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Abstract 

This thesis work presents research about robust solutions for non-rigid sheet metal assembly simulations 

in collaboration between Chalmers Wingquist Laboratory and Volvo Car Corporation in Gothenburg, 

Sweden. The purpose of this project is to develop a valid strategy for classifying geo-spots and respots of 

non-rigid sheet metal assembly. The goal of this project is to establish an effective method to select geo-

spots in order to increase the geometry robustness of an assembly. Moreover, the method should facilitate 

the work of balancing the respot points and lowering their influence on geometric variance.  

To achieve the goals, industrial experience of selecting geo-spots was acquired by a comprehensive 

interview approach that was designed to obtain both tacit and explicit knowledge of the interviewees. 

Experts within geometry field from both Chalmers and VCC together with participants from Volvo 

Trucks were involved in this project. A method based on the multi-criteria decision making approach 

AHP (Analytical Hierarchy Process) was utilized to analyze the empirical data. Furthermore, a Geo-spot 

Selection Workflow (GSSW) was formulated, describing the experiential approach towards the task of 

selecting geo-spots.  

Finally, a new method combining GSSW and computational analyses was proposed. The method also 

utilizes the decision making approach, AHP, for selection of the best geo-spot set. With this 

comprehensive method, instead of only depending on engineering experience, the diagnosis of the 

geometry problems can be made by using the computer simulations. In addition, assembly errors can be 

visualized in simulation software to support decision making. Two industrial cases were analyzed by 

using the computer aided tolerance (CAT) tool RD&T. The simulation results verified that the proposed 

method can assist the decision making of choosing suitable spot-welds on the assembly. 

Keywords: geo-spots, respots, non-rigid sheet metal assembly, spot welding, compliant analysis, AHP 
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1. INTRODUCTION 

This chapter describes the purpose, the goals of the project and the main problems occurring in the 

industry. The delimitations and the sustainability aspect of the project are also presented. Lastly, the 

outline of this master thesis report is presented. 

1.1.  Background 
The Body in White (BIW) of a car is assembled using many sheet metal parts with different geometries. 

A joining process is always included in non-rigid sheet metal assembly procedures. Most of the joints 

between parts are made by spot-welds in this process. In a vehicle body, there are more than 4000 spot-

welds which join the metal parts together [1]. For these assemblies, geometry variation in the parts and in 

the manufacture process will result in variation of the final product or the sub-assembly [2]. Söderberg et 

al. identified that, three contributors, part variation, assembly variation and design concept, are the main 

causes of geometrical variation [3]. Understanding and testing the consequences of those contributors 

virtually can facilitate robust solutions earlier in the product development phases (see Figure 1). More 

robust solution can contribute to minimize the lead time and cost of physical matching and trimming 

activities [4, 5, 6]. To achieve geometry solutions that are insensitive to variations and disturbances, the 

tools and methods for assuring the geometry robustness of sheet metal assemblies are desired within 

automotive industry [5].  

 
Figure 1: Geometry assurance activities in different product realization loop [3] 

Volvo Car Corporation (VCC), a manufacturer of cars in the premium segment, aims at assuring the 

geometry of the product and ascertaining robust solution as early as possible in product realization loop. 

The final assembly of BIW consists of many pre-assemblies in which geometry variations will be stacked 

to the succeeding assemblies [5]. There is a need for research to propose a method of selecting geometry 

points
1
 to lock the geometry of the assembly in pre-assembly stations and minimizing the influence of 

later respot
2
 processing. The main work of this project is conducted at VCC, Sweden.   

The assistance of computer aided tolerancing tool (CAT-tool) is increasingly important to establish and 

verify a robust solution. Söderberg et al. [5] argue that the usage of CAT-tool will ease the analysis of 

                                                      
1
 Geometry points are referred as geo-spots.   

2
 Respots are the spot-welds welded after geo-spots in the succeeding stations. 
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design to ascertain whether a robust solution is achieved to withstand the influences of the manufacturing 

process. Moreover, with help of these CAT-tools, verifications and modifications of the product and the 

assembly process can be visually supported in a virtual environment. 

The CAT-tool RD&T (Robust Design and Tolerancing) is utilized to model the assembly of non-rigid 

parts and analyze the geometric robustness of the non-rigid assembly process in this project. RD&T is a 

software package that supports the geometry assurance process in all phases, concept, verification and 

production (see Figure 1) [5, 7]. The functionalities for compliant analysis in RD&T are stability, 

contribution and variation analysis. Stability analysis is used to find a robust locating scheme. 

Contribution analysis is used to analyze the contribution of the specific locating or contact points and 

other tolerances on important features to the final assembly variation. Variation simulation is used to 

analyze the geometrical outcome of the assembly. The consequences of modifications in parts and tooling 

can be demonstrated and visualized in RD&T to support the decision making. 

1.2.  Purpose 
The purpose of this project is to investigate the current working procedure of selecting geo-spots in non-

rigid sheet metal assembly. In order to increase the geometrical robustness and to reduce the lead time, a 

standardized method for selection of geo-spots should be established. The method is required to ease the 

selection of the suitable geo-spots in order to reduce the number of the weld points included in the 

sequence analysis. 

1.3.  Goals  
Establishing a systematic method to select geo-spots in non-rigid sheet metal assemblies is the main goal 

of this project. The proposed method should consider the factors influencing the selection of geo-spots. 

The identified factors should be ranked by their importance in the decision making. 

The method should provide guidelines for choosing the geo-spots on parts. Through implementing this 

method, reduction of geometrical deviations will be facilitated and geometry robustness can be assured. It 

should also provide a standardized operation procedure that can shorten training time for the engineers in 

this field.  

In addition, the method should facilitate the work of balancing respots and lowering their influence on the 

geometrical outcome. Lastly, a set of potential improvements in the area of geo-spots selection using 

simulation needs to be proposed.  

1.4.  Objectives 
To achieve the goals, detailed objectives were set and divided into three areas: 

1. Theory foundation. Firstly, previous research about selecting spot-welds should be investigated in 

order to build-up theory support for geo-spot selection. Variation simulation of non-rigid sheet metal 

assemblies should be analyzed to understand the theories behind the functionalities of the CAT-tools 

RD&T. Secondly, the factors influencing the final assembly variation in previous research should be 

summarized. Lastly, a scientific method for multi-criteria decision making needs to be suggested to 

make a decision model. 
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2. Industrial work routine. Firstly, a comprehensive interview strategy should be developed to acquire 

both explicit and tacit knowledge from interviewees in industry. Secondly, the target interviewees 

who are experienced in the geometry assurance area need to be identified and interviewed. Lastly, the 

current work routine of choosing geo-spots in the company should be described.  

 

3. Simulation and analysis. Firstly, suitable industrial cases should be prepared and modeled in the 

CAT-tool RD&T. Secondly, an approach of selecting geo-spots based upon simulation results needs 

to be proposed. Lastly, a comprehensive work procedure should be presented that integrates the 

industrial work routine and virtual testing and verification by simulations.  

1.5.  Problem description 
The main problem is:  

How to formulate a comprehensive work procedure for selection of geo-spots in non-rigid sheet metal 

assemblies, which integrates industrial routines and simulation approaches? 

Moreover, there are some other sub-problems that need to be considered while solving the main problem, 

including: 

 What are the main factors influencing the selection of geo-spots? 

 What is the current work routine in the industry to select geo-spots? 

 How can variation simulation tools be used in order to support the selection of geo-spots? 

1.6.  Delimitations 
The project has only focused on the welding process in a pre-assembly station at VCC due to the 

complexity of the task. The pre-assembly station consists of a geo-station and a respot station. In this 

process parts are firstly loaded to the fixture, clamped and welded in geo-station. After this step, the 

assembled part will be released from the fixture, fetched by a gripper and finally respot is performed 

under a fixed gun. The discussion about selecting geo-spot is based on two specific case scenarios which 

will be presented in Section 3.4.  

The method of selecting geo-spots is tested by conducting variation simulations in the CAT-tool RD&T. 

In this simulation, the part deformations and process deviations from nominal are assumed to be small. 

Therefore, the stiffness matrices can be calculated based on nominal shapes and the part deformations are 

assumed only to occur in the elastic area [8]. Lastly, thermal deformation caused by the welding process, 

will not be taken into consideration in the herein presented studies. 

1.7.  An insight to sustainability aspect 
This project not only focuses on the hard technical aspects of the engineering work, but also in a broader 

perspective it contributes in building a sustainable future. Considering different levels of sustainability, 

the project goals and objectives intend to improve sustainability in three aspects, namely environmental, 

social and economic sustainability [9]. In an environmental point of view, a virtual study of the 

assemblies before physical trials help to reduce waste in form of scrapped material involved in the 

assembly process. The introduction of a working method to ease the decision making in the 

multidisciplinary task of geo-spot selection and adding the simulation support will help to decrease 
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cognitive limitation for the employees in the related areas. Moreover, by using simulation software, 

personal safety for the workers can be improved while there is less human intervention with the physical 

parts and tooling elements in the process. Finally, reducing the lead time and calculation time required for 

optimization of the sequence of the spot welds will help to reduce the cost of the process. In addition, 

through applying the simulation tools less tooling is required for physical verification which means 

reduced engineering waste, less scrap and less cost.  Therefore, economical aspect of sustainability will 

also be taken into consideration.  

1.8.  Outline of the report 
Chapter 1 states the background of the project, purpose, goals, objectives and problem description, which 

elaborates each task in the project. Chapter 2 presents the theory about geometry point selection and 

variation simulation in non-rigid sheet metal assembly, and describes the facts about spot-welding 

process. The theory of multi-criteria decision making approach used in this project is also presented. 

Chapter 3 describes the methodology applied in this project, the strategy of the interviews and cases 

studied in this project. Chapter 4 presents the results of the interviews and also a set of hypotheses that are 

verified during the interviews. Chapter 5 presents the proposed method of geo-spot selection, the results 

of simulation and the made geo-spot selections in the two studied cases. Chapter 6 presents a list of 

results achieved in this report. Chapter 7 discusses the results of the project and possible future research. 

Finally, in Chapter 8 the conclusions drawn from this work are summarized. 
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2. THEORY 

This chapter presents some of the previous research about selecting spot-welds and variation simulation 

of non-rigid sub-assemblies. In addition, the applications of the variation simulation methods in the spot 

welding process and the factors influencing the variation of non-rigid sheet metal assemblies are 

described. Furthermore, theories related to spot welding sequence optimization strategies are also given. 

Lastly, a multi-criteria approach for decision making adopted in this project is elaborated. 

2.1.  Previous research  
Enhancing geometry assurance of BIW is increasingly concerned in automotive industry. Most of the 

research in the field of robust design attempt to utilize variation simulation software to minimize the 

assembly variation. The proposed methods in the previous studies mostly establish strategies for selecting 

spot-welds based on certain criteria. The main contributors of geometrical variation have been identified 

as part variation, assembly variation and design concepts [3]. Further research about evaluating the effect 

of those factors on complaint part and taking them into account in variation simulation has been 

conducted, for instance by Söderberg et al. [5].  

Strategies of selecting spot-welds for a sub-assembly have been investigated. Liao [10] presents a Genetic 

Algorithm (GA) based method, to select the number and the locations of the weld spots, which 

automatically searches for the best spot-weld candidate to meet the designed objective function. The used 

objective function takes the sum of the user-defined weight factors multiplied by deformation and/or the 

variance of deformation in the weld points. The proposed method was tested in a case study [10].  

Yang and Shao [11] present a strategy to minimize cycle time and distortion that arises from the welding 

thermal load. In order to minimize cycle time, they generate the optimized welding path using on elastic 

net method (ENM) [12]. Distortion values are derived from a thermo-mechanical model, indicating the 

importance of each welding point. The proposed strategy is successfully carried out on a real product [11]. 

Wärmefjord et al. [2] distinguish a set of special weld spots from other spots in the assembly. Geo-spots 

are the spot-welds locking the geometry of pre-assemblies. If such set of geo-spots is selected to secure 

the geometry of the pre-assemblies, then they can be released from fixtures and welded by respots in 

succeeding stations. 

These previous research have proposed some methods to take the influence of selecting spot-welds. 

However, there is still a lack of a verified method describing how to select spot-welds to minimize 

geometrical variation of assemblies. The geo-spot is usually selected based on engineering knowledge and 

experience rather than the selection based on simulation support within automotive industry. If the geo-

spots can be selected appropriately, the geometric stability can be improved. The balancing of the respot 

points can then be done freely based upon available cycle time. The aim of this work is to find a valid 

strategy for identifying geo-spots to reduce geometrical variation in the final assembly. 
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2.1.1. Variation simulation for non-rigid parts 

The most commonly used variation simulation methods are based on worst case tolerance analysis, Root 

Sum Squares (RSS) and Monte Carlo Simulation (MCS). These methods are applied to sheet metal 

assembly processes mainly under the assumption of rigid parts [13]. The traditional variation analyses of 

rigid parts consider the final assembly variation to be determined by geometric and /or kinematic relations 

[13]. Liu and Hu [14] developed an offset finite element method to predict the assembly variation by 

integrating engineering structural models with statistical methods to analyze the variation accumulation. 

However, in reality, sheet metal assemblies consist of deformable parts (non-rigid parts). As a 

consequence, the part variation does not stack up as these methods predict.  

The non-rigid parts are also affected by the interaction among the parts and the locating schemes. To 

analyze non-rigid sheet metal assembly, most of the methods are based on the Finite Element Analysis 

(FEA). The parts within the assembly are firstly meshed in order to be used in the FEA calculation. The 

assembly variation is simulated by applying forces to the geometry mesh and these force results in node 

displacements [15]. Liu and Hu [13] discuss the drawback of using Direct Monte Carlo Simulation 

method. In each MCS-iteration, a new FEA calculation will be conducted, which takes tremendously long 

computational time. A more efficient method is required to analyze complex assemblies. Therefore, Liu 

and Hu [13] proposed Method of Influence Coefficients (MIC). The key to the MIC method is to establish 

a mechanistic variation model, which is a linear relationship between the part deviations and the assembly 

spring-back deviations.  

One disadvantage of MIC is that the parts in the assembly are allowed to penetrate each other, which will 

affect the accuracy of variation simulation. To resolve this issue, Dahlström and Lindkvist [16] propose a 

contact algorithm that is combined with MIC to avoid the penetration between the adjacent parts. A node-

surface calculation is performed to determine whether there is penetration. The penetrated nodes will be 

forced out of penetration by applying contact reaction force. These forces are determined by an iterative 

process.  

A slightly modified version of the contact modeling method is presented by Wärmefjord et al. [15]. The 

automatic contact detection is implemented, which considers the node-node contacts instead of node-

surface contacts as in Dahlström and Lindkvist’s method [16, 15]. The modification of contact modeling 

makes the algorithm to become faster, while somewhat less accurate. However, the case studies executed 

by Wärmefjord et al. prove that the simulation results of the modified contact modeling method are still 

significantly better than not using contact modeling [15]. To further reduce computational efforts and 

time, Wärmefjord et al. [15] also proposed a procedure to reduce the  number of contact pairs not to be 

closer than a certain distance along the flange.  
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Figure 2: Variation simulation procedure [12, 16, 15] 

The variation simulation procedure that is concluded from the previous theories is presented in Figure 2 

and the whole process is realized in the CAT-tool RD&T. This procedure is utilized to conduct variation 

simulations for the case studies in this thesis. The part deviation obtained from scanning of real parts will 

be used as input to the variation simulation. Unit disturbance is used in FEA to construct the needed 

sensitivity matrices. Extra sensitivity matrices are used in each MCS iteration to resolve the contact 

modeling.  

2.2.  The spot welding process  
In this section, a pre-assembly station of the spot welding process in automotive industry is elaborated. As 

already mentioned, the complete car body assembly is made out of many sheet metal sub-assemblies. A 

sub-assembly can be built in a pre-assembly cell. This cell can contain a geo-station and a respot station 

(see Figure 3). In this report, geo-spot selection refers to the selection of the spot-welds in the geo station 

in the pre-assembly cell. 

Figure 3 presents a scenario of the work procedure in such a cell. In the geo-station, the parts are firstly 

positioned in the fixture and then clamped to hold the parts in position. The next step is joining, which in 

this case is spot welding of the geo-spots, to lock the geometry. After the welding step, the assembly is 

released from the clamps. Afterwards, the assembly can be handled by a gripper that will fetch the 

assembly from the geo-station’s fixture and will hold the sub-assembly during the respot. In the respot 

station, the remaining spot-welds on the assembly (the so called respot points) will be welded. The 

detailed information about the welding procedure will be described in Section 2.2.1. 
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Figure 3: A pre-assembly station in automotive industry 

There are two types of welding guns that can be used in such cells, namely a balanced gun or a position 

gun. The welding gun used at geo station is a balanced gun. For a balanced gun, equal forces are applied 

on the surfaces to force the parts together. Then, the sheet metals will meet in a position of equilibrium 

[2]. 

