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In this work multiple scattering by an array of perforated cylindrical shells with a porous core has

been investigated. A semi-analytical model to predict scattering from such cylindrical units is

presented in the context of the multiple scattering theory (MST), and validated against laboratory

experiments. The suggested semi-analytical multiple scattering model uses an impedance

expression to include the perforated shell in the scattering coefficients, which is a compact way to

describe a composite scatterer in MST. Calculation results of a small array are shown to be in

excellent agreement with measured data. Predictions and data show that perforated cylinders

with empty cavities exhibit a strong and narrow insertion loss peak at resonance, though simulta-

neously suffer from amplification below resonance. By adding porous material in the core of the

scatterer adverse effects below the resonance peak were suppressed. In addition, it was found that

the reduction peak broadens, though at a cost of a reduced peak amplitude. Finally, it has been

shown that adding porous material in a perforated shell will introduce partial absorption of the

incoming field, which can be optimized by adjusting the perforation ratio of the shell.
VC 2014 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4896566]
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I. INTRODUCTION

Over the last few decades, studies dedicated to periodic

arrangements of scattering objects have acquired consider-

able attention among scientists, and became an important

research topic in academic fields such as optics, ocean engi-

neering, and acoustics. The common goal in these various

fields is to understand and, ultimately, fully control wave-

propagation through an array of periodically spaced scatter-

ing objects. In acoustics, one often classifies a periodic

arrangement of scatterers as a sonic crystal (SC) or phononic

crystal, the latter being derived from its electro-magnetic

counterpart, a photonic crystal.

Studies on wave interaction with SC structures can,

roughly, be divided into two main classes: (i) where wave-

lengths are much larger than the periodic length of the struc-

ture, and (ii) where wavelengths are in the order of the

periodic length of the structure, or shorter. The first class of

studies is mostly concerned with focusing and redirection of

waves,1,2 whereas the second class mostly utilizes stop-band

phenomena.3–5 Infinite periodic SC structures have fre-

quency intervals where waves cannot propagate, which

are the stop-band or band-gap regions. Strictly speaking,

band-gaps only exist in infinite structures, though frequency

intervals of very low acoustic transmission exist in finite

structures.6 The lowest band-gap center frequency, associ-

ated with Bragg diffraction, is typically found when the

wavelength of the impinging wave approaches twice the

largest periodic length of the structure.

The performance of sonic crystal structures and its oper-

ating frequency interval can be improved, or adjusted, by

alternating the scatterer arrangement, the filling fraction, or

by introducing scattering units with physical boundary

conditions other than acoustically rigid. In the recent past,

several studies on two-dimensional SC structures with locally

resonant cylindrical units have been conducted.7–11 A

straightforward example of locally resonant elements is, e.g.,

split-ring resonators.8,9 These slotted cylindrical objects have

a cross-section that is approximately invariant along the main

axis of the cylinder, and are essentially two-dimensional

Helmholtz resonators.9 Other types of locally resonant ele-

ments such as, for instance, Matryoshka type cylindrical scat-

terers,7 elastic shells,12 concentric split-ring resonators with

inner elastic-shells,9 perforated bamboo rods,10 micro-

perforated cylinders,13 and elastic U-shaped scatterers,11 have

also been studied. All locally resonant scatterers mentioned

above share the feature to introduce at least one complete

band-gap due to an acoustic and/or mechanical resonance of

the scatterer, which is typically found below the lowest band-

gap associated with Bragg diffraction from the lattice. An

alternative approach to improve the performance of a SC

structure, by adjusting the scattering units, is to add a porous

cover on the outside of an acoustically rigid cylindrical

core.14 Adding porous material on the outside of the scatterer

has been shown to make the insertion loss spectra as a func-

tion of frequency more uniform.14 Combining the concept of

split-ring resonators covered with a porous layer on the out-

side of the scatterer has also been studied experimentally and

numerically.15 It has been shown that such composite scatter-

ers may simultaneously benefit from several attenuating phe-

nomena, which allows engineers to tailor the insertion loss of,

e.g., a noise barrier.15 However, a possible drawback of add-

ing a porous material on the outside of a scatterer is, e.g., its

durability with regards to mechanical impacts.

In this work multiple-scattering by an array of perfo-

rated cylindrical shells with a porous core will be investi-

gated. The shells have circular perforations, which are

periodically distributed in the longitudinal and circumferen-

tial direction. Porous material is added in the cavity of the
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hollow cylinder, and is in close contact with the shell sur-

face. Since porous material is located in the interior of the

shell it is protected from mechanical impacts. A similar strat-

egy, where thin metal shells are filled with rubber crumb,

has been studied by the authors of Ref. 16. However, they

simplified the T-matrix formulation of the composite scat-

terer by assuming that the perforated shells surrounding the

rubber crumb are acoustically transparent. In this work, we

will formulate the full problem of a composite scatterer

made of perforated shells with or without a porous core.

Consequently, the perforation-ratio of the shell and the shell-

thickness can be taken into account, dropping the assumption

of an acoustically transparent shell. Ultimately, these param-

eters could be optimized to maximize the insertion loss of,

e.g., noise barriers. A semi-analytical theoretical model, ap-

plicable in the kernel of multiple scattering theory (MST), is

presented and validated against laboratory experiments. We

implicitly include the perforated cylindrical shell in the scat-

tering coefficients of MST, by coupling the inner and outer

domain of the scatterer through an impedance formulation

similar to Ref. 13. Calculation results have been verified

with experimental data for an array of 2� 3 scatterers. In

order to give an outlook of expected results for larger arrays,

band-structure calculations for infinite structures as well as

insertion loss spectra for finite arrays of 10� 3 scatterers are

presented. In addition, we present absorption, reflectance

and transmittance spectra for a finite array of 150� 3 cylin-

drical units, where the perforation ratio of the shell has been

varied. In the next section, an outline of the theoretical

model is given first.

