-
rates with the experimental data; but the same cannot be said for the heat transfer at the
walls. Mesh independence study showed that the spanwise resolution and domain width
of the mesh hardly played any role in transition. Better result from a mesh with finer
streamwise resolution in the transition zone indicated that probably a finer streamwise
mesh throughout the surface is required for transition prediction. Studying the resolved
Reynolds stress components in the boundary layer revealed that the streamwise stress
component increased in magnitude significantly, but it doesn’t get distributed into the
other components. As a result transition is not observed. Further inspection of the
turbulent kinetic energy peak showed that probably the streamwise streaks grow, but
either they were not big enough to trigger transiiton or there was no continuous forcing
provided by the free-stream turbulence to trigger transition.

Keywords: CFD, LES, boundary layer transition, bypass, FST, heat transfer, multigrid
method, guide vane.
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Nomenclature

Abbreviations

DNS Direct Numerical Solution

FAS Full Approximation Storage

FMG Full Multi-grid

FST Free-stream Turbulence

GMG Geometric Multi-grid

GS Gauss-Seidel

HPT High Pressure Turbine

LES Large Eddy Simulations

LKE Laminar Kinetic Energy

LPT Low Pressure Turbine

MG Multi-grid

NS Navier-Stokes

OGV Outlet Guide-vane

PPE Pressure Poisson Equation

RANS Reynolds-averaged Navier-Stokes equations

rms Root mean square

SGS Sub-grid scale

TDMA Tridiagonal matrix algorithm
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TKE Turbulent Kinetic Energy

Greek Symbols

α Thermal diffusivity,[ν/Pr]

αr Residual/SGS thermal eddy-diffusivity

∆̄ Grid filter-width

δij Kronecker-delta

κ von Kármán constant

ν Kinematic viscosity

νr Residual/SGS eddy-viscosity

ρ Density

τθj Residual/SGS heat flux

τ rij Residual/SGS stress tensor

θ Temperature

θin Inlet Temperature

˜̄∆ Test filter-width

Roman Symbols

Cs Smagorinsky coefficient

lsmg Smagorinsky lengthscale

Cp Coefficient of pressure

cp Heat capacity at constant pressure

cx Axial chord

I Turbulent Intensity

lp Pitch of the cascade

ls Turbulent length scale

p Pressure

Pr Molecular Prandtl Number

Prt Turbulent Prandtl number



q Heat flux rate

Sij Strain-rate tensor,
[
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∂vi
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∂vj
∂xi

)]

U0 Inlet Velocity

v Velocity

V Volume

Subscripts

(.)i Einstein-notation

Superscripts

(.) Spatial Grid-filtering

(̃.) Spatial Test-filtering
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1

Introduction

The subject of the present study is the flow around a low pressure turbine (LPT)
outlet guide vane (OGV). The LPT comes at the rear end of the engine case next to the
high pressure turbine (HPT) cascade(e.g., in case of a general two-spool engine). Imme-
diately downstream of the LPT, the OGVs are positioned, which provide a structural
connection between the aft bearing support, the main engine carcass and the aircraft
attachment point. This is the structural function of the OGVs. In aerodynamic terms,
their function is to de-swirl the swirling hot exhaust gas coming from the turbine rotors
into an axial flow. The efficiency of gas turbine engines and the performance charac-
teristics is said to increase with an increase in the core allowable temperature [1]. The
motivation to push this temperature up requires to constantly look for better materials
and cooling technologies for the rotor/guide vanes. Heat transfer study of the vanes thus
becomes the core of the design process. Moreover, depending upon the operation point
of the engine, the swirl angle could vary significantly leading to off-design conditions.
Off-design conditions lead to a different thermal load and heat transfer prediction could
be completely different. The blade life may be reduced to half, if the blade metal tem-
perature prediction is off by just 10◦C (50◦F ) [2]. Thus, from the design point of view,
computational and numerical study of the flow around the guide vanes and heat transfer
prediction is of great importance.

Factors affecting heat transfer at the guide vane walls include boundary layer tran-
sition behaviour, flow separation and reattachment etc. While flow separation and reat-
tachment are phenomena prominent in flow during off-design conditions, analysing the
flow during on-design conditions requires capturing the boundary layer transition mech-
anism accurately. It has a significant effect on the heat transfer at the vane walls.
Numerous studies on this mechanism have been carried out till date, both experimental
and numerical. Computationally, it is very difficult to capture the transition at high free-
stream turbulence (FST) levels, governed by non-linear interactions between boundary
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1.1. PREVIOUS WORK

layer and FST disturbances, termed as ‘bypass transition’. One of the reasons being
that the mechanisms governing the transition are not fully understood yet, due to the
myriad of factors that come into play (discussed later). A universal mathematical model
describing the (non-linear) growth mechanisms leading to transition is hence difficult
to contrive. To get around this problem, efforts were made to isolate these governing
factors and understand their individual effects. It was observed that such a transition
takes place when two or more of these instability inducing factors interact amongst
themselves; and it is the interaction of free-stream turbulence with the other instability
inducing factors in the boundary layer that contributes to the growth of the non-linear
modes predominantly. This is the reason why, in the presence of such high levels of
free-stream turbulence, transition was reported to take place for flows with Reynolds
number (Re) even lower than the critical Re computed using the classical linear stability
theory. The linear stability theory only concerns exponentially growing instabilities in
the boundary layer and does not consider the non-linear interaction due to FST.

Many of these aforementioned efforts were based on either full/direct numerical sim-
ulations (DNS) or Large eddy simulations (LES), non-modal linear stability analysis,
linear and non-linear optimization techniques for largest energy growth of instability
modes etc. Few of these studies will be discussed in Chapter 2. Historically, they have
been performed only on simple geometries, since the aim had been to understand the
physics/mechanism behind the transition. Recently, with the advancement in computa-
tional capability, researchers have been attracted towards performing LES over complex
geometries, like turbine blades, as well ([3], [4], [5]). In the present study a similar effort
has been made to simulate the transition in boundary layer over the turbine OGV using
LES.

1.1 Previous work

The LPT OGV in the present study is designed by GKN Aerospace (previously
Volvo Aero). OGVs in actual engines are arranged in a circular cascade and exhibit
rotational periodicity. In this thesis, however, a linear cascade of OGVs is studied,
since, the experiments done so far, and the basis of comparison of the current work, are
on linear cascades and they provide a fairly good approximation to the circular one. The
experimental studies by Hjärne [6] on such linear cascades at the department have so far
served as the basis of subsequent experimental and computational studies. The current
study is based on the experimental data obtained by Chenglong et al. at the department
[7]. Chenglong et al. performed experiments at two operational settings – on-design and
off-design conditions, with 25◦ and −25◦ incidence angle of the guide vanes respectively.
Corresponding to this experiment, simulations based on RANS modelling approach was
performed at GKN Aerospace [8]. Through the present thesis, it is the first time a
computational study based on LES is carried out on these guide vanes; though only the
on-design condition is studied.

2



1.2. WHY LES?

1.2 Why LES?

Traditionally, for most of the engineering applications, RANS based modelling ap-
proaches have been employed to simulate transitional flows, due to their computational
cost effectiveness. Broadly speaking, they can be divided into two categories. The first
one is based on a simple ‘point transition’ approach whereby a switch is made (forced)
between laminar and turbulent computations at a point determined either empirically
or by an established correlation of relevant experimental or DNS data. In the second
one, an extra transport equation for what is called an ‘intermittency factor’, γ, is solved.
The intermittency factor represents the fraction of time the flow is turbulent. γ ranges
from 0 to 1 while going from fully laminar to fully turbulent regime. A good overview
of the early developments on these methods is given by Savill [9]. Recently, a third ap-
proach based on solving a separate transport equation for what is called as the ‘Laminar
Kinetic Energy’ (LKE) has also been reported [10]. LKE represents the ‘non-turbulent’
stream-wise fluctuations in the pre-transitional boundary layer.

All spectral effects are lost in the time averaging process involved in RANS based
approaches. However, ‘bypass transition’ is supposed to be very sensitive with respect
to the spectral nature of the imposed FST. Hence it seems very unlikely that RANS
based approaches could cope with transitional problems accurately. There are however
some models that work well for specific problems. These models, based on the above
mentioned approaches, consider only a few mechanisms or stages of transition. None of
the models consider all the individual mechanisms and stages of transition. No model
gives a reliable result for various combinations of FST intensity, Reynolds number and
pressure gradients, and are found to be very sensitive to initial conditions, boundary
conditions etc. LES, on the other hand, models only the smallest scales of motion,
preserving the spectral nature of the larger energy containing eddies. In this respect, it is
better than the RANS approach on the grounds of predicting transition more accurately.
However, the bigger issue at hand is that the exact mechanism of transition is very
debatable; while it is necessary to understand the physical mechanism of transition for
better modelling of simulations. A good insight on the mechanism, based on previous
research, will be provided in Chapter 2.

1.3 Aim and scope

Simulations at GKN Aerospace are done using two different models – one, the LKE
(Laminar Kinetic Energy) model and the second, an intermittency based model. The
LKE model showed better agreement with the experiments, once turbulence intensity at
the inlet was scaled up to 8% from 3.5% in the experiments and the turbulent length scale
was increased 20 times to 0.024m. The onset of transition location did not match exactly
and was off by a margin of 20%. In the present studies, LES is used for simulations in
a hope to achieve a more realistic view of transition. The turbulent characteristics at
the inlet are similarly scaled up, but not to the extent as mentioned above. The main

3



1.3. AIM AND SCOPE

aim is to capture transition based on the scaled up turbulence characteristics; transition
onset location is not of immediate concern in the present study. The main motivation
comes from the LES study of boundary layer transition over a flat plate by Voke and
Yang [11], who captured transition using a surprisingly coarse mesh. A major part of
the thesis includes modifications made to the multigrid section of the solver, responsible
for solving the pressure equation, based on the current boundary conditions. The report
can be divided broadly into four parts:

• Elucidating the various mechanisms and stages involved in ‘bypass transition’. –
Chapter 2.

• Elaborating on LES, the SGS models to be used, and the pressure poisson equation.
– Chapter 3.

• Mesh generation, case setup, and implementation of multigrid method in the code.
– Chapter 4 and 5.

• Results, discussion and conclusion. – Chapter 6 and 7.

4



2

Boundary Layer Transition
Theory

Whether it is the smoke coming out of a chimney or the flow in a river, most of the
flows found in nature or in different engineering applications are chaotic or turbulent in
nature. Depending upon the inertial and viscous properties of the wall-bounded flow,
this nature – laminar or turbulent – can be very sensitive to perturbations in initial
conditions, boundary conditions and material (surface) properties. In the presence of
such perturbations, an initially laminar flow has the tendency to change into a more
random or chaotic type of flow. This kind of evolution of flow, from laminar to fully
turbulent, is referred to as laminar-turbulent transition. In most of the applications
involving fluids, the ability to control the transition would greatly increase engineering
efficiency and performance. However, even after more than a century of research, a
complete understanding of this evolution process, especially the triggering mechanisms
leading to turbulence has not been achieved.

The present study is focussed around the investigation of laminar-turbulent transi-
tion in the boundary layer of the flow in a turbine guide vane cascade. Such a flow comes
under the category of bounded shear flows in open systems, which is characteristically
different from free shear flows and closed systems. To understand the behaviour of such
boundary layers (bounded, open), consider the flow over a semi-infinite flat 2-D plate.
At the leading edge, the fluid particles close to the wall are slowed down due to viscosity,
the closest one coming to rest instantaneously (no-slip condition). This results in the
sudden increase in static pressure at the edge. As the fluid moves further downstream,
additional layers parallel to the surface start getting affected due to viscosity. At a cer-
tain distance from the wall in normal direction the velocity reaches the free-stream value.
This distance keeps increasing in the stream wise direction, as more and more layers of
fluid start getting affected by the wall. It is referred to as the Boundary Layer. Flow in

5



2.1. PATHS OF TRANSITION TO TURBULENCE

the boundary layer near the leading edge is essentially laminar. After a certain distance
downstream however, the flow in the boundary layer starts getting chaotic, marking the
onset of transition. Further downstream, the flow gets completely turbulent. This is
characterized by an increase in wall shear stress and heat transfer coefficient. Up until
now, no mathematical model has been able to predict the transition Reynolds number
for the flat plate accurately. The reason as stated earlier is the poor understanding of
the triggering mechanisms.

In the following sections, based upon previous studies, different mechanisms and
paths leading to this transition are reviewed briefly. More importance is given to the
mechanism that the author thinks is crucial for the present study.