The welding gun used at the respot station is a position gun. In this type of gun, the surfaces are force to a 

fixed position. Both of these types of guns have two electrodes applied on both side of the part. When the 

gun closes, an electric current will be applied fusing (melting) the parts together [2].   

2.2.1. Factors affecting assembly variation in welding process 

This section summarizes the previous research regarding the factors affecting final assembly variation of 

welding process. These factors influence the selection of geo-spots [5, 4, 2, 17] (see Figure 4). The design 

concept has a significant influence on the final assembly variation. To minimize the influence of these 

variations a robust design is sought [5, 18]. Moreover, part deviation might be caused by unstable 

previous processes. Material properties of the part such as material characteristics, thickness and spring 

back effects also have influence on the part deviations [2, 5, 19]. The manufacturing process of an 

assembly, including fixture variation and welding variation, will also contribute to the final assembly 

variation. Fixture variation and welding variation are summarized in terms of the welding process related 

to the fixture of assembly and the welding equipment used in production [5, 19]. Figure 4 depicts various 

contributors to final assembly variation [19].  

Positioning 
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Releasing 
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Figure 4: Contributors of final assembly variation [14] 

The assembly of a sheet metal structure can be divided into the following steps: 

(1) Positioning — the parts are loaded by a gripper or manually into the positioning fixtures. 

(2) Clamping — when the clamps are closed, the parts are forced into the position defined by the locating 

schemes. With over-constrained locating schemes, the parts are bended and deformed by the fixture. 

Mating surfaces come in contact and the initial gaps between the mating surfaces are closed by clamps [2, 

5, 20, 19]. 

(3) Welding — the parts are welded together. If there is a gap between the parts, they are forced together 

by the welding gun. These deformations build up internal residual forces within the assembly which will 

cause spring back of the sub-assembly when released from clamps. The sequence of the welded spots has 

a great influence on the geometrical deviation in the final assembly [2]. 

(4) Releasing — the parts are released and spring back occurs due to the built in tensions and stresses 

during the clamping and welding steps. The geo-spot set welded, whilst the parts were clamped, shall 

reduce the effect of spring back and assure the geometry accuracy [2, 19].   

(5) Handling — the sub-assembly is fetched from the fixture by a gripper. The gripper is holding the sub-

assembly during the succeeding process. The previous set of geo-spot should secure the rigidity of the 

assembly to withstand forces from handling and forces applied when the assembly is fetched by the 

gripper.  

(6) Respot process — the assembly is held by a gripper and the respots are welded. The influence from 

the respots on the geometry of the assembly should be minimized. 

(7) Release from gripper — the assembly is released from the gripper and handled to subsequent 

processes. At this step a minimum amount of spring back is desired.  

2.2.2. Simulation of spot welding process  

Wärmefjord et al. [4] have shown in their study that the above work procedure of spot welding process 

taking the spot welding sequence into account can be sorted in three main steps of the calculation in 

variation simulation [4]. In this way, part stiffness and clamping forces can be included in compliant 

analysis to handle part deformation and spring back in assembly. The following formulation is 

summarized from Wärmefjord et al. study [4]: 
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First Step: Positioning and clamping 

The two parts (A and B) are positioned in their fixtures and over-constrained locating systems are applied. 

Over-constrained locating systems are allowed in the process due to the fact that in non-rigid analysis 

parts can bend and deform during positioning.  

 

The vectors    
   and    

   represent the gaps that are going to be closed in the clamping points. To close 

the gaps, forces    
   and    

   are applied to the parts respectively.    
   and    

   represent the stiffness 

matrices. Then the following relations hold:  

   
       

     
   (1) 

   
       

     
   (2) 

 

Second Step: Welding when sequence is taken into account 

To set welding point i =1,...,N, a force    
   is applied. In this formulation index a stands for assembly.  

   
       

       
     (3) 

 

Here,    
   is the stiffness matrix describing the assembly after welding point i. These stiffness matrices 

are defined to calculate the spring back. During the process, after welding point i is set on the assembly, it 

is released from the fixture and therefore spring back will occur. After occurrence of spring back, the 

assembly is positioned and clamped again. The force    
   including both the updated clamping forces 

and the reaction forces to each node due to contact modeling is applied. Contact modeling forces are 

taken into consideration due to the fact that during virtual assembly, there is a risk that the parts penetrate 

each other, which is not the case in reality.  

 

The new stiffness matrices are generated for every new welding point by adding a new 

matrix             
   , locking all degrees of freedom corresponding to the added welding point, to the 

previous stiffness matrix. Therefore the following holds:  

 

   
       

                 
   (4) 

Knowing the force and the stiffness in each step then the deviation from nominal after adding welding 

point i,    
  , can be calculated. 

Third Step: Releasing 

After completing welding of the points, the assembly will be detached from the fixture and spring back 

will occur. Forces      corresponding to the reaction forces in the clamps can then be calculated as 

follows:   

         
        (5) 
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Later in the spot welding process the handling variations can be simulated by introducing disturbances to 

the assembly’s gripper position and the respot welding step can be simulated with the aforesaid three 

steps.  

2.2.3. Influence of spot welding sequence 

The sequence of spot welding cannot be ignored and has proven to have significant influence on assembly 

variation and spring back effects after tool release [10]. To minimize the geometry variation, some studies 

have been conducted to find the optimal sequence of the spot welds. Wärmefjord et al. describe several 

methods of assigning welding sequence such as: general simple guidelines, minimizing variation in each 

step, sensitivity and relative sensitivity methods [2]. Segeborn et al. evaluate GAs on welding sequence 

with respect to dimensional variation and robot cycle time [1].  

To find the optimal welding sequence, the current work method is to try different combinations using 

GAs and some previous case studies have verified that GA method generates promising results [2, 10, 17, 

1]. However, finding the optimal sequence while there is large number of spot-welds on the assembly 

would be a time-consuming task. If there are N spot-welds in the assembly, N points will have N! possible 

sequences (e.g.         ) [2, 17].  

To resolve the problem of long computational time, the spot welds can be classified into geo-spots and 

respots in the welding process prior to assigning the welding sequence. As long as the selected k geo-

spots lock and secure the geometry of the assembly, the welding sequence of N-k respots can be assigned 

by any sequences and they will still have a low influence on the geometry of assembly. Then, the amount 

of calculation in GAs will be reduced to investigate  k! possible combinations for geo-spots [2, 17]. 

2.3.  Decision making approach 
In order to assign all the spot-welds on the assembly to geo-spot and respot sets, the identified 

contributing factors (see Section 2.2.1) should be taken into consideration. A scientific method for 

analyzing the importance (weight) of each factor is required. Applying the results of the interviews, a 

working procedure is presented for selecting different sets of geo-spots. Thus, a decision making 

approach is needed to evaluate the proposed sets of the geo-spot sets based on the criteria presented in 

Section 3.2.   

Analytical Hierarchy Process (AHP) is a multi-criteria decision making method. It is an Eigen-value 

approach to perform pair-wise comparisons. This method also calibrates the numeric scale for the 

measurement of quantitative and qualitative performances [21]. The ratio scales are derived from paired 

comparisons, which represent people’s subjective reflection, such as the relative strength of preferences 

[22, 23]. The most effective way to make a judgment is to take a pair of elements and compare them by a 

common criterion without other elements [22]. The paired comparison is the core process of AHP. These 

comparisons applied to each element on every level within the hierarchy (see Figure 5). 

To implement AHP analysis, a hierarchic structure has to be built to display the problem (see Figure 5 

and 6) [22, 23]. The hierarchy clarifies the relations among all criteria and sub-criteria that make up the 

problem. The top level describes the overall goal and the next levels should contain all the criteria that are 

contributing to the goal [22]. With the help of this structure, the overall goal can be broken down into 

detail on each level. 
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In general, there are two types of AHP measurement; absolute and relative measurement [22]. Both of 

them derive weights by executing paired comparisons with respect to the overall goal. The Sections 2.3.1 

and 2.3.2 describe each.   

2.3.1. Absolute measurement 

In absolute measurement paired comparisons are executed within each level of the hierarchy (see Figure 

5).  

 

Figure 5: Decomposition of the problem into a hierarchy; Absolute measurement 

Level 1 of the hierarchy is the goal and therefore it has the weight one. Level 2 of the hierarchy is 

composed of the criteria. Therefore the following is held on level 2, when   is the assigned weight to 

each criterion and   is the number of the criteria: 

∑    

 

   

 (6) 

In order to find the weights of the criteria on level 2, pair-wise comparisons should be executed and the 

importance-value of each comparison should be assigned based on Table 1. By having the importance-

values from the pair-wise comparisons between all the criteria on level l, decision matrix   can be built 

(see Equation 7). 
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 (7) 

In Equation (7), the result of comparison    and    is assigned with an importance-value     from Table 

1and the value for comparison of    and   ,     is assigned with a reciprocal as follows: 
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 (8) 

Furthermore, the composed   matrix has to be normalized. To do this, each element is divided by:  

   ∑   

 

   

 (9) 

An approximation of the priority vector
3
 (     ) can be computed by averaging each row [23]. 

Equation (9) and (10) present this approximation: 
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  (10) 

The approximation of the Eigen-vector of the above matrix can be made as follows: 
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 (11) 

 

Level 3 of the hierarchy is composed of the sub-criteria. On this level a new   matrix can be built for 

each criterion, with the same procedure as the level 1, and the weights can be assigned. When   is the 

assigned weight to each sub-criterion and   is the number of the sub-criteria, the following is held: 

∑      
          (12) 

Therefore, the sum of the weights of the sub-criteria on Level 3 has the same value as their corresponding 

criteria. For instance, on the hierarchy presented on Figure 5 the sum of the weights of sub-criteria, 1.1, 

1.2, 1.3, has the same weight as criterion 1.  

                                                      
3
 Eigen-vector 
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By assigning all the weights, the analysis of the most important criteria and sub-criteria, for the overall 

goal, can be made. 

2.3.2. Relative Measurement 

In relative measurement paired comparisons are performed from the highest level to the lowest level in 

the hierarchy, which includes the alternatives level [22, 23] (see Figure 6). The lowest level in the 

hierarchy is the alternatives-level, which includes the alternatives for which a decision has to be made. 

 

Figure 6: Decomposition of the problem into a hierarchy; Relative measurement 

In this thesis, relative measurement and comparisons between alternatives will be used to decide between 

different sets of geo-spots (alternatives).  

In order to perform relative measurement, firstly the weights of the criteria and sub-criteria (See Figure 6, 

Level 1 and Level 2) can be assigned following the same procedure as the absolute measurement. On the 

alternatives level a coupled matrix of alternatives and the criteria can be generated (see Equation 13).     

is the result of pair-wise comparisons to each criterion in alternative level which is based on the same rule 

(see table 1). 
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 (13) 

In order to normalize the above matrix each criterion column should be adapted to the following 

equations. The choice depends on the nature of the criterion, if maximization is sought Equation (14.1) 

should be used and if minimization is required then Equation (14.2) is suitable. 

     

   
     

(14.1) 

   
   

     
  

(14.2) 
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By applying the above equations to the matrix   and deriving the normalized matrix   , the decision of 

the overall analysis can simply be calculated by multiplying    with the criteria weights ( ̃) on Level 2 

[24].   

   ̃  [

  

  

 
  

] (15) 

These    values are the basis for the decision making between the different alternatives. The alternative 

with the highest value of    can be selected as the best choice. 
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Table 1: The fundamental scale 

Intensity of importance on 

an absolute scale 
Definition Explanation 

1 Equal importance Two activities contribute equally 

to the objective 

3 Moderate importance of one over  

another 

Experience and judgment strongly 

favor one activity over another 

5 Essential or strong importance Experience and judgment strongly 

favor one activity over another 

7 Very strong impotence An activity is strongly favored and 

this dominance demonstrated in 

practice 

9 Extreme importance The evidence favoring one activity 

over another is of the highest 

possible order of affirmation 

2, 4, 6, 8 Intermediate values between the 

two adjacent judgments 

When compromise is needed 

Reciprocals     
 

   
 

If activity   has one of the above 

numbers assigned to it when 

compared with activity  , then   

has the reciprocal value when 

compared with  . 

Rationals Rations arising from the scale  If consistency were to be forced by 

obtaining   numerical values to 

span the matrix. 

Sources: [22, 23] 
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3. METHODOLOGY 
In this chapter, the used methodology together with a detailed description of every step is presented. In 

addition, the criteria of geo-spot selection and the interview approach are presented. Lastly, the two sub-

assemblies used in the case studies are described. 

3.1.  Project methodology 
The project methodology shown in Figure 7 is inspired by Banks Simulation Methodology [25]. 

 

Figure 7: Project methodology inspired by Banks Simulation Methodology 

The project methodology is divided into four main related areas, namely: literature studies, interviews, 

modeling and writing the report, which can be broken down to 13 steps as follows: 

1- Problem formulation. The project attempts to tackle the problem of geometry assurance, which is an 

important task within automotive industry. The main task is to formulate a comprehensive work 

procedure for selection of geo-spots in non-rigid sheet metal assembly, which integrates industrial 

routines and simulation approaches. 

 

2- Set up project. The main problem is broken down into several goals. These goals will be assigned 

into specific tasks in the project, which are the fundament of the project plan. This step also includes 

the establishment of the project group and coming up with a list of potential interviewees. 

 

3- Build up knowledge. The project team builds up knowledge through literature reviews, modeling 

and simulation studies establishing contacts with experts within the area. In addition, the routines and 
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solutions in industry are studied. There exists an industrial need to develop tools and methods to 

support the engineers in the task of selecting geo-spots. Currently, the task is still executed by 

engineers based on experience and skills rather than using computational support. 

 

4- Data collection. Data are primarily collected through interviewing experts dealing with geometry 

assurance and the selection of geo-spots in the manufacturing engineering process. The interview 

questions are designed to acquire professional knowledge about selecting geo-spots. The project team 

establishes a list of general questions and hypotheses specifying different situations regarding the task 

of geo-spot selection. This approach is intended to reveal the knowledge on which the experts base 

their decisions. A detailed explanation of the interview approach can be found in Section 3.3. 

 

5- Data evaluation. Data evaluation is conducted by accumulating all the collected data and applying 

the multi-criteria decision making method (AHP), described in detail in Section 2.3. 

 

6- Selection rules. The selection rules are a set of hypotheses for selecting the geo-spots formulated 

before the interviews. These hypotheses are coupled to important identified factors affecting the geo-

spot selection. The hypotheses are described in Section 4.1.2. 

 

7- Guideline. This guideline for selecting geo-spots is a workflow, reflecting the industrial experience. 

The workflow consists of rules, verified contributing factors to the process of geo-spot selection and 

hypotheses verified during the interviews. Detailed description can be found in Section 4.2.3. 

 

8- Modeling and simulation preparation. The simulation models are built using the CAT-tool RD&T. 

A simulation integrated workflow is proposed to support the decision process. Detailed description 

can be found in Section 5.1.  

 

9- Geometry variation simulation. RD&T is used for conducting the variation simulation of the 

assembly process. This step is based on the following sub-steps: 

a. Potential sets of geo-spots. Following the guideline, different sets of geo-spots are proposed. 

This step is described in Section 5.4.1 and 5.4.4  

b. Geometric robustness. Variation simulation of the assembly is conducted for the generated sets 

of geo-spots. This step is described in Section 5.2. 

c. Minimize the influence of respots. The influence of respots on the assembly is investigated using 

the variation simulation function in RD&T. Detailed description can be found in Section 5.2. 

 

10- Finding a set of geo-spots. By analyzing the simulation results in RD&T and utilizing the AHP 

method, the best set of the geo-spot is settled as the selected set. This step is described in Section 5.3. 

 

11- Welding sequence. The sequence of the selected sets of geo-spots is tested and analyzed in RD&T. 

In this project, sequence analysis is based on the engineering experience and general rules derived 

from the interviews. The results achieved from the sequence analysis can be found in Appendix C.  

 

12- Documentation and report. This step includes documenting the results and findings of the study.   
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13- Presentation of the results. The results achieved from the master thesis are presented in this step. 

The presentations can be categorized as academic and industrial presentations:  

 Master thesis defense. Presenting the result for the academic advisors and defending the proposed 

methods and the results achieved. 

 Industrial Presentations. Including mid-term and final presentations for the industrial advisors at 

the host company, VCC. 

