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On Weak Convergence, Malliavin Calculus and Kolmogorov Equa-
tions in Infinite Dimensions
Adam Andersson

Abstract

This thesis is focused around weak convergence analysis of approximations of sto-

chastic evolution equations in Hilbert space. This is a class of problems, which is suf-

ficiently challenging to motivate new theoretical developments in stochastic analysis.

The first paper of the thesis further develops a known approach to weak convergence

based on techniques from the Markov theory for the stochastic heat equation, such as

the transition semigroup, Kolmogorov’s equation, and also integration by parts from the

Malliavin calculus. The thesis then introduces a novel approach to weak convergence

analysis, which relies on a duality argument in a Gelfand triple of refined Sobolev-

Malliavin spaces. These spaces are introduced and a duality theory is developed for

them. The family of refined Sobolev-Malliavin spaces contains the classical Sobolev-

Malliavin spaces of Malliavin calculus as a special case. The novel approach is applied

to the approximation in space and time of semilinear parabolic stochastic partial differ-
ential equations and to stochastic Volterra integro-differential equations. The solutions
to the latter type of equations are not Markov processes, and therefore classical proof

techniques do not apply. The final part of the thesis concerns further developments

of the Markov theory for stochastic evolution equations with multiplicative non-trace

class noise, again motivated by weak convergence analysis. An extension of the tran-

sition semigroup is introduced and it is shown to provide a solution operator for the

Kolmogorov equation in infinite dimensions. Stochastic evolution equations with ir-

regular initial data are used as a technical tool and existence and uniqueness of such

equations are established. Application of this theory to weak convergence analysis is

not a part of this thesis, but the tools for it are developed.

Keywords: Stochastic evolution equations, stochastic Volterra equations, weak ap-
proximation, Kolmogorov equations in infinite dimensions, Malliavin calculus, fi-
nite element method, backward Euler method
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Introduction

1. A first overview

The main theme of this thesis is the study of approximation, regularity,

existence, and uniqueness for the semilinear stochastic evolution equation

dXt +AXt dt = F(Xt)dt +B(Xt)dWt, t ∈ (0,T ]; X0 = ξ,(1.1)

and its transition semigroup (Pt)t∈[0,T ], that is the family of mappings, which

act on sufficiently regular functions ϕ : H→ R by

(Ptϕ)(x) = E
[
ϕ(Xt)|X0 = x

]
.

The solution (Xt)t∈[0,T ], is a stochastic process, taking values in a separable

Hilbert space (H,‖ · ‖,〈·, ·〉). The operator −A : H ⊂ D(A)→H is the generator of

an analytic semigroup (St)t≥0 = (e−tA)t≥0 of bounded linear operators H → H .

The nonlinear drift coefficient F : H → H is assumed to be globally Lipschitz

continuous. The driving stochastic processW is a cylindrical idU -Wiener pro-

cess, whereU is another separable Hilbert space, defined on a filtered probabil-

ity space (Ω,F ,P) with filtration (Ft)t∈[0,T ]. The noise coefficient Bmaps H into

the space of Hilbert-Schmidt operatorsU →H, whereH is a Hilbert space with

H ⊂ H being dense and continuous. The mapping B is assumed to be globally

Lipschitz continuous. The initial value ξ : Ω → H is assumed to satisfy some

condition on smoothness and integrability. Further restrictions on F and B are

imposed in various parts of the thesis.

By a solution to (1.1) we mean a stochastic process X ∈ C(0,T ;L2(Ω;H)),

which for all t ∈ [0,T ], satisfies P-almost surely

Xt = Stξ +

∫ t

0

St−sF(Xs)ds +
∫ t

0

St−sB(Xs)dWs.(1.2)

The space H, which is a negative order interpolation space corresponding to

the operator A, determines the regularity of the solution. The choice H = H
gives the highest regularity that we consider in this thesis and corresponds to

trace class noise. In all papers in this thesis we include space-time white noise

as a special case. For sufficiently large spaces H, there is no solution.
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Introduction

Let (Xh)h∈(0,1) ⊂ L∞(0,T ;L2(Ω;H)), be a family of approximations toX. This
family is said to converge strongly to X as h ↓ 0, with strong order β > 0, if there

exists C, such that

sup
t∈[0,T ]

∥∥∥Xt −Xht ∥∥∥L2(Ω;H)
≤ Chβ, h ∈ (0,1).(1.3)

The family (Xh)h∈(0,1) is said to converge weakly to X, with weak rate γ > 0, if

for all sufficiently smooth ϕ : H→ R, there exists C, such that∣∣∣E[ϕ(Xt)−ϕ(Xht )]∣∣∣ ≤ Chγ , h ∈ (0,1).
In Papers I–III we consider different choices of assumptions for A,F,B,ξ and

different approximating families (Xh)h∈(0,1), which converge strongly to X with

some rate β > 0. In all these papers we essentially consider the same goal:

show that, for all sufficiently smooth ϕ : H→ R, the approximations (Xh)h∈(0,1),
converge weakly to X with any weak rate γ ∈ (0,2β), i.e., essentially twice the

strong rate.

In probability theory a sequence of probability measures (μn)n∈N on H is

said to converge weakly to a measure μ on H , if for every bounded and contin-

uous function ϕ : H→ R it holds that∫
H
ϕ dμn −

∫
H
ϕ dμ→ 0, as n→∞,

see, e.g., Billingsly [5]. Let P1(H) denote the set of all probability measures ν on

H , which satisfy
∫
H
‖x‖dν(x) <∞. For two probability measures ν1,ν2 ∈ P1(H),

the Wasserstein distanceW1(ν1,ν2) is given by

W1(ν1,ν2) = sup
ϕ

{∫
H
ϕ dν1 −

∫
H
ϕ dν2 : |ϕ(x)−ϕ(y)| ≤ ‖x − y‖

}
.

The metric W1 determines weak convergence in the following sense: a family

(μn)n∈N ⊂ P1(H) converges weakly to μ ∈ P1(H) if and only if W1(μn,μ)→ 0 as

n → ∞. If μh = Law(Xht ) = P ◦ (Xht )−1, h ∈ (0,1), are the distributions of Xht ,
h ∈ (0,1), and μ = Law(Xt) = P ◦ (Xt)−1 is the distribution of Xt , then it holds

that ∫
H
ϕ dμh = E[ϕ(Xht )] and

∫
H
ϕ dμ = E[ϕ(Xt)].

By (1.3) it follows that

W1(μh,μ) = sup
ϕ

{∣∣∣E[ϕ(Xht )−ϕ(Xt)]∣∣∣ : |ϕ(x)−ϕ(y)| ≤ ‖x − y‖}
≤

∥∥∥Xht −Xt∥∥∥L2(Ω;H)
≤ Chβ.
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Thus, the rate of weak convergence, measured in the Wasserstein distance, is

not less than the strong rate of convergence, but has never been proved to ex-

ceed it. However, by increasing the smoothness of the class of test functions,

one can often, depending on the problem, determine a weak rate of conver-

gence, which exceeds the strong rate. To formalize this statement we introduce

the distancesW k
1 , k ∈N, on P1(H), given by

W k
1 (ν1,ν2) = sup

ϕ

{∫
H
ϕ dν1 −

∫
H
ϕdν2 : ‖ϕ(1)‖, . . . ,‖ϕ(k)‖ ≤ 1

}
,

where ϕ(1), . . . ,ϕ(k) denote the Fréchet derivatives of ϕ up to order k, with the

relevant norms for the derivatives of different orders. From existing results in

the literature and, in particular, from the results in Papers I–III one can write,

with k = 2 or k = 3, depending on which type of approximation is considered,

the weak convergence in the form

W k
1 (μh,μ) =W k

1 (Law(Xht ),Law(Xt)) ≤ Cγhγ , h ∈ (0,1), γ ∈ (0,2β).
As the title of this thesis suggests, we also treat Malliavin calculus and

Kolmogorov equations in infinite dimensions. Techniques from both fields are

important for weak convergence analysis. In fact we are not aware of any proof

of weak convergence, except in the case of linear equations, which does not rely

either on Malliavin calculus or on the use of Kolmogorov’s equation. In Paper

IV we show that under suitable regularity assumptions on F, B, ϕ, it holds that
the function u : [0,T ]×H→ R, which for all t ∈ [0,T ], x ∈H , is given by u(t,x) =
(Ptϕ)(x), is the solution of the Kolmogorov equation: for (t,x) ∈ (0,T ]×H ,

∂u(t,x)

∂t
=
∂u(t,x)

∂x

(
−Ax +F(x)

)
+
1

2

∑
h∈H

∂2u(t,x)

∂x2

(
B(x)h,B(x)h

)
,

u(0,x) = ϕ(x).

Here H ⊂ H is an ON-basis and
∂u(t,x)
∂x (φ1) and

∂2u(t,x)
∂x2

(φ2,φ3) denote the first

and second directional x-derivatives in directions φ1 and φ2,φ3, respectively.