2.1 Paths of transition to turbulence

As mentioned in the beginning of this chapter, perturbations in initial conditions,
boundary conditions or the inhomogeneities in surface (roughness) may enter the bound-
ary layer and get amplified, resulting in creating instabilities. The development of such
instabilities in a laminar flow is the first step towards the transition of turbulence. The

Receptivity

Transient Growth

Primary Modes

Secondary Mechanisms

Breakdown

Turbulence

Bypass

Forcing environmental disturbances
amplitude

A B C D E

Figure 2.1: The paths from receptivity to transition [13]

interaction between external disturbances and the boundary layer instabilities is referred
to as receptivity. Saric et al. [13] based on some earlier studies, gave a simplified scenario
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2.2. BYPASS-TRANSITION MECHANISMS

for turbulence transition in external flows. Figure 2.1 depicts the same.

As the diagram in Figure 2.1 depicts, the initial external disturbance amplitude in-
creases from left to right schematically. After the first step, i.e. receptivity, a number
of different instabilities can occur independently or together depending on the Reynolds
number, wall curvature, surface roughness or initial conditions and one of the five differ-
ent paths shown is followed. Consider a scenario with very low free stream turbulence
(FST) level at the inlet- generally equal to or below 1% of the mean flow. In such
situations, path A is followed. The first stage in such type of transition is the devel-
opment of two-dimensional Tollmien-Schlichting (TS) waves, which can be predicted by
the modal/eigenvalue analysis of the linearized Navier-Stokes(NS) equations. These are
exponentially growing instabilities evolving on large viscous time scales. As amplitude
grows, the interactions take place on convective time scales (much smaller than viscous
time scales), and are three-dimensional in nature. These interactions are then explained
using the secondary instability theory. This is followed by the appearance of small-scale
motions and the final stages of transition. Such a kind of transition is also called natural

transition. Kachanov [14] has reviewed the theoretical and experimental work based on
this type of transition.

A second scenario arises when the free stream turbulence (FST) level is high (gen-
erally higher than 1%). In such a case, transition will go into the non-linear interaction
stage directly, and the linear instability stage marked by the formation and growth of
TS waves is “bypassed”. Such a transition is called bypass transition (path D and E). It
is characterized by the appearance of streamwise elongated streaky structures of alter-
nating high and low streamwise velocity in the laminar boundary layer, which grow in
magnitude as they move downstream and finally lead to complete breakdown resulting in
turbulence [15]. These streamwise structures (commonly referred to as Klebanoff modes)
are low frequency oscillations and are very different from the exponentially growing per-
turbations (TS waves).

Paths B, C and D are based on the evolution of the initial boundary layer instability
via what is called as the transient growth mechanisms. Studies on transition via transient
growth mechanisms are based on non-modal analysis of the linearized NS equations,
contrary to the modal analysis performed for the evolution of TS waves. An extensive
review on the nonmodal stability analysis can be found in an article by Schmidt [16].
Most of the mechanisms of bypass transition proposed so far follow the path D. This
will be discussed more extensively in the next section.

2.2 Bypass-transition mechanisms

Occurrence of streamwise elongated structures with alternating positive and nega-
tive streamwise disturbance velocities in laminar boundary layers subjected to FST was
first observed by Klebanoff [17]. According to his observations, amplitude of the peak

7



2.2. BYPASS-TRANSITION MECHANISMS

response of such structures increased in proportion to the FST amplitude and boundary
layer thickness. Later, Kendall too observed large spanwise variations in streamwise ve-
locity in the pre-transitional boundary layer subjected to FST in his experimental study
[18]. He termed these structures, Klebanoff modes. They are not modes in strict math-
ematical sense as they do not represent solution to an eigenvalue problem. They are
usually depicted in terms of rms profiles of streamwise velocity in the boundary layer. A
thorough experimental study was performed by Roach et al. [19] on bypass transition in
a zero pressure gradient boundary layer, which is used extensively by other researchers
for comparative studies.

2.2.1 Mechanisms based on transient growth (paths C and D)

Receptivity is the interaction of free-stream disturbances with a laminar bound-
ary layer and is the first step towards transition to turbulence. In case of ‘bypass’
transition, it is associated with the appearance of streamwise streaks in the boundary
layer. For inviscid flows, the streamwise velocity can grow linearly in time in the pres-
ence of a distubance with no streamwise variation. This is ascribed to the lift-up and
vortex-stretching mechanism or more accurately to the vortex tilting mechanism. The
normal vorticity increases in time due to the tilting of cross-stream (spanwise) vorticity
by the perturbation strain rate in spanwise direction (this disturbance can be viewed as
a streamwise vortex). Since the disturbance is elongated in the streamwise direction due
to the mean shear, the final effect can be seen as streaks with high and low stramwise
velocity fluctuations. A good description can be found in the introduction of the article
by Butler and Farrell [20]. It is believed that in the presence of viscosity though, such
inviscid amplifications eventually decay after a short time or short streamwise distance.
This phenomenon is termed as ‘transient growth’. It is then possible for a sufficiently
amplified disturbance, before decay sets in, to trigger non-linear interactions and cause
breakdown to turbulence.

Mathematically, this transient energy amplification is not due to the behaviour of a
single eigenmode of the linearized disturbance equation as found in exponentially grow-
ing TS waves. It is caused by the superposition of several modes; hence, called non-
modal growth as well. It is believed to be caused by the non-normal nature of the
linear operator pertaining to the linearized disturbance equation. Such growth is larger
for disturbances mainly exhibiting spanwise periodicity, that is having low frequency or
streamwise wavenumbers. A detailed explanation can be found in the colloquium by
Grossmann on shear flow turbulence [21].

The transient growth mechanism is linear in nature and has been studied extensively
using optimization techniques. The initial disturbance able to induce maximum transient
growth at a given time is referred to as optimal. Butler and Farrell [20] using variational
methods, found the optimal perturbation responsible for the maximum transient growth
in a boundary layer for Couette and Poiseuille flows. They found that perturbations in
the form of streamwise/longitudinal vortices (correspond to zero-streamwise wavenum-

8



2.2. BYPASS-TRANSITION MECHANISMS

ber) are responsible for inducing the greatest energy growth in the laminar boundary
layer in the form of powerful streamwise streaks, that can be related to the Klebanoff
modes found in the pre-transitional boundary layer in the ‘bypass’ transition case. An-
dersson et al. [22] and Luchini [23] in separate studies formulated a spatial instability
problem unlike the temporal instability problem by Butler and Farrell; they also found
that the optimal perturbation consisted of a pair of counter rotating streamwise vortices
outside the boundary layer. Luchini also found that the shape of the streaks in the
pre-transitional boundary layer tends to be attracted towards the shape of the optimal
perturbation (Klebanoff modes), even for non-optimal initial perturbations. The shape
was found to be insensitive to a wide range of wavenumbers, frequencies and shape of
the initial perturbation.

Several experimental and numerical studies have observed transition due to the pres-
ence of such streaks. Matsubara et al. [24] did an extensive review of experimental
studies on disturbance growth inside the boundary layer. Their experiments corrobo-
rated well with the linear non-modal growth mechanism of the boundary layer streaks.
Jacobs and Durbin [25] performed Direct Numerical Simulation (DNS) of flow over a
flat plate. Based on an earlier proposition [26], they constructed the turbulence inflow
by expanding the FST as a sum of spanwise and temporal fourier modes, multiplied by
wall-normal Orr-Sommerfeld modes. Only the continuous spectrum of the latter was
considered due to their inherent property of being sinusoidal in the free-stream and ap-
proaching to zero near the wall. In an earlier study [27], Jacobs and Durbin had explained
the shear sheltering mechanism. They had observed that disturbances convected with
free-stream velocity did not couple to the slower fluid in the shear layer near the wall.
Penetration depth of such disturbances was found to be inversely proportional to their
frequency and the Reynolds number based on the distance from the leading edge. In
the DNS study [25], they conclude that streaks are an implicit property of the boundary
layer. Though the amplitude of the FST is a crucial input for transition, actual fre-
quency selection takes place inside the boundary layer and is not sensitive to the details
of inlet disturbance spectrum. The process is non-linear since the dominant frequencies
found inside the boundary layer were much smaller than the ones prescribed at the inlet.
Brandt et al. [28] in their DNS study of a flat plate boundary layer, also used the contin-
uous spectrum of the Orr-Sommerfeld equation to generate inflow boundary condition
similar to Jacobs and Durbin, but also included the Squire modes for the wall-normal
vorticity. They found that the transition onset moved upstream with increasing the FST
length scale. However, like in the Jacobs and Durbin study [25], the spanwise scale of
the streaks inside the shear layer was found to be highly insensitive towards the details
of inlet turbulence (FST). So, probably the scales at the inlet spectrum are important
in the next phase of transition, i.e., the breakdown phase. Jonáš et al. [29] performed
experiments on flat plate boundary layer, and also concluded that the onset of transition
moved upstream with increasing FST length scale.

Brandt et al. [28] also conclude that for receptivity, linear mechanism is most rel-
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2.2. BYPASS-TRANSITION MECHANISMS

evant if the FST contains low-frequency disturbances, whereas, non-linear mechanism
takes over if the FST contains high-frequency disturbances. Earlier Berlin and Henning-
son [30] had proposed a non-linear receptivity mechanism based on their spectral DNS
study of Blasius flow with both temporal and spatial formulations. According to them,
non-linear mechanism is responsible for generating wall-normal perturbations associated
with streamwise vortices inside the boundary layer, which on interacting with the bound-
ary layer shear produce the streamwise streaks. They also conclude that for receptivity,
at low FST intensity levels linear mechanism dominate, whereas non-linear mechanism
plays important role at higher FST levels. At moderate disturbance levels, both mech-
anisms produce streaks of similar strength. But owing to the non-linear mechanism it
is possible for the free-stream to continuously force streaks inside the boundary layer
even downstream of the leading edge. It should be noted that the growth of streaks is
still supposed to be based on linear transient mechanism; it is only the appearance of
streaks, that could be linear or non-linear. The importance of wall-normal velocity in
the free-stream for inducing transition was also emphasized by Voke and Yang [11] in
their LES study of flow over a flat plate.

Zaki et al. [31] analyzed the Orr-Sommerfeld/Squire eigenvalue problem and showed
that the penetration depth of a free-stream disturbance inside a boundary layer shear
depends on four parameters. The penetration is inversely proportional te frequency of
disturbance, Reynolds number, and the local mean shear at the wall. It increases with
increasing wall-normal wavenumber. But they also pointed out that by increasing the
wall-normal wavenumber, the decay rate also increases and the disturbance does not
persist far downstream of the leading edge. A coupling coefficient was defined that
depicted the local interaction of continuous Orr-Sommerfeld modes and the boundary
layer. It represented the penetration ability of the modes in the boundary layer and also
its ability to generate streaks. Not all penetrating modes generated streaks; the ones
with high decay rate failed to do so, e.g. disturbances with high wall-normal wavenum-
ber. Disturbances with low frequencies and small wall-normal wavenumbers had higher
coupling coefficients.

Leading edge effects were not considered in the studies discussed so far. Most of
the studies on transient growth assumed parallel flow. As a result they could not capture
the effect of leading edge, since the flow around a leading edge is non-parallel. The same
can be said for the numerical studies discussed so far, which had the inflow plane for
simulations situated downstream of the leading edge. Zaki and Durbin [31] consider a
leading edge, but argue that at the leading edge, as boundary layer thickness δ → 0, all
modes act as low frequencies and become penetrating; but since Rex → 0 (Re based on
distance from leading edge), they also decay rapidly. They conclude that the coupling
leading to boundary layer streaks and transition is local, and occurs downstream of the
leading edge. The non-linear method discussed by Berlin and Henningson [30] forced
streaks in the boundary layer locally even downstream of the leading edge. Goldstein and
Wundrow [32] in their analysis consider the leading edge and show that FST containing
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2.2. BYPASS-TRANSITION MECHANISMS

wake like disturbances, corresponding to wall-normal vortical structures, get stretched
and tilted around the leading edge and transform into low frequency modes correspond-
ing to streamwise aligned vortices. These vortices then penetrate in the boundary layer
to produce streaks. Leading edge just enhances the growth of Klebanoff modes inside
the boundary layer; the mechanism to transition still remains the same. Nagarajan et

al. [33] carried out simulations on a flat plate boundary layer with a blunt elliptical
leading edge. They observe that a blunter leading edge, at given free stream conditions,
exhibits earlier onset and completion of transition. They also find the same mechanism
in play around the leading edge as observed by Goldstein and Wundrow– stretching and
tilting of vortices around the leading edge. But according to them, a blunter leading
edge results in a completely different mechanism to transition and will be discussed later.