 

3.2.  Criteria for selecting the geo-spots 
In the build up knowledge step, it was identified that an appropriate set of geo-spots can improve the 

geometrical outcome of an assembly. In order to find appropriate sets of geo-spots the following criteria 

need to be considered: 

Criterion 1: Assure geometry robustness and product functions 
The assembly should be geometrically robust and the key features of the product should be assured. 

Therefore, the selection of geo-spots needs to serve these two purposes. The criterion is assigned to 

evaluate the geometrical outcome of the complete process, containing both geo-station and respot station. 

A particular simulation model is developed to verify the chosen geo-spots for this criterion (see Section 

5.2, Model 3). 

Criterion 2: Assure rigidity of parts to withstand forces 
The rigidity of an assembly can be secured by selecting appropriate geo-spots. This means that the 

assembly should be stiff enough to withstand the applied forces from the subsequent processes. The 

criterion is used to evaluate the assembly after the geo-station. When the assembly is fetched by the 

robot’s gripper, the geo-spots play an important role on assuring that the assembly can withstand the 

handling forces. To verify the rigidity of the assembly, a simulation model is designed to support the 

decision making (see Section 5.2, Model 3). 

Criterion 3: Minimizing the influence of respots 
The influence of the respots on the geometry should not be neglected and it is known to have a significant 

contribution to the deformations. The criterion is used to evaluate the assembly outcome after the respot 

station. A minimal influence from the respots on the assembly is sought. For analyzing the correlation 

between the selected geo-spots and the influence of respots, a simulation model is built and presented (see 

Section 5.2 Model 4). 

 

3.3.  Empirical data collection 
In this section, the approach used in the interviews for collecting the required data is described in detail.  

3.3.1. Interviewees 

Selection of the geo-spots in industry is usually the result of cooperation between different departments. 

Some of the active participants in this process are manufacturing engineers, geometry engineers and 

design engineers. Therefore, the interviewees are selected from these different departments. The 

interviewees are selected in the following order based on their roles: 
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From Volvo Cars; 

 Car Body Design Department: one engineer 

 Manufacturing Engineering Department: seven engineers 

 Manufacturing Engineering Quality Geometry: one engineer  

 Geometry Engineers from plant: two engineers 

 

From Volvo Trucks; 

 Geometry Engineers: two engineers 

 Manufacturing Engineering BIW: one engineer 

3.3.2. General questions 

The questionnaire generated for the interviews consists of nine open and general questions. These 

questions were divided into two sections. The first section of questions was designed specifically to 

refresh the interviewers’ memory about the task of selecting geo-spots. After these questions, an assembly 

scenario is discussed during the interview. Then, the second section of the questions was asked to get 

detailed understanding of the factors affecting their decisions (see Appendix A.1).  

3.3.3. Hypotheses and sketches 

In order to generate some selection rules for geo-spots and to understand the decision making logic 

behind the choice of geo-spots, combinations of simple sketches and hypotheses were formulated before 

the interviews. These combinations were chosen based on the knowledge gained from literature studies 

etc. (The Build up knowledge step). In addition, through the Build up knowledge step, many common 

pitfalls in selection of geo-spots were identified. As an effort to depict these common pitfalls and 

challenges, a set of different sketches were put together. These sketches were coupled together with 

different hypotheses for selection of geo-spots which also derived from the initial discussions. By 

understanding the expert knowledge and their decisions on the sketches, the hypotheses could be verified. 

This result was thereafter used to generate the workflow presented in Section 4.2.3, modeling the 

experience at VCC and Volvo Trucks (see Appendix A.3).  

3.3.4. Priority and evaluation table 

A priority and evaluation table was designed to fulfill two tasks: (1) ranking the priorities of the 

Classification Group (CG) and the Consideration Factors (CF) within each CG; (2) finding the relation 

between each CF and its contribution to the three main criteria for geo-spot selection (see Figure 8 and 

see Appendix A.2).  

The table lists 15 CFs derived from theory study (see Section 2.2.1) and initial discussions with the 

engineers. All the CFs were grouped into four different CGs, Design concept (D), Material properties 

(M), Welding process parameters (WPP) and Welding process restrictions (WPR). Design concept is 

referred to the process strategy in geo-station and the design of parts. Material properties is referred to the 

characteristics of materials in the welding process of geo-spots. WPP and WPR are referring to the 

parameters and restrictions when it comes to geo-spot selection in this report.  
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The definitions of the CFs are as follows: 

CG1: Design concept   

CF1: Geometry specification – The definition of shape, dimensions and surface characteristics of a part. 

CF2: Part thickness – The thickness of each part included in the sub-assembly. 

CF3: Locating scheme – The positions of locators, clamps and supports in the sub-assembly process. 

CF4: Type of part – e.g. bracket, reinforcement, console and panel. 

CF5: Number of parts – The amount of parts in the sub-assembly process. 

 

CG2: Material properties 

CF6: Spring back effects – The effect caused by spring back after welding process. 

CF7: Part stiffness – The rigidity of part resisting deformation caused by the process forces. 

CF8: Material flow – The way that sheet metals move during the welding process.  

 

CG3: Welding process parameters 

CF9: The number of welding points – The number of welding points taken in the sub-assembly process, 

i.e. geo-spots and respots. 

CF10: Welding sequence – The sequence of taking welding points in the sub-assembly process. 

CF11: Welding force – The drag forces exerted by the welding guns during the sub-assembly process. 

 

CG4: Welding process restrictions 

CF12: The geometry of welding gun – The shape of the welding gun. 

CF13: Loading and processing sequence (Sub-assembly sequence) – The sequence of loading parts to the 

sub-assembly. 

CF14: Fixture orientation – The way the fixture is oriented in the sub-assembly cell. 

CF15: Cycle time – The total time from the beginning to the end of the geo-spot welding process. 
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Task 1 

The interviewees were asked to prioritize four CGs and each CF within each CG, respectively. The 

priority number should be given starting from 1 (the highest priority) (see Figure 8 and Appendix A.2). 

The result of priorities is presented in Section 4.1.3, Table 3.  

Task 2 

The relations (1 irrelevant, 2 weak relation, 3 intermediate relation, 4 strong relation) between the CFs 

and the main three criteria of geo-spot selection are assigned by the interviewees through choosing the 

number from 1 to 4 in each column corresponding to three criteria (see Figure 8 and see Appendix A.2). 

The result of the identified relations is presented in Section 4.1.3, Table 2.  

 

Figure 9: The hierarchy of AHP analysis in Geo-spot Selection 

The construction of AHP analysis 

The result of Task 2 was analyzed in the Section 4.2.1, which constructed the hierarchy tree of Root 

Cause Analysis (see Figure 15). Based on the results of Root Cause Analysis, the constructed hierarchy 

can be used as the hierarchy of the AHP analysis in Geo-spot selection (see Figure 9).  

The pair-wise comparisons of CF and CG in the AHP analysis in Geo-spot selection were based on the 

results from Task 1. The results about the priorities of groups and factors reflected the preferences of 

Priority of elements 

Opinions of the 

interviewees 

Root Cause Analysis 

Relations assigned by the 

interviews 

 

Figure 8: Priority and evaluation table 

Task 1 

 

Task 2 
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interviewees, which can be utilized as the input to the AHP analysis. Finally, the importance-weights of 

CGs and CFs and an overall priority list of CFs were summarized by the AHP analysis (Section 4.2.2). 

 

3.4.  Case study  
Two sub-assemblies were chosen to be studied in the project. These industrial cases were used in the 

project for two purposes; for case discussion with the interviewees to identify their specific approaches of 

geo-spot selection and for simulation and verification purposes in RD&T software in order to test the 

proposed working procedure. 

3.4.1. Case study models  

Case A:  

This sub-assembly consists of five parts, the base part (red) and three reinforcement pieces (yellow, blue 

and green) and one bracket assembly (green and grey) on the backside of the base part. In real assembly, 

the base and three reinforcements are located in the fixture. Later on, the bracket assembly is joined to the 

backside of the base part in another assembly step. There are some challenges related to this assembly:  

1- What strategy is used for selecting geo-spots on the reinforcement parts to achieve the 

geometrical requirements of the base part? 

2- How to handle process restrictions, such as the points that will be hidden due to sub-assembly 

sequences and the accessibility of the welding gun? 

3- How to choose geo-spots to minimize the variation on the flanges of the base part?  

 

 

 

 

 

 

 

 

 

 

Case B: 

This sub-assembly consists of four pieces, two small reinforcement brackets on the side and two main 

parts (blue and red). In order to have a better welding accessibility, this part is assembled upside down. 

The blue part and the brackets are loaded into the fixture and later on the red part is assembled on top of 

them. The challenges related to this assembly are: 

Figure 10: Case samples - (a) Case A, (b) Case B 

(a) (b) 

Bracket assembly 

Base part 

Reinforcement 

parts 

Reinforcement 

parts 

Two main parts 

Important flanges around 

the base part 

Best fit between the upper 

and the lower part 

Secure the hole pattern 
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1- How to get the perfect fit between two main parts, when the locating schemes are restricted to one 

plane? 

2- How to select the geometry points in order to handle the process limitations and to minimize the 

variation? 

3.4.2. Case study scenario 

In order to discuss the chosen cases under the same conditions with all the interviewees, a scenario was 

presented describing the conditions under which the parts are going to be assembled. This scenario will 

limit the discussion of geo-spot selection in the preassembly station (see Figure 11).  

I. Basic information 

Both sub-assemblies are planned to be produced in an automated production cell where the geo-spots are 

set while the parts are clamped in a fixture and the following respots are performed using a fixed gun.  

Figure 11 depicts an environment of the cell on which the discussions are based [26]:  

 

 
Figure 11: Production cell [26] 

II. Assemblies 

The part shapes are defined and the assembly sequence is known. Thus, the geometry of them can be 

visualized having a 3D CAD model. The locations of the welding points on the parts are defined. The 

geometrical requirements of the assemblies are specified. 

III. Assembly procedure 

1- Positioning 

a. Parts are loaded by a gripper into the fixture. Therefore the deformation caused by the 

gripper, while it is holding the part, is taken into consideration. 

2-  Clamping 

a. Parts are clamped simultaneously. The clamping sequence is not taken into consideration, 

because the deformation caused by clamping in a specific sequence is ignored. 

b. The individual parts’ locating schemes and the assemblies’ locating schemes are defined. 

So, the position of the locators cannot be changed based on the interviewees’ preference. 

c. The geometry of the fixture is secured in advance. Tooling deviations are ignored. The 

clamps will force the locator surfaces to the nominal position.  

 



 

25 

 

3- Joining 

a. The cycle time of welding process is known (e.g. 60 sec. for actual welding).  

b. The amount of geo-spots welded in this cell is 12-15 points. 

c. The reachability of the welding gun is perfect for each point. This means that all the 

defined welding points on the parts are accessible for the welding gun.  

d. Choice of welding gun is ignored.  

e. Only one spot weld is taken in each step. No interaction stemming from simultaneously 

taken spots are considered.   

4- Release from fixture 

a. The clamps are released simultaneously and spring back will occur.  

5- Material handling 

a. The sub-assembly is taken out from the fixture by a gripper. Therefore the deformation 

caused, while both fixture and gripper are holding the assembly, is taken into 

consideration.  

6- Respot process 

a. Respot points are welded by a fixed welding gun in the respot station, while the gripper is 

holding the sub-assembly. The assembly will be forced to a fixed position by the gun and 

deformation might occur. 

b. Respot points should have minimum influence on the assembly’s geometry. They aim for 

a situation where the respots can be welded in any sequences.  
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4. INTERVIEW RESULTS AND ANALYSIS 
In this chapter, the gathered data from the interviews are presented. In addition, the analyzed data and the 

results derived from them are presented in the second part of this chapter. 

4.1.  Interview results  
As mentioned in the methodology (Section 3.3), the interviews are divided into four different steps; 

general questions, case discussions, sketches and hypotheses and finally the priority and evaluation table. 

After gathering all interviewee’s opinions about each step and summarizing them the following results 

were achieved.  

4.1.1. Results from general and open questions 

According to the interviews, the process of geo-spot selection is a time-consuming task, since it involves 

trial and error work with physical parts. Moreover, it is known to be complicated task, due to the multi-

disciplinary nature of it. In this process many aspects need to be taken into consideration, thus having a 

standardized workflow for this process is required.    

In order to achieve the best model for this purpose, the results from the questions have been classified in 

two different areas:   

1) The general strategy for selection of geo-spots  

2) Identifying the most important Consideration Factors (CF). 

I. General strategy for selection of geo-spots 

For initializing every task, a set of necessary data is required. For selection of geo-spots, the CAD models 

contain a lot of information that are necessary for selecting geo-spots, such as the shape of the product, 

locating schemes and geometry specifications. The engineers have to understand the functions of each 

part involved in the assembly, for instance important areas of the parts, the function of locators on parts, 

geometry specification, etc. However, that information is not sufficient to make a good decision.  

Firstly, the engineers need to have a clear understanding of the results after the welding process; this is 

achieved by many years’ experience of the welding process.  

Secondly, the task requires the information about the assembly station such as CF15 (Cycle time, limiting 

the number of welding spots allowed), CF12 (The geometry of the welding gun, determining the 

accessibility of the gun) and CF13 (Loading and processing sequence, determining the sequence of 

loading parts to the sub-assembly) (see Section 3.3.4). These are the pre-conditions which limit the choice 

of geo-spots and must be followed. After considering those pre-conditions a set of unavailable points for 

welding, so called “hidden points”, will appear in the process. The hidden points are the points which are 

unavailable for welding since they belong to other assembly steps, or they have to be taken since they will 

be covered by some parts of the assembly. The understanding of how to filter out these points comes out 

from an iteration process between different departments including manufacturing and design. That is why 

in most of the cases manufacturing engineers are aware of the process limitation and the welding points 

needed to be taken initially. Nevertheless, to select suitable geo-spots, the focus should be only on the 

points which will secure the geometrical requirement. Last but not least, the lessons learned from 

previous projects can be additional support to the choice.  
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Different strategies are applied by the interviewees in the selection process due to different perceptions on 

how to tackle the problem. As an effort to unify those different strategies the following order is proposed:   

 Identify the important mating surfaces of the sub-assembly by looking around the model and 

thinking about the influence of the parts on the sub-assembly 

 Lock the geometry by selecting the geo-spots avoiding the instable areas of the assembly. 

 Foresee the outcome of welding process by experience and think about geometry demands and 

the geometry of parts when released from fixture. 

 Choose the points in accordance with earlier projects and similar parts. 

 

After the initial set of geo-spots is selected, the outcome of them is analyzed in a subsequent process, in 

which physical measurements and physical trial and error are executed. This process, which is also 

referred to as physical matching and trimming, can be summarized as follows: 

1. Measure and adjust fixture to nominal position 

2. Ingoing parts should be measured before physical matching and trimming 

3. Place the parts in the fixture 

4. Close the clamps in the right sequence and study the effects on the clamped parts 

5. Measure the parts to identify part deformation caused by clamping 

6. Mate the parts and resolve conflicts between mating surfaces 

7. Close the gaps with geo-spots 

8. Set the respots and check the outcome 

 

Moreover the data base, CM4D (Coordinate Measurement Machine Management Mechanism for Data) is 

used to record the measurement data. By looking through the measurement diagrams, part specifications 

can be checked. 

II. Identifying important Consideration Factors (CFs)  

During the selection of the geo-spots different aspects should be taken into consideration, either 

simultaneously or in a logical order. The factors considered to be the most important ones, mentioned by 

the majority of the interviewees were:  

1. The known deviation of the parts 

2. The function of the part 

3. The stiffness of the assembly 

4. The type of equipment used in the welding process: welding gun and fixture 

5. The thicknesses of  the parts 

6. How to minimize the spring back effect 

7. The locating schemes 

 

There are additional CFs that need to be concerned. Firstly, while CF10 (Welding sequence) seems to 

have a great impact on the selection process, but according to the interviewees’ opinions, the sequence is 

not considered so often when it only comes to the task of selecting the geo-spots. The most important 

influence of welding sequence will show off after selection of the geo-spots, examining the resulting gaps 

and twists in the assembly. 
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Some other “known to be” important CF is the effect of drag forces
4
 on the parts. Even though CF11 

(Welding force) and its effect on the part geometry cannot be neglected, it does not influence the selection 

process at all. Another process factor is the energy required for spot welding. As it was mentioned in 

Section 2.2, using more thermal resistant materials or usage of more electrical current and increasing the 

time of the welding will produce more heat energy and might result in getting deformed geometries. 

However in this project the heat influence is neglected (see Section 1.6). 