In order to make sense of this equation, in the case H � H , we must extend

(Pt)t∈[0,T ], so that u(t,x) = (Ptϕ)(x) is defined on a larger space than H . In order

to do this, careful analysis is needed, in particular, stochastic evolution equa-

tions with non-smooth initial value and random, time-dependent coefficients.

Paper IV contains an existence and uniqueness result for this type of equations.

2. Stochastic integration and Malliavin calculus

In this section we explain both the basic stochastic analysis that is needed

to define a solution to (1.1) and elements of the Malliavin calculus, which we

5
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use to study weak convergence. The presentation of the stochastic integral fol-

lows to a large extent the lecture notes of van Neerven [55], see also Brzeźniak
[11], Da Prato & Zabczyk [17], Pezat & Zabczyk [50], Prévôt & Röckner [51].

The presentation of the Malliavin calculus follows Andersson et al. [2], Kruse

[40]. For earlier works on Malliavin calculus in the Hilbert space setting, see

Grorud & Pardoux [24], León & Nualart [41]. For basic Malliavin calculus we

recommend Nualart [47], Privault [52] and for a general exposition of Gaussian

analysis see the excellent books by Janson [28] and Bogachev [6].

2.1. The cylindricalWiener process. Let (U,‖·‖U ,〈·, ·〉U ) be a separable Hilbert

space with an ON-basis U ⊂ U , let U∗ ⊂ U ∗ be the dual ON-basis, which is re-

lated toU by u∗ = 〈u, ·〉U for u ∈U. Let (βut )t∈[0,T ], u ∈U, be a sequence of inde-

pendent standard Brownian motions defined on a probability space (Ω,F ,P),
adapted to a filtration (Ft)t∈[0,T ]. We define a cylindrical idU -Wiener process

W : U → L2([0,T ]×Ω;R) as the strong operator limit

W =
∑
u∈U

βu ⊗u∗.

Thus, for all v ∈ U , it holds that Wv =
∑
u∈U β

u〈u,v〉U . Since for all u ∈ U
it holds that E|βut |2 = t‖u‖2U , and because (βu)u∈U is an orthogonal system in

L2(Ω×[0,T ];R) by independence, it holds by Parseval’s identity for all t ∈ [0,T ],
v ∈U , that

E
∣∣∣Wtv

∣∣∣2 = t∑
u∈U

|〈u,v〉U |2 = t‖v‖2U ,(2.1)

More generally, one can show, by the polarization identity, that

E
[
WtuWsv

]
=min(s, t)〈u,v〉U , s, t ∈ [0,T ], u,v ∈U.(2.2)

As a convergent sum of weighted Brownian motions, for all v ∈U , it holds that

(Wtv)t∈[0,T ] is a Brownian motion with covariance

Cov(Wtv,Wsv) = min(s, t)‖v‖2U .
This property is often taken together with (2.2) as the definition of the Cylin-

drical Wiener process, without any explicit construction.

Let Q be a selfadjoint, positive semidefinite, bounded linear operator H →
H . Sometimes, in particular, in Papers I–III of this thesis, the spaces H and U

are related by U =Q
1
2 (H), equipped with the inner product

〈u,v〉U = 〈Q− 1
2 u,Q−

1
2 v〉,

where Q−
1
2 denotes the pseudo inverse of Q

1
2 . In this case it is common to

write that W is a cylindrical Q-Wiener process. If Q is of trace class, i.e., if

6
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Tr(Q) =
∑
h∈H〈Qh,h〉 =

∑
h∈H ‖Q

1
2 h‖2 < ∞, where H ⊂ H is an arbitrary ON-

basis, then the canonical embedding i : U → H,u �→ u is a Hilbert-Schmidt

operator and the series

Bt =
∑
u∈U

βut ⊗u

converges in L2(Ω;H), since (‖i(u)‖)u∈U is a square summable sequence. The

process (Bt)t∈[0,T ] is called an H-valued Brownian motion. If Tr(Q) = ∞, then

Bt converges in any larger Hilbert space H̃ , such that the embedding U → H̃
is Hilbert-Schmidt. This is a common way to define the Q-Wiener process, but

we prefer the notion of cylindrical Wiener process, since it is defined the same

way regardless what the space U is or, equivalently, what properties Q has.

2.2. The stochasticWiener integral. The theory for stochastic integration goes

back to Wiener [60] and Paley, Wiener & Zygmund [48] for deterministic inte-

grands and to Itō [27] for stochastic integrands. Let L2(U ;H) denote the space

of all Hilbert-Schmidt operators U → H , let Φ ∈ L2(0,T ;L2(U ;H)) be a simple,

finite-rank integrand, given by

Φ =

N∑
n=1

1(tn−1,tn] ⊗
( k∑
j=1

hj,n ⊗uj
)
,

where 0 = t1 < · · · < tn < · · · < tN = T , (hj,n)
k
j=1 ⊂H , n ∈ {1, . . . ,N }, and (uj )

k
j=1 ⊂U

are orthonormal, k,N ∈N. The H-valued Wiener integral
∫ T
0
Φt dWt of Φ is the

random variable ∫ T

0

Φt dWt =

N∑
n=1

k∑
j=1

(
Wtnuj −Wtn−1uj

)
⊗ hj,n.

From the independence of increments and the independence of the Brownian

motions (Wuj )
k
j=1 it holds that the summands form an orthogonal system in

L2(Ω;H). Therefore, since E[|Wtnuj −Wtn−1uj |2] = (tn − tn−1)‖uj‖2U , and since

‖u ⊗ h‖U⊗H = ‖u‖U‖h‖H , it holds that

E
[∥∥∥∥∫ T

0

Φt dWs

∥∥∥∥2] = N∑
n=1

(tn − tn−1)
k∑
j=1

‖uj‖2U‖hj,n‖2

=

N∑
n=1

(tn − tn−1)
k∑
j=1

‖uj ⊗ hj,n‖2U⊗H

=

∫ T

0

‖Φt‖2L2(U ;H) dt,

7
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i.e., we have the Wiener isometry∥∥∥∥∫ T

0

Φt dWs

∥∥∥∥
L2(Ω;H)

=
∥∥∥Φt∥∥∥L2(0,T ;L2(U ;H))

.(2.3)

The piecewise constant functions are dense in L2(0,T ;R) and the finite-rank op-

erators are dense in L2(U ;H). By the completeness of L2(0,T ;L2(U ;H)) it fol-

lows it follows that the stochastic integral extends to all Φ ∈ L2(0,T ;L2(U ;H)).

This integral is called the H-valued Wiener integral, see van Neerven [55].

Moreover, (2.3) holds for all Φ ∈ L2(0,T ;L2(U ;H)).

2.3. The stochastic Itō integral. In this section we consider stochastic inte-

gration with stochastic integrands. We follow the lecture notes by van Neer-

ven [55], which develops stochastic integration in Banach spaces of UMD-type.

This is not the standard way to do it in Hilbert space, but we present this ap-

proach since it is elegant.

A stochastic process Φ : [0,T ]×Ω→L2(U ;H) is said to be simple L2(U ;H)-

predictable, if it is of the form

Φ =

N∑
n=1

M∑
m=1

1(tn−1,tn] ⊗ 1Am,n ⊗
( k∑
j=1

hj,n ⊗uj
)
,(2.4)

where 0 = t1 < · · · < tn < · · · < tN = T , Am,n ∈ Ftn−1 , m ∈ {1, . . .M}, n ∈ {1, . . . ,N },
hj,n ∈ H , j ∈ {1, . . . , k}, n ∈ {1, . . . ,N }, and u1, . . . ,uk ∈ U are orthonormal. It is

clear that Φ ∈ L2([0,T ] ×Ω;L2(U ;H)). The Itō integral of Φ is the H-valued

random variable∫ T

0

Φt dWt =

N∑
n=1

M∑
m=1

1Am,n ⊗
k∑
j=1

(
Wtnuj −Wtn−1uj

)
⊗ hj,n.

Let W̃ : U → L2([0,T ] × Ω̃) be an idH -Wiener process, which is defined on a

probability space (Ω̃, F̃ , P̃). We denote expectation with respect to (Ω̃, F̃ , P̃) by
Ẽ. By a decoupling, inequality Theorem 13.1 in van Neerven [55], there exist

for all p ∈ [2,∞), a constant Cp such that

E
[∥∥∥∥∫ T

0

Φt dWt

∥∥∥∥p] ≤ CpE[Ẽ[∥∥∥∥
∫ T

0

Φt dW̃t

∥∥∥∥p]].(2.5)

The constant Cp is uniform with respect to k,M,N . In this situation results for

the Wiener integral apply since the integrand can be considered deterministic

with respect to (Ω̃, F̃ , P̃). First, the Kahane-Khintchine inequality, in van Neer-

ven [55, Corollary 4.13], states in particular that the Lp(Ω;H)-norms are all

8
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equivalent on the space consisting of all Gaussian H-valued random variables.