II. THE MODEL

Let us first consider a single infinitely long perforated

cylinder with outer radius ro, inner radius ri, shell thickness

h, and a periodic distribution of circular perforations with

hole radius rh, see Fig. 1. The medium exterior to the cylin-

der starts when r> ro, with r a two-dimensional vector meas-

ured from the origin o of the scatterer. Position vectors are

expressed in polar coordinates (r, h) or Cartesian coordinates

(x, z). The interior domain starts when r< ri, and acoustic

propagation therein is described by a complex density qi,

and complex sound speed ci. Acoustic propagation in the

exterior domain, on the other hand, is characterized by the

density of air q0, and sound speed of air c0. Hence, in the

special case when qi¼ q0 and ci¼ c0, the configuration

reduces to a perforated shell facing air on both sides. It is

assumed that waves propagate perpendicular to the

longitudinal axis of the infinite cylindrical object, with origin

o. If not explicitly stated otherwise, a source with cylindrical

symmetry, and e�ixt time-dependence, has been assumed

throughout the paper.

In the low-frequency region a cylindrical shell with

evenly distributed perforations or slots can be approximated

by a homogeneous fluid layer of thickness h, which is char-

acterized by its effective density ql, and effective sound

speed cl. By applying appropriate boundary conditions on

both faces of the cylinder and coupling the infinite series of

Bessel and Hankel functions describing acoustic propagation

in the interior, fluid shell, and exterior domains, one can

solve for scattering coefficients of the fluid shell.9 Similar

approximations have also been presented for slotted (two-

dimensional) cylinders, and perforated (three-dimensional)

circular scatterers by other groups.17 The latter study pre-

sented limiting criteria for the low-frequency assumption of

periodically distributed Helmholtz resonators to be valid,

which, in turn, was based on work presented in Ref. 18. It

has been postulated in Ref. 9 that the approximate solution

of a slotted cylinder finds the first resonance position with a

maximum error of 5%, provided that

/ <
1

4
and k ¼ c

f
> /; (1)

where / is the filling fraction of the openings. For a slotted

cylinder (that is invariant in the longitudinal direction)

/¼N dn/(2pro), with N a number of equally spaced slots.

However, for a perforated cylinder, / is based on the three-

dimensional cylinder geometry, and can be found by evaluat-

ing a cylinder face unit-cell, which is indicated as a dashed

rectangle in the right-panel of Fig. 1. In essence the ratio of

the opening surface to the unit-cell surface needs to be calcu-

lated. For a perforated cylinder having four holes in a cir-

cumferential plane and using a triangular hole distribution in

the longitudinal direction,

/ <
4r2

n

lrro
; (2)

where lr is the perforation separation length in the longitudinal

direction, see Fig. 1. Although we used the perforation arrange-

ment as explained, the model we will present subsequently can

be used for other arrangements as long the distribution is peri-

odic in both circumferential and longitudinal direction. In addi-

tion, the criteria shown in Eq. (3) must be met.

Instead of formulating acoustic propagation in the inner,

outer and shell domains explicitly, it has been shown that

one can substitute the infinite series of Bessel and Hankel

functions of the shell domain with an impedance formula-

tion.13 We will follow the approach initiated in that paper

and present a suitable impedance formulation of the perfo-

rated shell and corresponding scattering coefficients for the

problem at hand.

A. Acoustic impedance of a perforated plate

A plate with circular perforations can be seen as a col-

lection of tubes surround by a rigid frame. Due to

ri

ro

h

rh

ro

rh

 

ρ0c0

ρici

lr

FIG. 1. (Color online) Cross-section of a perforated cylinder (left panel) and

a side- view illustration from a section of the cylinder (right panel).
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air-movement inside these tubes a pressure drop Dp takes

places across the length of the tubes. Assuming that perfora-

tions are separated by a distance much larger than the open-

ing diameter, though much smaller than the wavelength of

interest, the specific impedance without end correction terms

is given by, e.g.,19–21

Zh ¼
Dp

v
¼ ixq0h

/
1� 2

s
ffiffiffiffiffiffi
�i
p J1 s

ffiffiffiffiffiffi
�i
p� �

J0 s
ffiffiffiffiffiffi
�i
p� �

" #�1

; (3)

where x is the angular frequency, v is the average velocity

over the tube cross section, i2¼�1, Jnð� � �Þ is the Bessel

function of the first kind and order n, and s is the perforation

constant given by s ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q0x=g0

p
, in which g0 is the

dynamic viscosity of air. In addition to internal resistive and

reactive effects, external effects take place due to air move-

ment outside the holes. To account for external effects a

combination of resistive and reactive end-correction terms is

often introduced. We are interested in two sets of end-

correction terms: (i) where the acoustic medium inside and

outside of the cylindrical shell is air, and (ii) where the

acoustic medium inside the cylindrical shell is a porous ma-

terial and outside is air. The resistive end-correction of the

first case can be introduced in terms of power dissipation

due to an oscillatory flow over an infinite plane surface.22

For such a configuration the theoretical expression of the

surface resistance is given by Rs ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g0q0x;
p

see, e.g.,

Ref. 22. The added surface resistance of a perforated plate

would naturally be 2Rs. Though based on measurements 4Rs

is often chosen, see, e.g., Ref. 22. In this work 2Rs will be

used as the resistive end-correction term for the first case.