CF9 (The amount of welding spots) is another factor that can determine the rigidity of parts. It is desired 

to have as many as possible spots in the pre-assembly cell, but the number of spots is limited by the CF15 

(Cycle time) in the station. Therefore, there are always a limited number of points that could be set in the 

geo-station. The general rule for determining the amount of geo-spots is to have at least three points on 

the main plane of the part to lock the main axis. If applicable, these points are often selected in a way to 

form the largest triangle on planes. This rule is also dependent on the size and stiffness of the parts, the 

bigger, softer and more complex the parts are, the more points are needed to lock the geometry. 

 

4.1.2. Results from sketches  

In order to make a logical connection between the identified CFs and some common pitfalls and issues in 

geo-spot selection a set of hypotheses and sketches were presented and analyzed during the interviews.  

Sketch 1: Hypothesis 1 

One of the most common approaches towards geo-spot selection is to choose the geo-spots with respect to 

the locating system. Therefore, the hypothesis to cover this approach is described as:   

H1. The welding points that are close to locators should be chosen primarily as geo spots. 

 

 

 

 

 

 

As it can be seen in Sketch 1, there are two locators at the near edge of the two mating surfaces. The 

existing gap between the mated planes is the result of the fabrication error in the parts. There are three 

available welding points on this sketch which are numbered from 1 to 3.  

To start with the selection process, geometrical requirement should be checked in advance, checking 

whether the assembly allows having such gaps or not. If the geometry requires the assembly to be without 

any gaps, the middle point will be selected initially to reduce the gap size as much as possible.  

                                                      
4
 Drag force is the force exerted by the welding gun which will drag the sheet metal during the process. 

1 

Fixed Locator 

2 3 

Sketch 1: Hypotheses1; choosing the geo-spots close to locators 
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If geometrical requirement allows having such gaps, then most of engineers agreed upon starting by 

choosing the geo-spots close to the locators. Apart from geometrical requirement, there are two other 

issues that should be concerned, the material thickness and the distance between two fixed locators. In 

order to assure the welding quality, the thicknesses of the parts must be taken into consideration. Material 

thickness also determines the welding gun forces required for closing the gap. Moreover, if the distance 

between the locators is too short, then welding the points close to the locators will produce a gap in the 

middle which is harder to close. 

Sketch 2: Hypothesis 2  

The other important factor, as mentioned before, is to assure the geometrical requirements. Often when 

thinking about the sequence of the welding points, geometrical requirement will decide the most 

important points to be welded firstly. Sometimes additional points are needed to assure these 

requirements. The second hypothesis handles these requirements: 

H2. The welding points that determine the geometrical requirement of part should be taken 

as geo spots. 

Now considering the following sketch, this hypothesis could be elaborated more. 

 

 

 

 

 

By looking at the requirements and shape of the assembly in Sketch 2, it can be realized that the locating 

scheme should firstly secure that the bottom surfaces will attach together. Thus, the best option is to have 

a clamp on the bottom (near WP1) to close the gap. If there is no such option, the clamps should be 

placed somewhere near the important geometry areas (near WP2 and WP3) that are assigned to the 

geometrical requirements. Secondly, material thickness and stiffness should be checked. In this case, the 

thin part is loaded into the thick base part. There are three welding points spread over the bottom area and 

two sides of the thin part.  

The most common welding sequence in this case, is to start from the point (WP1) on the bottom to close 

the biggest gap and then two sides. For choosing this sequence, the inner flanges should have the ability 

to bend after welding the middle point.  

The other possible option is to start welding from one side (e.g. WP2), then bottom (WP1), and lastly 

weld the point (e.g. WP3) on the other side. This approach will cause a bigger gap on the final flange and 

distort the whole assembly. 

The last sequence is starting to weld from the both sides (e.g. firstly weld WP2 and secondly weld WP3) 

and then the bottom point (WP1). In this sequence after welding the both sides, closing the bottom gap 

Sketch 2: Hypothesis 2; geo-spots should determine geometric requirement 

2 

Geometrical 

requirements 

1 
3 

Thick part 

Thin part 
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will cause big deformations on the flanges. Therefore, the requirements cannot be secured by this 

sequence. 

Sketch 3: Hypothesis 3 

Now, if we consider a case when there is no requirement on the parts, then the most important aspect to 

think about is to lock the main axis of the part (see Sketch 3). Therefore, the next hypothesis can be 

defined as: 

H3. The welding points that contribute to lock the main axis of the surface should be 

considered as geo spots 

 

 

  

 

 

In this case although most of the interviewees agreed that the sequence of welding is not important at all, 

but they preferred to lock the main axis of the thin part, which is on the bottom surface of the thin part, to 

get the best welding outcome. Thicknesses still need to be checked to foresee the outcome of the welding 

in this case.   

Sketch 4: Hypothesis 4 

As it was discussed on the first sketch, to avoid the built-in gap between the parts, the locating scheme 

can be adjusted to allow material flow 
5
during welding.  

H4. The welding points that contribute most to the material flow should be selected as geo-

spots 

 

 

 

 

In Sketch 4, there is one locator at the one end of part (Fixed locator) and one clamp on the other edge 

(Adjustable locator
6
). By reducing the clamp force of the adjustable locator, the material can glide 

underneath the clamp while welding. Therefore, the gap which is caused by the fabrication error could be 

handled.  

                                                      
5
 In this project, material flow is referred to the way sheet metals move during the welding process  

6
 Adjustable locator in this report is referred to a locator which allows the material glide during the welding process 

1 
2 

3 

Fixed Locator 
Adjustable 

Locator 

Sketch 3: Hypothesis 3; geo-spots should lock the main axis 

Sketch 4: Hypothesis 4; geo-spots for controlling the material flow 
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In this approach, the welding sequence is of importance to control the material flow. The most common 

sequence for this purpose is to firstly choose WP2, since it has the biggest effect on material flow. 

Although WP1 is near the fixed locator, it is not necessary to be chosen as a geo-spot, since it gives a 

small contribution to material flow. This case looks simple in a 2D sketch. 

However, if this case changes to 3D, the situation will get more complicated. This time, the selection 

might be changed into starting with WP1 to WP3 to assure that the material is flowing in the right 

direction. In addition, even if the material could glide under adjustable locator, it is hard to predict the 

behavior of material flow. (In 3D view, the upper sheet might glide either towards the center or left and 

right side.) Thus, having a good solution for the adjusted locator which will let the sheets glide or 

designing very long slot hole to guide the material flow should be considered carefully in these situations. 

Sketch 5: Hypothesis 5 

In Sketch 5, the top view and the side view of the parts are shown. In this case, the locating system is 

restricted only to the small flanges on the both sides of the two matched sheets. The challenge here is to 

make a trade of between choosing the points close to the locators or lock the main axis of the part to get 

rid of the gap in the middle. Therefore, the next hypothesis is defined as; 

H5. The geo-spots should be selected as spread as possible to act as a part to part locating 

system, when the clamping system cannot be placed in an optimal position (due to process 

restrictions). 

 

 

 

 

  

 

 

(a)                                                                                          (b) 

 

The main strategy in this case is to spread the points as much as possible to get the biggest triangle on the 

plane. This strategy comes from the general rule behind the selection of the locating points (3-2-1 

system). Regardless of the gap between parts, there was a common agreement among all interviewees to 

select two points close to the locators (WP5 and WP2) and the point lying on the top of the part (WP3).  

If there is a gap in the middle (see the side view), then the part thickness and stiffness should be taken into 

consideration. If the material is stiff enough then by selecting the middle point (WP1) the whole upper 

surface will be forced to follow the geometry of the base part. On the other hand, if the part is not stiff, 

then the problem of having bulbs will occur. Thus, the selection of the middle point is ruled out.  

Locator 

Sketch 5: Hypothesis 5; geo-spots acting as locating system (a): top view (b): side view 
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Another possible strategy is to let the plates glide at one locating position by changing one of the locators 

to a slot hole or a clamp with gliding ability. After getting the parts following each other, then the welding 

points near the locators can be selected as geo-spots to fix the position of the parts. 

Sketch 6: Hypothesis 6 

Sketch 6 is designed to discuss about the influence of material thickness on the selection of geo-spots. 

Looking at the parts curvatures and thicknesses (0.7 mm and 1.5 mm), it can be inferred that the thick part 

(stiff part) has a stronger influence than the thin part (non-stiff) on the geometry outcome. Thus, knowing 

the part that determines the geometrical requirement is important. The next hypothesis that was set for 

this purpose is: 

H6. The selection of geo-spots should consider material thickness due to the fact that a 

stiffer part has more influence on the geometry compared to a less stiff part. 

 

 

 

  

 

If the thick (        ) part is stiffer than the thin (       ) part, selecting the WP near the locator 

and later locking the edge points makes the assembly follow the geometry of the thick part. Generally, the 

reinforcement parts (e.g. thick part) are thicker than the function parts (e.g. thin part). However, the 

geometrical requirement is assigned to the function part. In the case of Sketch 6, even if the thin part is 

more important, it is impossible to reshape the thick part to follow the geometry of thin part, since the 

thick part is formed in the opposite direction. In this situation, the geometry of the thick part has to be 

corrected before starting the welding process. 

Sketch 7: Hypothesis 7 

One of the main aspects to think about while selecting geo-spots is the geometry outcome after welding of 

each point. The spring back effect is a non-neglected factor when considering the selection of geo-spots. 

In order to describe this aspect more, the following sketch was discussed with the interviewees.  

H7. The welding points reducing the spring back effect should be selected as geo points. 

 

 

 

 

In this situation, both of the welding points are required for reducing the spring back effect. However, if 

there is a trade of between selecting only one of those points, the effect after releasing the assembly from 
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T=1.5mm 
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Sketch 6: Hypothesis 6; geo-spots determining the geometry of the most important part 

Sketch 7: Hypothesis 7; select geo-spots to reduce spring back effect 
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the clamp should be considered. Selecting the welding point near the clamp will not contribute to close 

the gap between parts, still it is better for securing the position and less spring back is expected after 

releasing the clamp. On the other hand, selecting the welding point far from the clamp will force the thin 

part to follow the geometry of the thick part but more spring back is expected in the clamped area when 

the clamp is released. 

4.1.3. Results from priority and evaluation table 

In Table 2 fifteen CFs of welding process in non-rigid sheet metal assembly are listed and categorized 

into four CGs. Table 2 presents an overview of all interviewees’ opinions about the relations between CFs 

and the three main criteria of selecting geo-spots. The strength of relation is partitioned into four levels: 

irrelevant (Ir.), weak (W), intermediate (M) and strong (S). The numbers in the table indicates the number 

of interviewee agreed with the specific relation strength. 

Table 2: The relation between the selection criteria and consideration factors 

Classification 
Groups (CGs) 

Consideration Factors 
(CFs) 

The relation between the selection criteria and 
consideration factors 

Criterion 1
7
 Criterion 2

8
 Criterion 3

9
 

Assure geometry 

robustness 
Rigidity of assembly 

Low influence of 

respot points 

Design  

concepts 

Geometry specification 1 1 5 7 1 2 3 8 2 6 4 2 

Part thickness 1 4 9 0 0 1 12 1 2 4 8 0 

Locating scheme  0 1 2 11 1 0 3 10 6 3 4 1 

Type of part 1 2 9 2 1 5 2 6 5 7 0 2 

Number of parts 5 6 3 0 6 4 4 0 9 4 1 0 

Material 

Properties 

Spring back effect 0 2 7 5 1 2 7 4 2 4 7 1 

Part stiffness  1 2 7 4 0 1 4 9 2 5 5 2 

Material flow 0 11 3 0 3 5 4 2 5 6 3 0 

 WPP 

The amount of WP 1 2 6 5 0 0 6 8 4 4 2 4 

Welding sequence 0 2 10 2 1 1 6 6 3 5 5 1 

Welding force 3 6 4 1 4 7 1 2 5 3 5 1 

WPR 

The geometry of welding 

gun 
5 7 2 0 6 4 2 2 9 5 0 0 

Loading and processing 

sequence 
0 7 5 2 1 3 7 3 7 4 3 0 

Fixture orientation 4 7 1 2 3 7 3 1 9 3 1 1 

Cycle time 4 3 4 3 2 2 6 4 8 1 3 2 

The relation scale: Ir. W M S Ir. W M S Ir. W M S 

 

In Criterion 1 (Assure geometry robustness), almost all interviewees agreed that CF3 (Locating schemes) 

has a strong relation to the Criterion 1. There are only few CFs considered as irrelevant (Ir.). This is 

                                                      
7
 Defined in Section 3.2, Criterion 1 

8
 Defined in Section 3.2, Criterion 2 

9
 Defined in Section 3.2, Criterion 3 
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because there are synergies among all factors and they should be considered together in order to assure 

robustness. 

In Criterion 2 (Rigidity of assembly), main CFs are: CF1 (Geometry specification), CF2 (Locating 

scheme), CF3 (Type of part), CF7 (Part stiffness), CF9 (The amount of welding points) and CF10 

(Welding sequence). Six interviewees agreed that CF5 (Number of parts) and CF12 (The geometry of 

welding gun) are irrelevant to the Criterion 2. Additionally, many interviewees mentioned that the 

intermediate CFs (e.g. Part thickness, Spring back effect, Loading and processing sequence and Fixture 

orientation) could have potential strong influence on the outcome and should be considered carefully. 

CF15 (Cycle time) does not directly influence the Criterion 2, while it determines CF9 (The amount of 

welding points) in the geo-station that has strong influence on it. 

In Criterion 3 (Low influence of respots), most of interviewees agreed that no CFs significantly 

contribute to minimize the influence of respots. In other words, if the geometry of parts can be assured at 

the geo-station, respots can be freely welded. In addition, CG4 (WPR) was regarded as irrelevant to the 

criterion. 

Table 3 describes the Priority of Group and the Priority of Factor within each CGs (see section 3.3.4). It 

shows the priority of CFs and CGs while selecting geo-spots. The most important factors are ranked from 

number 1, to the least important, number 4. The data was collected from manufacturing engineers (M), 

design engineers (D), factory engineers (F) and manufacturing engineering managers (C). 

The opinions of the interviewees are diverse due to their different work responsibilities, which 

significantly affects their decisions. The engineers from manufacturing department think that CG2 

(Material properties) have the second rank in the Priority of Groups. By contrast, the engineers from the 

factory and the managers prefer to consider CG3 (WPP) or CG4 (WPR) at the second place of priority, 

because these factors belong to their work responsibilities. What makes the managers’ (C) opinions rather 

different might be the fact that they need to consider the cost of equipment and cycle time of the process. 

On the other hand, there are still some common characteristics in their priorities. CG1 (Design concepts) 

is known as the most important CG influencing on the selection of geo-spots. In the CG1 (Design 

concepts), the three highest CFs are CF1 (Geometry specification), CF3 (Locating scheme) and CF4 

(Type of part). In the CG2 (Material properties), CF7 (Part stiffness) has the highest priority to select geo-

spots, which means that it is crucial that the parts welded by geo-spots should withstand the force of 

respot welding process. In the CG3 (WPP), CF10 (Welding sequence) has higher priority than other two 

CFs, which has more impact on the geometry of assembly. In addition, CF11 (Welding force) is not 

considered by most of interviewees when it comes to selection of geo-spots. Lastly, in the CG4 (WPR), 

there is no obvious pattern in the priority of the CFs due to fact that all those factors should be considered 

at the same time.  
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Table 3: The priority of factors 

Classification 
Groups (CGs) 

Priority of Group Priority of Factor 
Consideration 
Factors (CFs) 

Design  
Concepts 

1 1 1 1 1 1 1 1 1 1 3 1 2 4 

3 1 1 1 3 2 2 2 2 3 1 2 1 4 
Geometry 

specification 

4 4 3 4 5 3 5 5 4 4 4 3 3 2 Part thickness 

2 2 2 2 4 4 1 3 3 2 3 1 1 5 Locating scheme  

1 3 3 3 1 1 3 1 1 1 2 4 2 1 Type of part 

5 5 3 5 2 5 4 4 5 5 5 5 4 3 Number of parts 

Material 
Properties 

2 2 4 3 4 2 4 2 2 4 4 3 2 1 

2 2 1 2 2 2 2 3 2 2 2 1 1 3 Spring back effect 

1 1 3 3 1 3 1 2 1 1 1 2 1 2 Part stiffness 

3 3 2 1 3 1 3 1 3 3 3 3 3 1 Material flow 

WPP 3 4 2 2 3 2 2 4 3 3 2 2 2 3 

1 2 1 1 2 2 2 2 2 3 1 1 2 3 The amount of WP 

2 1 2 2 1 1 1 1 1 1 3 2 1 2 Welding sequence 

3 3 3 3 3 3 3 3 3 2 2 3 1 1 Welding force 

WPR 4 2 3 4 2 4 3 3 4 2 1 4 2 2 

4 1 4 4 4 3 2 2 3 2 3 2 3 1 
The geometry of 

Welding gun 

4 4 2 2 2 4 1 1 1 3 2 1 2 4 
Loading and 

processing sequence 

4 3 2 1 3 1 3 4 4 4 4 4 2 2 Fixture orientation 

4 2 1 3 1 2 4 3 2 1 1 3 2 3 Cycle time  

Departments M M D F C C F M M M M M M M M M D F C C F M M M M M M M  

Table above provides an overview of the interviewees’ opinions, about the importance of each classification and factor in geo-spot selection. The 

importance of the elements are weighed from 1 (most important) to 4 (least important). 
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4.1.4. Case discussions 

For a deeper understanding of the way of thinking behind geo-spots selection two industrial cases were 

discussed together with the interviewees, see Figure 12.  