Therefore, there exists a new constant C ′p , such that

E
[∥∥∥∥∫ T

0

Φt dWt

∥∥∥∥p] ≤ C ′pE[(Ẽ[∥∥∥∥
∫ T

0

Φt dW̃t

∥∥∥∥2]) p2 ]

= C ′pE
[(∫ T

0

∥∥∥Φ∥∥∥2L2(U ;H)
dt

) p
2
]
.

(2.6)

For the equality we used the Wiener isometry (2.3). Since H is a Hilbert space

it holds that C2 = 1, for p = 2, and equality holds in (2.5). This holds by (12.1),

Definition 12.3 of a UMD-space, and the proof of Theorem 13.1 in van Neer-

ven [55]. In this way we obtain the Itō isometry∥∥∥∥∫ T

0

Φt dWt

∥∥∥∥
L2(Ω;H)

=
∥∥∥Φ∥∥∥

L2([0,T ]×Ω;L2(U ;H))
.(2.7)

Let L2F ([0,T ]×Ω;L2(U ;H)) denote the closure in L2([0,T ]×Ω;L2(U ;H)) of all

simple L2(U ;H)-predictable processes. We say that Φ ∈ L2F ([0,T ]×Ω;L2(U ;H))

is an L2(U ;H)-predictable process. By (2.7) the stochastic integral extends to

all of L2F ([0,T ]×Ω;L2(U ;H)). The constant C ′p in (2.6) is known to be bounded

from above by C ′p ≤ (p(p − 1)/2)p/2, see Lemma 7.7 in Da Prato & Zabczyk [17].

We restate it: for all Φ ∈ L2F ([0,T ]×Ω;L2(U ;H)), p ∈ [2,∞), it holds that

∥∥∥∥∫ T

0

Φt dWt

∥∥∥∥
Lp(Ω;H)

≤
√
p(p − 1)

2

∥∥∥Φ∥∥∥
Lp(Ω;L2(0,T ;L2(U ;H)))

.(2.8)

2.4. Malliavin calculus. It is safe to say that integration by parts is a very pow-

erful tool in mathematical analysis. Malliavin calculus offers a way to integrate

by parts in stochastic analysis, which turns out to be very powerful indeed.

It is a natural part of stochastic analysis. Malliavin calculus was introduced

by Malliavin in [46], to give a probabilistic proof of Hörmander’s Theorem on

hypoelliptic partial differential operators.
To explain its power let us state a very simple question, which has no sat-

isfactory answer without Malliavin calculus. By the polarization identity and

(2.7) it holds for all Φ,Ψ ∈ L2F ([0,T ]×Ω;L2(U ;H)) that〈∫ T

0

Ψt dWt,

∫ T

0

Φt dWt

〉
L2(Ω;H)

=
〈
Ψ,Φ

〉
L2([0,T ]×Ω;L2(U ;H))

.(2.9)

This is the Itō isometry and it is the most basic result in stochastic analysis.

From this basic result it is natural to ask: is there a useful result which applies if∫ T
0
ΨdW is replaced by a random variable F ∈ L2(Ω;H)? The answer is positive,

9
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if F has the proper regularity, and the formula reads:〈
F,

∫ T

0

Φt dWt

〉
L2(Ω;H)

=
〈
DF,Φ

〉
L2([0,T ]×Ω;L2(U ;H))

.(2.10)

Here DF = (DtF)t∈[0,T ] is an L2(U ;H)-valued stochastic process and the un-

bounded operatorD : L2(Ω;H)→ L2([0,T ]×Ω;L2(U ;H)) is called the Malliavin

derivative. We refer to (2.10) as the Malliavin integration by parts formula. It

remains to understand the operator D, in order for (2.10) to be useful. Papers I

and III contain brief introductions to Malliavin calculus and Paper II provides

a theoretical account of Malliavin calculus. We use this section to complement

these papers with some of the ideas behind Malliavin calculus and refer to Pa-

per II for a more rigorous introduction.

Below we define the directional Malliavin derivative as a limit of differ-
ence quotients. In order to define a difference quotient, we need some notion

of translation. The type of translation that we now introduce was first stud-

ied by Cameron & Martin [12], [13] for real-valued integrals By identifying

L2(0,T ;U ) � L2(0,T ;L2(U ;R)), it is clear that the mapping

I : L2(0,T ;U )→ L2(Ω;R), I(φ) =

∫ T

0

φt dWt,

is well defined. Moreover, for θ ∈ L2(0,T ;U ), let

Iθ : L2(0,T ;U )→ L2(Ω;R), Iθ(φ) = I(φ) + 〈φ,θ〉L2(0,T ;U ).

The Cameron-Martin Theorem in this setting states that for all θ ∈ L2(0,T ;U ),

the family Iθ(φ), φ ∈ L2(0,T ;U ), has the same distribution as the family I(φ),
φ ∈ L2(0,T ;U ), under the measure Q, which is determined by

dQ
dP

= exp

(
I(θ)− 1

2
‖θ‖2L2(0,T ;U )

)
,

see Bogachev [6, Theorem 1.4.2]. In particular, for all n ∈ N, measurable func-

tions f : Rn→ R, and (φi )
n
i=1 ⊂ L2(0,T ;U ), it holds that

E
[
f
(
Iθ(φ1), . . . , I

θ(φn)
)]

= E
[
f
(
I(φ1), . . . , I(φn)

)
exp

(
I(θ)− 1

2
‖θ‖L2(0,T ;U )

)]
.

(2.11)

Remark 2.1. Recall that we define the Cylindrical Wiener process as an op-

eratorW : U → L2([0,T ]×Ω;R). For θ ∈ L2(0,T ;U ), we define θ∗ ∈ L2(0,T ;U ∗)
by θ∗t = 〈θt, ·〉U , t ∈ [0,T ]. With this notation we get that

Iθ(φ) =

∫ T

0

φt
(
dWt +θ

∗
t dt

)
.

10
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We think ofWθ :=W+
∫ ·
0
θ∗s ds, as a translated Cylindrical Wiener process in the

direction
∫ ·
0
θ∗s ds : U → L2(0,T ;U ∗), and Iθ(φ) as the corresponding translation

of I(φ).

In order to define the Malliavin derivative we introduce a suitable class of

smooth random variables. For q ∈ [2,∞], let Sq denote the space of all random
variables of the form

F = f (I(φ1), . . . , I(φn)), f ∈ C1p(Rn;R), (φi )ni=1 ⊂ Lq(0,T ;U ), n ∈N.

If F ∈ Sq, then for θ ∈ L2(0,T ;U ), we write Fθ = f (Iθ(φ1), . . . , I
θ(φn)). We define

the directional Malliavin derivative of F ∈ Sq, in direction θ ∈ L2(0,T ;U ), by

DθF = lim
ε→0

Fεθ −F
ε

.

First,DθI(φ) = I(φ)+〈θ,φ〉L2(0,T ;U )−I(φ) = 〈θ,φ〉L2(0,T ;U ) and by the usual chain

rule it holds that

DθF =

n∑
i=1

∂if (I(φ1), . . . , I(φn))〈θ,φi〉L2(0,T ;U ).

The Malliavin derivative is therefore the operator D : Sq → L2(Ω;Lq(0,T ;U )),

which is given by

DF =

n∑
i=1

∂if (I(φ1), . . . , I(φn))⊗φi .

We now sketch how to prove a first version of the integration by parts for-

mula. The formula states that for all F ∈ S2, φ ∈ L2(0,T ;U ), it holds that〈
DF,θ

〉
L2([0,T ]×Ω;U )

=
〈
F,I(θ)

〉
L2(Ω;R)

.(2.12)

This is proved by the dominated convergence theorem, the Cameron-Martin

formula (2.11), and a first order Taylor expansion:〈
DF,θ

〉
L2([0,T ]×Ω;U )

= E
[
DθF

]
= lim
ε→0

ε−1E
[
Fεθ −F

]
= lim
ε→0

ε−1E
[(
exp

(
I(εθ)− 1

2
‖εθ‖2L2(0,T ;U )

)
− 1

)
F
]

= lim
ε→0

E
[(
I(θ) +O(ε)

)
F
]

= E
[
FI(θ)

]
=
〈
F,I(θ)

〉
L2(Ω;R)

.

The use of the dominated convergence theoremmust be justified, but we refrain

from presenting the details.

11
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For q ∈ [0,∞], let Sq(H) denote the space of random variables of the form

X =
∑m
j=1Fj ⊗ hj , for (Fj )mj=1 ⊂ Sq, (hj )mj=1 ⊂ H , m ∈ N. The Malliavin derivative

of X ∈ Sq(H) is the operator

D : Sq(H)→ L2(Ω;Lq(0,T ;L2(U ;H))), DX =

m∑
j=1

hj ⊗DFj .

The integration by parts formula (2.12) is the main tool in proving that

the operator D : Sq(H) → L2(Ω;Lq(0,T ;L2(U ;H))) is closable. For p ∈ [2,∞),

q ∈ [2,∞], let M1,p,q(H) denote the closure of Sq(H) under the norm

∥∥∥X∥∥∥
M1,p,q(H)

=

(∥∥∥X∥∥∥p
Lp(Ω;H)

+
∥∥∥DX∥∥∥p

Lp(Ω;Lq(0,T ;L2(U ;H)))

) 1
p
.