The total reactive end-correction is composed of an

outer term d0 ¼ 8r=3p, and inner term di ¼ 0:48
ffiffiffiffiffiffiffi
pr2
p

ð1
�1:25

ffiffiffiffi
/
p
Þ.22,23 Grouping the end correction terms of the

first case, i.e., those for an empty cavity, we may write

Ze ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g0q0x
p

/
þ ixq0 d0 þ dið Þ

/
: (4)

Hence, the total specific impedance of a perforated shell

in contact with air on both sides is given by

Zt ¼ Zh þ Ze: (5)

Next we seek for a set of end correction terms to adjust

the impedance of a perforated shell where one side is in

contact with a porous material. Since the outer

end-correction term is given above, we look here for the

inner end-correction term only. It has been shown by

several authors that when a porous layer is in contact with

the perforated facing the inner-end correction becomes

complex.24,25 This means that the porous layer adds a

resistive component to the total specific impedance, other

than the surface resistance as discussed before. By a simple

substitution it is possible to rewrite the impedance expres-

sion of the reactive inner end-correction in terms of k0

and q0c0. After that, one can substitute the properties of air

for the acoustical properties of the porous medium and

arrive at

Ze0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g0q0x
p

/
þ ixq0do

/
þ ikiqidi

/
: (6)

In brief, we recognize the surface resistance as the first

term of the right-hand side, the reactive outer end-correction

as the second, and the inner end-correction as the third.

Notice that the latter is now written as a function of the

characteristic impedance and complex wavenumber of the

porous material. These may be obtained by simple imped-

ance models such as the empirically obtained Delany and

Bazley model,26 the Miki model,27 or more sophisticated

models such as, e.g., the relaxation model for porous media

by Wilson.28 Now, the total specific impedance of a perfo-

rated shell in contact with air on one side and a porous mate-

rial on the other side is given by

Zt0 ¼ Zh þ Ze0 : (7)

It should be noted that viscous losses around the

openings are generally much smaller than the resistive

component of the impedance Zh and hence dropping these

terms leads in many cases to marginal differences. Note

also that no hole interaction effects are included in the

impedance formulations as the perforation ratio is low,

here / � 0.016.

B. Auxiliary problem: scattering by a single perforated
cylinder

The theoretical model to be presented subsequently is

developed in the framework of MST.4,29,30 In this method,

scattering by a cluster of non-overlapping infinitely long cy-

lindrical (or spherical in three-dimensions) objects can be

formulated efficiently in a semi-analytical approach. The in-

finite summation series of Bessel and Hankel functions to

express the incoming and scattered fields usually converge

fast, which has lead to a broad interest in MST up and until

to-date. Though conceptually similar, various notational con-

ventions could be used to formulate a multiple scattering

problem. We will follow the convention as used in, e.g., Ref.

9. For convenience we first introduce an auxiliary problem

to derive scattering coefficients for a single perforated cylin-

der as shown in Fig. 1. The scattered field at a receiver for

which r̂ > ro can be expressed in a series of Hankel and trig-

onometric functions, and may be written

ps
oðr; hÞ ¼

X1
n¼�1

AnHnðk0r̂Þ exp ðinĥÞ; r̂ > ro; (8)

where Hnð� � �Þ is the Hankel function of first kind and order

n, k0¼x/c0 the wavenumber in air, and An are unknown

coefficients. In addition, notice that the receiver coordinate

system ðr̂; ĥÞ is here seen from the origin of the scatterer.

The total acoustic field may now be written as

poðr; hÞ ¼ H0ðk0rÞ þ ps
oðr; hÞ; (9)

where H0(k0r) is the incoming pressure from the source.

Using Graf’s addition theorem for Bessel functions H0(k0r)
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can be expanded about the origin of the scatterer, and Eq. (9)

may be rewritten as

poðr̂;ĥÞ¼
X1

n¼�1
½Hnðk0RÞJnðk0r̂Þexpð�inðpþnÞÞ

þAnHnðk0r̂Þ�expðinĥÞ; r̂>ro; (10)

where R¼R(cos n, sin n) is a radius vector to the cylinder

origin. The acoustic field in the interior region of the cylin-

drical shell, i.e., when r̂ > ro, can be expressed as

piðr; hÞ ¼
X1

n¼�1
BnJnðk0r̂Þ exp ðinĥÞ; r̂ > ri; (11)

where ki¼x/ci, and Bn are unknown coefficients. We will

now derive scattering coefficients of a perforated shell in a

similar fashion as has been presented in Ref. 13. The basic

idea is to couple the inner and outer domain of the cylinder

through a cylinder shell impedance Zt, which has been defined

previously. Assuming that the normal velocity with respect to

the shell surface is constant across h, and using the impedance

relation between pressure and velocity we may write

voðroÞ ¼ viðriÞ (12)

and

vo roð Þ ¼
po roð Þ � pi rið Þ

Zt
; (13)

where vo and vi are the normal velocities at the outer and

inner shell faces, respectively. The normal velocities and the

spatial pressure gradient can be coupled through conserva-

tion of momentum,

rpa ¼ �ixqava; (14)

where rpa is the spatial pressure gradient, qa the medium

density, va the normal velocity, and a¼ i, o. Using orthogon-

ality of the expanded terms, i.e., multiplication of pa with

exp(�imh), in which m is an integer, and integration over h
from 0! 2p gives

hpa; exp ð�imhÞi ¼
ð2p

0

pa exp ð�imhÞdh

¼
2p
X1

n¼�1
f� � �g; m ¼ n

0; m 6¼ n:

8><
>: (15)

Substituting Eq. (12) into Eq. (14) and using the defini-

tion of Eq. (15) we can write

@hpa;aexp �imhð Þi
@r

����
r¼ra

¼�ixqa

hpo roð Þ;exp �imhð Þi�hpi rið Þ;exp �imhð Þi
Zt

" #
:

(16)

Using the formulas as given above we can solve for the

unknown coefficients An, which are found to be

An ¼ �ZnHnðk0RÞ exp ð�inðpþ nÞÞ; (17)

in which

Zn ¼
XnJ0n k0roð Þ � Jn k0roð Þ

XnH0n k0roð Þ � Hn k0roð Þ ; (18)

with

Xn ¼
qik0Jn kirið Þ
q0kiJ0n kirið Þ �

iZtki

xq0

: (19)

Here, primes are indicating derivatives with respect to r̂ .