The Pressure gradient has also a significant effect on the receptivity process.
Zaki et al. [34] in their numerical simulations observed that adverse pressure gradient
(APG) results in a higher shear close to the boundary as compared to zero or favourable
pressure gradient cases (ZPG and FPG respectively). As a result, the Orr-Sommerfeld
modes constituting the inflow FST are expected to penetrate less in the APG case than
in the other cases, owing to shear sheltering [31]. But instead of transition being delayed
or averted, it is earlier and faster than in the latter two cases. The reason is that APG
induces stronger streaks in the boundary layer than in ZPG or FPG flows, thus making
it more succeptible to the FST forcing.

Streak break-down and secondary instabilities: The streamwise elongated
unsteady streaks in the boundary layer are the main driving source of bypass transi-
tion. Mechanisms driving the conversion of streaks into turbulent spots and subsequent
break-down have been an important aspect of bypass transition studies. Jacobs and
Durbin [25] observe that streaks with negative streamwise fluctuation (u′ < 0), termed
as negative jets, are responsible for the formation of turbulent spots. They are present
predominantly at the upper boundary of the shear layer, and are continuously in contact
with the high frequency free-stream disturbances outside the boundary layer. Only some
of these streaks develop to spots, implying that the coupling of these jets to the free-
stream eddies is essential. Positive jets, predominant close to the surface of the plate, do
not undergo instability. Brandt et al. [28] observe that streak breakdown and turbulent
spot formation is caused by either of two types of instability modes of low-speed streaks
(negative jets). The sinuous mode, characterized by streak oscillations in the spanwise
direction, was observed more frequently than the varicose mode of instability, which is
driven by the wall-normal shear. The sinuous mode instability is similar to the backward
jet mechanism of Jacobs and Durbin [25]. Zaki et al. [31] in their DNS study used a pair
of inflow modes, one with high coupling coefficient (presumably low frequency), and the
other a weakly coupled mode (high frequency) and observe that it was sufficient to trig-
ger transition. The former generates streaks inside the boundary layer. The low-speed
streaks (negative jets) lift towards the edge of the boundary layer, which are then acted
upon by fluctuations due to the latter, the (high-frequency) weakly coupled mode. The
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2.2. BYPASS-TRANSITION MECHANISMS

latter is unable to penetrate the shear layer and is present in the free-stream. Some
of these jets get intensified and burst into turbulent spots. This is also similar to the
mechanism observed by Jacobs and Durbin.

There are many more studies based on streak growth which are not discussed here.
The point the author wants to make is that linear growth or transient growth of streaks
is not alone sufficient for triggering transition, though they seem to be necessary. Non-
linear forcing provided by the FST and its interaction with the streaks is an important
condition to induce transition.

2.2.2 Mechanism ‘bypassing’ transient growth (path E)

Nagarajan et al. [33] observe in their DNS study that the same inflow turbulence
field leads to different paths to transition depending upon the leading edge geometry.
Also, there is a change in the location of transition onset consequently. Spot precursors
responsible for transition were identified to be wavepacket like disturbances originating
at the leading edge (blunt). They inhabited the lower part of the boundary layer, in
contrast to the sinuous streak instabilities discussed earlier, which were found in the
upper part, corresponding to the low-speed streaks. Vortices aligned normal to the wall
get stretched around the leading edge resulting in localized regions of streamwise vorticity
inside the boundary layer, which grow as they convect downstream. Ovchinnikov et al.

[35] studied the effect of FST length scales and leading edge on bypass transition. For
FST length scales comparable to the boundary layer thickness at the onset of transition,
δ99, the transition followed the Klebanoff mode mechanism discussed earlier. But for
higher FST length scales, comparable to almost 7δ99, the transition followed a different
path. They observe that wavepacket like disturbances in streamwise direction act as spot
precursors that lead to transition. They are associated with spanwise vortical structures
in boundary layer in contrast to streamwise ones in the simulations of Nagarajan et

al. [33]. Initially in spanwise direction, the vortices subsequently reorient themselves
partially in streamwise direction. The result is either a horseshoe/hairpin/Λ vortex (two
legs) or quasi-streamwise vortex (one-leg). These structures finally develop into spots and
subsequently break down to turbulence. They also find that wavepackets appear in wall-
normal velocity component as compared to the spanwise component in the simulations
of Nagarajan et al. and that they are not confined to the lower part of the boundary
layer close to the wall, as was observed by the former. The possible explanation for
such difference was attributed to the higher Re (based on FST integral length scale) in
the study of Ovchinnikov et al. and also the higher FST intensity in their study. Wu
and Moin [36] performed DNS for a spatially evolving turbulent zero pressure gradient
boundary layer over a smooth flat plate. According to their flow visualizations, boundary
layer streaks appeared to be merely a kinematic feature, appearing as a result of lift
up mechanism. They were not found to be responsible for transition. The non-linear
development of obliquely oriented Λ-vortices into hairpin packets was observed to be
responsible for the breakdown into transition. However, receptivity of such disturbances
inside the boundary layer was not discussed. Recently, Cherubini et al. [37] proposed
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a purely non-linear scenario of (bypass) transition in boundary layer, justifying the
preponderance of hairpin structures observed by Wu and Moin [36] in their transitional
boundary layer. Using non-linear optimization of the energy growth at short time, they
identified the smallest flow structure, called theminimal seed perturbation, responsible for
inducing turbulence in the boundary layer. In a more recent article, Cherubini et al. [38]
conclude that transition in a flat plate boundary layer in the presence of FST, follows
a purely non-linear route characterized by the formation of hairpin/Λ vortices, when
turbulent intensity and turbulent length scale of the FST are very high (for I > 4.5%
and l > 20). For, lower intensities and length scales of the FST, the transition was said
to follow the traditional streak mechanism (transient growth and secondary instability
leading to break-down).

2.3 Previous studies using LES and mesh resolution issues

One of the earliest works on boundary layer transition using LES includes the sim-
ulations on flat plate boundary layer by Voke and Yang [11]. They observed transition
on a very coarse mesh with resolution based on wall units as, ∆x+ = 80, ∆z+ = 14 and
∆y+ = 1 at the wall to 80 beyond the boundary layer. The wall units were computed
based on friction velocity just after transition. More recently Collado Morata et al. [4]
did heat transfer studies on high pressure turbine blades in the presence of high free
stream turbulence levels using LES and ovserved transition in boundary layer. Their
mesh resolution for structured LES was also fairly coarse in the streamwise direction.
They had ∆x+ ∼ 150, ∆z+ ∼ 25 and y+ ∼ 1 at the wall. Medic et al. also performed
a similar heat transfer study on the turbine cascade using LES. Their streamwise and
spanwise resolution was fairly lower than that of Collado Morata et al. (∆s+ < 50,
streamwise resolution and ∆z+ < 10, spanwise resolution).

The optimal mesh resolution required for studying transitional flows is therefore de-
batable. Kaltenbach and Choi [39] performed LES of flow around an airfoil, though,
did not study transition. They had streamwise resolution, ∆x+ ranging from, approx-
imately, 400 at the leading edge to 100 near the trailing edge and spanwise resolution,
∆z+, between 130 and 13 near leading and trailing edge respectively. In the present sim-
ulations the resolution is similar to that of Collado Morata et al. and will be discussed
in Chapter 4.
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3

Governing Equations and
Solution Methods

Application of conservation of momentum, along with energy and mass conservation
on a portion of fluid volume, called control volume, leads to the Navier-Stokes (NS)
equations. The NS equations in conservative form in the absence of body forces for an
incompressible and isotropic Newtonian fluid can be written as:

∂vi
∂xi

= 0 (3.1)

∂vi
∂t

+
∂vivj
∂xj

= −
1

ρ

∂p

∂xi
+ ν

∂2vi
∂xj∂xj

(3.2)

The energy equation (heat transfer equation) in the absence of heat sources for such a
fluid, neglecting the viscous heating effect (dissipation function) can be expressed as:

∂θ

∂t
+

∂vjθ

∂xj
= α

∂2θ

∂xj∂xj
(3.3)

The three equations above represent the continuity, momentum conservation and energy
conservation equations (θ: temperature) respectively. The exact analytic solution of
these equations is extremely difficult to achieve. The possible way to get around the
solution is to solve it numerically using iterations performed on the discretized equations.
One way is to solve the time averaged equations, wherein, the extra terms appearing
out of averaging are modelled: the RANS method. Another way is to resolve the whole
range of temporal and spatial scales, without the need for modelling: called the DNS.
This requires a very fine grid and for larger Reynolds number the computational cost
goes up so high that it is practically not possible for a lot of problems. These two ways
are the two extremes of the spectrum based on computational cost. There are many
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middle ways. One of them is LES, wherein the larger energy containing motions are
resolved and the effect of smaller ones are modelled.

3.1 Large Eddy Simulations

As said earlier, in LES, the larger scales are resolved and smaller ones are modelled.
The first step in LES is filtering in which the flow variable (say φ) is decomposed into
the sum of a filtered/resolved component (φ̄) and the residual/SGS(sub-grid scale) com-
ponent (φ′). Details about filtering operations can be found in [40]. In this study, a
simple volume-average box filter is used where the filter-width (∆̄) is simply taken as

the local grid size [∆̄ = (∆VIJK)1/3]. Equations (3.1)–(3.3), after the filtering operation
give rise to a set of equations with certain additional terms arising due to filtering.

∂v̄i
∂xi

= 0 (3.4)

∂v̄i
∂t

+
∂v̄iv̄j
∂xj

= −
1

ρ

∂p̄

∂xi
+ ν

∂2v̄i
∂xj∂xj

−
∂τ rij
∂xj

(3.5)

∂θ̄

∂t
+

∂θ̄v̄j
∂xj

= α
∂2θ̄

∂xj∂xj
−

∂τθj
∂xj

(3.6)

where, τ rij represents the residual-stress tensor, defined as τ rij ≡ vivj − v̄iv̄j and τθj rep-
resents the residual heat flux and defined analogous to τ rij .

The next step is to obtain closure by modelling the residual flux terms. First, consider
the residual flux term in the momentum equation (eq.(3.5)). It is modelled based on
certain assumptions. The majority of them are based on the eddy-viscosity modelling
approach – Boussinesq assumption in case of RANS modelling. In this study two such
models are used for performing LES – the Smagorinsky model and the Dynamic model.

3.1.1 Smagorinsky model

This model forms the basis of all other eddy-viscosity models. Like all other eddy
viscosity models used for RANS, it assumes the Boussinesq hypothesis and the deviatoric
part of the residual-stress tensor is proportional to the filtered strain rate tensor (Sij),

τ rij −
1

3
τ rkkδij = −2νrSij (3.7)

The constant of proportionality νr is the residual viscosity, also called the SGS viscosity
and needs be modelled. By analogy to the mixing-length hypothesis, the eddy-viscosity
is modelled as,

νr = l2smg

∣∣S̄
∣∣

= l2smg

√
2SijSij , (3.8)
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where, lsmg represents the Smagorinsky lengthscale and taken as proportional to the
filter-width ∆̄, such that

lsmg ≡ Cs∆̄,

where, Cs is the Smagorinsky coefficient.

This model gives a high residual viscosity at the wall, owing to high velocity gradients
(hence, high

∣∣S̄
∣∣) in this region. This is not accurate since the SGS turbulent fluctuations

go to zero near a wall. In order to dampen the eddy-viscosity, the RANS length scale is
used as an upper limit in the present solver. Thus,

∆̄ = min
{
(∆VIJK)1/3 , κn

}
, (3.9)

where, n is the distance to the nearest wall.

3.1.2 Dynamic model

With a single universal value for the Smagorinsky constant Cs, it is difficult to
represent different flow regimes. It can be different for different flow regimes [40]. The
Dynamic Model provides a way to determine the coefficient locally and dynamically
(variable of time and space) as opposed to the constant value of Smagorinsky. To achieve
this, a second filtering operator is introduced with a larger width than the grid filter (∆̄).