These spaces are Banach spaces and the space M1,2,2(H) is a Hilbert space. In

the literature the spaces M1,p,2(H), p ∈ [2,∞), are often denoted D1,p(H), see,

e.g., Nualart [47]. We refer to the former as refined Sobolev-Malliavin spaces

and the latter as classical Sobolev-Malliavin spaces. The refined Sobolev-Mall-

iavin spaces were introduced in Paper II, and also used in Paper III. In Paper II

we introduce a duality theory based on the Gelfand triple

M1,p,q(H) ⊂ L2(Ω;H) ⊂M1,p,q(H)∗.

One of the main results in that paper is the following inequality: for all p ∈
[2,∞), q ∈ [2,∞], Φ ∈ L2F ([0,T ]×Ω;L2(U ;H)) and 1

p +
1
p′ = 1, 1

q +
1
q′ = 1, it holds

that ∥∥∥∥∫ T

0

Φt dWt

∥∥∥
M1,p,q(H)∗

≤
∥∥∥Φ∥∥∥

Lp
′
(Ω;Lq

′
(0,T ;L2(U ;H)))

.(2.13)

This should be compared with (2.8), in which the integrability in time is L2.
Here we can take q > 2 to get 1 ≤ q′ < 2.

Finally, we introduce the adjoint operator

δ : L2(Ω × [0,T ];L2(U ;H)) ⊃ D(δ)→ L2(Ω;H),

of the unbounded operator D : L2(Ω;H)→ L2(Ω× [0,T ];L2(U ;H)). It is defined

by 〈
DY,Φ

〉
L2(Ω×[0,T ];L2(U ;H))

=
〈
Y,δΦ

〉
L2(Ω;H)

.(2.14)

Theorem 4.13 in Kruse [40] states that L2F ([0,T ]×Ω;L2(U ;H)) ⊂ D(δ) and that

for all Φ ∈ L2F ([0,T ]×Ω;L2(U ;H)) it coincides with the Itō integral

δ(Φ) =

∫ T

0

Φt dWt.

12
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With this knowledge, the duality between D and δ in (2.14) is precisely the

integration by parts formula (2.10). The operator δ is also called the Skorohod

integral.

3. Deterministic evolution equations

Semigroup theory allows us to consider many parabolic and hyperbolic

partial differential equations as infinite dimensional ordinary differential equa-
tions. Different equations require different types of semigroups. Throughout

this thesis we consider parabolic equations, which require analytic semigroups,

and also Volterra integro-differential equations, which essentially are treated

within the same framework, but with a solution operator family which is not a

semigroup. In Papers I–II, we consider, from a semigroup theoretical point of

view, a simple setting, where the semigroup can be defined via a spectral de-

composition. In Paper III, Volterra integro-differential equations are considered
and in Paper IV we allow general analytic semigroups. We limit the presenta-

tion in this introduction to the setting of the Papers I–III. For semigroup theory

we recommend Pazy [49], Lunardi [45] and for Volterra equations Prüss [53].

3.1. Analytic semigroups generated by selfadjoint operators. Let H be the

Hilbert space from the previous sections, and let L(H) denote the space of all

bounded linear operators on H . We consider an operator A : H ⊃ D(A) → H ,

which is selfadjoint, positive definite, and with compact inverse. These con-

ditions ensure that there exists eigenpairs (λn,φn)n∈N, such that Aφn = λnφn,
n ∈ N, and such that (φn)n∈N ⊂ H forms an ON-basis, and such that λn → ∞.

We order the eigenvalues in increasing order, i.e., 0 < λ1 ≤ · · · ≤ λn ≤ λn+1 ≤ . . . ,
n ∈N.

The analytic semigroup St = e
−tA, generated by −A, is defined as the strong

operator limit

St =
∑
n∈N

e−λntφn ⊗φn, t ≥ 0.

It has the semigroup property

Ss ◦ St = Ss+t , s, t ≥ 0,(3.1)

S0 = idH,(3.2)

t �→ St is strongly continuous.(3.3)

Any operator family (St)t≥0 ⊂ L(H), which satisfies properties (3.1)–(3.3) is

called an operator semigroup. The particular semigroup (St)t≥0 has an addi-

tional very good property, namely it is analytic. This means that it extends to

an analytic function, in a sector of the complex plane, containing the positive

13
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real line. From our point of view the most important properties of analytic

semigroups are the smoothing property and Hölder estimate in (3.5) below.

In order to proceed we define fractional powers of the operatorA. For r ∈ R,
let Ar : H ⊂ D(Ar )→ H , be the operator which is given by the strong operator

limit

Ar =
∑
n∈N

λrn φn ⊗φn,

with

D(Ar ) =
⎧⎪⎪⎨⎪⎪⎩h ∈H :

∑
n∈Nλ

2r
n |〈φn,h〉|2 <∞, r > 0,

H, r ≤ 0.

For r ≥ 0 let Hr denote the space Hr =D(Ar ), equipped with the norm

‖h‖Hr =
∥∥∥Arh∥∥∥, h ∈Hr.(3.4)

For r < 0, let Hr be the closure or H under the norm (3.4). Since R+ � x �→
x2re−2x is a bounded function for all r ≥ 0 it holds by Parseval’s identity that∥∥∥ArSth∥∥∥2 =∑

n∈N
λ2rn e

−2λnt |〈φn,h〉|2 = t−2r
∑
n∈N

(tλn)
2re−2λnt |〈φn,h〉|2

≤ Crt−2r
∑
n∈N

|〈φn,h〉|2 = Crt−2r‖h‖2.

It also holds, since R+ � x �→ x−r (e−x − 1) is bounded, that for all r ∈ [0,1] and
t > 0, ∥∥∥A−r (St − idH )h∥∥∥2 =∑

n∈N
λ−2rn (e−λnt − 1)2|〈φn,h〉|2

= t2r
∑
n∈N

(λnt)
−2r (e−λnt − 1)2|〈φn,h〉|2

≤ Crt2r
∑
n∈N

|〈φn,h〉|2 = Ct2r‖h‖2.

We restate these two assertions:∥∥∥ArSt∥∥∥L(H)
≤ Crt−r , t > 0, r ≥ 0,∥∥∥A−r (St − idH )∥∥∥L(H)
≤ Cr tr , t > 0, r ∈ [0,1].

(3.5)

It is clear that any power Ar , r ∈ R, commutes with the semigroup S , i.e., for all
h ∈ Hr it holds StArh = ArSth. These are essentially the properties of S , which

will be used in this thesis.
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3.2. Cauchy problems. One property of S , which we did not mention above,

is that t �→ St is strongly differentiable and that

d

dt
Sth+ASth = 0, t > 0; h ∈H.

Since S0 = idH , it is clear that u(t,x) = Stx is the solution to the homogenous

Cauchy problem

u̇ +Au = 0, t > 0; u0 = x.

The solution u to the inhomogeneous Cauchy problem

u̇ +Au = f , t > 0; u0 = x,

where f : [0,T ]→H is sufficiently regular, is given by the variation of constants

formula, or Duhamel’s principle, which reads

ut = Stx +

∫ t

0

St−sfs ds, t ∈ [0,T ].(3.6)

In this thesis we will consider this type of problems with f depending in a

nonlinear way on the solution, and with an additional stochastic term in the

right hand side of the equation. The solution in (3.6) called a mild solution.

3.3. Volterra integro-differential equations. Let b : (0,∞) → R be the Riesz

kernel bt = t
ρ−2/Γ(ρ − 1), where ρ ∈ (1,2) is some fixed number. We consider

first the linear homogenous equation

u̇ +

∫ t

0

bt−sAus ds = 0, t > 0; u0 = x.

The solution operator (St)t≥0 ⊂ L(H) to this equation, is given by the strong

operator limit

St =
∑
n∈N

sn,t (φn ⊗φn), t ≥ 0,

where sn,t , is the solution to the scalar equation

ṡn,t +λn

∫ t

0

b(t − r)sn,r dr = 0, t > 0; sn,0 = 1.

This operator family does not satisfy Ss ◦ St = Ss+t and is therefore no semi-

group. Nevertheless, the solution of the inhomogeneous equation

u̇ +

∫ t

0

bt−sAus ds = f , t > 0; u0 = x,
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is given by the mild solution

ut = St +
∫ t

0

St−sfs ds, t ≥ 0,

which looks formally the same as (3.6).

Moreover, the family satisfies bounds analogous to (3.5) but modified by

the parameter ρ. For example, we have the smoothing property∥∥∥A r
ρ St

∥∥∥L(H)
≤ Crt−r , t > 0, r ∈ [0,1],

and other bounds which are used in the analysis.

3.4. Finite element approximation. Here we treat a concrete partial differen-
tial equation. There is a rich literature on the finite element method, see Bren-

ner & Scott [10] for elliptic problems and Thomée [54] for parabolic problems.

In this thesis we apply existing results, for the most basic finite element ap-

proximation, and the only new results we use are obtained by interpolation

between known results, see Papers I–III.