It can be noted that the Zn coefficients as presented above

capture some of the scatterer types commonly used in the

kernel of MST. The scattering coefficients of a fluid cylin-

der, i.e. a sound permeable cylindrical object, can, e.g., be

obtained when the shell thickness h tends to zero and results

in Zn as in Eq. (18) though with

Xn ¼
qik0Jn kirð Þ
q0kiJ0n kirð Þ

: (20)

Further, letting the mismatch between the cylinder den-

sity qi and host medium qo to approach infinity, will cause

Xn to approach infinity and the scattering coefficients of an

acoustically rigid cylinder are then obtained,

Zn ¼
J0n k0rð Þ
H0n k0rð Þ : (21)

For later convenience, we address the fact that the Xn

terms of the perforated cylindrical shell can be represented

alternatively by using the normalized characteristic imped-

ance of the porous layer Zi and than takes the following form:

Xn ¼ Zi
Jn kirið Þ
J0n kirið Þ �

iZtki

xq0

: (22)

C. An array of perforated cylinders

Let us now consider a cluster of N infinitely long perfo-

rated cylinders with outer radius ro, inner radius ri, and shell

thickness h. The cylinders are organized in square lattice

with lattice constant a. Each cylinder has been given a local

coordinate system with the origin placed at polar coordinates

ðr̂ j; ĥjÞ, where j¼ 1,…,N. Further, we place a receiver at

(r, h), and a source at (0, 0), i.e., the global origin of the do-

main. If a cylindrical sound wave interacts with a distribu-

tion of arbitrarily located cylindrically shaped scatterers the

resulting pressure field at any point exterior to the scatterers

can be written as

poðr; hÞ ¼ H0ðk0rÞ þ
X1
j¼1

X1
n¼�1

Aj
nZj

nHnðk0r̂ jÞ exp ðinĥjÞ;

(23)
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where the first right-hand side represents the direct field

from source-to-receiver, the second term the scattered field

from all cylinders to the receiver, and the Zj
n coefficients

are given by Eq. (18). To solve for the unknown Aj
n coeffi-

cients in Eq. (23), the equation system can be expressed in

one set of polar coordinates ðr̂ j; ĥjÞ. This, again, can be

done by using Graf’s addition theorem for Bessel functions

now applied to Eq. (23). Further, using orthogonality of the

terms, i.e., using Eq. (15), and fulfilling the boundary con-

ditions as previously defined leads to an infinite system of

equations

Ap
m þ

XN

j ¼ 1
6¼ p

X1
n¼�1

Aj
nZj

neiðn�mÞnjp Hð1Þn�mðk0RjpÞ

¼ Hmðk0RpÞe�imðpþnpÞ;

p ¼ 1;…;N; m ¼ 0;61;62;… ; (24)

where Rjp¼Rjp(cos njp, sin njp) is the radius vector from the

origin of cylinder j to the origin of cylinder p, and

Rp¼Rp(cos np, sin np) is the radius vector to the origin of

the pth cylinder. By truncating the series expansion and

rewriting Eq. (24) in the form M�b¼ c allows us to solve

for the unknown Aj
n coefficients. The entries of the square

matrix M¼Mn,m are as follows:

Mn;m ¼
Zj

neiðn�mÞnjp Hn�mðk0RjpÞ if j 6¼ p

1 if j ¼ p and n ¼ m

0 if j ¼ p and n 6¼ m:

8><
>:

(25)

Here, M is a square matrix of size ð2n̂ þ 1ÞN
�ð2m̂ þ 1ÞN, with n̂ ¼ m̂ and n̂, m̂ the maximum value of

jnj, jmj after truncation. The vectors b and c are ðm̂ þ 1ÞN in

size, where b is filled with Aj
n coefficients and the source

terms in c¼ cm are given by

cm ¼ �Hmðk0RpÞe�imðpþnpÞ: (26)

Note that the summation series in Eq. (24) have been

truncated such that jnj, jmj> 3kro.

III. MEASUREMENTS

A. Geometrical setup and cylinder construction

In order to verify the theory as introduced in previous

sections, an experimental setup consisting of an array of six

perforated cylinders with a porous core has been constructed,

see Fig. 2.

Measurements are performed in an anechoic chamber

measuring 8� 8� 6 m. The array has been mounted onto a

computer controlled turntable and is positioned such that the

origin of the array is in line with the speaker opening and

microphones. A top-view illustration of the setup is shown

in Fig. 3, where zero degrees rotational angle u corresponds

to the initial measurement position. Other measurement posi-

tions are obtained by clock-wise rotation of the array in

increments of 45�. Note that, the source is located at

(xs, zs)¼ (0, 0) m, microphone 1 at (xr,1, zr,1)¼ (0.25, 0) m,

the origin of the array at (xa, za)¼ (0.85, 0) m and micro-

phone position 2 at (xr,2, zr,2)¼ (0.25, 1.01) m.

The cylinders are made from PVC with a shell-thickens

h¼ 3 mm. Each cylinder is 2 m long and has an outer diame-

ter of 50 mm. The core of the scatterers has been filled with

cylindrical pieces of glass-wool. Pieces of material have

been cut using a cylindrical cutter and stacked inside the cyl-

inder until completely filled, see Fig. 4. In order to avoid

changing material properties due to, e.g., compression,

smoothly sliding glass-wool pieces are cut with a diameter

being slightly smaller than the actual inner-diameter of the

cylinder.