This filter is called the test filter . The test filter-width, ˜̄∆ = r∆̄, where r > 1. The
optimal value is found to be 2 [41]. The filtered NS equation at the second level (test-
filtered) is written as,

∂˜̄vi
∂t

+
∂˜̄vi˜̄vj
∂xj

= −
1

ρ

∂˜̄p
∂xi

+ ν
∂2˜̄vi

∂xj∂xj
−

∂Tij

∂xj
(3.10)

This is similar to (3.5), except that the variables here are test filtered. Also, the last
term in both the equations are different. For simplicity, the τ rij in (3.5) will be referred
to as τij from now on. The residual stress tensors from both equations are,

τij = vivj − v̄iv̄j , (3.11)

and
Tij = ṽivj − ˜̄vi˜̄vj (3.12)

Assuming that the same functional form (as in Smagorinsky model (3.7)) can be used
for parametrizing both Tij and τij , let Mij and mij represent the deviatoric part of the
stresses Tij and τij respectively. Thus,

τij −
δij
3
τkk = mij = −2C∆

2
|S|Sij , (3.13)

and

Tij −
δij
3
Tkk = Mij = −2C

˜̄∆
2

|˜̄S|˜̄Sij , (3.14)
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where
˜̄Sij =

1

2

(
∂˜̄vi
∂xj

+
∂˜̄vj
∂xi

)
, |˜̄S| =

√
2˜̄Sij

˜̄Sij (3.15)

Here, C is equivalent to C2
s in the Smagorinsky model.

It was recognized by Germano that Tij and τij are related by a relation (Germano

identity),

Lij = Tij − τ̃ij (3.16)

= ˜̄viv̄j − ˜̄vi˜̄vj ,

where, Lij represents the resolved components of turbulent stress associated with scales
of motion between the test scale and the grid scale and it can be computed explicitly.
The consistency between (3.13) and (3.14), however, depends upon the proper choice
of C. So, the whole model boils down to finding that C, which is locally and dynami-
cally optimal. In order to achieve this, Germano proposed a method, wherein, (3.13)
and (3.14) are substituted in (3.16) and then is contracted wtih Sij [41]. A better
method, which yields a computationally more stable value of C was developed shortly
by Lilly [42]. The solver in the present simulations use the formulation provided by Lilly.

Substituting equations (3.13) and (3.14) in (3.16) and assuming negligible variation
of C in the test-filter volume,it can be seen that,

Lij −
δij
3
Lkk = 2CMij , (3.17)

where,

Mij = ∆
2
|̃S̄|S̄ij −

˜̄∆
2

|˜̄S|˜̄Sij (3.18)

To calculateMij , Lilly suggested the least-squares approach, and C is evaluated as

C =
1

2

LijMij

MijMij
(3.19)

It was realized that the computed value of C may vary wildly in time and space, since it
is an instantaneous and local quantity. This in turn, might lead to numerical instabili-
ties. In order to avoid this, C is averaged along the homogeneous directions of the flow.

Piomelli et al. [43] studied the budget terms of the resolved energy equation that
included the SGS dissipation term from DNS of transitional and turbulent channel flow.
According to them, to model transitional channel flow appropriately, it was necessary to
consider the backscatter effects (the inverse transfer of energy from small to large scales).
As mentioned earlier, the present work aims to study the boundary layer transition over
a turbine guidevane, and since, the Dynamic SGS model treats the backscatter effect
well, it was decided to use the model for the present study as well.
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3.2 Solving for the temperature field

Now, consider the residual-heat flux term τθj in equation 3.6. There are ways of
modelling it by writing a separate transport equation involving the term as in [44]. The
present work doesn’t delve into this. Instead, assuming that the thermal boundary layer
will develop similar to the velocity boundary layer, the residual flux term is modelled
based on the residual/SGS viscosity, νr. Drawing analogy from the eddy-viscosity model
in equation 3.7 and by introducing a residual thermal eddy-diffusivity αr, the residual
flux term in the temperature equation can be modelled as,

τθj = −αr
∂θ̄

∂xj
. (3.20)

Similar to the definition of molecular Prandtl number Pr, a turbulent Prandtl number
Prt is introduced as the ratio between the two residual diffusivities.

Prt =
νr
αr

Thus, by modelling only the residual/SGS viscosity, both the momentum and thermal
equations are solved. It is taken to be around 0.7 to 0.9 in general.

3.3 Solving for the pressure field: PPE

In case of an incompressible flow, there is no explicit equation for solving pressure.
Pressure is involved in the momentum equations (3.2) and in general, it is solved indi-
rectly by making use of the continuity equation (3.1). For example, in SIMPLE algorithm
a pressure correction equation derived from the continuity equation is solved and used
to update the velocity field. In the present case, pressure is computed directly by solving
a Pressure Poisson equation (PPE). The consistent PPE is derived by taking divergence
over the momentum equation (3.2):

1

ρ

∂2p̄

∂xi∂xi
= −

∂2v̄i
∂xi∂t

−
∂2v̄iv̄j
∂xi∂xj

+ ν
∂3v̄i

∂xi∂xj∂xj
−

∂2τ rij
∂xi∂xj

(3.21)

By applying proper boundary conditions, and imposing the divergence of velocity field
to go to zero – the continuity eqation – the above equation can be solved. In the present
numerical method, an intermediary velocity field from the NS equations devoid of the
implicit Pressure gradient term is first solved. A similar PPE as above is formulated
by imposing the requirement of continuity on the correct velocity field. More about
this formulation and the whole projection method to solve the system of equations is
explained in [45].

The effectiveness of the afore mentioned fractional step projection method mentioned
is based on the efficiency of the PPE matrix solver. To solve the PPE, a Geometric
Multigrid (GM) algorithm is employed, which is explained in brief in the next section.
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3.4 Geometric Multigrid Method

To any system of equations, especially non-linear, when solved using iterative meth-
ods, the solution consists of two kinds of errors. One is truncation error, arising due to
discretization scheme used or the quality of mesh used (coarse or fine). The other one is
called algebraic error, which is the difference between the exact solution and the iterative
solution. The first kind of error is reduced either by using a higher order discretization
scheme or by refining the mesh. The second kind of error reduces with the number of
iterative sweeps. Multigrid techniques are precisely used for the latter kind of errors – to
accelerate the rate at which the error can be reduced. Upon Fourier decomposition, error
can be said to be consisting of different components/modes of different wavelengths. Of
theses modes, the modes with shorter wavelength smooth out within a few iterations,
while the longer wavelength components require a lot of iterations, rendering the process
computationally expensive. The smoothing effects on long and short wavelength error
modes are neatly explained in [46]. In the present case/problem, a geometric multigrid
technique is used to solve the Pressure Poisson equation (PPE). This technique is very
efficiently implemented in the CALC-LES code. The subsequent subsections explain the
theory in short.

3.4.1 Full Approximation Storage: FAS

The Full Approximation Storage (FAS) scheme is a multigrid algorithm formulated
for a non-linear problem, but it can be generalized to include a linear problem. The algo-
rithm to solve the linear problem can be found in the book by Versteeg and Malalasekera
[47]. To start with FAS scheme, consider a non-linear system of equations,

A(Φ) = f , (3.22)

where, Φ is the true solution of the system and ψ, an intermediate solution to it after a
couple of iterations/sweeps. The algebraic error e is then defined as

e = Φ−ψ, (3.23)

and the residual equation can be written as,

A(Φ)−A(ψ) = r (3.24)

It can be easily seen that for a linear A, the equation becomes A(e) = r. But in this
case (non-linear), this doesn’t hold true. A two-grid version of the FAS scheme can be
explained in the following steps:

• Fine grid iterations: In general it starts with a few iterations at the finest grid
with mesh spacing h. This step removes the high frequency error components. The
fine grid residual rh is computed. This step is also called Pre-smoothing.
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• Restriction: Both the fine grid residual and the intermediate solution vector are
restricted to the coarse grid mesh using the restriction operator I2hh .

r2h = I2hh rh

= I2hh (fh −Ah(ψh)) (3.25)

And similarly,
ψ2h = I2hh ψ

h (3.26)

• Relaxation at the coarser level: Substituting the above two terms in the coarse
grid formulation of equation (3.24) gives,

A2h(Φ2h) = A2h(I2hh ψ
h) + I2hh (fh −Ah(ψh))

= f̃2h (3.27)

Equation (3.27) is solved for Φ2h. Then using the error equation (3.23) for the
coarse grid, e2h is computed.

e2h = Φ2h − I2hh ψ
h (3.28)

Unlike in the linear case, here the system is not solved for e2h directly. Since a full
approximation (of Φ2h) is stored at each level, unlike in the linear case (where only
the correction, e2h is stored), this method is named as full approximation storage.

• Prolongation: The error e2h found in this way at the coarse mesh is transferred
back (called Prolongation) to the fine mesh using an interpolation operator Ih

2h,

ẽh = Ih2he
2h (3.29)

The difference between ẽh and eh is the lower frequency components; they are
absent in the former.

• Correction and final iterations: Finally, the prolongated error vector ẽh is
used to correct the intermediate fine grid solution ψ and a few more iterations are
performed to smoothen out the error that might have occurred due to restriction
and prolongation. Hence, it is called Post-smoothing.

ψh ← ψh + ẽh (3.30)

This is a typical two-grid multigrid method. Based upon this method, a lot of recur-
sive schedules/schemes have been developed, like V-cycles, W-cycles, F-cycles scheme or
the FMG scheme, the details of which are not discussed here. The implementation of
the FAS scheme is explained in Chapter 5.
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4

Geometry and Mesh Generation

4.1 Geometry and computational domain

The given geometry is a typical aerofoil profile in two-dimensions, extruded in the
third direction. The profile of cross-section of the guide-vane is shown in Figure 4.1. The

0 0.05 0.1 0.15 0.2

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

x

y

0.2 0.21 0.22 0.23 0.24 0.25 0.26 0.27

−0.02

−0.01

0

0.01

0.02

0.03

x

y

Figure 4.1: Geometry profile of the
guide-vane

Figure 4.2: Trailing edge extrapolation.
given geometry ; extrapolated part

trailing edge of this profile is circular, which is made sharp by extrapolating the suction
side and pressure side curves further downstream till they coincide. This operation
is driven by the need of having a well-defined edge (or point in 2-D) to define the
periodic boundaries of the cascade domain. The extrapolated part can be seen in red
in Figure 4.2, which shows the geometry magnified near the trailing edge. The length
of the extrapolated part is around 10% of the chord length. It is not supposed to affect
the transition as it doesn’t provide a substantial change in the pressure gradient, which

21



4.2. FLOW CONDITIONS AND BOUNDARY SPECIFIC RESTRICTIONS

might have altered the transition location. The span of the vane is 240mm. The axial-
chord cx, i.e. the projection of the actual chord in the longitudinal direction (analogous
to axial direction in case of a circular cascade) is 243mm. The pitch lp of the linear
cascade, i.e. the clearance between the blades/vanes in transverse direction is 240mm.

The control volume for the simulations is chosen as the volume enclosed by the pres-
sure side of one blade and the suction side of the adjacent blade. The inlet and outlet
sections are situated at distances greater than the chord length on either side of the lead-
ing and trailing edges. The lines joining the leading edges to the inlet section are based
on the incident flow angle (mentioned later). Similarly, the ones joining the trailing edge
to the outlet section are roughly based on slope of the camber line at the trailing edge;
the choice is arbitrary.

4.2 Flow conditions and boundary specific restrictions

As per the design operation conditions, the angle of incidence of the flow is 25 de-
grees. The angle is defined with respect to the longitudinal direction of the geometry-

axes. Reynolds number is calculated based on the axial-chord. Inlet flow conditions used
in the experiments are depicted in Table 4.1. Other properties at the inlet were assumed
to be ambient.

Inlet velocity U0 20m/s

Reynolds number Re 3× 105

Turbulent Intensity I 3.5%

Turbulent length scale ls 0.0012

Table 4.1: Inlet flow conditions

B1 Inlet

B2 Outlet

B3 and B4 Periodic

B5 and B6 Walls

B7 amd B8 Periodic

Table 4.2: Boundary specifications

Figure 4.3 shows the flow domain with all the boundaries labelled as B1 to B8.
Table 4.2 elaborates the boundaries specific to each label in Figure 4.3. There is a
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Figure 4.3: Control Volume containing the three sub-blocks I,II and III

certain restriction on the number of cells the mesh can have in each direction. This is
imposed by the Multigrid method used to solve the pressure poisson equation (PPE), as
explained in Chapter 3. Since the course mesh has a grid spacing which is twice as that of
the fine one, the mesh should have cells equal to a multiple of 2n in each direction, where
n is the number of levels in the desired multigrid. The mesh under consideration, has
another restriction though. The (i,j)-plane of the grid can be thought of as comprising
of three sections/sub-blocks, separated by lines marked by the leading and trailing edge
of the walls in the mesh i-direction (see Figure 4.3). ‘ifirst’ and ‘ilast’ represent the
start and end of the walls respectively. These sections have different sets of boundary
conditions in the j-direction. Section I and III are cyclic in j-direction, whereas section
II has wall boundaries in j. While meshing, emphasis should be laid on the fact that
in each section separately, number of cells in the i-direction should be a multiple of 2n,
where n is the desired number of levels.