We consider D ⊂ Rd , d = 1,2,3, a convex, polygonal domain, andH = L2(D).

Let A = −Δ, where Δ =
∑d
i=1∂

2/∂ξ2i is the Laplace operator with homogeneous

Dirichlet boundary condition, i.e., D(A) = H1
0 (D)∩H2(D). The operator A sat-

isfies all assumptions of Section 3.1 and generates therefore an analytic semi-

group (St)t≥0. Let (Th)h∈(0,1) denote a regular family of triangulations of D. Here

h is a refinement parameter which is the diameter of the largest triangle in the

mesh. Let (Vh)h∈(0,1) denote the corresponding family of spaces Vh ⊂ H , which

consists of continuous functions on D being affine linear on each triangle. We

define Ph : H → Vh to be the orthogonal projector onto Vh. In finite element

theory the Ritz projector Rh : H1/2 → Vh is also important.

Let Ah : Vh→ Vh denote the discrete Laplacian, which is the operator on Vh
satisfying

〈Ahφh,ψh〉 = 〈∇φh,∇ψh〉, ∀φh,ψh ∈ Vh.

The operator Ah is selfadjoint and positive definite. It therefore generates

an analytic semigroup (Sht )t≥0 ⊂ L(Vh), which is the solution operator to the

Cauchy problem

u̇h +Ahuh = 0, t > 0; uh,0 = Phx.

The semigroup is analytic uniformly in h in the sense that the characteristic

smoothing property analogous to (3.5) holds uniformly in h, namely∥∥∥ArhSh,t∥∥∥L(H)
≤ Crt−r , t > 0, h ∈ (0,1), r ≥ 0.

16



Introduction

The following error estimates holds for the projectors and for the approxi-

mation of the semigroup:∥∥∥A s
2 (idH −Ph)φ

∥∥∥ ≤ Chr−s
∥∥∥A r

2φ
∥∥∥, s ∈ [0,1], r ∈ [s,2],∥∥∥A s

2 (idH −Rh)φ
∥∥∥ ≤ Chr−s

∥∥∥A r
2φ

∥∥∥, s ∈ [0,1], r ∈ [1,2],∥∥∥(St − Sht )φ∥∥∥ ≤ Ct−
s−r
2 hs‖A r

2φ‖, s ∈ [0,2], r ∈ [0, s].

Recall that h = hmax is the largest diameter of any triangle in Th. Let hmin be

the diameter of the smallest triangle in Th. The family (Th)h∈(0,1) is said to be

quasi-uniform, if there exists a number ρ, such that

hmax

hmin
≤ ρ, ∀Th ∈ (Th)h∈(0,1).

If the mesh family is quasi-uniform, then the following estimates hold

∥∥∥A 1
2

h Phφ
∥∥∥ ≤ C∥∥∥A 1

2φ
∥∥∥, φ ∈H1/2;

∥∥∥AhPh∥∥∥L(H)
≤ Ch−2.

In Paper I these estimates are used, enforcing us to assume quasi-uniformity.

In Papers II–III this restriction is removed.

3.5. Full approximation. Above we described two ways to discretize space.

We now consider full discretization with finite element approximation in space

and the Backward Euler method for approximation in time. Let N ∈ N, k =

T /N , and 0 = t0 < t1 < · · · < tN = T be a uniform grid with tj = jk, j ∈ {0, . . . ,N }.
The fully discrete scheme reads, in abstract form,

Uh,k
n −Uh,k

n−1
k

+AhU
h,k
n = 0, n ∈ {1, . . . ,N }; Uh,k

0 = Phx,

or rewritten and iterated

Uh,k
n = (idH + kAh)

−1Uh,k
n−1 = · · · = (idH + kAh)

−nPnx =: S
h,k
n x.

The family (Sh,kn )n∈N is a fully discrete approximation of the semigroup (St)t≥0.
The error and stability estimates holds for s ∈ [0,2], r ∈ [0, s],

∥∥∥(Stn − Sh,kn )
φ
∥∥∥ ≤ Ct− s−r2n

(
hs + k

s
2

)∥∥∥A r
2φ

∥∥∥, n ∈ {1,2, . . . },∥∥∥A s
2

h S
h,k
n φ

∥∥∥ ≤ Ct− s2n ‖φ‖, n ∈ {1,2, . . . }.
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4. Stochastic evolution equations

The main topic of this thesis is the study of stochastic evolution equations

(SEE) in Hilbert space, treated within the semigroup framework. In Papers I–

III we consider a well established setting, in which we can rely on existing

results on existence, uniqueness and regularity, see Baeumer et al. [4], Brzeź-
niak [11], Da Prato & Zabczyk [17], Jentzen & Röckner [31], van Neerven [55].

For regularity in the Malliavin sense we rely on Fuhrman & Tessitore [22], but

in all of Papers I–III we prove refined results, which we need. In Paper IV we

study Markov theory for SEE, in particular, we study smoothness properties of

the transition semigroup and the Kolmogorov equation. For this purpose we

need, as a technical tool, to consider SEE with initial values in spaces H−δ, for
δ ∈ [0,1/2). This was studied in Chen & Dalang [15], [14] for the heat equation,

on the real line in the framework of Walsh [56]. In the semigroup framework

on the hand no such results were previously available in the literature, and

establishing existence and uniqueness is one of the purposes of this thesis.

4.1. SEE with irregular initial value. In Paper IV, Section 2, we consider con-

sider equations of the following type

(4.1) Xt = Stξ +
∫ t

0

St−sF(s,Xs)ds +
∫ t

0

St−sB(s,Xs)dWs, t ∈ [0,T ].

Here (St)t≥0 is an analytic semigroup and W is a cylindrical idU -Wiener pro-

cess. We assume that F : (0,T ]×H ×Ω→H1, and B : (0,T ]×H ×Ω→L2(U ;H2)

are predictable and globally Lipschitz continuous in a suitable sense. Here

H1 ⊃ H and H2 ⊃ H are continuous, and, unless H2 = H , the noise is not of

trace class. We allow initial singularities in F and B, which is captured by the

following assumptions,

‖F(t,0)‖Lp(Ω;H1) ≤ Ct
−α̂ , ‖B(t,0)‖Lp(Ω;H2) ≤ Ct

−β̂ , t ∈ (0,T ],
for some α̂ ∈ [0,1), and β̂ ∈ [0,1/2). What is most interesting is the assumption

on ξ . We assume that, for some p ∈ [2,∞),

ξ ∈ Lp(Ω;H−δ) with

⎧⎪⎪⎨⎪⎪⎩δ ∈ [0,1), if the noise is additive,

δ ∈ [0,1/2), otherwise.

In Theorem 2.7 in Paper IV, we show the following

Theorem 4.1. Under the above assumptions, there exist an up to modification

unique stochastic process X : [0,T ] ×Ω → H−δ, which satisfy (4.1), and Xt ∈ H ,

t ∈ (0,T ] P-a.s., and moreover

sup
t∈(0,T ]

tλ‖Xt‖Lp(Ω;H) ≤ C
(
1+ ‖ξ‖Lp(Ω;H−δ)

)
,
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where λ ≥ 0, depends on δ, the strengths of the singularities of F and B, and on H1,

H2.

The proof is performed by a classical contraction argument, using Banach’s

fixed point theorem. More precisely, X is shown to be the unique fixed point of

the mapping

(4.2) Φ(Y) =

⎛⎜⎜⎜⎜⎝Stξ +
∫ t

0

St−sF(s,Xs)ds +
∫ t

0

St−sB(s,Xs)dWs

⎞⎟⎟⎟⎟⎠
t∈[0,T ]

,

defined on the Banach space L
p
δ,λ of predictable stochastic processes Y : [0,T ]×

Ω→H−δ, such that ∥∥∥Y∥∥∥
L
p
λ,r

:= sup
t∈(0,T ]

tλert
∥∥∥Yt∥∥∥Lp(Ω;H)

<∞.

For r ∈ (−∞,0) with |r | sufficiently large, this map is shown to be a contraction.

4.2. SEE with smooth coefficients. Here we consider the following equations

Xxt = Stx +

∫ t

0

St−sF(X
x
s )ds +

∫ t

0

St−sB(X
x
s )dWt, t ∈ [0,T ],(4.3)

being indexed over the initial value x ∈ Ξ, where Ξ is the union of all spaces

H−δ, δ ≥ 0, for which (4.3) has a solution. For fixed n ∈ N we assume that

F ∈ Cnb(H ;H1) and B ∈ Cnb(H ;L2(U ;H2)).

In Paper IV, Theorem 3.1, we prove that x �→ Xx is Fréchet differentiable
from negative order spaces. One feature of this result is that that there ex-

ists δ > 0, such that H−δ/k � x �→ Xx is k times Fréchet differentiable, for k ∈
{1, . . . ,n}. Thus for higher order derivatives, Fréchet differentiability holds only

on smaller and smaller spaces.