A 90 mm thick multiplex top-plate and foot-plate with

2� 3 circular holes, matched to the outer diameter of the

cylinders, are mounted to both ends and give a firm construc-

tion. The cylinders are organized in square lattice with a cen-

ter-to-center spacing of 10 cm. For measuring we used two

B&K 1/4 in. pair calibrated microphones of type 4135,

which are connected to a pair of G.R.A.S. 26 AC preampli-

fiers. Up to 5 kHz these microphones have an approximately

flat response. The microphones are powered with a G.R.A.S.

power module type 12AA, and data acquisition is performed

using a National Instruments DAQ of type 9234 and MATLAB

based acquisition software. We measured with a frequency

resolution of 10 Hz, a block length of 100 ms, and a sampling

frequency of 51.2 kHz. To irradiate the array, white noise

generated by a B&K 1405 noise generator, amplified by a

NAS amplifier, has been used. A source was created using a

compression driver connected to a ca. 4 m long flexible hose

with an aluminum ring at the opening. The resulting effec-

tive source opening diameter is 25 mm. Both the source

opening and the microphones are mounted at around 0.95 m

above the floor-plate. A permanent steel-frame (not visible)

FIG. 2. (Color online) Measurement setup in anechoic chamber.

FIG. 3. (Color online) Top-view Illustration of measurement setup.
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was used to mount the flexible hose, whereas the micro-

phones were attached to a firm web of thin cotton wires.

B. Characterization of porous material

The cylinder cores are filled with glass-wool, which has

unknown acoustical properties. In order to compare calcula-

tion results with measured data, the impedance of the mate-

rial needs to be obtained and serves as input in the

theoretical model. Here, we use a single- parameter imped-

ance model based on the flow-resistivity.27 Finding the flow

resistivity of a test material is often done by fitting the theo-

retical surface impedance of a porous layer with hard-

backing against the measured surface impedance obtained

through impedance tube measurements. A similar approach

is followed here. Generally, the acoustical surface imped-

ance of a test material is given by

Zs ¼ Z0

1þ R

1� R
; (27)

where R is the complex reflection factor at the surface of the

test material and Z0, the characteristic impedance of air. A

standard transfer function method as described in Ref. 31 is

used to compute R. The impedance tube has an inner diame-

ter of 10 cm, holds test samples of thickness, d¼ 5 cm, and

uses a microphone switching technique (a single microphone

is used to measure the transfer function). The surface imped-

ance as given in Eq. (27) is generally applicable for any type

of sample mounting condition. However, in case of a porous

layer with a hard backing, the surface impedance may be

written as follows:

Zs ¼ Zicothð�ikidÞ; (28)

where Zi and ki are the characteristic impedance and the com-

plex wavenumber of the material, respectively. Now, minimiz-

ing the least squares error between Eq. (27) and Eq. (28) by

varying r, we can find the best fit of r for a given sample.

Repeating this experiment five times for five different material

samples, a sample averaged r is found and used as input in the

theoretical model. One realization of the fitted surface imped-

ance is shown in Fig. 5. The sample averaged r was found to

be 15.1 kPa s m�2 with a standard deviation of 437 Pa s m�2.

Notice that the fitted flow resistivity has been obtained

with an impedance tube that produces trustworthy results

between 340 and 2000 Hz. However, as will be shown in

subsequent sections, the main effect of a adding porous ma-

terial in the core of the scatterer is concentrated well below

the 2000 Hz frequency range. Moreover, the behavior below

340 Hz is expected to be sufficiently well described by the

impedance model. We therefore use r¼ 15.1 kPa s m�2 up

to 5 kHz. Observe also that one could use more sophisticated

models to characterize the porous material. However, the

agreement of measurements and predictions, which will be

demonstrated in the following subsection, justifies the

single-parameter model choice in the context of this work. It

should, however, be noted that non-physical behavior in the

low-frequency region may occur when using the Miki or

Delany and Bazley models, as can be read in, e.g., Ref. 32.

C. Comparison of calculation results with data

Measurements and calculation results are compared in

terms of the insertion loss, which is defined through

IL ¼ 20 log10

jpd
oj
jpoj

; (29)

where po captures the direct field plus scattering from the

array and pd
o the direct field only. Note that, po is computed

using Eq. (23), and pd
o is obtained in closed form through,

Hð1Þo (k0R). Measurements are performed using a two-

microphone transfer function technique, where the transfer

function between the two microphones is obtained with and

without array. Substituting the measured transfer function

without array for pd
o in Eq. (29), and the transfer function

with array for po in Eq. (29), gives the measured IL.

Comparisons of measured and computed IL, for perforated

cylinders with and without a porous core, and u¼ 0�, 45�,
and 90�, are shown in Fig. 6. It can be seen that the agree-

ment for all presented cases is very good as the measure-

ments follow the trend of the predictions closely.

Nevertheless, it must be addressed that some spectral

FIG. 5. One realization of measured and fitted surface impedance of a

50 mm glass-wool sample. The real part of Zs (gray) and the conjugated

imaginary part of Zs (black) are plotted for measurements (dashed) and fitted

predictions (solid). The best least-squares fit of the surface impedance was

found with r¼ 14.8 kPa s m�2 in this case.

FIG. 4. (Color online) Close-up of perforated cylinder with porous core and

glass-wool cutter.
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oscillations around the mean trend are observed in the meas-

urements, which could not be eliminated. Emphasizing on

the array without porous core, i.e., those shown in Figs.