 

 

 

 

 

 

 

 

Case A 

Step 1: Understand the functions of each part in the assembly 

The most important geometrical requirements set on the assembly are on the red part (base part) having 

the important flanges around the part (see Figure 12). The yellow, blue and green parts welded on the 

base part are only reinforcement parts and the geometrical requirements set on them in the assembly are 

not as important as the requirements on the base part. The “bracket assembly” (see Figure 13) was not 

discussed assuming that that the corresponding welding points on this part will be set last. 

Step 2: Check the positions of all locators: the whole sub-assembly, the locators on each part 

One of the challenges in the geo-spot selection of case A is on the left side of the yellow reinforcement. In 

case of the existence of a gap between the base part and yellow part, setting one of the welding points 

WP1, WP2 and WP3 will cause deformation on the important flange in that area, see Figure 13. 

Therefore, it is better to make sure that the red part and the yellow part are attached together by the 

locators. 

There should be at least one available WP on the bottom flange of blue part. The WP4 on the bottom 

flange of the blue part (see Figure 13) joins three parts together, the base part, the blue part and the 

bracket assembly. So, this WP cannot be set before welding the bracket assembly. Since there is no WP 

available on this flange, the engineer should discuss with the designer to change the design or add a clamp 

to secure that the blue part is attached to the bottom (see Section 4.1.2, Sketch 2: Hypothesis 2).  

Step3: Selection of the geo-spots  

a) Yellow part 

The most common candidates for geo-spots on this part are WP5, WP6 and WP7 (see Figure 13). These 

points will lock the position of two parts (base and yellow parts) and make the yellow part follow the 

(a) (b) 

Figure 12: Case samples - (a) Case A, (b) Case B 

Important Flanges 

Bracket 

Secure the hole pattern 
Best fit between the upper and the 

lower part  
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geometry of the base part (see Section 4.1.2, Sketch 2: Hypothesis 2). The geo-spots on this part should 

be selected near the locators (see Section 4.1.2, Sketch 1: Hypothesis 1 and Sketch 5: Hypothesis 5). The 

prerequisite of these choices are that the locating scheme can assure the two parts attach closely in the 

mating surfaces and the welding points there will not distort both parts.  

b) Blue part 

The loading sequence restricts the availability of WP8 and WP9 (see Figure 13), since this point will be 

hidden after the assembly of the bracket assembly. Therefore, this point should be taken as a geo-spot. It 

is also important to lock the Y direction for this part before setting the WP10, WP11, WP12, WP13, 

WP14 and WP15 (see Figure 13, c) (see Section 4.1.2, Sketch 2: Hypothesis 2). WP8 lies on the 45 

degree flange and contributes somewhat to lock the part in Y direction. However, this is not the best first 

choice. 

As it was discussed while checking the location scheme, putting a geo-spot on the bottom flange to push 

the part to the bottom and follow the geometry of the base part is the favorable decision on this part. Since 

there are no points on the bottom flange, due to the assembly limitations, the design of this reinforcement 

or the clamping positions should be reconsidered (see Section 4.1.2, Sketch 2: Hypothesis 2) 

Another suggestion is to pick WP10 and WP14, since there are bird-beaks (small reinforcements) on the 

flanges on which those points are located on. Thus, those two WPs should be selected as geo-spots and 

then the welding point in the middle is needed to bend the bottom flange. 

c) Green part 

WP16 and WP17 are available on the bottom flanges (see Figure 13, d). The Geo-spots should be selected 

on the bottom flanges at first (see Section 4.1.2, Sketch 2: Hypothesis 2). WP11 and WP15 are two WPs 

on the side flanges. The right side flange seems to be stiffer, due to existence of a bird-beak, while the left 

flange seems flimsy and limber. Therefore the WP11 should be welded first, while taking the sequence 

into consideration (See Section 4.1.2, Sketch 6: Hypothesis 6). It is also suggested to take an extra point 

on the biggest flange in the bottom, which should be on the left side of it to secure that the green part will 

follow the geometry of the base part. 
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Case B 

Step1: Understand the functions of each part in the assembly 

The most important requirement for Case B is the accuracy of the flanges Z direction and the hole pattern 

in it, which influences the assembly of the other parts later on. The flanges on the red part are also of 

importance in terms of geometry since they might collide with latter assemblies. The two small brackets 

on the both sides are reinforcement. The geometries of the two small brackets are not considered as 

critical in the final assembly (see Figure 14). 

Step2: Check the positions of all locators: the whole sub-assembly, the locators on each part 

In production this assembly is welded upside down. This means that the blue part is first located in the 

fixture and then two brackets are welded on both sides initially. Later on, the red part is welded on top of 

them.  

Locking the Z direction is the main priority of the locating scheme in this case. There are no welding 

points placed near the locators.  

Step3: Selection of the geo-spots 

Basically, the suitable strategy of selecting the geo-spots is to distribute them evenly on the Z and X 

flanges. In Case B, the sequence of welding geo-spots is more important to secure the geometry outcome. 

Interviewees had two general approaches to assure the geometry outcome. These two approaches come 

from different perceptions of the important functions of the part.  

Figure 13: Geo-spot selection on Case A 

(a) Red part (b) Yellow part (c) Blue part (d) Green part 
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a. The welding points on the Z flange should be fixed firstly, because the clamps and locators 

secure the part in Z direction (WP1-WP6).  This way on the Part (a) the flange in X direction has 

the possibility to adjust following the geometry Part (b). 

b. The welding points on the X plane should be taken first (WP7-WP12). This approach comes 

from the fact that the X plane is reinforced with the ridges, and also the Z flange on part (a) is 

split in several “ears” and looks flimsy. 

The welding sequence has two general strategies described by interviewees: (1) to start welding on one 

flange from middle to both sides; (2) to start welding on one flange from one edge to the other end. 

Therefore, four different combination sets of points that can be generated when taking the welding 

sequence in mind:  

a.1) Start with the Z flange and lock the middle points first and approach to both sides. Then the                 

sequence is: (WP4, WP3, WP2, WP1, WP5, WP6, WP9, WP10, WP11, WP12, WP8, WP7) 

a.2) Start with the Z flange and weld from one side to the other end. Then the sequence is: (WP7, 

WP8, WP9, WP10, WP11, WP12, WP7, WP8, WP9, WP10, WP11, WP12) 

b.1) Start with the X flange and lock the middle points first and approach to both sides. Then the 

sequence is:  (WP9, WP10, WP11, WP12, WP8, WP7, WP4, WP3, WP2, WP1, WP5, WP6) 

b.2) Start with the X flange and weld from the one side to the other end. Then the sequence is: 

(WP7, WP8, WP9, WP10, WP11, WP12, WP7, WP8, WP9, WP10, WP11, WP12) 

Further investigation and simulation of each case will be conducted in RD&T in order to verify the data 

collected from the interviews. Detailed description will be presented in Chapter 5.  

  

Figure 14: Geo-spot selection on Case B 

(a) Blue part (b) Red part 
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4.2. Interview data analysis 
In this section the results achieved from the analysis of the gathered data from the interviews are 

explained and a Geo-Spot Selection Workflow (GSSW) is presented.  

4.2.1. Root cause analysis 

By summarizing and investigating the results from Table 2, the relevance between the fifteen CFs, 

presented in Section 3.3.4, and the three criteria, presented in Section 3.2, are described by the hierarchy 

tree (see Figure 15). The tree shows that all of the investigated CFs have more or less influence on the 

Criterion 1 (Assuring geometry robustness). 

Some CFs were eliminated from the Criterion 2 and the Criterion 3, because the interviewees did not 

think that all CFs will contribute to them. In the Criterion 2 (Rigidity of assembly), CF5 (Number of 

parts) and CF12 (The geometry of welding gun) are filtered out from CG1 (Design concepts) and CG4 

(WPR), respectively. Furthermore, CF5 (Number of parts) and CF3 (Locating scheme) are taken out from 

the Criterion 3 (Low influence of respots), because in the respot station the assembly is already joined by 

the geo-spots and a gripper is holding it. In addition, it was agreed by most of interviewees that CG4 

(WPR) has no influence on the Criterion 3. 
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I. Hierarchy Tree of Root Cause Analysis 

 

Figure 15: Hierarchy Tree of Root Cause Analysis 

Geo-spots 
Selection 

Assure 
Geometry 

Robustness 

Design 
Concept 

Geometry 
Specification 

Part Thickness 

Locating 
Scheme 

Type of Part 

Number of 
Parts 

Material 
Properties 

Spring back 

Part Stiffness 

Material flow 

Welding 
Process 

Parameters 

The Amount of 
Welding Points 

Welding 
Sequence 

Welding Force 

Welding 
Process 

Restriction 

Welding Gun 

Sub-assy. 
Sequence 

Fixture 
Orientation 

Cycle Time 

Rigidity of 
Assembly 

Design 
Concept 

Geometry 
Specification 

Part Thickness 

Locating 
Scheme 

Type of Part 

Material 
Properties 

Spring back 

Part Stiffness 

Material flow 

Welding 
Process 

Parameters 

The Amount of 
Welding Points 

Welding 
Sequence 

Welding Force 

Welding 
Process 

Restriction 

Sub-assy. 
Sequence 

Fixture 
Orientation 

Cycle Time 

Low Influence 
of Respots 

Design 
Concept 

Geometry 
Specification 

Part Thickness 

Type of Part 

Material 
Properties 

Spring back 

Part Stiffness 

Material flow 

Welding 
Process 

Parameters 

The Amount of 
Welding Points 

Welding 
Sequence 

Welding Force 

Level 1 

Level 2 

Level 3 

Level 4 



42 

 

4.2.2. The importance-weight of Consideration Factor and Classification Group  

The Hierarchy Tree of Root Cause Analysis (see Figure 14) presents the relations between each factor 

with three main criteria. Based on the hierarchy tree, the importance-weight of each CG and CF (on the 

Level 3 and Level 4) is analyzed using AHP method, which is presented in Table 4. The paired-wise 

comparisons in AHP are evaluated according to the Priority of Group and Priority of Factor acquired 

from interviewees (see Table 3). The given priority indicates the interviewee’s preference to CGs and CFs 

judged by the same criterion. Lastly, the results are calculated using the AHP template [27].  

Level 1 in the hierarchy, presents the goal to select geo-spots.  

Level 2 presents the three criteria formulated to evaluate Geo-spots selection. Based on interview studies, 

it was identified that each criterion corresponds to the specific station in the pre-assembly cell (see Figure 

3). Criterion 1 (Assure geometry robustness) is the main criterion that refers to the complete process in 

pre-assembly station, which contains both geo-station and respot station. Criterion 2 (Rigidity of 

assembly) is evaluated after the parts are welded by geo-spots so this criterion refers to geo station. 

Criterion 3 (Low influence of respots) is preferable in respots station, because the geometry of assembly 

has been secured by geo-spots. Thus, in this level, the Criterion 1 is assigned 50% importance-weight; 

Criterion 2 and Criterion 3 are assigned 25% importance-weights, respectively.  

Level 3 presents the results of CGs calculated using AHP method. The result in Table 4 shows that CG1 

(Design concepts) has the highest importance-weight in all criteria. It indicates that this group has the 

greatest influence on the overall goal Geo-spots selection. Moreover, the other three CGs are more or less 

equally important (see Table 4). 

Level 4, the three most important CFs are CF1 (Geometry specification), CF4 (Type of part) and CF3 

(Locating scheme) that all belongs to CG1 (Design concepts) (see Table 4). These CFs have a significant 

influence on the decision of Geo-spots selection and are considered primarily. It also explains why CG1 

(Design concept) is more important than any other CGs.  
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I. The importance of each factor 
Table 4: The importance of each factor 

Geo-spots selection   
  1 

Assure geometry robustness 

50% 

Design concept Material Properties WPP WPR 

29,30% 6,80% 7,60% 6,35% 

Geometry specification 9,32% Spring back effects 2,33% The amount of WP 2,99% Welding gun 1,49% 

Part thickness 2,64% Part stiffness 2,97% Welding sequence 3,40% Sub-assembly sequence 1,95% 

Locating scheme  6,74% Material flow 1,50% Welding force 1,21% Fixture orientation 1,05% 

Type of part 8,82%         Cycle time 1,85% 

Number of parts 1,90%             

Rigidity of assembly 

25% 

Design concept Material Properties WPP WPR 

14,65% 3,40% 3,80% 3,18% 

Geometry specification 5,11% Spring back effects 1,16% The amount of WP 1,49% Sub-assembly sequence 1,15% 

Part thickness 1,01% Part stiffness 1,49% Welding sequence 1,70% Fixture orientation 0,78% 

Locating scheme  3,65% Material flow 0,75% Welding force 0,60% Cycle time 1,24% 

Type of part 4,48%             

Low influence of respot 

25% 

Design concept Material Properties WPP 

 

Level  1 

Level  2 

Level  3 

Level   4 

16,60% 3,63% 4,78% 

Geometry specification 7,29% Spring back effects 1,24% The amount of WP 1,88% 

Part thickness 2,56% Part stiffness 1,58% Welding sequence 2,13% 

Type of part 6,74% Material flow 0,80% Welding force 0,76% 

The Table 4 is structured based on AHP tree (see Appendix B). 
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II .Priority list 

The importance-weight of each CF is summed up to the priority list presented in Figure 16. The list 

shows the overall opinions from all interviewees and it can be the guideline for engineers to select geo-

spots by considering all these factors step by step. 

The three CFs of CG1 (Design concepts), CF1 (Geometry specification), CF4 (Type of part) and CF3 

(Locating scheme), should be considered firstly, since they significantly affect the outcome of the 

assembly. The CG3 (WPP) is on the second place to be considered, which includes CF10 (Welding 

sequence) and CF11 (The amount of welding points). Moreover, CF8 (Material properties) should be 

considered as well; especially when it comes to special materials with strong stiffness such as boron steel 

or other materials with unique characteristics. Last but not least, CG4 (WPR) does not have a high 

priority. Engineers regarded CG4 (WPR) as the pre-conditions of the process and the process design is 

not easily changed. Additionally, CF11 (Welding force) has very low influence on selection of the geo-

spots. Thus, CF11 (Welding force) is taken out from our model of the process of geo-spots selection. 

 

Figure 16: Priority list 

4.2.3. Geo-Spot Selection Workflow (GSSW) 

The Geo-Spot Selection Workflow (GSSW) is created based on the results of the interviews and the 

priority list, coupled with the verified hypotheses. In order to formulate the multi-disciplinary task of geo-

spot selection a flow chart mapping the work procedure is presented.   

I. The shapes in the workflow 

In order to prioritize the order of the appearance of each contributing element in the flow chart, the results 

of the AHP analysis are taken into consideration. The model is built based on commonly used flow chart 

symbols. The meaning of each symbol appearing in the flow chart is explained below. 
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The model starts and ends using this symbolic figure. 

 

The parallelograms are input/output; In this workflow, input and output is a set of 

welding points, these sets could consist either geo-spots, respots or combination of both. 

 

The diamonds are the decision points where a decision or a trade of needs to be made. 

 

The rectangles are the actions or the processes.  

  

The rectangles with the margin are the predefined processes; in these shapes the verified 

hypotheses are coupled into the model. 

 

The documents include necessary information to look through and consider before taking 

actions. 

 

II. The steps in the workflow 

The GSSW is divided into four steps, shown in different colors, and one additional tool box is embedded 

to describe the step of physical matching and trimming performed to solve the geometric issue in the 

process (see Figure 18). The workflow is generated based on the analysis of the interview results and each 

process takes in the order of the Priority list (see Figure 16) that is summarized by the overall opinions 

from all engineers.  

Step 1 

In order to start the task of geo-spots selection, firstly the CAD models are received. These models 

contain all necessary information, including the welding points on the parts and the information about the 

locating schemes. These data are the main inputs used in the first step of selecting geo-spots. 