Let (Pt)t∈(0,T ] denote the family of mappings which, for t ∈ (0,T ] act on

ϕ ∈ C1b(H ;R) by

(Ptϕ)(x) := E
[
ϕ(Xxt )

]
.

Since Xx, is well defined for irregular x ∈ Ξ, and since Xxt ∈ H , for t ∈ (0,T ],
x ∈ Ξ, it holds that Ξ � x �→ (Ptϕ)(x) ∈ R is well defined. We call (Pt)t∈(0,T ] the
extended transition semigroup. In Paper IV, Theorem 3.2, we show, in particu-

lar, that there exists δ > 0, such that H−δ/k � x �→ (Ptϕ)(x) ∈ R is k times Fréchet

differentiable, for k ∈ {1, . . . ,n}, and moreover that for all δ1, . . . ,δn ∈ [0,δ) with

δ1 + · · ·+ δn < δ it holds∣∣∣((Ptϕ))(n)(x)(u1, . . . ,un)∣∣∣ ≤ Ct−(δ1+···+δn)‖u1‖H−δ1 . . .‖un‖H−δn .
This is a useful result, which allows one to distribute smoothness onto u1, . . . ,un
in an asymmetric way. This is one of the main results in Paper IV. This result

19



Introduction

should be compared with [3, (4.2)–(4.3)], [8, Lemma 5.3], [20, Lemma 4.4–4.6],

[32, Chapter 5, Proposition 7.1], [59, Lemma 3.3], but all these results restrict

to a finite dimensional setting. To the best of our knowledge Debussche [20] is

the first paper containing this kind of bounds, and [20] was the inspiration for

Paper IV.

For ϕ ∈ C2b(H ;R), F ∈ C2b(H ;H1), B ∈ C2b(H ;L2(U ;H2)) consider the Kol-

mogorov equation

∂
∂t
u(t,x) =

∂
∂x
u(t,x)

(
−Ax +F(x)

)
+
1

2

∑
v∈U

∂2

∂x2
u(t,x)

(
B(x)v,B(x)v

)
,

u(0,x) = ϕ(x).

In Paper IV, Theorem 4.1 we prove that for all ϕ ∈ C2b(H ;R), t ∈ (0,T ], x ∈ H1,

the function u(t,x) := (Ptϕ)(x) satisfies the Kolmogorov equation.

This result extends [18, Theorem 7.5.1] in the case when −A generates an

analytic semigroup, which in fact is required in order to have a solution of the

stochastic equation for H1 � H or H2 � H . While we assume F ∈ C2b(H ;H1),

B ∈ C2b(H ;L2(U ;H2)), they assume F ∈ C3b(H ;H), B ∈ C3b(H ;L2(U ;H)). We also

remark that our result in fact does not require x ∈ H1, in order for (t,x) �→
(Ptϕ)(x) to satisfy the Kolmogorov equation, but less regular x are allowed. In

all other works we are aware of, x ∈H1 is assumed.

5. SPDE and stochastic Volterra equations

Here we consider concrete settings, to which the results of the previous sec-

tion apply. First we discuss stochastic partial differential equations and second

we discuss stochastic Volterra integro-differential equations. For more about

concrete settings see Jentzen & Kloeden [30], Jentzen & Röckner [31], Jentzen

[29], van Neerven [55].

5.1. Stochastic reaction-diffusion equations. Let D ⊂ Rd , d = 1,2,3, be a con-

vex polygonal domain and letH = L2(D). The linear operatorA : H ⊃ D(A)→H
is chosen to be A = −Δ, where =

∑d
i=1∂

2/∂ξ2 is the Laplace operator with homo-

geneous Dirichlet boundary condition, i.e., D(A) = H2(D)∩H1
0 (D). Due to the

concrete setting we prefer to work with the notation Ḣr = Hr/2, where (Hr )r∈R,
are the spaces introduced in Section 3 corresponding to the operator A. With

this notation Ḣr coincides with the classical Sobolev spaces Wr,2(D) with cer-

tain boundary conditions depending on r.
The nonlinear drift F : H→H is a Nemytskii operator, defined by (F(x))(ξ)

= f (x(ξ)), for x ∈ H , ξ ∈ D, and some f : R → R, which is globally Lipschitz

continuous or more regular. Under this assumption the mapping F is globally

Lipschitz continuous as well.
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Let Q ∈ L(H) be selfadjoint, positive definite, not necessarily of finite trace.

The Hilbert space U is here given as the image U = Q
1
2 (H) of H under the

unique positive square root Q
1
2 of Q. It is equipped with the scalar product

〈u,v〉 = 〈Q− 1
2 u,Q−

1
2 v〉, where Q−

1
2 is the pseudoinverse of Q

1
2 . Let β ∈ (0,1] be a

regularity parameter. The multiplicative noise coefficient B : H → L2(U ;Ḣβ−1)
is a Nemytskii operator, defined by (B(x)u)(ξ) = b(x(ξ))u(ξ), for x ∈ H , u ∈ U ,

ξ ∈ D, and some b : R→ R, being globally Lipschitz continuous. Under these

assumptions it is not clear that B is well defined, but for different choices of

U , b, β, one has to check if B(x) ∈ L2(U ;Ḣβ−1), for all x ∈ H , and moreover if

x �→ B(x) is Lipschitz continuous.

Example 5.1 (Linear multiplicative noise). Assume that d = 1, D = [0,1],
Q = idH , U = H , β ∈ (0,1/2), and that (b(x))(ξ) = x(ξ), for ξ ∈ [0,1]. Let

(φi ,λi )i∈N denote the eigenpairs of A. We get∥∥∥B(x)∥∥∥2L2(U ;Ḣβ−1)
=
∑
i∈N

∥∥∥B(x)φi∥∥∥2Ḣβ−1 =
∑
i,j∈N

∣∣∣〈Aβ−1
2 B(x)φi ,φj

〉∣∣∣2
=

∑
i,j∈N

∣∣∣〈B(x)φi ,A β−1
2 φj

〉∣∣∣2 = ∑
i,j∈N

λ
β−1
j

∣∣∣〈B(x)φi ,φj〉∣∣∣2
≤ sup
n∈N

sup
ξ∈[0,1]

|φn(ξ)|2
∑
i,j∈N

λ
β−1
j

∣∣∣〈x,φi〉∣∣∣2 = C∥∥∥Aβ−1
2

∥∥∥2L2(H)
‖x‖2.

Since B is linear the same calculation with B(x) replaced by B(x) − B(y), shows

that H � x �→ B(x) ∈ L2(H ;Ḣβ−1) is Lipschitz continuous. This calculation is

taken from Jentzen [29, § 5.2.1]

Example 5.2 (Additive space-time white noise). Assume that d = 1, D =

[0,1], Q = idH , U = H , β ∈ (0,1/2), and that b = 1. Since for all γ > 1/2, it holds
that ‖A−γ/2‖L2(H) <∞, we have∥∥∥B∥∥∥L2(H ;Ḣβ−1)

=
∥∥∥Aβ−1

2

∥∥∥L2(H)
<∞.

Example 5.3 (Additive trace class noise). Assume d = 1,2,3, Tr(Q) < ∞,

β = 1, and b = 1. Then∥∥∥B∥∥∥L2(U ;H)
=
∥∥∥BQ 1

2

∥∥∥L2(H)
=
∥∥∥Q 1

2

∥∥∥L2(H)
=
√
Tr(Q) <∞.

Example 5.4. In Paper I and in Debussche [20] it is assumed, up to a unnat-

ural nonlinear perturbation term, that B(x) = B1x + B2, where B1 ∈ L(H ;L(H))

and B2 ∈ L(H). This assumption is not satisfactory if we want to consider Ne-

mytskii operators. Let d = 1, D = [0,1], Q = idH , U =H , β ∈ (0,1/2), b = 1. Then
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it holds ∥∥∥B(x)φ∥∥∥ = (∫ 1

0

∣∣∣x(ξ)φ(ξ)∣∣∣2 dξ) 1
2
,

and taking, for instance x,φ ∈H given by x(ξ) = φ(ξ) = ξ−3/8 yields ‖B(x)φ‖ =∞
and this shows that B � L(H ;L(H)).

We end this subsection with a discussion about derivatives of F and B, given
smooth f , b. If f is continuously differentiable, then (F ′(x)φ)(ξ) = f ′(x(ξ))φ(ξ),
for ξ ∈D, x,φ ∈H , and since f ′ is bounded it holds that

‖F ′(x)φ‖ ≤ sup
y∈R

|f ′(y)| ‖φ‖.

This means that F is Fréchet differentiable. On the other hand, if f is twice

continuously differentiable, then the second derivative

(F ′′(x)(φ,ψ))(ξ) = f ′′(x(ξ))φ(ξ)ψ(ξ), ξ ∈D, x,φ,ψ ∈H,
is not a Fréchet derivative since by the Cauchy-Schwarz inequality we get no

better estimate than

‖F ′′(x)(φ,ψ)‖ =
(∫

D

|f ′′(x(ξ))φ(ξ)ψ(ξ)|2 dξ
) 1
2

≤ sup
y∈R

|f ′′(y)|‖φ‖L4(D)‖ψ‖L4(D).

