
Patient coordination in emergency departments
using an event-based information architecture

Kristofer Bengtsson, Bengt Lennartson

Abstract—It is challenging to get an overview and under-
standing of the activities and their relations at an emergency
department (ED). This is due to the complicated relations among
activities − called operations in this paper − and the always
changing system behavior. Two key enablers to get this overview
are the transformation of real-time events into understandable
information and an operation-based behavior description. This
paper presents an event-based information architecture for
healthcare (EVAH) for gathering state changing events in real-
time at an ED and how these are transformed into an operation-
based representation. EVAH together with the tool Sequence
Planner, will be used for visualization, online prognosis and
optimization.

I. INTRODUCTION

The problem of overcrowded emergency departments (EDs)
[10] has led to increasing interest from the healthcare sector
in studying industrial production methods and ideas. One
example is the lean production philosophy [13], though the
impact has so far been limited [16]. One of the main reasons
for this is that production ideas assume a repeatable process
and static operation behavior but where the ED operation
behavior is highly changeable and variating. It it therefore
important to give personal and patients an overview and
understanding of the current and future operation behavior
during the actual care as well as when planning and improving
the work [6].

Healthcare research has been studying IT-support for
decades [2], [15], includes a large variety of systems and func-
tionality. One example is how to manage the patient record
and the transition from paper-based to computer based IT
and architype-based information structures [26]. However, few
have been studying how to support the dynamic capabilities
[30] of an ED, i.e. how to support an reactive and adaptive
patient process control at chaotic emergency departments.

Dynamic capabilities is often referred to an organizations
ability to adapt and reconfigure resources and processes to
react to changing circumstances [31]. One key to achieve
dynamic capabilities in turbulent environments like an ED is
to utilize advanced IT support [11].

Bengtsson et al. [4] introduced a new approach for how to
visualize the current and future situation and behavior at an
ED, especially for the nurses working with the actual care. The
current problem when trying to model health care behavior
using standard workflow tools, Mans et al. [23] saw that

K. Bengtsson, is with Sekvensa AB, Göteborg, Sweden, e-mail:
kristofer@sekvensa.se

B. Lennartson is with the Automation Research Group, Department of Sig-
nals and Systems, Chalmers University of Technology, SE-412 96 Göteborg

these tools’ inability to describe flexibility made it difficult
to apply them in practice. Malhotra et al. [22] stated that:
“an attempt to represent visually the workflow of a complex
work environment such as that of a critical care setting is like
working on a jigsaw puzzle with no pictures to guide you.”
This was managed by Bengtsson et al using simple operation
building blocks and visualization algorithms introduced for
industrial design in [3], [5]. Part of this approach is currently
being implemented in a tool called Sequence Planner (SP).

One challenges however, when implementing this approach
at an ED using SP, is how to gather the required real time
data and how this data is transformed into usable informa-
tion. Events and raw data need to be transformed into live
information that can be used for making decisions.This paper
therefore presents an event-based architecture for healthcare
(EVAH) that will be used together with SP.

EVAH is event-based, has formalized transformation pat-
terns, uses stream-based aggregation, and prototype-oriented
information models. This makes EVAH able to handle the
complex and changing processes at an ED and allowing a
large diversity of communication devices and interaction with
multiple IT-systems. Furthermore, EVAH gives the possibility
to introduce new calculation and visualization algorithms not
only based on new, but also on historical data. EVAH is
inspired by event-driven architectures [24] which has been
shown to support dynamic capabilities in health care [32].

In the next section, EVAH events and how they are sent
out is defined. In section III, one part of EVAH called service
endpoints is discussed and how they are enable dynamic
capabilities. EVAH will be used for organizing the plan of
the patient which is shown in section IV.

II. EVENT-BASED INFORMATION ARCHITECTURE FOR

HEALTHCARE (EVAH)

EVAH is based on a set of simple building blocks: A
message bus, a message specification, service and commu-
nication endpoints, and EVAH events. These building blocks
enable, in a modular and loosely coupled way, the creation
and transformation of events into usable information. EVAH
uses a message bus called Apache ActiveMQ [1] for sending
and receiving events and messages. ActiveMQ is an Enterprise
Service Bus (ESB) that supplies transformation and routing of
data/information throughout several distributed applications.