The first process is to understand the important features and the requirements set on the sub-assembly. By 

understanding the part type, the engineers can get a feeling about their required functions and also relate 

them to the requirements. Geometry specification should also be checked for understanding the main 

features needed to be secured in the welding process.  

After knowing the important features of the parts, the next process is to analyze whether the locating 

schemes can satisfy the requirements. The purpose of the locating schemes is to lock the parts in all 

degrees of freedom and to minimize the gaps between the mating surfaces to be joined.  In order to satisfy 
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this purpose the locators are positioned with a suitable distance among each other. However, due to the 

part complexity or assembly restriction it is not always physically possible to position the locators on the 

desired place, therefore while selecting geo-spots, it should be considered if the locators are on their 

optimal position or not. If needed, it is possible for the engineers to negotiate with the designer about 

changing the locators to a more suitable position. 

Analysis of the part locating schemes gives a first hint on how the required geo-spots should be selected. 

Those preferable points are the initial proposal of geo-spots, which are the inputs to the next step where 

further analysis will be conducted. 

Step 2  

Based on the judgment in step1, in order to assure that the geometry of the assembly will be stiff/stable 

after releasing the clamps and detaching it from the fixture the first set of geo spot should be selected 

close to the locators in accordance with Hypothesis 1. This is applicable if the locating scheme has the 

ability to satisfy the requirements set on the assembly.  

 

Figure 17: Geo-spot selection of Case A 

On the other hand, if the locators are not on their optimal position and they cannot satisfy the geometrical 

requirement, then the geo-spots have to be chosen to compensate for this. By analyzing upper middle 

reinforcement part in Case A (blue part), it can be seen that the locators are only positioned on the small 

flanges, marked with  in Figure 17. According to Hypothesis 2, it is preferred to have the locators 

placed on the bottom flange pushing it down and make it follow the geometry of the base part, while there 

are no locating elements on that flange. Therefore, it is inferred that there should be one geo-spot on the 

bottom flange to make the geo-spot act as a locating scheme (also Section 4.1.2, Sketch 5: Hypothesis 5). 

The geo-spots should assure the geometrical requirements of the part in the light of Hypothesis 2. 

Moreover, in order to make the geo-spots act like a locating system, they should be spread over the part to 

lock the main axis of the direction. This is according to the Hypotheses 3 and 5 that were verified by 

interviews. This approach comes from the rules of designing a proper locating scheme for the part. 

However, sometimes those desired weld points cannot be selected as geo-spots, because the elements in 

the CG4 (WPR) will restrict the choice. Therefore, these restrictions are needed to be considered at this 

process as follow: 
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a. Loading and processing sequence and the number of the parts to be assembled 

b. Fixture orientation 

c. Geometry of the welding gun 

Knowing the loading sequence helps to identify the “hidden” points. These points are the ones that will 

not be available for welding in later assembly steps, thus they have to be taken in a certain order, because 

some parts will cover them in subsequent processes. For instance, in Case A, the points on the right 

flanges of the middle reinforcement parts (Blue and green parts) are hidden points. Therefore, these points 

need to be selected as geo-spots although sometimes they do not contribute to locking the geometry.  

Fixture orientation can help us realize the way that the parts are being loaded in to the fixture. Gravity is 

sometimes an issue. Therefore, some geo-spots will be needed to oppose gravity force.  

Geometry of the welding gun needs to be kept in mind during the selection process. According to the 

experience, a clearance of 40 mm around the locators is required for the geo-spots selected close to the 

locators. These clearances are required to minimize the risk of collision between welding gun and the 

locating elements.   

After filtering out some point or adding some required points because of the prerequisites a new set of 

points can be generated at the end of the step 2 which includes the points close to the locators (or the 

points acting as new locating system), the preferable points and prerequisite points. In addition, there are 

still some other preferable points that will be further investigated.  

  

Step 3 

Following the priority list, see Figure 16, part thickness and part stiffness need to be addressed next. In 

order to get a complete understanding on how the material will behave and what kind of geometry 

outcome that should be expected after welding, material properties need to be kept in mind. This is 

mainly to identify the master and slave parts of the assembly. Based on Hypothesis 6, the master part 

determines the geometry and makes the slave part follow its geometry. For instance, the lower 

reinforcement part in Case A (green part) can show the importance of part stiffness influence. On the both 

sides of this part, there are two flanges. While the flange on the left side is flimsy and can be bended 

during welding, the flange with the reinforcement (bird-beak) on the right side will drag the part to the 

right after welding (see Figure 17).  

Therefore, the point which helps to follow the geometry of the more important part should be selected as 

geo-spot. However, the number of welding points added to the set should be kept within the required 

cycle time. If the selected geo-spots until this step can be welded within the cycle time, then the initial set 

of geo-spot can be generated. On the other hand, if more points than the allowed cycle time have been 

selected so far, there are two options. Negotiating for adding more robots to the geo station cell, to be able 

to weld those points within the cycle time, or start from initial set of points and reconsider some of the 

choices made. 
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Step 4a 

After deciding on the initial set of geo-spots, the welding sequence of the selected points has to be 

considered. The process of the sequence optimization today is achieved by performing the physical 

matching and trimming procedure which was described before (see Section 4.1.1). The welding sequence 

is considered as a sub-process within the complete process of physical matching and trimming. It is 

assumed that the major conflicts between the mating surfaces are resolved before the study of a suitable 

sequence is performed. 

Different welding sequences are analyzed by physical testing. Firstly, the geo-spots are being set on the 

part in a preferred order and the geometric outcome is analyzed. If there are no geometrical issues on the 

part then the respot will be welded and the outcome will be analyzed again. But in case of geometric 

issues, another loop of tasks is executed for overcoming those issues. This loop is described by the box 

“Additional Tool Box” for solving geometrical issues added in the workflow.  

Additional Tool Box 

To reduce the gaps generated because of the fabrication error in the parts, material flow while welding 

should be considered thoroughly.  Firstly, the present locating scheme should be analyzed to check if the 

material flows in a proper way or if the clamps need to be changed in a certain way to allow the material 

flow based on Hypothesis 4. Moreover, material thickness should be considered, since it will influence 

the material behavior while welding the parts. In short, these additional points selected as geo-spots shall 

force the material to flow in the proper (and desired) direction.  

After this process, if there still are geometric issues on the parts, the part demands should be adjusted. The 

selection process should be reconsidered again after adjusting the demands, however many of the 

previous steps can thereafter be performed faster, since the acquired knowledge through the previous 

processes can be reused. 

After solving the gap problems between the parts, then the spring back effect should be analyzed. If there 

are problems with the spring back on the welded part, some more additional points should be selected in 

the problematic areas in order to constrain the spring back effect (see Section 4.1.2, Hypothesis 7).  

While adding additional geo-spots to solve the geometric issues, the limitation of cycle time in the station 

should always be taken into consideration. Therefore, if there are more points than allowed by the cycle 

time a trade-off between the initial selected geo-spots and the added points should be made to overcome 

geometrical issues. 

Step 4b 

Finally, the respots of the assembly can be welded and the geometry of the assembly should be checked 

again. In case of existence of remaining geometrical issues, the welding sequence box should be iterated. 

After making sure that there are no geometric issues on the parts, the settled set of geo-spots could be 

proposed and conclude the process of geo-spot selection. 
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III. GSSW 

 

 

 

Figure 18: Geo-Spot Selection Workflow (GSSW) 
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5. PROPOSED METHOD OF GEO-SPOT SELECTION 
In this chapter, the proposed method of geo-spot selection is described (see Figure 19). More detailed 

description of SI-GSSW (Simulation Integrated Geo-Spots Selection Workflow), explaining the simulation 

integration of GSSW is given. In addition, the results achieved from each simulation step and the final 

decisions of the selected set of geo-spots using the proposed method are presented.  

 

Figure 19: Proposed method 

The proposed method consists of two steps, SI-GSSW and Decision AHP. Based upon the collected data 

from interviews and the criteria presented in Section 3.2, simulation models are developed in RD&T to 

simulate and verify each demand and criterion. Moreover, these simulation models will be integrated with 

experience based workflow – GSSW. The combination of GSSW, Industrial demand & Criteria and 

simulation models built in RD&T result in SI-GSSW by which different sets of geo-spot can be proposed 

and simulation results for a selection of geo-spots can be achieved. The details of SI-GSSW are presented 

in Section 5.1. Lastly, the simulation results will be used as input to the Decision AHP and the simulation 

results of each set will be evaluated in this step. Finally, the decision of geo-spot can be verified (see 

Section 5.3). 

5.1. The Simulation Integrated Geo-Spot Selection Workflow (SI-GSSW) 
The GSSW presented in Section 4.2.3 was only derived from engineers’ experience. The process of 

selecting geo-spots is an iterative process, still lacking sufficient supports in the decision making. The 

goal of the project is to provide a convincing simulation integrated method to evaluate the choice of geo-

spots and to improve the method GSSW.  

For each criterion (see Section 3.2), a specific simulation model is built to verify the made selection. In 

addition, the eligibility of locating scheme has a profound influence on the variation of the whole 

assembly. Therefore, a simulation model verifying the locating scheme is also built to assure that the 

locating scheme can satisfy the geometrical requirements set on the assembly. All the models in this 

project are established in RD&T software, which are implemented on the both cases respectively (see 
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Section 5.2). Furthermore, these simulation models will be integrated with GSSW. Through combining 

advanced simulation support and proven industrial experience, a comprehensive work procedure - SI-

GSSW is presented (see Figure 20). 

First and foremost, with the help of RD&T, the locating scheme is verified using variation simulation 

which can be used as a support for the negotiation of changing the locating system. Therefore, the first 

simulation model is designed to evaluate the eligibility of the locating system. The result of this 

simulation can support the decision in the first step of workflow, to predict the variation in parts caused 

by the locators and their placement. The necessary changes of the design or the process can be detected in 

the early phase of the selection process (see Section 5.2, Model 1). 

Secondly, the Criterion 2 of the geo-spots selection specifies that geo-spots should make the assembly 

withstand the applied forces in the subsequent processes. Going through the workflow of experience, it 

can be seen that there is no process specifically designated for this purpose. However, in the physical 

matching and trimming step, forces that are caused by gripper and fixture will be exerted to the assembly. 

The idea of analyzing rigidity should not be completely neglected in the process. Thus, a model 

describing the rigidity of the parts needs to be included in the working procedure. A variation simulation 

model for testing the rigidity of assembly after geo-spot welding will support the decision of the second 

criterion (see Section 5.2, Model 2).  

Furthermore, a decision regarding the geometric issues caused by the selected geo-spots needs to be 

made. In the current procedure, the one and only approach to analyze these issues is through physical 

trial, which occurs in the iterative steps of physical matching and trimming process. The third model is 

built to examine the geometry outcome of assembly and it will be implemented in the workflow. This 

model corresponds to Criterion 1 (see Section 5.2, Model 3).  

Lastly, the decision regarding the geometric issues after setting the respot points on the assembly needs to 

be supported with the help of the fourth simulation model. The fourth model is built to simulate geometry 

outcome of the assembly after welding both geo-spots and respots. The result of this model will help the 

engineers to decide if the expected outcome has been achieved simulating the whole process. In addition, 

with the help of this model, Criterion 3 will be evaluated (see Section 5.2, Model 4).  

In short, the selection of geo-spots will be verified and tested by simulating the process in RD&T. By 

visualizing the results of the simulations, the errors in the process could easily be observed and tracked. 

The workflow of SI-GSSW is depicted in Figure 20. 
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Simulation Integrated Geo-Spot Selection Workflow (SI-GSSW) 

 

 

 

 

 

 

 

 

 

 

Figure 20: SI-GSSW 
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5.2. Simulation models in RD&T 
The reasons behind building each simulation model have been discussed in Section 5.1. SI-GSSW, 

presented in Figure 18, depicts the use of each model in the workflow. This section describes the details 

about each model and explains how the CAT- tool RD&T are used to fulfil the purpose. 

Model 1: Locating scheme analysis 

The Model 1 is intended to verify the locating scheme of non-rigid sheet metal assembly and investigate 

whether it can help satisfy the geometrical requirements. This model simulates the effect of clamps and 

fixture elements when the compliant part is located in the N-2-1 system (over-constrained). The effect of 

clamps and support points should be considered since these fixture elements might deform the parts and 

enlarge part variations in the final assembly. Sensitivity analysis is executed to examine how sensitive the 

sheet metal assembly is when unit disturbances are exerted to the locating scheme. The analysis of part 

variations caused by the locating scheme will help the process of improving the locating scheme; 

therefore those changes can be implemented earlier in the manufacturing engineering process.  

Model 2: Stiffness of the assembly 

The Model 2 is designed to test the rigidity of the assembly and to analyze whether the assembly can 

withstand the forces of subsequent processes. In pre-assembly station, when the parts have been welded 

together by geo-spots, the assembly will be released from the clamps. Then, a robot gripper comes to 

fetch the assembly that is still held by the fixture.  This model is used to simulate how much variation will 

be caused, when both gripper and fixture is holding the assembly. Those forces from gripper and fixture 

could deform the assembly and increase dimensional variations.  

In order to analyze how each geo-spot set can contribute to make the assembly stiffer, super-parts 
10

of the 

geo-spot welded assemblies are made. Unit disturbances are exerted to the gripper and the fixture and 

variation simulation is conducted in RD&T. The results of this model can support the judgment of 

assemblies’ stiffness after of geo-spots welding. The placement of the locators in the gripper can also be 

evaluated using this model.  

Model 3: Geometric outcome of assembly 

The geometry outcome after the geo-spot welding can be analyzed by Model 3. It means that in this 

model different sets of geo-spots are going to be evaluated. The initial sets of geo-spots on the part can be 

generated using SI-GSSW (see Figure 18). The variation simulation for different sets of geo-spots will be 

conducted in RD&T and the results of simulation will be analyzed. Moreover, the welding sequence of 

the selected geo-spots can be analyzed based on this model as well. The result achieved from the 

sequence and simultaneously welding models can be compared. Finally, the outcomes of several sets of 

geo-spots are analyzed and the good candidate sets are selected for further analysis in the next step of SI-

GSSW.  

Model 4: Influence of the respots  

As discussed before, one criterion for geo-spots selection is to reduce the influence of respot points, 

which can be analyzed in Model 4. The simulation results generated from Model 3 are exported and used 

as a base for this model. The assembly has been welded by selected geo-spots. After assigning the respots 

                                                      
10

 Super-part refers to a part that is made from an assembly. Super-part might comprise several parts which are 

welded together.   
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to the assembly, variation simulation is conducted again. To analyze the influence of respots a 

comparison of simulations results of Model 3 and Model 4 is conducted, which visualizes the variations 

of assembly before and after respots. 

5.3. Decision AHP 
By summarizing the results of all simulation models, the decision matrices ( ) for the choosing the best 

set of geo-spots can be constructed. In these matrices, the decision criteria are the three models; rigidity 

analysis (Model 2), geometric outcome of assembly (Model 3) and influence of the respots (Model 4). 

Different sets of geo-spots are regarded as alternatives in the decision making (see Section 2.3.2, 

Equitation 13).  

  

[
 
 
 
 
         
   

   

   

   

   

   

 
   

 
   

 
   ]

 
 
 
 
 (16) 

The weight of each criterion is assigned (see Section 4.2.2). The first criterion (assuring geometry 

robustness and product functions), which is related to the third model has the importance-weight of     . 

The other two criteria (assuring rigidity of parts and minimizing the influence of the respots) connected to 

model two and model four, have both the importance weight of     . These values compose the weight 

array  ̃. 

   ̃  [

  

  

 
  

] (17) 

Finally, the decision values of selected geo-spot set can be calculated by multiplying the normalized    

matrix with the weight array. The set corresponding highest value of    can be selected as the best set. 

This is the result of the comprehensive analysis. 
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5.4.  Application to case study 
The following simulation models were built to simulate the assembly of Case A and Case B, respectively. 

Detailed information for each case is presented in Table 5 below. 