6(a)–6(c), we see that these cylinders introduce a resonance

in the transmission spectra at around 1 kHz. The peak loca-

tion of the fundamental resonance is predicted accurately,

though the IL dip in the damping and stiffness controlled

region is slightly over-predicted by the model. In addition to

the fundamental resonance, higher-order resonances in the

system exist. The second resonance around 4.7 kHz, for

instance, is clearly visible in the calculated response at

u¼ 45�. It can be shown that the second resonance is associ-

ated to the (1,1) cavity mode, which has one nodal line in the

center of the cavity. A more in depth discussion on several

mode shapes and associated system properties will be given

in Sec. IV B. In Figs. 6(a)–6(c) it is shown that perforated

cylinders can improve the IL from and above the resonance

frequency of the cylinder. However, below the resonance

frequency a significant anti-resonance dip is also observed in

the IL spectra. By adding porous material in the core of the

scatterer the peak amplitude in the damping controlled

region is suppressed, see in Figs. 6(d)–6(f). In addition, it

can be seen that the peak width is broadened and now adds a

significant reduction below the fundamental resonance fre-

quency. The second resonance, which was observed for cyl-

inders without porous material, is completely suppressed

after adding porous material. Thus, for the studied sample,

the main positive effect of adding damping material concen-

trates around the fundamental resonance frequency.

IV. CALCULATION RESULTS

A multiple scattering formulation for arrays of perforated

cylinders with porous cores has been presented and validated

in previous sections. The agreement between measured and

predicted insertion losses was found to be very good, though

spectral oscillations around the mean trend were observed.

However, only a small array of 2� 3 cylinders has been stud-

ied, which is of limited practical use. To discuss acoustic

properties beyond this scope, numerical simulations of an infi-

nite array and a 10� 3 finite array are shown in this section.

The finite array is simply extended in the direction per-

pendicular to the central source-receiver axis. As such, we

can continue to use the source and receiver locations as

described previously. Numerical results of the finite arrays

are obtained using the model as presented. Band structure

calculations of the infinite structures are, on the other hand,

obtained using COMSOL MULTIPHYSICS, a commercial finite ele-

ment method (FEM) solver. The use of COMSOL MULTIPHYSICS

to construct band-diagrams has been verified in other studies,

see, e.g., Refs. 7 and 11. In addition, we present absorption,

reflectance and transmittance spectra for a finite array of

150� 3 cylindrical units, where the perforation ratio of the

shell has been varied.

A. Band structure calculations of infinite arrays

We now consider a two-dimensional array of cylindrical

scattering objects, ordered in square lattice. The structure is

assumed to be infinite in both x and y, with periods a1 an a2,

(a) (b) (c)

(d) (e) (f )

FIG. 6. (Color online) Insertion loss [dB] comparison between measurements and predictions at t¼ 0, 45, and 90�. (a)–(c) Measurements of six cylinders with

empty cavity (solid-gray), predictions of six perforated cylinders (solid-black), and predictions of six acoustically rigid cylinders (dashed) are plotted. (d)–(f)

Measurements of six cylinders with porous core (solid-gray), predictions of six perforated cylinders with porous core (solid-black), and predictions of six per-

forated cylinders (dashed) are plotted.
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respectively. The origin of the domain O collides with the

origin of the central scatterer. Primitive vectors of the lattice

are given by a1¼ a1x̂ and a2¼ a2ŷ, in which the unit vectors

are defined through x̂¼ (1, 0) and ŷ¼ (0, 1). It can be shown

that the origin Oj of scatterer j can be found by the well-

known lattice vector

Rj ¼ n1a1 þ n2a2; (30)

where n1 and n2 are integers. Thus, using the orthogonal

primitive vectors plus integers n1 and n2, all cylinder origins

in the infinite lattice may be expressed in terms of a lattice

vector with origin o. Now, seeking for the pressure field at

any point in the infinite array we can use the Bloch–Floquet

periodic condition, which is given by

pðrþ RjÞ ¼ exp ðibTRjÞpðrÞ; (31)

where b¼ (bx, by) is the Bloch wave vector and p(r), the

pressure at field point r¼ (x, y). Periodicity implies that

p(rþRj) can be expressed in terms of p(r) when multiplied

with a phase-factor. This allows one to obtain properties of

an infinite array by utilizing the periodicity of the problem.

In this work, FEM has been selected to solve for band

diagrams of an infinite arrangement of scattering objects. In

brief, one unit cell needs to be modeled, with periodic

boundary conditions applied to the edges of the computa-

tional domain. Two sets of periodic conditions are intro-

duced, where each set is formed by two opposite domain-

edge sides. The crux of constructing band diagrams using

FEM is to find (complex) eigenvalues of the system, when

applied to certain Bloch wave-vectors. Corresponding eigen-

frequencies can be written in the form x¼x0þ d, where the

second term is proportional to damping. Due to symmetry it

is sufficient to restrict the variation of Bloch wave-vectors to

the C-X-M contour, i.e., the well-known reduced zone. The

corner wave-number coordinates are C¼ (0, 0), X¼ (p/a1,

0), and M¼ (p/a1, p/a2). All band structure computations are

performed with a total of 3� 50 Bloch wave-vectors, i.e., 50

per propagation direction.

Here, the perforated shell for the infinite structures are

modeled by an effective sound speed,9

cl ¼
h

hþ di þ doð Þ c0; (32)

and effective density,9

ql ¼
hþ di þ doð Þ

h/
q0: (33)

These effective propagation constants have originally

been derived for slotted cylinders, though are applicable for

perforated cylinders if the appropriate set of end-correction

terms and perforation ratio are selected.

B. Calculation results of finite and infinite arrays

We will now present calculation results of finite and infi-

nite arrays, and compare band diagrams as well as insertion

loss spectra of acoustically rigid cylinders, perforated cylinders,

and perforated cylinders with a porous core. Moreover, a num-

ber of internal and external mode shapes are shown to explain

the phenomena giving rise to gaps in the transmission spectra.