4.3 Mesh generation

To generate the mesh, an in-house code is used calledG3DMESH. The script can be
found in Appendix A. The flow domain (in 2-D), as explained earlier, consists of three
sections. These sections are blocked separately and then combined to a single block.
This is done for two reasons: one, obviously for ease in meshing, and second, more im-
portantly, to control the number of cells in each section in the i-direction. The generated
mesh is two-dimensional with quad cells and later while running simulations, these 2-D
layers are stacked in the third direction (spanwise) with suitable distance between them.
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This gives rise to a three-dimensional single-block mesh ((i,j)-plane denoting the 2-D
cross-sectional plane and k, the spanwise direction).

MESH ni(I) ni(II) ni(III) nj nk zmax

MESH-1 40 128 40 112 32 0.05144cx

MESH-2 40 128 40 112 64 0.05144cx

MESH-3 40 128 40 112 128 0.10288cx

Table 4.3: Mesh specifications – ni, nj, nk denote the number of cells in each direction; I,
II and III denote the 3 sub-blocks; last column denotes the domain size in k-direction.

In the present study, the domain in k-direction (zmax) is chosen to be less than 20%
of the chord-length (cx), for achieving a good resolution for LES. Most of the study is
done on a mesh with zmax equal to 0.05144cx (< 0.2cx). The three types of meshes to
be used in the study are specified in Table 4.3.

Figure 4.4: Complete mesh, made four times coarser for clarity

Figure 4.4 depicts the 2-D mesh corresponding the (i,j)-plane. For the sake of clarity,
the mesh is made four times coarser in both directions. The resolution at the walls is
similar to that used in the study by Collado Morata et al. [4]. Their mesh for structured
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LES had resolution (in wall-plus units) at walls as: ∆x+ ∼ 150, ∆z+ ∼ 25 and y+ ∼ 1.
In the present simulations based on the local wall friction velocity, ∆x+ is close to 150
mostly and goes up to 250 in the initial laminar region on suction side, ∆z+ < 15 and
y+ < 1. ∆z+ and y+ also go a little higher than mentioned in the initial laminar region.
The streamwise variation of these values can be found in the appendix B.
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5

Case Set-up and Implementation

The simulations are carried out using CALC-LES, a cell-center based finite-volume
in house code at the department. For space discretization, central-differencing scheme is
used for all the velocity equations, whereas van-Leer scheme is used for the temperature
equation. Crank-Nicolson method is used for temporal dicretization of all the equations.
The numerical method explained by Davidson and Peng [45], is based on an implicit
two-step time advancement technique with a multigrid pressure Poisson solver and a
non-staggered grid system.

5.1 Boundary conditions

fluid properties

Density ρ 1

Prandtl no. Pr 0.7

inlet conditions

Inlet velocity Uin 1

Reynolds no. Re 3× 105

Inlet Temperature θin 0

Table 5.1: Flow conditions

The variables used in the simulation are all non-dimentional quantities. To compare
the results with the experimental ones, the latter are then non-dimentionalized, generally
using inlet velocity and axial chord cx. Table 5.1 illustrates the fluid properties and inlet
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flow conditions used for the simulation. The types of boundaries for the 2-D flow domain
are explained in Chapter 4. Table 5.2 illustrates the various boundary conditions used
in the simulation.

Inflow

Dirichlet(Uin, θin)

Neumann( ∂p∂n = 0)

Forced inlet fluctuations

Outflow
Convective BC for u, v, w

Neumann for p, θ

Walls
No-slip(u=v=w=0)

Constant heat flux (qw = 10)

Table 5.2: Boundary conditions. u, v, and w denote x, y, z components of velocity respec-
tively.

Inflow Boundary: To define the inflow boundary, fixed values of velocity and
temperature are used (specified in Table 5.1) and a fluctuation field with zero mean is
superimposed on it. Use of zero Neumann boundary condition for pressure is customary
to the solving of the PPE – both at inlet and outlet. Velocity fluctuation field is based
on the turbulence intensity and turbulent length-scales mentioned at the inlet. This
will characterize the different scales of motion in the FST, which is crucial in triggering
transition.

Inlet Fluctuations: For prescribing the inlet turbulence conditions at the inflow
boundary, synthetic isotropic fluctuations are used. They are generated using the method
specified by Davidson in [48]. It was found that the turbulence intensity specified at the
inlet dropped considerably within a very short distance downstream, before adopting
a more physical decay rate. The intensity at the inlet thus, had to be raised to a
suitable value, so that the intensity at the leading edge is close to that mentioned in
the experimental studies.The fact that larger length scales decay at a slower rate [49]
provided motivaiton to use an integral scale larger than that reported in the experiments.
Even in actual flows, a decay in turbulence is observed and turbulence evolution depends
upon the origin of tubulence [49], which is not specified in the experiments corresponding
the present studies. As stated by Ovchinnikov et. al. [49], for this reason, to match
with the exact experimental data, it is important to know the turbulence characteristics,
at least the integral length scale and the intensity, at the leading edge. These data are
not provided in the experimental studies. The foremost aim is however not to mimic
the transition location from experiments exactly. Rather, it is to observe transition
first and then make changes in the inflow turbulence to match with the exact location
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of transition. Table 5.3 depicts the turbulence specifications of both experiments and
simulations.

experiments

Turbulent Intensity I 3.5%

Turbulent length scale ls 1.2× 10−3 m

synthetic fluctuations

Turbulent Intensity I 10%

Integral length scale ls 4.8× 10−3 m

Integral time scale τ 2.1× 10−3 s

Table 5.3: Inlet turbulence: experiments and simulations

Walls: No slip boundary and constant heat flux is specified at the walls. qw spec-
ified in Table 4.2 for the walls is the ratio of heat flux (q) to density (ρ) times isobaric
heat capacity (cp), qw = q

ρcp
. For pressure, zero Neumann condition is prescribed at the

walls (as at inlet and outlet).

Outflow Boundary: At the outflow boundary, Convective boundary condition is
used for describing velocity. If the outflow contains unsteadiness or vortical structures,
it is important for the boundary condition to be specified in such a way that the vortices
approach and pass the outflow boundary without much disturbance or reflection back
into the domain. DNS or LES predictions are inherently unsteady and might contain
dynamic vortical structures at the outflow. Moreover, in the present study the extent
of the wake (which is dominated by such vortices) is unknown. Hence the presence
of such unsteadiness is quite possible at the boundary. In such cases, when a non-
reflective boundary condition is much demanded, convective boundary condition serves
the purpose. It is defined as:

∂φ

∂t
+ Ūn

∂φ

∂xn
= 0, (5.1)

where xn corresponds the coordinate in the mean flow direction and Un corresponds the
mean flow velocity. In the present case, Un is taken as the bulk velocity based on the
global mass influx.

5.2 Multigrid algorithm implementation

The current multigrid-code based on the Geometric Multigrid (GMG) method for
Poisson equations was first implemented by Emvin for LES in a ventilated enclosure [50].
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The FAS scheme discussed in the Chapter 4 along with the FMG scheme is employed
in the code. The coarse grid assumes a grid spacing that is twice the fine grid in each
direction. A coarse grid cell is obtained by merging eight fine grid cells into one. For
both restriction and prolongation, linear projection is used. For smoothing, one of the
several methods included in the code can be used. One is the normal ‘symmetric point
Gasuss-Siedel (GS) smoother’, which is best suited for an isotropic mesh. The other one
is using an ‘alternating line GS smoother’ (2D smoother), which has good smoothing
properties for a stretched 2D grid. The third is an ‘alternating plane relaxation GS
smoother’, wherein each (1,2)-plane is first solved exactly, followed by each (2,3)-plane
and each (3,1)-plane. Here,1-2-3 directions are decided based on the mesh density in the
different directions of the mesh. It is the most efficient method for meshes with high
aspect ratio in a particular direction. More details on it can be found in [50].

5.2.1 Structure of the multigrid code

Flow-chart depicting the flow of information amongst the concerned subroutines in
the CALC-LES code is shown in Figure 5.1. As mentioned earlier, the multigrid code is
used for solving the pressure poisson equation (PPE). It is invoked at two regions in the
solver. One in the subroutine ‘main’ where it is initialized. The other in the subroutine
‘calcpe’ where the PPE is solved.

MAIN CALCPE

PETER INIT PETER MULTI

KEY PETER RELAX PETER CYCLIC

MG 2D

KEY2 PETER 2D RELAX PETER 2D CYCLIC

Figure 5.1: Flowchart of the multi-grid algorithm in CALC-BFC

Each of these subroutines are described below:

• MAIN: As mentioned above, the MG code is initialized in this subroutine by
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calling ‘peter init’. The arguments passed include information about the number
of cells in each direction, their x, y and z coordinates, the logical constants for
cyclic conditions in each direction, and the first and last cell number marking the
extent of the walls in i-direction of the mesh-grid (region II in Figure 4.3).

• PETER INIT: Based upon the restrictions described in Chapter 4, the grid is
divided into required MG levels. Cells defining the extent of the wall in i-direction
(ifirst and ilast) are identified. Subroutine ‘key’ is called which helps storing the
variables lexically into an array/list. This is done for all the MG levels. The
coefficients for the PPE at all MG levels are computed. Then the cell aspect
ratios are computed in all the directions, which decides the choice of the type
of smoother, explained in the beginning of this section, to be used. In the end,
boundary conditions at all the levels are specified. As has been the case throughout
the code, the j-direction boundary condition for the current problem (part cyclic
and part wall BC) is modified based on the location of the ifirst and ilast nodes,
which differs at different MG grid-levels.

• KEY: As explained above, this subroutine helps in sorting the elements in a 3-D
matrix based storage lexically into a pointer based array/list. The input arguments
include the MG grid-level and the number of nodes in each direction for that level.

• CALCPE: This is the second instance in the CALC-LES code where the MG
function is evoked, the first being ‘main’, where the MG code was initialized. It is
here, that the PPE is solved. If the variable multig is set to true, then subroutine
‘peter multi’ is called.

• PETER MULTI: The input/return arguments include the initial source term in
the PPE (comprising of the velocity correction term), the pressure field, number of
nodes in the three directions, total number of sweeps desired and the logical con-
stants for cyclic conditions in each direction. First, with the help of the subroutine
‘key’, the source terms and the pressure field values are stored in a pointer based
array at each MG level. The ones in the coarser level are initialized to zero.
Next, a V(1,1)-cycle multigrid is performed without postsmoothing at the finest
level. For that, a ‘symmetric-point smoothing GS sweep’ is performed starting at
the finest level – first a forward smooth and then a backward one. Subroutine
‘peter cyclic’ is called to ensure cyclic conditions on the boundaries before and
after each sweep. This corresponds to the first step of the FAS scheme – fine grid
iterations – discussed earlier (Chapter 3).
Then at the same MG level, ‘peter relax’ is called to solve the PPE. For the coarser
levels, this corresponds to the third step of the FAS scheme – relaxation. Next,
the source term is computed for the given MG level and it consists of the residual
correction from the earlier relaxation step and the multigrid source (that is nothing
but the restricted source term from the previous finer level).
Following this, the source term at the next coarser level is computed, consum-
mating the second step of the FAS scheme – restriction. It should be noted that
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pressure is not exactly restricted similarly as explained earlier in the steps of FAS
scheme. But instead, it is initialized to zero at the coarser levels. It is explained
in more detail in [46].
The above procedure is followed regressively, until the coarsest level is reached.
Restriction is not performed for the coarsest level. First leg of the V(1,1) cycle
ends here. Starting at this level, the pressure field is interpolated to the next finer
levels – prolongation. More information regarding the prolongation method can
be found in [46]. This is followed by postsmoothing at each level leaving out the
finest level.