A. EVAH Events

When something happens, for example when a patient is
examined or someone in the staff goes for lunch, an event



can be sent out with information about the change. A EVAH
event, which can only happen once, is defined as:

Definition 1 (EVAH events): e = 〈id, t,KV 〉, where id

is a unique identifier of the event, t is a timestamp, and
KV = {attr1 : value1, . . . , attrk : valuek} is a set of
ordered attribute – value pairs describing the event and the
state change. �

EVAH does not strictly define types or classes of events. In-
stead, a prototype-oriented approach is used [29]. Inheritance
is managed by cloning an event, and similarities among events
are identified based on the attribute – value pairs. This makes
the event creation, identification and filtering more flexible
and easier to change and update, since the strict hierarchical
relation enforced by a class structure is removed. To reason
about this, let us make the following definitions:

Definition 2 (Similar events): If e1 = 〈id1, t1,KV 1〉 and
e2 = 〈id2, t2,KV 2〉, then e1 and e2 are similar if KV 1 ∩
KV 2 6= ∅. �

Definition 3 (Attribute pattern): An attribute pattern ap =
〈KVap, ATap〉 is a tuple including a set of ordered attributes
– value pairs KVap and a set of attributes ATap. If e1 =
〈id1, t1,KV 1〉 such that KV ap ⊆ KV 1 and ATap ⊆ A1,
where A1 denotes all the attributes found in KV1, then e1 is
matched by ap. This is denoted e1 ↼ ap, �

An attribute pattern is used for matching, identifying,
filtering, and creating events. In this article, a pattern is
denoted e.g. ap = {attr1 : value1, attr2 : value2, attr3 : _},
where KVap = {attr1 : value1, attr2 : value2} and
ATap = {attr3}. When the value is replaced with "_", then
that attribute can have any value in the implementing event.
Values can also be a list of attribute – value pairs or a list of
values, hence a hierarchical data structure can be constructed.

Patterns can be defined freely by the user and are not
enforced by EVAH. However, the receivers of the events will
match events based on patterns, which makes the definitions
important. Observe that this definition of events is somewhat
modified compared to how the Discrete Event System (DES)
community defines events [8] for Deterministic Finite Au-
tomata (DFA) [17]. It can be seen as a DES sample path
extended with variables [8], where the variables are here called
attributes. Before we study events and how they are used in
EVAH, let us look at an example:

Example: In this example, a small emergency department
section yellow is studied. It includes patients Pi, i = 1, . . . , n,
a waiting room WR1, a room R1, a nurse N1 and a doctor
D1. The patients are waiting for an examination (an exami

operation) and a blood test (a testi operation). Before these
operations, the patient i needs to be located in the room. The
execution of the operations are traced by the start and stop
events exam

↑
i , exam

↓
i , test

↑
i and test

↓
i , where operation↑

and operation↓ denote the start and stop event, respectively.
Other events are not directly related to the execution of an

operation. These so called state events can for example be fired
when a room is occupied, when a blood sample is completed,

TABLE I
SOME OF THE ATTRIBUTE PATTERNS USED FOR CREATING AND

MATCHING THE EXAMPLE EVENTS

exam
↑
i

name: exam↑ test
↓
i

name: test↓

location: [yellow, R1] location: [yellow, R1]

resources: [D1] resources: [D1]

patID: _ patID: _

testDescr: _

resA↑ name: resA patAi name: patA

assignTo: yellow assignTo: yellow

resources: _ patID: _

patLoci name: patLoc plani name: plan

location: _ patID: _

rfid: _ resources: [D1]

planUpdate: _

when someone in the staff is going for lunch or when the plan
or record of a patient is updated. In the example there is an
event fired when a patient is placed in a new location patLoci,
when the staff is changed at the section resA, when a patient
is assigned the section, patAi, and when new operations are
added to the patient plan plani. The events in this example
are created based on some of the attribute patterns shown in
Table I. �

B. Communication Endpoints

The personnel, the patients and various information systems
have limited knowledge about the surroundings and they com-
municate with the outside world in very different ways. The
communication endpoints are responsible for transforming
events − which are generated by humans or systems − into
messages, and for sending events and receiving commands as
events via the ESB.

The EVAH message is designed to be as simple as possible
and will not enforce any type of specific attributes or structure.
It consists of a header, with information related to the sending
and routing of the message, and a body. The body is a key-
value map between attributes (the keys) and their values.
Values are usually of primitive data types like strings or
integers, but can also be lists or maps, hence hierarchical
structures can be built and sent in a EVAH message.