Table 5: Case study characteristics 

 Case A Case B 
Description A-pillar assembly Cross member assembly 

Pictures 

 

 

 

 

 

 

 

 

 

 

 

Simulation models 

1. Locating scheme analysis 

2. Stiffness of the assembly 

3. Geometric outcome of assembly 

4. Influence of the respots 

1. Locating scheme analysis 

2. Stiffness of the assembly 

3. Geometric outcome of assembly 

4. Influence of the respots 

Parts of assembly 

Base part 

3 reinforcement parts 

Supper part assembly: 2 brackets 

Upper part (blue part) 

Lower part (Red part) 

2 reinforcement parts 

Number of locators 

in fixture 

Base part: 5 

Reinforcement parts: 

Yellow part: 4 

Blue part: 7 

Green part: 7 

Upper part: 6 

Lower part: 6 

2 reinforcement parts: 6 

Number of locators 

in the gripper 
Base part: 6 Lower part: 6 

Number of geo-

spots and respots 

12 spot welds for geo station 

19 spot welds for respot station 

16 spot welds for geo station 

41 spot welds for respot station 
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5.4.1. Case A geo-spot selection 

Before executing the analyses, several initial sets of geo-spots were selected according to SI-GSSW. There 

were four sets of geo-spots chosen for analyses of Case A. Each set of geo-spots contains 12 points 

welded in the geo station, based on the limitation of cycle time. 

Table 6: Selection of geo-spots - Case A 

Case A: Welding points on the assembly 
 

 
 

Geo-spots selections 

First set Second  set Third set Fourth set 

[3 4 5 8] [2 9 13 14] [1 10 

12 11] 

[3 5 6 8]  [2 9 13 14] 

[1 10 12 11]  

[3 5 7 8] [2 9 13 14] 

[1 10 12 11] 

[3 5 6 7 8] [2 9 13 14] 

[10 12 11] 

 

The geo-spot sets are selected from the pre-defined WPs on the assembly. The geo-spots of Case A are 

separately located on three reinforcement parts in the assembly. On the yellow part (a), there are three 

common points in each set that are WP3, WP5 and WP8. WP3 and WP8 are near the locators locking the 

part close to nominal in the XZ plane as defined by the fixture (The position of the locating scheme and 

their directions are shown in Table 6). These two points together with WP5 construct the biggest triangle 

area on the part and make the part attach to the base part. The other points (WP4, WP6 and WP7) are 

picked to secure the key feature on the part such as the corner of left side. 

On the blue part (b), the selection is limited to four WPs. WP9 must be welded first due to the loading 

sequence. The bracket assembly will be positioned in the fixture after WP9 is taken. Afterwards WP9 will 

be hidden by the bracket assembly. Then, WP13 should be taken to lock the main direction of the blue 

part (b). To secure the right corner, WP14 should be taken afterwards to make the whole part attach to the 

base part. WP2 is selected to lock the blue part in X direction. If taking the sequence into consideration, 

WP2 should be welded lastly, since the small flange where WP2 is located, is flimsy and have the ability 

to bend. 

7 

6 

5 

4 

3 2 

1 

10 

9 

11 
12 

13 14 

Welding 

points 

8 

a 

b 

c 

Locators 

Reinforcement 

parts 

Base part 

Bracket 

assembly 

Z 

X 

Y2, Y3, X5 

Y1, X4, Z6 

Y3, Z4, Y7, Y8, Y9 

Y1, Y2, Z5, X6 

Y1, Z4, Y7, Y8, Y9, Y10 

Y2, Y3, Z5, X6 
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On the green part (c), all those points are selected based on the same reasoning as the ones on the blue 

part. The only difference is that in the fourth set, WP1 is taken out from the set in order to add an extra 

geo-spot to fixate the corner of the yellow part. The small flanges on the left side between the green part 

and the base part can be welded in the respot station. 

5.4.2. Case A simulation results 

Model 1: Locating scheme analysis 

The most important geometrical requirement of Case A is to assure the geometrical accuracy of the 

flanges around the base part. The locating scheme of the sub-assembly must meet the requirement and 

fixate the parts with low variations. As the results in Table 7 shows, the left corner of the base part turns 

intensively red which indicates the high deviation in that area, when the part is putting into the original 

locating scheme  (location scheme of the base part and their directions are shown in Table 7, for the rest 

of the parts see Table 6).  

It can be inferred that the design of original locating scheme on the top reinforcement part has a main 

impact on the part variation. The locators on the top part are densely located on one side of part, while on 

the left side of part there are no locaters to secure the position. Therefore the existing sensitivity is due to 

the contact between the base part and the yellow part. Through redesigning the locating scheme, the new 

strategy is to move one original locator from the right to the left side on the yellow part and only push it 

against the base part to follow its deviations in X direction (see Table 7). By changing the position of one 

locator, the part mean deviation is reduced from      to 0.64    and the RMS is reduced from 0.19 mm 

to 0.15   .  

Table 7: Model 1 results - Case A 

Locating Scheme Analysis  

 Original scheme Improved scheme 

Case A 

  

Part Mean deviation 

     
                          

Root Mean Square 

     
          

 

  

Yellow 

part 

Base part 

Highly deviated area 

Y1 

Y3 
Y2 

X4, Z6 

X5 
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Model 2: Stiffness of the assembly 

Based on the results of Model 2, all four geo-spot sets can provide stiff enough assemblies. The unit 

disturbances are exerted by both locators and grippers to the parts that are welded by different sets of geo-

spots. The expectation of the results from this model is to get smooth colors changes indicating that the 

parts are following each other. 

The four sets of geo-spots will result in smooth color changes. For instance on the yellow part and on the 

base part the colors are green and changes smoothly to light blue, indicating that the yellow part is 

following  the base part for all the sets (see Table 8). In addition, it can be seen that the applied forces will 

result in a low level of deformations and that the part variation is within             range. Therefore, it 

can be claimed that all sets of geo-spots can satisfy the requirement of rigidity for Case A assembly.  The 

results achieved from all the sets of geo-spots are close to each other. This is mainly because the 

disturbances are applied on the base part, not on the reinforcement parts (the positioning of the gripper 

and their directions are shown on Table 8). 

Table 8: Model 2 results - Case A 

Stiffness of the Assembly 
First set Second set Third set Fourth set 

    
Min.-Max. Part Variation (  ) 

                                    
Root Mean Square (  ) 

                    

 

  

Base part 

Smooth 

color change 

Yellow 

part 

Gripper Y1 

Gripper Y2 

Gripper Y3 

Gripper X4 

Gripper X5, Z6 

Gripper Y7 

Z 

X 
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Model 3: Geometric outcome of assembly 

For the Case A assembly, four sets of geo-spots are generated and tested by simulation. Total 12 geo-

spots selected in each set were welded on the assembly (see Section 5.4.1). The simulations show that the 

top flanges of the base part in the first and the third sets have high mean deviation; up to around     . 

The outcomes of these two sets are not desirable for the geometrical requirements of assembly. Compared 

with these two sets, the second set and the fourth set have a better performance on the flanges of the base 

part that keep the mean deviations down to    . Notably, in the second and fourth set, the part deviation 

of the lower reinforcement part is higher than on the other two parts, because there is a lack of geo-spots 

on the bigger bottom flange (See Table 9). Additionally, the RMS of second set is         which is 

better than any other of the sets. In short, the second set of geo-spots produces the best outcome of 

geometry by judging both mean deviation and RMS value. The sequence analysis results achieved from 

the corresponding geo-spots are presented in Appendix C. The comparison between the results of 

simultaneously welding and sequential welding is discussed in Chapter 7.  

 

Table 9: Model 3 results - Case A 

Geometric Outcome of Assembly 

First set simultaneous 

welding 

Second set simultaneous 

welding 

Third set simultaneous 

welding 

Fourth set simultaneous 

welding 

    
Min.-Max. Mean Deviations (  ) 

                                                    
Root Mean Square (  ) 

                    

 

 

 

 

Top flange- Base part 

Lower 

reinforcement 

Bigger bottom 

flange 



60 

 

Model 4: Influence of the respots  

Table 10 depicts color plots showing the differences in geometry of the base part after adding the respots. 

The green area has lowest influence from respots; around   to         part deviations. The red and 

purple areas are the zones most affected by respot welding. Especially, the first set and the third set have 

significant effects of respots on the base part. The part deviations of the first set and the third set are 

increased up to          and          (opposite to the normal direction), respectively. In the fourth 

set, the left corner of base part flange is still distorted a bit by the respots (see Table 10). In contrast, the 

second set of geo-spots completely stabilizes the geometry of assembly, showing the lowest influence 

from respots and also the lowest RMS value.  

Table 10: Model 4 results - Case A 

Influence of the Respots 

First set before and after 

respot comparison 

Second set before and 

after respot comparison 

Third set before and after 

respot comparison 

Fourth set before and 

after respot comparison 

    
Min.-Max. Normal deviations (  ) 

                                                    
Root Mean Square (  ) 

                    

 

  

Highly deviated area 
Distorted corner- base part 
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5.4.3. Case A decision of geo-spot set 

The results from the three simulations using models 2, 3 and 4 can be used to construct a decision matrix 

as follows:  

Table 11: Decision matrix - Case A 

Case A Model 2 RMS Model 3 RMS Model 4 RMS 
First set                
Second set                
Third set                
Fourth set                

  Unit:    

By normalizing the matrix above the following results are achieved for Case A:  

Case A Model 2 RMS Model 3 RMS Model 4 RMS 
First set              
Second set       
Third set             
Fourth set                

Unit:    

Multiplying the weight array ( ̃) to the normalized matrix (  ) the following results are derived: 

First set          
Second set       
Third set          
Fourth set          

 

The numbers in  this evaluation utilize the variation or deviation data from the simulation results. In the 

criterion of assembly’s rigidity (Model 2), the results of all the sets have approximately equal  RMS 

values. According to the criterion of geometric outcome (Model 3), the second set will have the least 

mean deviation after the geo-spot welding. The irreconcilable difference among the simulation results of 

the four sets for Case A is in  Model 4. For the criterion of low influence of respots, the second set shows 

a low influence from the respots  (       ), which makes this set  stand out compared to the other three 

sets.  

The final decision can be made based on the values of (   ̃ ). The highest    indicates the best 

alternative considering all the criteria (see Section 2.3). The result from geo-spots on Case A indicates 

that the second set will result in the best outcome considering the overall performance under the three 

selection criteria. The fourth set in this comparison has the second highest value and then come the third 

and first set, respectively.  
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5.4.4. Case B geo-spot selection 

There are four sets of geo-spots chosen for analyses of Case B. Each set of geo-spots contains 12 points 

welded in the geo station. In addition 4 points, marked with in Table 12, are set initially joining the 

small brackets to the blue part, due to the assembly sequence limitation. The first set on this part is 

generated by allocating the geo-spots equally on both the Z flange ad X flange. The second set is 

generated by reducing the number of points on the Z flange and assigning more WPs to the X flange. The 

third set is implemented for distributing the complementary points (interdependent WPs) over the both 

flanges.  

Table 12: Selection of geo-spots - Case B 

Case B: Welding points on the assembly 

 

 
Top view 

 
Front view 

 
Front view 

Geo-spots selections 

First set Second  set Third set 

[2 3 4 6 7 8 11 13 16 19 22 24] [1 4 6 9 10 12 13 15 20 22 23 25] [2 3 5 7 8 11 14 17 18 21 23 24] 

  

8 7 3 2 
1

8 

9 6 4 5 

11 10 

13 

12 

14 
15 

16 17 18 19 

24 

21
20 

22
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Welding 

points 
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X3 

Z4 Z5 

X7 
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X1,Y6 

X3 

Z4 

X2 

Z5 

X7 

Y2,Z4, X6 Y1, Z5 

Y3 
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5.4.5. Case B simulation results 

Model 1: Locating scheme analysis 

The geometrical requirements studied in Case B are to assure that the plane of the upper part is 

completely horizontal and that the flanges of the lower part are in accurate position. These features need 

to be secured in order to match with other parts in subsequent processes. Evaluation of the simulation 

result of Model 1 shows that the original locating scheme is qualified to secure the key feature of the 

assembly (The position of the locating scheme and their directions are shown in Table 12). 

Table 13: Model 1 results - Case B 

Locating Scheme Analysis 

 Original scheme front Original scheme back 

Case B 

  

Part Mean deviation 

(  ) 
             

Root Mean Square 

(  ) 
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Model 2: Stiffness of the assembly 

The results listed in Table 14 show the effect of the fixture and gripper locating schemes on the assembly. 

The gripper in this case is located on the same position as the locating scheme of the Lower part (red part) 

(see Table 12). Since the outcomes of the selected sets of geo-spots were quite close to each other, 

applying the disturbances did not result in large differences in part variations and RMS values when 

comparing the three selected sets. The RMS values summarizing the simulation results are close to each 

other and differ only within        . The reason behind this behavior is that the disturbances are only 

applied on the Lower part (red part), therefore same results achieved on all the three proposed sets. 

The highest influence of the gripper on the part will be on the loose flanges on the both sides of the part. 

This is inevitable since those loosen flanges on the both sides will deviate the most while the welding and 

forces of the gripper will be applied to the part. Since the gripper locations are close to the loosen flanges 

on the both ends of the part (see Table 14), then disturbing the gripper position will significantly influence 

those areas. Moreover, the edges of the loosen flanges are quite flimsy during handling, which is also a 

reason of high deviation. 

Although the forces applied to the assembly by the gripper do not have great influence on the welded 

areas, there are still some areas that will be affected by this process. Looking at the first set results, it can 

be seen that the right side of the Z flange will have quite high variation (close to    ) which is not 

favorable.  

Table 14: Model 2 results - Case B 

Stiffness of the Assembly 
First set Second set Third set 

   

   
Min.-Max. Part Variation (  ) 

                           
Root Mean Square (  ) 

               

 

  

Loosen  

flanges 
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Model 3: Geometric outcome of assembly 

Three selected geo-spot sets were analyzed in this model. The results of selecting 12 geo-spots on the part 

plus 4 welds on the reinforcement brackets (see Table 12) are listed in Table 15. Again in this model the 

three selected sets of geo-spots generate similar part deviations. All the three sets of the geo-spots 

generate a gap between the upper part and lower part in the middle area, see Table 15. The outcome of all 

the three geo-spot sets is around 1    distance in that area.  

On the both edges of the assembly, the deviation of the lower part will occur again. As mentioned having 

those deviations is inevitable on the loosen flanges. Having a mean values over 2    on the max normal 

deviation is due to this reason as well.  However, on the other areas of the part, the selected sets of geo-

spots will result in satisfying deviations. In most of the areas, the mean value does not exceed 2   , 

which is acceptable. 

Table 15: Model 3 results - Case B 

Geometric Outcome of Assembly 

First set simultaneous welding Second set simultaneous welding Third set simultaneous welding 

   

   

Min.-Max. Normal deviations (  ) 

                          [-1.44, 2.93] 

Root Mean Square (  ) 

          0.48 

 

  

 Gap in the middle area 

Loosen  

flanges 
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Model 4: Influence of the respots  

After setting the 41 respots on the Case B assembly and comparing the outcome with the outcome of 

Model 3, the results presented in Table 16 were achieved. For the first set, the influence of the respot has 

the mean RMS value of 0.25    for the whole assembly. The main influenced areas are the right loosen 

flange on the lower part; this area has a tendency to bend downwards up to     . Moreover, the middle 

area of the lower part which comes in contact with the Z flange on the upper part is influenced up to 

       upwards (red areas). For the second set, there are even more influence from the respot welding. It 

can be seen that the loosen flange tends to bend upwards and the middle area deviates up to         in 

the lower part. On the upper part, the corners deviate in normal direction even more compared to the other 

two sets (see Table 16). The result achieved from the third geo-spot set also indicates that this set is more 

sensitive to respot welding compared to the first set. For the third set the upper part is more influenced in 

normal direction. The RMS value does not differ a lot compared to the first set, but the deviated area on 

the upper part is broader for the third set.  

Table 16: Model 4 results - Case B 

Influence of the Respots 

First set before and after respot 

comparison 

Second set before and after respot 

comparison 

Third set before and after respot 

comparison 

Lower part 

   

Min.-Max. Normal deviations (  ) 

                                       

Root Mean Square (  ) 

               

Upper part 

   

Min.-Max. Normal deviations (mm) 

                                       
Root Mean Square (  ) 

               

The whole assembly 

  Root Mean Square (  ) Root Mean Square (  ) Root Mean Square (  ) 

               

 

Right-loosen  flange 

Middle area 
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5.4.6. Case B decision of geo-spot set 

The same procedure for decision-making is applied to Case B and the following results were achieved: 

Table 17: Decision matrix - Case B  

Case B Model 2 RMS Model 3 RMS Model 4 RMS 
First set 0.76 0.47 0.25 
Second set 0.75 0.48 0.49 
Third set 0.74 0.48 0.24 

Unit:    

The normalized matrix above is calculated for the second model as below: 

Case B Model 2 RMS Model 3 RMS Model 4 RMS 
First set             
Second set                
Third set          

Unit:    

Multiplying the weight array ( ̃) to the normalized matrix (  ) the following results are derived: 

First set            
Second set            
Third set            

 

For the criterion of assembly rigidity (Model 2), the individual comparisons of the models indicate that 

the results are similar in all the three different models with 0.01    differences among the different sets. 