• PETER RELAX: This subroutine is invoked in ‘peter multi’ and it serves the
purpose of the smoother or solver for the multigrid method. Based upon the as-
pect ratios computed in ‘peter init’, the type of solver is decided. The first one is
a ‘symmetric point GS smoother’, comprising of forward and backward sweeps.
The second type is an ‘alternating-line GS smoother’. It has three subtypes, an
‘X-line GS’, a ‘Y-line GS’ and a ‘Z-line GS’ smoother, with smoothing performed
along grid lines corresponding to that line GS.
The third is an ‘alternating-plane GS smoother’. It also has three subtypes de-
pending upon the chosen plane of smoothing, ‘X-plane’, ‘Y-plane’ and ‘Z-plane’
GS smoother, the prefix indicating the normal direction of the chosen plane. For
example, X-plane GS smoother means that all the planes corresponding the (j,k)-
directions of the grid are relaxed one by one. This is performed by calling the
subroutine ‘mg 2d’. A logical variable ‘wallj’ is defined to maintain discrepancy in
passing arguments to ‘mg 2d’ regarding the kind of boundaries possessed by that
particular (j,k)-plane of the grid. In the present case, while performing X-plane
GS smoothing, some (i,j)-planes have cyclic boundary condition in the j-direction
and some have wall or no-slip boundary condition.
After one of these smoothing operations is performed, ‘peter cyclic’ is called to
ensure cyclic boundary conditions when appropriate.

• MG 2D: This subroutine performs a 2D multigrid operation on the given plane
passed as input argument and is similar to the 3D multigrid operation performed
by ‘peter multi’. The input/return arguments to this subroutine include the co-
efficients and the source terms of the equation pertaining to the concerned plane,
the logical variables related to cyclic boundaries, variables denoting the overall 3D
MG level and the choice of plane-smoother (X,Y or Z), cell number defining the
extent of wall in that direction for that MG level (related to ifirst and ilast), and
the logical variable discussed earlier, ‘wallj’.
It uses another subroutine ‘key2’ to store the initial source term in a lexically con-
verted pointer based array. Subroutine ‘peter 2d cyclic’ is called to ensure correct
boundary conditions. Once the coarsest 3D MG level is reached, this subroutine
performs a 2D relaxation on the planes pertaining to that MG level and returns
the pressure field.
For all the other intermediate levels, it performs a V(1,1)-cycle 2D multigrid. It
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starts with 2D-plane relaxation at the given level, which is performed by calling
the subroutine ‘peter 2d relax’ and the source term is computed at that level.
Next, the source terms are restricted to the next coarser level and the coefficients
are computed at the same level. Pressure at the coarser level is initialized to zero
as in ‘peter multi’.
Once the coarsest level in 2D multigrid is reached, the pressure is prolongated to
the next finer level, followed by relaxation at that level by calling ‘peter 2d relax’.
Relaxation is not performed on the finest level though, and the pressure field over
the 2D plane is returned to ‘peter relax’.

• KEY2: This is similar to the subroutine ‘key’. It creates pointer based stor-
age of variables from a 2D matrix based storage. The input arguments include
the variable indicating the MG level and the maximum number of nodes in each
direction.

• PETER 2D RELAX: This subroutine performs relaxation on the 2D plane
passed as input argument by ‘mg 2d’. It has the same input arguments as for
‘mg 2d’, and in addition to it, the number of iteration sweeps to be performed as
well. Based upon the choice of smoother (X, Y or Z-plane GS) and the type of
boundaries (periodic or not), it performs a TDMA operation to solve the pressure
field (cyclic TDMA in case of periodic boundaries).

• PETER CYCLIC: This subroutine is called in ‘peter multi’ and ‘peter relax’, to
enforce periodic boundary conditions at the required boundaries.

• PETER 2D CYCLIC: It is similar in function to ‘peter cyclic’. It enforces pe-
riodic conditions at required boundaries after performing 2D-multigrid in ‘mg 2d’.
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6

Results and Discussion

6.1 Post processing of results

The simulations are run for an ample amount of time, 7 to 10 through-flow times
(cx/U0), before sampling is started. It is enough to ensure that a statistically steady
state is achieved. The averaging is then done for a time equivalent to 7 to 10 times of
cx/U0. Pressure distribution over the guide vane and heat transfer at the guide vane
walls are expressed by computing pressure coefficient, Cp and Nusselt number, Nu, at
the walls respectively. Cp is computed as:

Cp =
p− p0
1

2
ρ(U0)2

, (6.1)

where, p denotes the pressure where Cp is computed, p0 and U0 are the reference pressure
and velocity, respectively, at the inlet of the domain, and ρ is the density of the fluid.
Nu is computed as follows:

Nu =
h

k
cx (6.2)

=
q/(θw − θ∞)

ν(ρcp)/Pr
cx, (6.3)

where, h and k are the convective heat transfer coefficient and thermal conductivity of
the fluid respectively, cx is the axial chord of the guide vane, θw and θ∞ are temperature
at the wall and in the free-stream (same as at inlet) respectively, ν is the kinematic
viscosity, Pr is the Prandtl number, and q is the heat flux at the walls.

6.2 Comparison with the experiments

In this section, results from the experimental study ([7]) are compared with those
from the simulations. As mentioned earlier, simulations are carried out using two differ-
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ent SGS modelling techniques, ‘smagorinsky’ and ‘dynamic SGS’. The residual statistics
can be found in the Appendix.

6.2.1 Pressure distribution
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Figure 6.1: Coefficient of pressure at walls; ◦ Experimental; Dynamic-SGS;
� Smagorinsky.

Figure 6.1 depicts the coefficient of pressure, Cp, distribution over the OGV. The
x-coordinates are scaled with respect to the axial chord cx. The experimental data were
collected over the mid-span of the OGV. It can be seen that both the models (Smagorin-
sky and dynamic-SGS) are in good agreement with the experimental data qualitatively.
The upper curve represents the suction side, characterized by a low Cp and the lower
one, the pressure side, characterized by a higher Cp. Cp ≈ 1 represents the stagnation
point, which lies at the immediate vicinity of the leading edge on the pressure surface
as reported in the experiments [7]. Though its exact location in simulations and ex-
periment shows a very little discrepancy, that can be attributed to the lack of pressure
measurement stations in experiments as compared to simulations (grid points), and can
be ignored.

The initial accelerating part on the pressure side (approximately, x/cx = 0 to 0.1)
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is in very good agreement with the experiments. But then, from x/cx = 0.1 onwards,
the simulations show a higher deceleration as compared to the experiments. This can
be attributed to the fact that in simulations the trailing edge is modified a little bit as
discussed in Chapter 4. Also, there is a slight acceleration observed in the experiments
after approximately, x/cx = 0.8, that is absent in simulations. Both these observations
can be attributed to the change in curvature and length of the trailing edge and hence,
slight changes in the flow conditions downstream of it.

On the suction side, the local flow follows the trend shown by the experiments,
accelerating till the throat of the cascade, approximately at x/cx = 0.22, though the
simulations show a slight higher acceleration. Further downstream, there is deceleration
in the local flow. A distinct bump at x/cx = 0.4 on the suction surface is observed in the
experiments, which marks the onset of the boundary layer transition to turbulence. It
is reported in the experimental study that this fact is corroborated by the presence of a
transitional separation bubble at this point shown by the numerical analysis performed
by the authors [7]. However, no such bump or separation bubble is observed in the
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Figure 6.2: Nusselt number profile; ◦ Experimental; Dynamic-SGS; � Smagorinsky.

present analysis, showing a more smoother pressure profile. The discrepancy at the
trailing edge is again expected due to the modification of the trailing edge in the present

35



6.3. MESH INDEPENDENCE STUDY

simulations as discussed earlier. Also, it can be observed that both Smagorinsky and
Dynamic-SGS model predict a similar pressure distribution over the OGV. The overall
shape of the pressure coefficient profile in the simulations suggests that the local flow
over the OGV is forced to remain laminar.

6.2.2 Heat transfer distribution

To investigate the boundary layer transition further, heat transfer analysis is per-
formed. As in the experiments, Nusselt number (Nu) profile over the OGV surface is
studied, as can be seen in figure 6.2. The x-coordinates on the pressure side are repre-
sented on the negative x-axis. It can be seen from the figure that the profiles of Nusselt
number (Nu) from simulations are not matching with the experimental data. At the
leading edge, Nu is very high owing to the smaller width of laminar boundary layer
there. The very high values of Nu are clipped in the plot, since they are of very little
importance to the present study. As the flow accelerates on both the sides from the stag-
nation point, the boundary layer thickness increases, and the value of Nu drops as the
boundary layer grows. Thereafter, further downstream, as reported in the experiments,
there is a sharp increase in Nu, starting at around x/cx = −0.32 on the pressure side
and at x/cx = 0.36 on the suction side, indicating the onset of transition to turbulence.
This trend is not found in the simulations performed, indicating that the boundary layer
is still remaining laminar.

On the pressure side, further downstream of x/cx = −0.32, where the experiments
showed a significant increase in Nu, the simulations on the other hand follow the pre-
vailing decreasing trend in Nu and then get fairly constant towards the trailing edge.
Smagorinsky model constantly predicts a slightly higher value than dyanmic-SGS in this
region. On the suction side though, further downstream of x/cx = 0.36 (onset of tran-
sition predicted by experiments), at around x/cx = 0.45 in case of dynamic-SGS and
x/cx = 0.56 in Smagorinsky case, the Nu number shows a gradual increase. This rise is
different from that observed in experiments, both the magnitude and the rate of growth
being too low or small as compared to the experiments. Moreover, the physical trend of
transition, shown by a sudden increase first, evident of transition, followed by a gradual
decrease that testifies an expanding (turbulent) boundary layer, cannot be observed in
the present simulations. Detailed analysis of the boundary layer will be done in the
upcoming sections.

6.3 Mesh independence study

As mentioned in Chapter 4, three types of meshes are studied (see Table 4.3). MESH-
2 has a better spanwise resolution than MESH-1, and MESH-3 has the same spanwise
resolution as MESH-2, but it has more number of sample nodes than MESH-2 (twice).
Figure 6.3 depicts the Cp and Nu profile over the guidevane surface for these meshes.
It can be seen that the pressure curve overlaps completely in all the three cases. The
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Figure 6.3: ◦ Experimental; MESH-2 (nk = 64, z |max= 0.0125); � MESH-1
(nk = 32, z |max= 0.0125); △ MESH-3 (nk = 128, z |max= 0.025).

heat transfer profile for MESH-2 and MESH-3 are very close, since they have the same
resolution. But they have different spanwise domain size, which shows that the spanwise
domain has no significant effect on the transition. It can also be said that the spanwise
resolution does not play an important role in the present simulations, since MESH-1 and
MESH-3 give very similar results.
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Figure 6.4: ◦ Experimental; MESH-2 (nk = 64, z |max= 0.0125); � MESH-2B (same
as MESH-2, refined in streamwise direction in the transition zone).

A separate set of simulations were performed on a mesh with same number of cells
as in MESH-2, but with streamwise resolution refined in the transition zone. It will be
referred to as MESH-2B. Figure 6.4 depicts the Cp and Nu profile over the guidevane
surface for these meshes. It can be observed that in the simulations with MESH-2B,
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the Nu profile follows the experimental curve very closely for a very short distance in
the transition zone on both suction and pressure sides. It shows an initial increase for a
while, but then drops down in the middle of the transition zone. The momentary increase
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Figure 6.5: stations for study of stresses and fluxes

indicates that the non-linear interactions in the boundary layer have been triggered.
But then, once triggered, it should have continued to grow. It could be possible that a
very fine streamwise resolution is needed for the non-linear interactions to be sustained
continuously.

6.4 Boundary layer study

It becomes imperative now to understand the flow in the boundary, so as to under-
stand why the simulations do not comply with experiments. In this section also, results
from both Smagorinsky and dynamic-SGS model are presented. All the results in this
section pertain to the simulations carried out on MESH-2. Resolved Reynolds stresses
and heat fluxes are plotted at certain stations on the cascade surfaces and in the wake
region downstream of trailing edge. Figure 6.5 depicts the location of all the stations.
All the variables plotted at these stations over the surface are transformed to the local
coordinate system corresponding to the wall with one axis parallel to the wall in the
streamwise direction (subscript ‘s’) and the other normal to the wall pointing into the
domain (subscript ‘n’). The third axis (subscript ‘z’) is parallel to the spanwise direction
in the global coordinate system. The stresses and fluxes will be plotted with respect to
the normal distance from wall (∆n) scaled by the pitch of the cascade (lp). A second
axis is also shown most of the time depicting the y+ values corresponding the normal
distance. Also, plotted are the maximum rms velocity and temperature profiles over the
surface.
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Figure 6.6: Stresses at i1; top: pres-
sure side (x/cx = 0.004), bottom: suction
side (x/cx = −0.002). Legends: ◦ 〈v′sv

′
s〉;

〈v′nv
′
n〉; 〈v′zv

′
z〉; 〈v′sv

′
n〉; +wall shear

stress.