But, by using the Sobolev embedding theorem one can show that for all γ > d/2,
the embedding L1(D) ⊂ Ḣ−γ is continuous. Therefore

‖F ′′(x)(φ,ψ)‖Ḣ−γ ≤ C‖F ′′(x)(φ,ψ)‖L1(D) =

∫
D

|f ′′(x(ξ))φ(ξ)ψ(ξ)|dξ

≤ sup
y∈R

|f ′′(y)| ‖φ‖L2(D)‖ψ‖L2(D).

This means that F : H → Ḣ−γ is twice Fréchet differentiable for all γ > d/2.
Therefore, in order to include this type of drift terms, in Papers II–III we con-

sider the assumption that F : H →H is once Fréchet differentiable and F : H →
Ḣ−γ is twice Fréchet differentiable, for some γ . In Paper I we assume F : H→H
to be twice Fréchet differentiable, and this forces F ′′ = 0, or otherwise that F is

something more abstract, and less interesting, than a reaction term.

For the mapping B, we proceed with an example.

Example 5.5. Consider the setting of Example 5.2. Then ((B′(x)φ)u)(ξ) =
u(ξ)φ(ξ) = (B(φ)u)(ξ), for ξ ∈D, u,x,φ ∈H . Thus by Example 5.1 we get that

‖B′(x)φ‖L2(U ;Ḣβ−1) = ‖B(φ)‖L2(U ;Ḣβ−1) ≤ C‖φ‖.
This proves that B : H→L2(U ;Ḣβ−1) is Fréchet differentiable.
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If B, in the example, instead was defined by a continuously differentiable
b : R → R, then also this B would be Fréchet differentiable. The reason why

we consider linear or constant B in the examples is that we need the second

derivative B′′ in our analysis. No use of the Sobolev embedding theorem can

prove such B to be twice Fréchet differentiable. Therefore we need B′′ = 0.

5.2. Stochastic Volterra integro-differential equations. Here we continue

with the setting of the previous subsection and let B be defined by b = 1, i.e.,

we consider additive noise. We consider the equation

Xt = Stx +
∫ t

0

St−sF(Xs)ds +
∫ t

0

St−s dWs

where we recall from Subsection 3.3 that (St)t≥0 is the solution operator to the

linear deterministic equation

ut +

∫ t

0

bt−sAus ds = 0, t > 0; u0 = x,

in the sense ut = St x, t ≥ 0. Existence and uniqueness of this type of equations

is proved in [4]. Malliavin regularity is proved in Paper III.

6. Approximation by the finite element method

In this section approximation schemes for stochastic partial differential
equations and stochastic Volterra integro-differential equations are introduced.
We consider the concrete setting of the previous section, but we do not discuss

the weak formulations of the equations, which would be the starting point for

implementation. We therefore keep the presentations, still, on a rather abstract

level, as we do in Papers I–III.

6.1. Stochastic partial differential equations. Consider the setting of Subsec-

tion 3.4. Let X be the solution to (4.3) under the setting of Section 5.1. We

first consider semidiscretization in space. The finite element approximations

(Xh)h∈(0,1), corresponding to the family (Th)h∈(0,1), are the solutions to the equa-

tions

Xht = Sh,tPhx +

∫ t

0

Sh,t−sPhF(X
h
s )ds +

∫ t

0

Sh,t−sPhB(X
h
s )dWs.

Recall that B : H → L2(U ;Ḣβ−1), for some β ∈ (0,1]. It is well known, that for

γ ∈ [0,β), and x ∈ Lp(Ω;Ḣγ ), it holds

sup
t∈[0,T ]

∥∥∥Xt −Xht ∥∥∥Lp(Ω;H)
≤ Chγ , h ∈ (0,1).
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For β = 1, and in fact γ = β, this is proved in Kruse [39], and for β ∈ (0,1), to the

best of our knowledge, no proof is available in the literature, except for linear

equations, see Kovács et al. [33].

We continue with full discretization and recall the notation of Subsection

(3.5). We approximate X by a semi-implicit Euler-Maruyamamethod and finite

element approximation in space:

Xh,kn −Xh,kn−1
k

+AhX
h,k
n = kPhF(X

h,k
n−1) +

∫ tn

tn−1
PhB(X

h,k
n−1)dWs,n ∈ {1, . . . ,N },

Xh,k0 = Phx.

Recalling Sh,kn = (idH + kAh)
−n and Sh,k = Sh,k1 , one can rewrite this as

Xh,kn = Sh,kXh,kn−1 + kS
h,kPhF(X

h,k
n−1) +

∫ tn

tn−1
Sh,kPhB(X

h,k
n−1)dWs.

Iteration of this equation yields

Xh,kn = Sh,kn Xh,kn−1 + k
n−1∑
j=0

Sh,kn−jPhF(X
h,k
j ) +

n−1∑
j=0

∫ tj+1

tj

Sh,kn−jB(X
h,k
j )dWs.(6.1)

Also for full discretization it is well known, that for γ ∈ (0,β), and x ∈ Ḣ−γ it

holds

sup
n∈{0,...,Nh}

∥∥∥Xtn −Xh,kn ∥∥∥
Lp(Ω;H)

≤ C
(
hγ + k

γ
2

)
, h,k ∈ (0,1).

For β = 1, and γ = β, this is proved in Kruse [39]. For β ∈ (0,1), it is proved in

Paper III, under the case of additive noise, i.e., for the case when B is constant.

6.2. Stochastic Volterra integro-differential equations. Consider the setting

of Subsections 3.3 and 5.2. Recall that bt = t
ρ−2/Γ(ρ−1), t > 0, and that ρ ∈ (0,1).

Let b̂ denote the Laplace transform of b and let (ωj )j∈N, be the weights which

are determined by

b̂
(
1− z
k

)
=

∞∑
j=0

ωkj z
j , |z| < 1.

For the convolution we use the following approximation

n∑
j=1

ωkn−j f (tj ) ∼
∫ tn

0

b(tn − s)f (s)ds, f ∈ C(0,T ;R),
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see Lubich [43], [44]. To discretize the time derivative we use a backward Euler

method, which is explicit in the semilinear term F. Our fully discrete scheme

then reads:

Xh,kn+1 −Xh,kn + k
n+1∑
j=1

ωkn+1−jAhX
h,k
j = kPhF(X

h,k
n ) +

∫ tn+1

tn

PhdWt, n ≥ 0,

Xh,k0 = Phx0.

It is possible to write (Xh,kn )Nn=0 as a variation of constants formula (6.1). Indeed,

it is shown in [37] that one has the explicit representation

Bh,kn =

∫ ∞

0

ShksPh
e−ssn−1

(n− 1)! ds, n ≥ 1,

where

Sht =
Nh∑
j=1

shj,t (e
h
j ⊗ ehj )Ph; ṡhj,t +λ

h
j

∫ t

0

b(t − r)shj,r dr = 0, t > 0; shj,0 = 1,

and (λhj , e
h
j )
Nh
j=1 are the eigenpairs corresponding to Ah.

7. Weak convergence

Weak convergence analysis for numerical approximation of equations with

values in infinite-dimensional spaces is a rather young subject. The early pa-

pers but also subsequent papers have treated linear equations, see Debuss-

che [21], Geissert et al. [23], Kovács et al. [34], [35], [36], Kovaćs & Printems

[38], Kruse [40], Lindner & Schilling [42]. For linear parabolic and hyperbolic

equations driven by Gaussian noise in Hilbert space, this theory is rather com-

plete. New progress concerns linear equations driven by non-Gaussian noise,

[36], [42], or linear Volterra type equations, see [38]. Much of the groundwork

for treating more complicated equations is to be found in these papers, in par-

ticular concerning the finite element theory needed. Often, the required error

estimates for solutions with low regularity are not available in the classical fi-

nite element literature.

Adding a nonlinear drift term increases the difficulty. Semilinear equa-

tions driven by additive noise are considered in Andersson et al. [1] (Paper III),

[2] (Paper II), Andersson & Larsson [3] (Paper I), Bréhier [8], [7], Bréhier &

Kopec [9], Hausenblas [25], [26], Kopec [32, Chapt. 5], Wang [57], [58], Wang &

Gan [59]. Also for this type of equation the theory is almost complete for par-

abolic, hyperbolic and for Volterra type equations driven by additive Gaussian

noise.
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It is considerably more challenging to consider equations with multiplica-

tive noise, i.e., equations with a noise coefficient which depends on the solution.

This has been done in Andersson & Larsson [3] (Paper I), Conus et al. [16], de

Bouard & Debussche [19], Debussche [20], but the results are still not satis-

factory. The multiplicative noise considered in [20], and later in [3], restricts

the dependence on the solution to be affine linear. In [16] this restriction is

removed, but other restrictive assumptions are imposed, which are not met by

any nonlinear Nemytskii operator.