Example continued: In the example, there are two com-
munication endpoints. One is connected to an RFID reader
located in the room R1 used for registering patient locations
and start and stop of operations and the other is connected to
the the patient record system. The order of events fired for
patient 1 is shown in Fig. 1.

The patient is first assigned to the section yellow notified
with the event patA1. Then first patLoc1 is fired when the
patient is assigned R1 by N1. After that the nurse performance
a veni puncture and sends the blood sample of to the labora-
tory, identified by test

↑
1

and test
↓
1
. The doctor examines the

patient, exam↑
1

and exam
↓
1

and decides that the patient need



Fig. 1. The events fired related to patient 1. Note that the
first and second PatLoc are different events with the same
name. They have different id, t and different attribute values.

an x-ray, plan1. After the examination the patient is moved
to the waiting room WR1, identified by the patLoc1 event.
During the examination, the nurse N1 is replaced by nurse
N2, identified by resA. �

III. SERVICE ENDPOINTS

One big challenge when trying to create an information
system for healthcare is to manage all the various types
of events. Sometimes events are registered afterward, some
events only include limited information, or operations are only
defined by a single events after completion. To be able to use
all these events for example to calculate various KPIs, it is
therefore necessary to transform, update, and aggregate events.

A. Fill, Fold and Map

EVAH uses three fundamental types of transformations:
Fill, Map, and Fold. Fill and Map are used for adding missing
information to an event and Fold is used for transforming
events sequences into messages or new events.

Definition 4 (Fill): A Fill transformation is a function that
transforms e = 〈id, t,KV 〉 by appending a set of new attribute
– value pairs, i.e. 〈id, t, ḰV 〉 = Fill(e, ap), where ḰV =
KV ∩KVap and ap = 〈KVap, ATap〉. �

The Fill transformation fetches information from a database
or other type of static information that do not change over time
based on the attribute template. The most common use cases
are to fetch and include patient and staff information based
on an id tag, or to fetch and include extra information about
the sender of the event. The function will always return the
same result unrelated to what has happen before.

In many cases, an event does not only need static informa-
tion, but also values that are based on the current state of the
system. If we study a system as a DES, a state can be identified
based on an initial state and a sequence of events [8]. This is
also true in the EVAH architecture. Let Σ∗ be the set of all
finite sequences of events over the set of all EVAH events Σ.
Then, given a finite sequence s ∈ Σ∗ the state q ∈ Q of the
system is defined by q = δ(q0, s), where q0 is the initial state
of the system and δ is the transition function of the system,
defined as δ : Q× Σ∗ → Q : (q0, s) 7→ δ(q0, s).

The state of a specific part of the system R, such as a patient
or a resource, can also be identified by an event sequence. If
we define R using an attribute pattern apR , then the current
state of R is qR = δ(q0R, sR), where only events that matches
apR are included in the sequence sR. The Map transformation
defined below permits to refine an event according to the
current state of the system.

Definition 5 (Map): A Map transformation is a function
that transform e = 〈id, t,KV 〉 by appending a set of new
attribute – value pairs based on the current state q, i.e.
〈id, t, ḰV 〉 = Map(e, q), where KV ⊂ ḰV . �

Fill and Map can be used to transform events in multiple
steps to simplify the implementation and to increase the
changeability. But they do not change the unique identifier id
of the event or the timestamp t. However, the transformation
history and the event version are stored as attributes. The last
transformation type is Fold, which takes a sequence of events
s and transforms them into a new event or a single message
that is sent out onto the message bus.

Definition 6 (Fold): A Fold transformation is a function
that transform a finite sequence of events into either a sin-
gle new event or a message, i.e. message = Fold(s) or
e = Fold(s), s ∈ Σ∗. �

Fold is often used to aggregate a set of events into a EVAH
message. Fold transformations can also implement advanced
event pattern identification algorithms like complex event
processing (CEP) [21] or real-time languages [25]. CEP is a
concept that tries to formalize how patterns and “knowledge”
are identified from a flow of lower-level events, which are
then sent out as higher-level events. [9]

Example continued: In the example, the patLoc events only
include the rfid value that represent the patient. These events
will be updated by the Fill transformation with information
from a database about the patient like name and personal
security number.

Other transformations require knowledge about the current
state. For example, a Map transformation service listens to the
sequence of resA and patA events to keep track on which staff
is responsible for a section.