Figure 6.7: Total viscosity at i1; top:
pressure side (x/cx = 0.004), bottom:
suction side (x/cx = −0.002). Leg-
ends: νtot/ν

6.4.1 Resolved stresses

Figure 6.6 illustrates the stress values at station i1, the top row corresponding the
pressure side and bottom, the suction side. The local wall shear stress at that loca-
tion is also depicted (‘+’ marker on the x-axis). Figure 6.7 depicts the total viscosity
(νtot = ν + νr) scaled by kinematic viscosity (ν) at the points corresponding to those in
the Figure 6.6. It can be seen in Figure 6.6 that with both the models, normal stress on
the pressure side in the spanwise direction, 〈v′zv

′
z〉 is largest. This shows that this point

is close to the stagnation point discussed in the previous section. On both sides, the
wall normal component 〈v′nv

′
n〉 of the stress is negligible very close to the wall. In the

dynamic-SGS simulation, negative values of νr can be seen near the walls (νtot/ν < 1), in-
dicating the presence of backscatter, but contrarily the stresses seem to be more damped
than in the Smagorinsky case.
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Figure 6.8: Stresses at i2; top: pressure
side (x/cx = 0.174), bottom: suction side
(x/cx = 0.126). Legends: as in Figure 6.6

Figure 6.9: Total viscosity at i2; top:
pressure side (x/cx = 0.174), bottom: suc-
tion side (x/cx = 0.126). Legends: as in
Figure 6.7

Figure 6.8 and Figure 6.9 represent the stresses and total viscosity at station i2.
This station lies in the locally accelerating part of the domain. It can be seen that
the streamwise component of stress 〈v′sv

′
s〉 is the most dominating part and the other

components are negligible. This observation is more prominent in the dynamic-SGS
simulation, probably due to the higher residual viscosity predicted by it (Figure 6.9).
This region of the boundary layer is probably laminar in nature.

In Figure 6.10 shows the stresses at station i3. It can be seen that 〈v′sv
′
s〉 is still

very large as compared to the other components. On the suction side, it has increased
almost 1.5 times of its value near the wall at section i2 (Figure 6.8). Also, it can
be seen the boundary layer thickness has increased considerably, as this streamwise
component is much bigger than the corresponding value at section i2 even farther away
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Figure 6.10: Stresses at i3; top: pressure
side (x/cx = 0.510), bottom: suction side
(x/cx = 0.482). Legends: as in Figure 6.6

Figure 6.11: Total viscosity at i3; top:
pressure side (x/cx = 0.510), bottom: suc-
tion side (x/cx = 0.482). Legends: as in
Figure 6.7

from the wall. This can be seen on both suction and pressure side walls. Moreover, the
lower y+ values show that the wall friction velocity has decreased from earlier, which
is obvious as the local flow is decelerating. This is supported further by the very low
value of wall shear stress (a ‘+’ marker on the x-axis in the figure). Now, according
to the experiments (section 6.2), at this station, the boundary layer is on the verge of
attaining full turbulence. This implies that the other components, namely wall-normal
(n direction) and spanwise (z direction), should have increased significantly. It can
be inferred that in the present simulations, the non-linear interactions responsible for
distribution of stresses in different directions are absent. This will be discussed further
in upcoming sections.

Figure 6.12 represents the stresses at station i4. Here, as per the experiments, the
boundary layer should have gone completely turbulent. That means an isotropic dis-
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Figure 6.12: Stresses at i4; top: pressure
side (x/cx = 0.764), bottom: suction side
(x/cx = 0.752). Legends: as in Figure 6.6

Figure 6.13: Total viscosity at i4; top:
pressure side (x/cx = 0.764), bottom: suc-
tion side (x/cx = 0.752). Legends: as in
Figure 6.7

tribution of stresses in all directions except for the wall-normal component close to the
wall. This is not found in the present simulations. On the suction side though, the
spanwise component 〈v′zv

′
z〉 shows a slight increase close to the wall and the wall-normal

component 〈v′nv
′
n〉 little away from the wall, both compared to their corresponding val-

ues at station i3 (Figure 6.10). The pressure side too shows a similar increment, but
very small in magnitude. The suction side clearly shows signs of growing turbulence, as
emphasized by the Nusselt number plot in figure 6.2.

Further downstream, at station i5, the stresses are depicted in figure 6.14. This is
almost the trailing edge of the OGV, and here the geometry is different from the one
in experiments, as mentioned earlier. Here, the boundary layer thickness has increased
considerably both on suction and pressure sides. On the suction side as in the previous
station, i4, 〈v

′
nv

′
n〉 and 〈v

′
zv

′
z〉 are significant.
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Figure 6.14: Stresses at i5; top: pressure
side (x/cx = 0.976), bottom: suction side
(x/cx = 0.973). Legends: as in Figure 6.6

Figure 6.15: Total viscosity at i5; top:
pressure side (x/cx = 0.976), bottom: suc-
tion side (x/cx = 0.973). Legends: as in
Figure 6.7

Stations i6 and i7 correspond to the wake region. Here, the stress components are
plotted in the global coordinate system as there is no wall. ∆n on the y-axis corresponds
to the distance from the corresponding domain boundaries. Figure 6.16 depicts stresses
at i6. The two shear layers from the suction and pressure surface merge in this region,
resulting in the formation of large scale vortices, which enhance the turbulence. This
region, called the wake, keeps on expanding in space, as can be seen in figure 6.18. It
can be seen that the disturbance is felt further away from the domain boundary at this
station; meaning, the wake region is expanding. Moreover, it can also be seen that the
SGS viscosity goes very high in this region as compared to the earlier stations. This can
be expected since the mesh is quite coarser here, and only the very large scale eddies are
being resolved. The present study does not delve into the analysis of this wake region.
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Figure 6.16: Stresses at i6; top: pres-
sure side (x/cx = 1.272), bottom: suction
side (x/cx = 1.272). Legends: ◦ 〈v′xv
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x〉;〈

v′yv
′
y

〉
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Figure 6.17: Total viscosity at i6; top:
pressure side (x/cx = 1.272), bottom: suc-
tion side (x/cx = 1.272). Legends: as in
Figure 6.7

Summing up the analysis of Reynolds stresses in the boundary layer, it can be said
that there is a definite increase in the streamwise stress component as the flow moves
downstream, while the same cannot be said for the wall-normal and spanwise components
though. Both the models (Smagorinsky and dynamic-SGS), predict similar behaviour.
The difference is not much, since the SGS viscosity is very small (as predicted by both the
models) in the region of interest (close to the wall). The growth in the streamwise compo-
nent, whether to be attributed to the free-stream fluctuations or artificial (non-physical)
fluctuations caused by the central differencing (CD) scheme has to be investigated. CD
scheme is generally used in LES for turbulent flows, since it is non-dissipative [51]. As a
result, the numerical oscillations created this way help in sustaining turbulence and not
dampen out. But, whether they aid in transition from (orderly) laminar to turbulent
is not certain. In other words, if they can act as sources of disturbance, as provided
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Figure 6.18: Stresses at i7; top: pressure
side (x/cx = 1.711), bottom: suction side
(x/cx = 1.711). Legends: as in Figure 6.16

Figure 6.19: Total viscosity at i7; top:
pressure side (x/cx = 1.711), bottom: suc-
tion side (x/cx = 1.711). Legends: as in
Figure 6.7

by FST, and invoke the non-linear modes is not known. Most certainly, they cannot;
transition is very selective to FST scales (as discussed in chapter 2) and that cannot be
provided by artificial oscillations (through CD scheme or otherwise). Nevertheless, CD
scheme is always preferable due to its non-dissipative nature.

6.4.2 Momentum and thermal fluxes

In this section, the resolved part of turbulent momentum flux in wall normal di-
rection, given by the Reynolds shear stress, 〈v′nv

′
s〉, and the thermal flux in the same

direction, 〈v′nθ
′〉, (θ denotes the temperature) are compared along with the molecular

heat flux,
(

ν
Pr

∂〈θ〉
∂n

)
. This can give an idea about the penetration of wall-normal dis-

turbances into the boundary layer. Here subscripts ‘s’ and ‘n’ denote the wall-parallel
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Figure 6.20: Fluxes at i1; top: pressure
side (x/cx = 0.004), bottom: suction side
(x/cx = −0.002). Legends: 〈v′sv

′
n〉 /τw;

◦ 〈−v′nθ
′〉 /qw;

(
ν
Pr

∂〈θ〉
∂n

)
/qw.

Figure 6.21: Fluxes at i2; top: pressure
side (x/cx = 0.174), bottom: suction side
(x/cx = 0.126). Legends: same as in Fig-
ure 6.20.

and normal directions respectively. Due to the similar nature of the non-dimensionalized
momentum and thermal equations, the turbulent flux terms mentioned will behave in
the same way, in magnitude at least. On a flat plate with zero pressure gradient and unit
turbulent Prandtl number (Prt), they are supposed to be equal in magnitude. They are
of opposite signs if the plate is hotter than the fluid, as a result of the opposite nature of
velocity and temperature gradients at the wall. A different discretization scheme for one
of the variables (see beginning of Chapter 5) might also result in a difference, owing to
numerical dissipation as a result of the particular discretization scheme. The momentum
flux is normalized by the local wall shear stress τw, and the thermal fluxes are normalized
by the local wall heat flux, which in the present case is a fixed value qw throughout the
surface.

Figure 6.20 depicts the fluxes at the station i1. On the suction side, the turbulent
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Figure 6.22: Fluxes at i3; top: pressure
side (x/cx = 0.510), bottom: suction side
(x/cx = 0.482). Legends: same as in Fig-
ure 6.20.

Figure 6.23: Fluxes at i4; top: pressure
side (x/cx = 0.764), bottom: suction side
(x/cx = 0.752). Legends: same as in Fig-
ure 6.20.

momentum and thermal fluxes are almost identical. Comparing Figure 6.20 and Fig-
ure 6.21, it can be seen that the thermal boundary layer is getting thicker downstream.
Turbulent heat flux is lower at all stations inside the boundary layer as compared to
the molecular/viscous one. From the transport equation of the wall-normal heat flux
vector v′2θ

′, assuming the streamwise temperature gradient ( ∂θ
∂x1

) to be negligible when

compared to the wall-normal gradient ( ∂θ
∂x2

), the production term can be written as:

P2θ = −v
′
2v

′
2

∂θ

∂x2
, (6.4)

where subscripts ‘1’ and ‘2’ denote the streamwise and wall-normal directions respec-
tively. This equation shows the importance of wall-normal fluctuations (v′nv

′
n) in the

generation of turbulent heat flux. Clearly, from the stress plots in the previous section,
it can be seen that the wall-normal stress component decreases from station i1 to i2 (see
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Figure 6.6 and 6.8). This gets reflected in the thermal flux plots at the two stations.
The local flow is laminar here as there is no significant turbulent mixing in the boundary
layer at these stations.
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Figure 6.24: Fluxes at i5; top: pressure
side (x/cx = 0.976), bottom: suction side
(x/cx = 0.973). Legends: same as in Fig-
ure 6.20.

Figure 6.25: Fluxes at i7; top: pressure
side (x/cx = 1.711), bottom: suction side
(x/cx = 1.711). Legends:

〈
−v′xv

′
y
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/qw.

Station i3 corresponds to the point where the boundary layer is about to get com-
pletely turbulent according to the experimental observations. In the simulations, at this
station the turbulent heat flux and the shear stress are higher as compared to that at the
previous stations. Both the increments are more prominent on the suction side. This
proves a higher turbulent mixing of momentum and heat at this station than at the
previous ones and this is evident from the elevated Nu profile on the suction side at this
station (Figure 6.2). At station i4 (Figure 6.23), the magnitude of the turbulent (ther-
mal) flux increases further, more prominently on the suction side and the effect can be
felt farther away from the surface. This shows that the boundary layer is getting thicker
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downstream. The stress plots at this station (see Figure 6.12) also show an increase in
wall-normal and shear stress components from the earlier stations – again prominent on
the suction side. Station i5 (Figure 6.24) corresponds to the point close to the trailing
edge, and the fluxes are similar to those at i4. On the pressure side, both the momentum
and thermal fluxes are identical, and that probably is due to the streamwise pressure
gradient being low on this side.

Figure 6.25 corresponds to the second station in the wake (i7). The flux components
plotted here correspond to the global coordinates as was in case of plotting stresses
in the previous section. The local wall shear stress used for normalization is taken as
the average of the corresponding values at the last cells of the trailing edge from both
suction and pressure sides. The ∆n in y-axis is the distance from the corresponding
domain boundaries. Merging of the two shear layers from both pressure and suction side
is evident from the two distinct peaks of different amplitudes in each of the flux terms
(from pressure and suction side).