Moreover, for the criterion of geometric outcome (Model 3), the values are the same comparing the RMS 

values for all the three sets. Notably, the influence of the respots (Model 4) will determine the selected set 

of geo-spot on this case again. It can be seen that the influences of the respot on the first and the third set 

are quite close to each other. However, since the influence from the respots is bigger for the second set, 

set 1 of set 3 is preferable. In short, the simulation results derived from the Case B shows that the third set 

will give the best results, considering all three criteria. 
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6. RESULTS 
In this chapter, the results achieved from different phases of this project are presented. Industrial 

experience approach of geo-spot selection summarized from the interviews and theory study are 

presented. The proposed method of this project that is based on the industrial experience approach 

integrated with simulation solutions is concluded.  

Industrial experience approach of geo-spot selection 

To acquire industrial experience of the task, a comprehensive interview approach containing general 

questions, questionnaire, hypotheses, sketches and case discussions were applied to obtain both tacit and 

explicit knowledge of the interviewees (see Section 3.3). The interviewees were selected from the experts 

in the field of sheet metal assembly. The results from industrial experience of geo-spot selection are:  

 The specific characteristics of geo-spots are used as the main criteria in the project (see Section 3.2); 

 The verified hypotheses of geo-spots selection (see Section 4.1.2); 

 Fifteen Consideration Factors (CFs) and four Classification Groups (CGs) of geo-spots selection are 

summarized (see Section 4.1.3); 

 The Root Cause Analysis of these CFs and three main criteria (see Section 4.2.1) 

 The importance-weights of all CFs are summed up to the priority list (see Section 4.2.2); 

 An experience based workflow: Geo-Spot Selection Workflow (GSSW) mapping the above findings 

in a workflow is presented (see Section 4.2.3). 

The proposed method of geo-spot selection 

To support decision making in the process of geo-spot selection, the CAT-tool RD&T can be used to 

analyze and visualize the outcome of geo-spot selection. Therefore, the proposed method contains a 

Simulation Integrated – Geo-Spots Selection Workflow (SI-GSSW) that combines variation simulation 

with the experience base workflow - GSSW. Moreover, a decision making approach (AHP), that is 

utilized to evaluate the simulation results and decides the final selection of geo-spots, is also included in 

the proposed method. The results of the proposed method of geo-spots selection are: 

 The proposed method is presented (see Chapter 5); 

 SI-GSSW is established to fulfill the demand of industry (see Section 5.1); 

 Four unique proposed simulation models are developed to support decision making (see Section 5.2);  

 Decision AHP is investigated and utilized to find the best satisfied set of geo-spots (see Section 5.3). 

Application of the proposed method to the Cases. The method is applied on two different industrial cases 

and the results are presented in Section 5.4. It is shown that the proposed method can satisfy the purpose 

of geo-spot selection and can be used to propose potential sets of geo-spots for further optimization.   
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7. DISCUSSION 
In this chapter, the achievements and results of the thesis are discussed. Firstly, in this section the chosen 

methodology is commented. It states how the goals and objectives have been fulfilled. Moreover, it 

describes how this thesis contributes to the research that has been done in this field. Lastly, the future 

research possibilities are proposed. 

The methodology used in this project was inspired by the Banks Simulation Methodology that is a suitable 

method used for the computational simulation, while Banks Simulation Methodology needs to be refined 

to suite the actual project. In this project, the modified Banks Simulation Methodology has been proven to 

be easy to follow (see Section 3.1). Therefore, it is recommended by the authors of this report to adapt the 

Banks Simulation Methodology, based on the needs, in order to achieve the goals in a simulation project.   

The goal of establishing a systematic method for geo-spot selection has been fulfilled by the new method 

composing of the SI-GSSW and the decision making approach AHP. Other than mapping the experience, 

the proposed method takes advantage of the simulations supported by the CAT-tool, RD&T (see Chapter 

5). The applicability of the proposed method has been verified by applying it on the chosen case studies. 

The results achieved from the cases imply that the proposed method in this thesis establishes a 

standardized work procedure of the task of geo-spot selection (see Section 5.4).  

While previous studies have investigated selection of important spot-welds in the sheet metal assembly, 

this thesis work presents three main criteria that specify the characteristics of the assembly after welding 

of the geo-spots. Fifteen CFs were identified and verified during the interviews of the experts within this 

field from VCC and some participants from Volvo Trucks (see Section 4.2.2). These CFs are connected 

to the main criteria which influence the geo-spot selection process. Based on the results achieved from 

simulations and after assuring that the proposed method is suitable for geo-spot selection, it can be stated 

that the chosen criteria and the identified CFs can be the basis of a standardized method for geo-spot 

selection in automotive industry.  

The industrial cases in the study are provided by VCC and the simulation models were all built in the 

CAT-tool RD&T. By executing the variation simulation, the relations between geo-spots selection and 

assembly variation can be visualized earlier than verifying the assembly physically. The simulation results 

of selected geo-spots could have been further verified by the physical matching and trimming. However, 

the limited time for this project did not allow physical testing. 

It is worth pointing out that sequence analysis of the selected set of geo-spot also has been conducted 

which supports the decision of selecting the best geo-spot set. As an effort to imitate the real production, 

different sequence trials have been executed in RD&T. For Case A, the results of the sequence simulation 

for the second and third set show that both sets have low part deviations, which is in line with the decision 

made by only considering the simultaneous welding of the geo-spots. Notably, it is discovered that on the 

second, third and fourth set the sequence models resulted in less deviation compared to simultaneous 

welding (see Figure 21, see Appendix C). Moreover, the sequence analysis of the selected set of geo-spots 

has also been executed for Case B. The outcomes of the sequence model in Case B show similar results 

for all the sets, the first set having the lowest RMS value of all models. However, the RMS values of 

sequence models in all sets are better than simultaneous welding by         (see Figure 21, see 

Appendix C).  
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Figure 21: Seq. Analysis vs. Sim. Analysis 

Therefore, the argument of previous research that the simultaneous welding will often result in less 

variation is not valid, when it is compared with the simulation results in this report [14, 4]. The findings 

of the sequence model prove that a well-chosen sequence of spot-welding might generate less mean 

deviation compared to the simultaneous welding [2].  

The other aspect that has to be considered is that the differences between the results achieved by different 

simulation models are small (less than     ). As it is mentioned, more investigations need to be made on 

the applicability of the proposed simulation integrated model, through implementing it to more 

assemblies. Due to specific process restrictions in the Case A and Case B, the chosen sets of geo-spots do 

not differ from each other to a large extent. Therefore, small differences are formed in the simulation 

results.  

Finally, a general strategy for assigning the welding sequence for geo-spots could be investigated. More 

investigations are required to combine the proposed simulation models with welding sequence of geo-

spots through applying GA method [2, 4]. It is also possible to develop more specific simulation models 

to meet the demand of industry. The simulation of non-rigid sheet metal assembly could be extended to 

multi-station assemblies in future research. 

  

First set Second set Third set Fouth set

Case A - Simultaneous welding 0.56 0.56 0.52 0.51

Case A - Sequential welding 0.61 0.44 0.51 0.45

Case B - Simultaneous welding 0.47 0.48 0.48

Case B - Sequential welding 0.46 0.47 0.47
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8. CONCLUSIONS 
The purpose of this project is to investigate the current work procedure of selecting geo-spots in non-rigid 

sheet metal welding and develop a feasible method to increase the geometrical robustness and reduce the 

lead time for the task. To achieve that, a comprehensive workflow for identifying geo-spots in non-rigid 

sheet metal assembly is formulated and presented in this report. The workflow integrates industrial 

experience and simulation solution that is realized by RD&T software. 

Moreover, a number of CFs influencing the decision of engineers in geo-spots selection are summarized 

and verified in the interviews. It can be concluded that CF1 (Geometry specification), CF2 (Type of part) 

and CF3 (Locating schemes) within CG1 (Design concept) have the highest priority among other CFs 

(see Figure 16, Section 4.2.2). The CG4 (Welding process restrictions) has the lowest priority among four 

CGs. Engineers regard CG4 as the pre-conditions of the process that cannot be changed in most cases (see 

Section 4.2.2). 

Four simulation models are established to verify different demands in the process of selecting geo-spots. 

The results from the simulation models can assist the decision making of choosing suitable geo-spots on 

the assembly and visualize the consequences of an engineering decision. More importantly, the simulation 

models can transfer the work of physical trial to a virtual environment in RD&T. With the integration of 

simulation and industrial routines, the diagnosis of the geometry problems and error prediction can be 

conducted in earlier stages in the product development processes. 
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APPENDICES  

Appendix A:  Interview data collection 

A.1. Interview questionnaire 

First Round- Warm-Up Questions  

1- What data do you need in order to start with selection of the geo-spots? Is the model itself 

sufficient for this task? 

a. Important issues: cycle time, how to load the parts, locating scheme 

 

2- How do you sort the respot points from those points for selection of the geometric points?  

a. Will you reduce the “must be taken” and “cannot be taken” points from the list initially?  

b. How to get information of hidden points? 

 

3- What is your strategy for selection of the geo points?  

a. What do you expect for the outcome? 

b. Will you prefer to reduce the variations in all nodes after selecting each point? 

c. Will you usually start from one specific point to minimize the variations and 

consecutively optimize another point, one by one to the end? 

Round 2- Influencing factors to the geo-spot selection task 

4- Which factors do you consider are the most important when you choose geo spots based on the 

scenario of samples? Why? 

a. If you chose the points close to locators, why do you need the points as close as possible 

to the locators? 

b. In some situation, how do you make the balance of those factors?  

c. Does the situation that you have to change the selection of geo spots happen sometime 

due to some factors? 

 

5- Will you consider the welding sequence when you sort out the geo spots? 

a. If you consider it, how does the welding sequence influence your decision? 

For example: will you consider the effect of the first selected geometric point on the other 

points? How the first selected geo points will affect the deviations in the other nodes? 

b. Will you generate different sets of welding points because of different sequences? 



 

 

6- How many points do you think can secure the geometry of sub-assembly? (Show case A pillar) 

a. In general the way to select without knowing the locators… 

 

7- Do you consider the effect of the welding force in your decision?  

a. Would you consider the one which needs more energy as a potential candidate for your 

selection / thin and thick parts? 

 

8- How do you overcome the problems in the geometry during your test runs? 

a. Are there any routine methods for improvement after that you checked the results?  

b. For instance bumps between the sheets, or bends in the flanges  

 

9- How difficult do you think the process of selecting geo spots is for amateurs?  

a. Do you find the process a time consuming task, overall? 

 

 



 

 

A.2. Priority and evaluation table 
Table 18: Priority and evaluation table 

 

*Please prioritize different classification groups in the Priority of Group column. The priority number starts from 1, which means that the group 

should be considered at the highest priority. Please prioritize each consideration factor within its group and give the number in the Priority of 

Factors column.  

 

*Give weight of each consideration factor according to the relation with criteria 4 (strong), 3 (intermediate), 2 (weak), 1 (irrelevant) relation by 

choosing the number in the table) 

 

*Please feel free to add any other element or cineraria that you find relevant in the blank rows and columns. 

 

Classification Groups 
(CG) 

Priority of 
Group 

P
rio

rity
 o

f 
F

a
cto

rs 

Consideration factors 
(CF) 

The relations between the selection criteria 
and consideration factors 

Criterion 1 Criterion 2 Criterion 3 

Assure geometry 
robustness 

Rigidity of parts 
withstand sub-
assembly force 

Low influence of 
respot points 

Design concepts 

  Geometry specification 1 2 3 4 1 2 3 4 1 2 3 4 

 Part thickness 1 2 3 4 1 2 3 4 1 2 3 4 

 Locating scheme  1 2 3 4 1 2 3 4 1 2 3 4 

 Type of part 1 2 3 4 1 2 3 4 1 2 3 4 

 Number of parts 1 2 3 4 1 2 3 4 1 2 3 4 

Material Properties 

  Spring back effects 1 2 3 4 1 2 3 4 1 2 3 4 

 Part stiffness 1 2 3 4 1 2 3 4 1 2 3 4 

 Material flow 1 2 3 4 1 2 3 4 1 2 3 4 

Welding Process 
parameters 

  The amount of welding points 1 2 3 4 1 2 3 4 1 2 3 4 

 Welding sequence 1 2 3 4 1 2 3 4 1 2 3 4 

 Welding force 1 2 3 4 1 2 3 4 1 2 3 4 

Welding Process  
restrictions   

  The geometry of welding gun 1 2 3 4 1 2 3 4 1 2 3 4 

 Loading and processing sequence 1 2 3 4 1 2 3 4 1 2 3 4 

 Fixture orientation 1 2 3 4 1 2 3 4 1 2 3 4 

 Cycle time 1 2 3 4 1 2 3 4 1 2 3 4 



 

A.3. Hypotheses 

The hypotheses of selecting geometry points are categorized into industrial solutions and theoretical logic. 

Should be geo spots 

1. The welding points that are close to locators should be chosen firstly as geo spots. 

2. The welding points that determine the geometrical requirement of part should be taken as geo 

spots. 

3. The welding points that contribute to lock the main axis of the surface should be considered as 

geo spots. 

4. The welding points should be as spread as possible to act as a part to part locating system to 

increase robustness, when the clamping system is restricted. 

5. The selection of welding points should consider material thickness due to the fact that thick part 

has more influence on geometry compared to the thin part. 

6. The welding points that have more effect on reducing the spring back effect should be selected as 

geo points. 

7. When clamping points are on the both side of the sheets, and one of them are adjustable, the 

welding point that can flow the material the most should be selected as the geo point. 

Should not be geo spots 

8. The welding points that are in conflict with geometry of the welding gun should not be taken as 

geo spots. 

9. The welding points that are in conflict with reachability of the robot should not be taken as geo 

spots. 

10. The welding points that are in conflict with assembly sequence should not be taken as geo spots. 



 

 

Appendix B: AHP tree 

  



 

Appendix C: Sequence analysis results 

 Case A Sequence Analysis 

  
First set  

Sequence of Geo-spots : {3, 4, 8, 9, 10, 12, 13, 14, 11, 1, 2, 5} 

 Mean Deviation Range: [-2.26, 2.79], RMS: 0.61 

Second Set 

Sequence of Geo-spots : {3, 8, 9, 10, 12, 13, 14, 11, 1, 2, 5, 6} 

Mean Deviation Range: [-2.28, 2.62], RMS: 0.44 

 



 

 

 Case A Sequence Analysis 

  
Third Set  

Sequence of Geo-spots : {3, 5, 8, 9, 10, 12, 13, 14, 11, 1, 2, 7} 

Mean Deviation Range: [-2.21, 2.37], RMS: 0.51 

Fourth set 

Sequence of Geo-spots : {3, 5, 6, 8, 9, 10, 12, 13, 14, 11, 2, 7} 

Mean Deviation Range: [-2.28, 2.65], RMS: 0.45 

 



 

 

 

 

 

 

 

 

 

Case B Sequence Analysis 

 
 

 

First set  

Sequence of Geo-spots : {11, 13, 16, 19, 22, 24, 2, 3, 4, 6, 7, 8} 

 Mean Deviation Range: [-1.42, 2.78], RMS: 0.46 

Second set  

Sequence of Geo-spots : {25, 23, 22, 20, 15, 13, 12, 10, 9, 6, 4, 1} 

 Mean Deviation Range: [-1.42, 2.93], RMS: 0.47 



 

 

 

  

Case B Sequence Analysis 

 
 

Third Set 

Sequence of Geo-spots : {24, 23, 21, 18, 17, 14, 11, 8, 7, 5, 3, 2} 

 Mean Deviation Range: [-1.42, 2.79], RMS: 0.47 



 

Appendix D: Interviewees List 
 

Names Company Department 

Magnus Andersson Volvo Trucks  

Ola Carlsson Volvo Cars 81250 

Stefan Dahlström Volvo Cars 93722 

Josefin Hansen Volvo Trucks  

Magnus Jakobsson Volvo Cars 81250 

Magnus Jivenfors Volvo Cars 81250 

Thomas Karlsson Volvo Cars 81210 

David Law Volvo Trucks  

Lars Ljung Volvo Cars 81210 

Sievert Olofsson Volvo Cars 81250 

Mats Pettersson Volvo Cars 81724 

Francis Quaghebeur Volvo Cars E1260 

Anders Rosenquist Volvo Cars 81250 

Lars Samuelsson Volvo Cars 81722 

Johan Segeborn Volvo Cars 81620 

Martin Swahn Volvo Cars 93770 

 