One Fold transformation tracks when a patient first enters
the system and when it leaves, resulting in a message defining
the throughput time of each patient. Another Fold transforma-
tion is tracking all operation events and combines start and
stop events into an operation message which can, for example,
include durations. There is also a Fold transformation that
aggregates the section events over ten minutes and one hour,
sending out a status message about behavior of the section
including number of incoming and outgoing patient, number
of operations, etc.

To summarize, the following transformations are used in
the example:

• é = PatFromRFID(e, db). The transformation adds
patient id from a database db to events that matches
the attribute pattern {rfid}, i.e. e ↼ {rfid} and
é ↼ {rfid, patID}.

• é = PatDetailF ill(e, db). The transformation adds
patient details from a database db to events that matches
the attribute pattern {patID}, i.e. e ↼ {patID} and
é ↼ {patID, patientDetails}.

• é = patientAssignmentMap(e, qL), where e ↼

{assignTo : L} and é ↼ {assignMap}. For each
section, found in assignTo in events, a state qL is



created, which maps each section to the nurses and
patients currently assigned, assignMap. An event that
includes the corresponding assignment, like patA1 ↼

{assignTo : yellow}, will be updated with this map, i.e.
after this Map transformation, ´patA

1
↼ {assignTo :

yellow, assignMap : {patients : [pat1], resources :
[N1, D1]}}.

• patientMessage = PatientFold({∀e ∈ s|e ↼

{patID : pi}}). This Fold transformation collects events
related to the specific patient identifier pi and, after the
last event, sends out a patient message. The message
includes, for example, the time of the first and last events,
the sequence of all the positions visited by the patient
instance Pi as well as the various waiting times, like
time to doctor.

• operationMessage = OperationFold(ei ∈
{O↑

i , O
↓
i }). Collects the events from each operation and

sends out an operation message.
• sectionMessage = SectionFold({∀e ∈ s|e ↼

{locations : sid}}). Collects events that matches a
specific location sid and sends out a status message every
10 minutes and every hour about incoming and out going
number of patients, number of patient movements, staff
changes etc.

�

B. Dynamic capabilities using EVAH

Whang et. al [32] identifies that by using an event-based
structure, the IT system enables sensing, responding, interop-
erability and flexibility capabilities. This leads to an increased
dynamic capability.

The benefit of using Fill, Map, and Fold transformations
is the increased flexibility they give for handling changes and
updates. This is due to the loose coupling between sender and
receiver and the possibility to allow a large variety of event
structure and event generators.

Example continued: Let us extend the example with two
more sections, triage and blue. The patients in triage is
moved into yellow or into blue. Patients can also be reas-
signed from yellow to blue. By connecting the new sections
to EVAH via communication endpoints, without changing any
of the implemented service endpoints, the created messages
will be correct and include the new layout. For example the
patintMessage will include all events from the newly added
sections, including correct information about the longer lead
time and new steps. Also sectionFold will identify two new
sections as soon as their first event will be fired and start
sending out section messages for them.

Since these messages follow a structure, understood by the
upper level information receivers, these upper services neither
have to change. �

Even though the example may seem trivial this flexibility is
in most cases not found in healthcare. Often, a point to point
communication approach is used and the upper level systems
require detailed understanding about the current layout. This
makes it very time consuming to change the layout of the

system or the process. Another important benefit of EVAH
is the possibility to be flexible when calculating KPIs and
tracking the plan of each patient, which is discussed in the
next section.

IV. OPERATION-BASED PROCESS MODEL

The most widespread tool for specifying and showing
operation processes is probably the Gantt chart [33], which
is easy to use and understand and intuitive to work with [18].
However, it was soon recognized that planning complex, large-
scale systems was too complicated for the Gantt chart [33].
Examples of other tools that can be used are PERT charts
[20], statecharts [14], Petri nets (PNs) [34], and workflow
management tools [12].

These tools and modeling approaches are also used in
healthcare. But they have three main problems: missing design
rationale, inflexible during planning and execution and third –
single view [5]. The most important aspect of being dynamic,
flexible and proactive at an ED, is to have control over the plan
of each patient. This is the core of operation based process
models and execution.