6.4.3 Turbulent kinetic energy and rms fields

In this section the maximum of turbulent kinetic energy (TKE) and rms fields over
the surface is studied. Along with the TKE (kt), the normal velocity field (v) corre-
sponding to the global coordinates and the temperature field (θ) are studied. The aim
is to study the evolution of the fluctuating fields over the walls. This was motivated
by the fact that in ‘bypass transition’, these fluctuations grow appreciably while going
from laminar to turbulent phase. Plots from both smagorinsky and dynamic model are
demonstrated.

Figure 6.26, displays the maximum of TKE (kt) over the cascade surfaces. It also
depicts the distance from the surface, scaled by the pitch length (lp), where the peak
value is attained. As per the experiments, the transition zone lies between x/cx = 0.32
and x/cx = 0.56 on the pressure side and between x/cx = 0.36 and x/cx = 0.53 on the
suction side (see Figure 6.2). On the pressure side, in both dynamic-SGS and smagorin-
sky case, there is a slight increase in TKE just before the (experimentally) measured
trigger point, but then it decays slowly further downstream. Similarly, on the suction
side, at about x/cx = 0.33 the peak in TKE starts to get bigger until around x/cx = 0.5,
after which it drops steadily. It can also be seen that these peak fluctuations occur in
the boundary layer. It can be concluded that on the suction side, the fluctuations grow
in amplitude inside the boundary layer; but they cannot be sustained. These can be
associated to the appearance of streaks in the boundary layer. It was discussed earlier
that it is important for the free-stream turbulence to keep interacting with the boundary
layer in order to force a ‘bypass’ transition. It might be that in the present case, the
streaks are formed but unable to sustain due to the absence of forcing by FST. On the
pressure side, on the other hand, no such phenomenon is observed.
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Figure 6.26: Peak TKE (kt) over the surface; top: pressure side, bottom: suction side.
Legends: kt |max (right y axis); distance from wall (left y axis).

Figure 6.27, depicts the maximum of normal fluctuations (v′) over the cascade sur-
faces and the distance from wall where it occurs. It should be noted that the ‘v’ fluctu-
ation in the global coordinate system is different from wall-normal velocity fluctuations
(corresponding the local coordinate system at the wall). Ideally, it is the wall-normal
fluctuations that should have been studied. Due to the cumbersomeness of performing
coordinate transformation over all the grid points on the walls, and given the fact that
after passing the initial ‘throat’ section of the cascade, the flow is almost parallel (local
coordinate system getting close to the global), it was decided to plot the fluctuation
component in the global coordinates.

From the plots on the pressure side, it can be observed that the predicted peak fluc-
tuations in the experimentally observed transition zone occur inside the boundary layer.
On the other hand, on the suction side, they occur way outside the boundary layer in the
free-stream. Downstream of this transition zone (experimentally observed) though, the
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Figure 6.27: Peak vrms over the surface; top: pressure side, bottom: suction side. Legends:
vrms |max (right y axis); distance from wall (left y axis).

peak moves to almost the edge of the boundary layer or in the free-stream. The magni-
tude of the peak decreases on the pressure side and it increases on the suction side. It
can be said that the normal fluctuations v′ on the pressure side, both generated inside
the boundary layer and the ones present in the free-stream, are very low. On the suction
side, the v′ fluctuations in the free-stream are somewhat significant (corresponding to
the convected v′ from the inlet) but the ones (v′ fluctuations) generated in the boundary
layer are diminutive. The lack of such fluctuations in the boundary layer shows that
there is no real transition in the boundary layer.

The maximum of the temperature fluctuations is also plotted over the cascade sur-
faces (figure 6.28). It follows a similar trend as the TKE. On the pressure side, the peak
fluctuations in the experimentally observed transition zone, occur inside the boundary
layer, and the maximum value keeps on increasing downstream gradually. The corre-
sponding distance from the wall keeps decreasing though. On the suction side, a sudden
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Figure 6.28: Peak θrms over the surface; top: pressure side, bottom: suction side. Legends:
θrms |max (right y axis); distance from wall (left y axis).

jump is observed around x/cx = 0.4 (experimentally observed onset of transition), and
that is observed very close to the wall inside the boundary layer. This is similar to
the kt | max curve (figure 6.26). Further downstream, the maximum fluctuation level
remains almost constant, but it occurs further close to the boundary.
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7

Conclusions and scope for Future
Work

7.1 Conclusions

It is observed, finally, that the simulations carried out in the present work are not
able to justify the experimental findings. The pressure coefficient (Cp) profile from the
simulations showed good agreement with the experiments, but the Nusselt number (Nu)
profile did not. The non-linear mechanisms inside the boundary layer responsible for
transition seem to never get triggered in the simulations.

A closer look inside the boundary layer showed a gradual but large increment in
the streamwise fluctuations on both the sides, as evident from the large increase in the
streamwise component of resolved stress. This increment, more prominent on the suc-
tion side, also gets reflected in the appreciable increase in Nu just downstream of the
experimentally reported transition location. However, the other components, namely,
the spanwise and wall-normal components of resolved normal stress, do not show any
significant increment. It is expected that the increase in the streamwise component gets
redistributed via pressure-strain into the other components – a non-linear mechanism
and sign of attaining turbulence. Such a phenomenon is only observed near the trailing
edge, which is probably triggered by the unsteadiness of flow downstream of it in the
wake region. The reason for the absence of this energy redistribution, on rest of the
surface is not clear. Probably, the growth in streamwise fluctuations is not enough to
force production in the other directions.

Inspection of the heat flux and shear stress in the boundary layer gives an idea about
the penetration of the heat flux in the wall-normal direction due to fluctuations in that
direction. The turbulent heat flux along with the Reynolds shear do not show any sub-
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stantial rise in the boundary layer in the experimentally observed transition zone. The
slight rise in the heat transfer showed by the Nu profile on the suction side can be ex-
plained by a similar rise in the thermal flux.

Studying the peak of TKE (kt) showed that the fluctuations grow appreciably near
the experimentally observed transition point, at least on the suction side. It can also
indicate a growth of streamwise streaks. But this growth is not sustained, which proves
the absence of non-linear interactions triggering transition. It shows probably the need
of continuous forcing provided by the FST for these fluctuations to be maintained. More
about it can be understood by the nature of FST turbulence outside the boundary layer
in this region. The plot showing peak rms value of the normal component of velocity, v,
on the other hand, was found to be inconclusive.

A mesh independence study showed that the spanwise resolution or domain size in
the spanwise direction had no effect on the transition prediction. A mesh with a finer
resolution just in the experimentally observed transition region showed signs of transi-
tion. The Nu profile followed the experimental data only about halfway through the
transition zone. Then it fails to sustain the growth. Two possibilities are concluded:
one, it is merely the effect of numerical error arising out of the uneven mesh, and second,
there is a need for very fine streamwise resolution throughout the surface to make the
continuous interaction of non-linear modes.

7.2 Scope for future work

In the literature, the concept of ‘shear sheltering’ is introduced. The sheltering of
high frequency disturbances from the free-stream by the wall shear layer is explained.
One possibility in the present simulations is that the low frequency fluctuations are not
present in the boundary layer. It would be interesting to see how the turbulence evolves
from the inflow boundary till it reaches the leading edge, and how the low frequency
modes be allowed to enter the boundary layer. Another possibility is that the contin-
uous forcing provided by the FST (high frequency components) is also absent in the
present simulations. It is therefore very important to study the evolution of turbulence
from inflow boundary to the leading edge. It depends upon many factors like discretiza-
tion schemes and SGS models.

It would also be interesting to change the resolution in the streamwise direction. A
simulation with a mesh refined only in the transition region, showed a small spike locally.
But, then again it dropped to the initial levels and continued downstream.

It will be interesting to first study a simple geometry like a flat plate. First, study the
receptivity of FST generated by the synthetic isotropic turbulence generation method
employed here, and then move on to a more complex geometry like a guide-vane.

54



Appendices

55



A

Script for mesh-generation

!#####################

!## NUMBER OF FACES ##

!#####################

41 =i1 !face corresponding i-first

113 =j

1 =k

129 =i2

41 =i3

i1 i2 + 1 - =i12 !face corresponding i -last

i12 i3 + 1 - =i123

!######################

!## NUMBER OF BLOCKS ##

!######################

DEFMSH

3

i1 j k

i2 j k

i3 j k

!##################

!#### BLOCK 1 #####

!##################

CURV2
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1 1 1 1 1 i1

1

-2.7289594e-01 -1.5330251e-01 0. 0.009

1

-1.0036084e-03 -2.6517036e-02 0. 2e-05

0

CURV4

1 i1 1 1 3 j

2

2 305 90 0.3 5e-6

1

-1.0036084e-03 2.1348296e-01 0. 2 30 90 0.2 5e-6

4

CURV2

1 i1 j 1 2 i1

2

2e-05

1

-2.7289594e-01 8.6697485e-02 0. 0.009

0

CURV2

1 1 j 1 4 j

2

5e-07

1

-2.7289594e-01 -1.5330251e-01 0. 5e-07

2

!##################

!#### BLOCK 2 #####

!##################

COPYC

1 i1 1 1 3 j

2 1 1 1 3 j

CURV1

2 1 1 1 1 i2

240

-1.0036084e-03 -2.6517036e-02 0.0000000e+00

.
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.

.

.

(coordinates of the suction-side curve)

.

.

.

.

2.6662408e-01 6.0002772e-04 0.0000000e+00

1 240 2e-04 5e-04 0

CURV4

2 i2 1 1 3 j

2

2 2 90 0.3 5e-07

1

2.6662408e-01 2.4060003e-01 0. 2 358 90 0.3 5e-07

4

CURV1

2 i2 j 1 2 i2

225

2.6662408e-01 2.4060003e-01 0.0000000e+00

.

.

.

.

(coordinates of the pressure-side curve)

.

.

.

.

-1.0036084e-03 2.1348296e-01 0.0000000e+00

1 225 5e-04 2e-04 0

!##################

!#### BLOCK 3 #####

!##################

COPYC

2 i2 1 1 3 j

3 1 1 1 3 j

CURV2
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3 1 1 1 1 i3

2

2e-04

1

6.6495158e-01 -3.5940326e-02 0. 0.009

0

CURV2

3 i3 1 1 3 j

2

5e-06

1

6.6495158e-01 2.0405967e-01 0. 5e-06

2

CURV2

3 i3 j 1 2 i3

2

0.009

1

2.6662408e-01 2.4060003e-01 0. 2e-04

0

!########################

!## FILLING THE VOLUME ##

!########################

FILLB

1 1 1 1 1 3 i1 j

FILLB

2 1 1 1 1 3 i2 j

FILLB

3 i3 1 1 2 3 i3 j

!#########################

!## SMOOTHING OPERATION ##

!#########################

GSMTHB

3

1 1 1 1 1 3 i1 j

2 1 1 1 1 3 i2 j

3 1 1 1 1 3 i3 j
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2

1 i1 1 1 3 1 j

2 1 1 1 3 1 j

0

2 i2 1 1 3 1 j

3 1 1 1 3 1 j

0

0

15

!#################

!## SAVE BLOCKS ##

!#################

TDSR

STORE

1 1 i1 1 j 1 k

block1.bin

TDSR

STORE

2 1 i2 1 j 1 k

block2.bin

TDSR

STORE

3 1 i3 1 j 1 k

block3.bin

!#######################

!## MERGING OF BLOCKS ##

!#######################

i123 =nni

j =nnj

k =nnk

DEFMSH

1

nni nnj nnk

TDSR

RETRIEVE

1 1 i1 1 j 1 k

block1.bin
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TDSR

RETRIEVE

1 i1 i12 1 j 1 k

block2.bin

TDSR

RETRIEVE

1 i12 i123 1 j 1 k

block3.bin

TDSR

STORE

1 1 nni 1 nnj 1 nnk

meshv5.bin

!###############

!## SAVE MESH ##

!###############

SAVE

volsol.bin

RITFILE

STOP
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B

Mesh resolution in wall-units
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Figure B.1: Wall y+ values. LEGENDS: Dynamic-SGS; Smagorinsky. X-coordinates
are scaled by the axial-chord length.
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Figure B.2: Wall x+ values. LEGENDS: as in Figure B.1.
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Figure B.3: Wall z+ values. LEGENDS: as in Figure B.1.
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