Band diagrams and insertion loss spectra of perforated

cylinders without a porous core and acoustically rigid cylin-

ders are shown in Fig. 7(a). It can be seen that the insertion

loss maxima for perforated cylinders (black curve), corre-

spond well with the first three band-gaps highlighted for the

C-X direction. The first complete band-gap for perforated

cylinders starts at around 821.3 Hz, and is associated to the

(0,1) internal mode shown in Fig. 7(b).

The second band-gap is a partial gap and is related to an

external mode as shown in Fig. 7(c). In addition, the (1,1) in-

ternal mode is plotted in Fig. 7(d). The latter is associated

with the second internal resonance at around 4636.6 Hz,

FIG. 7. (Color online) (a) Band diagram of infinite periodic array of perforated cylindrical shells and acoustically rigid cylinders (left panel), compared against

the finite 10� 3 arrays (right panel). Band diagrams of perforated cylinders (solid-black) and acoustically rigid cylinders (thin-gray) are plotted. The first three

band-gaps in the C-X direction are marked in gray. (b)–(d) Mode shapes of an infinite array of perforated cylinders, where (b) is an internal mode at 821.3 Hz,

(c) an external mode at 1342.3 Hz, (d) an internal mode at 4636.6 Hz.
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which only spans over a narrow frequency interval. For

acoustically rigid cylinders the gaps due to internal resonan-

ces are obviously non-existing, though otherwise the system

behavior is comparable to the perforated shells.

We now compare band diagrams and insertion loss spec-

tra of perforated cylinders with and without a porous core, see

Fig. 8(a). Band diagrams of cylinders with a porous core are

computed for r¼ 15.1 kPa s m�2, whereas insertion loss spec-

tra are computed for r¼ 9, 15.1, and 21 kPa s m�2. It can be

seen that adding porous material in the core of the scatterer

will simultaneously damp and broaden the resonance peak. In

addition, the resonance peak location is shifted down in fre-

quency by approximately 75 Hz. Increasing the flow resist-

ance of the porous material will mainly suppress the damping

peak as can be seen in the right panel of Fig. 8(a).

Comparing band diagrams of the two cylinder types

reveal that the second resonance at around 4640 Hz is damped

by adding porous material in the core of the scatterer. In addi-

tion, it can be seen that the band diagrams of both systems are

approximately the same from and above the second band-gap.

Band gaps associated with Bragg diffraction from the lattice

thus remain to exist for perforated cylinders with porous

cores. The first internal and external mode shapes for perfo-

rated cylinders with a porous core are found to be similar to

the ones found for ordinary perforated cylinders, see Figs.

7(b), 7(c) and Figs. 8(b), 8(c). However, most of the eigenval-

ues of the former case are now found to be complex. The

imaginary part of x is generally small, though increases

towards the fundamental resonance frequency with a maxi-

mum of x/2p¼ 734.2 þ 36.8i Hz. The corresponding mode

shape is shown in Fig. 8(b). As d� x0, we can assume small

damping and present jx=2pj in the left panel of Fig. 8.

C. Reflectance, transmittance and absorption spectra
as function of perforation ratio

So far, the perforation ratio of the shell, the shell

thickness, and the perforation radius has been kept

constant. The insertion loss behind an array of perforated

cylinders with a porous core, as studied in previous sec-

tions, could likely be improved by finding the optimum

settings of these parameters. In addition, the cylinder

arrangement and type of core material are parameters to

consider while searching for an optimum configuration.

The authors do, however, believe that there is no room

for such an extensive search in the present work; hence

we will not seek for a set of optimum parameters, but

rather focus on the perforation ratio and its role onto the

transmittance, reflectance, and absorption spectra. As

such, we can distinguish the contribution of absorption by

the porous core, and attenuation (behind the structure)

due to reflection towards the source-side. Readers who

need to find optimum parameters for specific (geometri-

cal) configurations are referred to, e.g., Ref. 33, where a

comprehensive optimization procedure using a multi-

objective genetic algorithm is explained in detail. We

will start with a geometrical setup using 150� 3 cylindri-

cal units, organized in square lattice, having a lattice con-

stant a¼ 10 cm. The array is oriented as in previous

sections, and irradiated by a plane wave propagating per-

pendicular to sample surface. Properties of the cylindrical

units are as before, with a porous core characterized by

r¼ 15.1 kPa s m�2. The perforation ratio of the shells are

set to 1%, 2%, and 4%, where the upper limit is chosen

such that the perforation ratio remains small and hole-

interaction effects can be neglected. The normal incidence

reflectance spectra are here computed by

R ¼

XNr

i¼1

jps
o;ij

XNr

i¼1

jpd
o;ij

0
BBBBB@

1
CCCCCA

2

(34)

and the transmittance by

(b) (c)

(d)
(a)

FIG. 8. (Color online) (a) Band diagram of infinite periodic array of perforated cylindrical shells with porous core using r¼ 15.1 kPa s m�2, and without a po-

rous core (left panel), compared against the finite 10� 3 arrays (right panel). Band diagrams of perforated cylinders with porous core (black) and perforated

cylinders without porous core (gray) are plotted. The first three band-gaps in the C-X direction are marked in gray. In the right panel of (a) we can distinguish:

hard cylinders (thin-gray), perforated cylinders (thick-gray), and perforated cylinders with a porous core using r¼ 9, 15.1, and 21 kPa s m�2, which are

depicted in solid-black, dashed-black, and dotted-black, respectively. (b)–(d) Mode shapes of an infinite array of perforated cylinders with porous core, where

(b) is an internal mode at 734.2 þ 36.8i Hz, (c) an external mode at 1344.0 – 0.4i Hz, (d) and an external mode at 1999.3 þ 0.8i Hz.
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T ¼