7.1. Our weak convergence results. Papers I–III all treat weak convergence

analysis of numerical approximations to stochastic evolution equations. Here

we discuss the results of these papers and try to extract what our main achieve-

ments are in this field and also put these in relation to other works. We focus

on Paper III, which contains, from a weak convergence perspective, our most

important results.

This paper treats additive noise, which is regular enough so that for all t ∈
(0,T ] and γ ∈ [0,β) it holds P-a.s. that Xt ∈ Ḣγ , where β is a fixed regularity pa-

rameter. The process X is either a solution to the stochastic reaction-diffusion
equation of Subsection 5.1 or the stochastic Volterra integro-differential equa-
tion of Subsection 5.2. Our assumptions include any drift F, which is a nonlin-

ear Nemytskii operator defined by a function f ∈ C2b(R;R), see Section 5.1. For

d = 3 we only allow mildly singular kernels b in the case of Volterra equations,

together with Nemytskii drift F. Thus, for equations driven by additive noise,

we impose very natural assumptions on the drift and on the noise.

Let (Xh,k)Nn=0, h,k ∈ (0,1), be a family of approximations to X, discretized
in space by the finite element method with refinement parameter h, and dis-

cretized in time by the backward Euler method, with time step k. If X is a

solution to a stochastic Volterra equation, then convolution quadrature is used

for the convolution, see Section 6. Let (X̃h,kt )t∈[0,T ], h,k ∈ (0,1), denote piecewise

constant interpolations.

We consider weak convergence of certain functionals of the path, more pre-

cisely, we show that for all γ ∈ [0,β), test functions ϕ : H → R having two con-

tinuous Fréchet derivatives with polynomial growth, and all finite Borel mea-

sures ν defined on [0,T ] it holds that∣∣∣∣E[ϕ(∫ T

0

Xt dνt

)
−ϕ

(∫ T

0

Xh,kt dνt

)]∣∣∣∣ ≤ C(
h2γ + kργ

)
, h,k ∈ (0,1).(7.1)

If we take ν = δT , being the Dirac measure concentrated at T , then we get the

classical type of weak convergence estimate∣∣∣∣E[ϕ(
XT

)
−ϕ

(
Xh,kT

)]∣∣∣∣ ≤ C(
h2γ + kργ

)
, h,k ∈ (0,1).(7.2)
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Paper II treats weak approximation of reaction-diffusion equations, but

with a technical restriction, which only allows the nonlinear drift F to be a

Nemytskii operator for d = 1. In Paper II we found a way to remove this restric-

tion. The type of convergence considered is of the type (7.2).

Paper I considers finite element approximation of the stochastic heat equa-

tion introduced in Section 5. It follows the same setting as in the seminal paper

[20] by Debussche, which considers discretization in time by the backward Eu-

ler method. The importance of the paper [20] for subsequent works [3], [8],

[7], [9], [16], [32, Chapt. 5], [57], [58], [59] can not be underestimated, but the

setting is not useful for stochastic partial differential equations, and unfortu-

nately, for us, this is also true for our Paper I. We assume that the multiplicative

noise is of form B ∈ L(H ;L(H)), with an additional additive term. This assump-

tion excludes nontrivial linear Nemytskii operators, see example 5.4. Further-

more we assume F ∈ C2b(H ;H), which is a space which excludes all nonlinear

Nemytskii operators, see the discussion in Subsection 5.1.

7.2. A newweak convergence analysis. Here we explain the main ideas of the

weak convergence analysis introduced in Paper II, and whose advantages were

utilized to a larger extent in Paper III. In this presentation we consider reaction

diffusion equations, which corresponds to ρ = 1 in Paper III. The argument is

based on the following linearization∣∣∣E[ϕ(XT )−ϕ(Xh,kN )
]∣∣∣ = ∣∣∣〈Φh,k ,XT −Xh,kN 〉∣∣∣,

based on the mean value theorem, where

Φh,k =

∫ 1

0

ϕ′
(
Xh,kN +λ

(
XT −Xh,kN

))
dλ.

In a next step we consider a Gelfand triple

V ⊂ L2(Ω;H) ⊂ V ∗,
where V is a Banach space to be chosen. By duality in this Gelfand triple it

holds that ∣∣∣E[ϕ(XT )−ϕ(Xh,kN )
]∣∣∣ ≤ (

sup
h,k∈(0,1)

∥∥∥Φh,k∥∥∥
V

)∥∥∥XT −Xh,kN ∥∥∥
V ∗
.(7.3)

If V has the good property that for all γ ∈ [0,β) it holds

sup
h,k∈(0,1)

∥∥∥Φh,k∥∥∥
V
<∞,

∥∥∥XT −Xh,kN ∥∥∥
V ∗
≤ Cγ

(
h2γ + kγ

)
, h,k ∈ (0,1),

then this solves the weak convergence problem. Thus, we reduce the weak

convergence problem into one regularity problem of bounding Φh,k in the V -

norm, and one strong convergence problem in the V ∗-norm.
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For linear equations, and under additional, too strong, assumptions on ϕ
it is possible to take V = L2(Ω;Ḣγ ), see Paper II for more details. Our new

approach is as follows. For linear equations, without additional assumptions

on ϕ one can take V =M1,p,q(H), for suitable choices of p ∈ [2,∞) and q ∈ [2,∞].

To present this assume that Tr(Q) < ∞, β = 1 and consider approximation of

the stochastic convolution. The difference of the stochastic convolution and its

approximation in time and space can be written in the form

Δh,kT =

∫ T

0

Eh,kt dWt,

where (Eh,kt )t∈[0,T ] ⊂ L(H), is a piecewise constant in time interpolation of the

error operator Stn − S
h,k
n . It satisfies the error bound

‖Eh,kt ‖L(H) ≤ Cθ
(
hθ + k

θ
2

)
(T − t)− θ2 , t ∈ (0,T ], h,k ∈ (0,1), θ ∈ [0,2].

Fix p = 2, q =∞, i.e., let V = M1,2,∞(H). Inequality (2.13) ensures that, for all

ε > 0 it holds∥∥∥∥∫ T

0

Eh,kt dWt

∥∥∥∥
M1,2,∞(H)∗

≤
∥∥∥Eh,k∥∥∥

L1(0,T ;L2(U ;H))
=

∫ T

0

∥∥∥Eh,kt ∥∥∥L2(U ;H)
dt

≤ C2−2ε
(
h2−2ε + k1−ε

)∫ T

0

(T − t)−1+ε dt

≤ C
(
h2−2ε + k1−ε

)
.

This should be comparedwith the strong error, measured in the L2(Ω;H)-norm.

While (2.13) offers an L1-estimate in time, for the stochastic integral, the Itō

isometry (2.7) offers only an L2-estimate in time, and therefore the strong rate

of convergence is only half the weak rate. More precisely, for all ε > 0, it holds∥∥∥∥∫ T

0

Eh,ht dWt

∥∥∥∥
L2(Ω;H)

=
∥∥∥Eh,k∥∥∥

L2(0,T ;L2(U ;H))
=

(∫ T

0

∥∥∥Eh,kt ∥∥∥2L2(U ;H)
dt

) 1
2

≤ C 1−ε
2

(
h1−ε + k

1
2− ε2

)(∫ T

0

(T − t)−1+ε dt
) 1
2

≤ C
(
h1−ε + k

1
2− ε2

)
.

In strong error analysis for semilinear equations it is classical that a Gron-

wall argument is used. In our situation we need, in order for Gronwall’s Lemma

to apply, to prove that for some α ∈ (0,1] it holds
∥∥∥Xtn −Xh,kn ∥∥∥

V ∗
≤ C

⎛⎜⎜⎜⎜⎝h2γ + kγ + n−1∑
j=0

t−1+αn−j
∥∥∥Xtj −Xh,kj ∥∥∥

V ∗

⎞⎟⎟⎟⎟⎠.
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In order to prove this, a bound is required, of the form∥∥∥Eh,ktj (
F(Xtj )−F(X

h,k
j )

)∥∥∥
V ∗
≤ Ct−1+αn−j

∥∥∥Xtj −Xh,kj ∥∥∥
V ∗
.(7.4)

To obtain such a boundwe introduce the spacesG1,p(H) =M1,p,p(H)∩L2p(Ω;H),

p ∈ [2,∞), equipped with the norm∥∥∥Y∥∥∥
G1,p(H)

= max

(∥∥∥Y∥∥∥
M1,p,p(H)

,
∥∥∥Y∥∥∥

L2p(Ω;H)

)
.

With V =G1,p(H), we can show (7.4). The singularity comes from the fact that

F is a Nemytskii operator.

This approach has advantages and disadvantages. One advantage is that it

does not require tools from Markov theory, such as the transition semigroup or

the Kolmogorov equation. Stochastic Volterra integro-differential equations are
non-Markovian and our approach is to the best of our knowledge the only es-

tablished approach which applies to this type of equations. Another advantage

is that the more general type of weak convergence in (7.1) can be considered.

A disadvantage, it seems, is that the bound (7.3) is too crude, in order to treat

equations with multiplicative noise, see Paper II, Subsection 4.3, for a discus-

sion about this.
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