XNr

i¼1

jpo;ij

XNr

i¼1

jpd
o;ij

0
BBBBB@

1
CCCCCA

2

; (35)

where, ps
o;i is the scattered field, pd

o;i the incoming field and

po,i the total field of the ith receiver. To compute R and T ,

we perform a summation over a number of receivers Nr. The

first receivers are placed just outside the array, i.e., on the

source-side at (xr, zr)¼ (�0.16, 0) m and the receiver-side at

(0.16, 0) m, where the origin of the array is now placed at

(x, z)¼ (0, 0) m. On both sides of the array a line of 50

receivers is placed along the x axis, with a receiver separa-

tion of 1 cm. The normal incidence sound absorption spectra

are than computed through conservation of energy, i.e.,

A¼ 1 � R � T . However, this approach is only valid below

the diffraction limit, i.e., the frequency interval marking the

existence of acoustic scattering solely in the direction of

excitation, see, e.g., Ref. 16. The diffraction limit is theoreti-

cally found when k¼ a, here at around 3.4 kHz, though

band-structure calculations suggest a slightly lower fre-

quency of about 3.25 kHz. We therefore restrict the analysis

to an upper frequency of 3 kHz. Absorption, transmittance,

and reflectance spectra are shown in Fig. 9.

In Fig. 9, it can be seen that by increasing the perfora-

tion ratio of the shell a globally substantial increase of

energy dissipation may be obtained. However, this holds

true only if the perforation ratio and the shell thickness are

chosen such that absorption peak is well within the fre-

quency range of interest. That is, e.g., increasing the perfora-

tion ratio of the shell will simultaneously increase the

resistive and reactive end-correction terms; the latter will

cause a shift of the fundamental resonance up to a higher fre-

quency. This phenomenon is also captured in the plotted

absorption spectra, where we observe a frequency shift of

the peak absorption by increasing the perforation ratio of the

shell. Due to an increase in energy dissipation the total

energy transport through the array is mostly reduced, as can

be concluded by comparing the transmittance spectra as

shown. It is also worth mentioning that, by increasing the

perforation ratio, backscattering towards the source-side is

substantially reduced around the band-gap frequency inter-

val, while energy transport through the sample is lowered.

V. DISCUSSION

Multiple scattering by an array of perforated cylinders

with and without a porous core has been presented in this pa-

per. In order to predict scattering from such configurations, a

semi-analytical model developed in the context of MST was

introduced and verified with laboratory experiments. The

agreement between measured and predicted insertion losses

of a small array was found to be very good. By mounting the

array onto a computer controlled turntable several rotational

orientations could be measured, and compared against calcu-

lations results. The agreement for all array orientations was

found to be of similar quality. Having the ability to rotate the

array in discrete steps, we found that vertical alignment of

the cylinders is crucial for good results. That is, a slightly

skewed alignment of the array may lead to significant shifts

in the insertion loss spectra, particularly at higher frequen-

cies. Furthermore, it may be observed that the presented

measurements are somewhat noisy in certain frequency inter-

vals, e.g., in Fig. 6(a) between 3–4 kHz. The applied transfer

function measurement technique ensures, however, that these

spectral oscillations are higher-order effects, e.g., due to

interaction of perforated cylinders with surrounding objects.

Additional damping material around the supporting structure

did not improve nor worsen the spectral oscillations.

The band structure diagrams as presented are constructed

by searching for (complex) eigenvalues of a FEM meshed

square unit cell, with two pairs of Bloch–Floquet period

boundary conditions applied to the domain edges. The method

allows one to search for damped propagating modes in a

straightforward manner as the imaginary part of x is linked to

damping of the system—a system here being an infinite array

of two-dimensional resonators with or without a porous core.

We limited the band-structure evaluation to real Bloch wave-

vectors only. However, extending the domain to complex

Bloch wave-vectors, one could, e.g., visualize the evanescent

behavior at frequency intervals marking a band gap.34,35

For the sake of simplicity we have constructed cylinders

with circular perforations and used glass wool to make po-

rous cores. However, other core materials as well as shell

perforations could be modeled if suitable impedance expres-

sions are at hand, see, e.g., Ref. 16. This in particular is

needed for constructing, e.g., noise barriers, as glass-wool

itself might be impractical for outdoor use. Note also that the

perforation ratio and choice of porous material have not

been optimized to maximize the insertion loss, though

adjusting the perforation ratio of the shell did suggest there

is room for improvement.

VI. CONCLUSIONS

In this paper it is shown that adding porous material in

the core of a perforated cylinder will simultaneously broaden

FIG. 9. Absorption, reflectance and transmittance spectra for an array of

150� 3 perforated units with a porous core, organized in square lattice, hav-

ing a lattice constant a¼ 10 cm. The porous core is characterized by

r¼ 15.1 kPa s m�2. We distinguish: a shell-perforation ratio of 1% (thin-

black), 2% (solid-gray), and 4% (dashed).
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and lower the fundamental resonance peak of the resonator.

It is also found that after adding porous material inside the

perforated shell the interior resonance is shifted down in

frequency.

Substantial noise reduction is obtained in wide fre-

quency range around the main resonance peak, which was

targeted to be in the low-frequency region. In this frequency

region it is otherwise difficult to mitigate noise by using pe-

riod arrangements of scatterers. Above the fundamental reso-

nance frequency, the insertion loss spectra as well as band

diagrams of the infinite systems were practically indistin-

guishable with those of the acoustically rigid scatterers. It

has, however, been shown that energy transport through the

(finite) array is partially controlled by energy dissipation of

the porous core, which could be further improved by adjust-

ing the perforation ratio of the shells.
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