A. Operation-based processes

The behavior of an operation Ok, can be represented by
the state model depicted in Fig. 2. The initial location is
denoted Oi

k , the executing location Oe
k, and the finished

location O
f
k . The start transition between Oi

k and Oe
k is

indicated by the start event, O
↑

k, and the precondition by
C

↑

k . Finally, the stop event and the postcondition are denoted
O

↓

k and C
↓

k , respectively. The operations can be translated
into an extended finite automaton (EFA) [27], a generalized
automaton including variables, guards, and actions, and is
described by Bengtsson [6].

Fig. 2. A model of operation O

B. Operation relations and sequences of operations

To analyze and reason about the relations among operations,
one approach is to examine the possible locations of an
operation, related to when an event is enabled. An operation
Ok will be located in one of its three locations when operation
Oℓ starts. By identifying the states where O

↑

ℓ is enabled, the
possible locations of Ok can be found. The possible relation
types between two operations are:

Definition 7 (Relations between Ok and Oℓ):

• Always in sequence: Ok ≻ Oℓ

• Sometimes in sequence: Ok % Oℓ

• Parallel: Ok‖Oℓ

• Alternative: Ok +Oℓ

• Arbitrary order: Ok ⊕Oℓ



Fig. 3. Two sequences of SOP1. Examples of SOP language
notations: (a) sequence, (b) hierarchy, (c) parallel, and (d)
alternative

• Hierarchy: Ok ⊏ Oℓ

• Sometimes in hierarchy: Ok

∼
⊏ Oℓ

• Other: Ok fOℓ �

When the relations have been pairwise identified, these
relations needs to be visualized in some way. Here, a graphical
language called Sequences of operations, SOP, is used, which
is defined by Bengtsson et. al [3], [19]. In Fig. 3, an example
SOP is shown including two sequences.

C. Sequence Planner and EVAH

Sequence Planner also include advanced features for match-
ing operations with available resource abilities [5], creating
optimization models [28] and control function generation [7].
Future functionality that is under development for EDs in
SP are short term prognosis and room optimization as well
as new visualization techniques for high-level overview. But
to accomplish these implementation, the core behavior of
tracking low level events for each patient and the patient plan
need to be in place. This is accomplished using EVAH and
current SP implementation.

Based on the operation model, it is possible to track the
plan of the patient and current progress by listening to events
from EVAH. When a plan events arrive, a new operation is
added including pre and post conditions to the patient. This
operation is then matched with possible resource abilities and
the SOP defining the plan of the patient is updated. When
operation events are received by SP, the SOP is showing the
current progress of the patient, including information about
the performance of the ED.

In Fig. 4 various projection are shown. The top left SOP
represents the possible route for patient P1 when arriving at
11:40. On arrival, the patient is registered and a plan event
assign an exam operation and the alternative discharge or
admittance. These are matched and merged with resource
abilities by SP. New operations are automatically added based
on the exam transition condition, for example that triage is
needed due to overcrowding, and that the patient needs to be
transported to one of the sections.

The trige.∗ operation is marked red to show that the patient
is waiting for that task and the ∗ define that the task can
be executed by multiple resources, i.e. the task consist of
the alternative between the two operation instances trige.T 1
(Triage Team 1) and trige.T 2 (Triage Team 2). This SOP
will evolve based on the events read from EVAH. The SOP

Fig. 4. Overview of Yellow section and Patient P1

below show the status at 12:20 and at the bottom at 13:30.
The green marked operations have been completed and their
start and stop time is shown below. The patient was placed in
the yellow section, which removes the other possible routes
in the first SOP.

In the 13:30 SOP, the patient is currently being examined
by doctor D1, who has just written an referral to an x-ray
examination and is currently dictating the examination. When
the referral was written two new operations were added, X-
ray and check X-ray, and based on the X-ray requirements,
also to X-ray was added. Since D1 is not currently with the
patient, it is possible to start to X-ray directly.

The SOP at the top right shows the current and coming
operations for D1. To understand why a specific operation is
not started, it is necessary to understand what the various
resources are doing. The SOP will also give the personal
guidance on what to do next. But maybe the most important
projection to give an overview is the SOP in the lower right
showing the patient in each room.

It is also possible to identify why an operation is not
starting by studying its transition condition. By visualizing
the relations between the studied operation and the sequences
of operations that satisfies these condition, it is easy to
understand what a patient is actually waiting for.

V. CONCLUSIONS

One important tool to handle overcrowding in emergency
departments is to visualize the current system state and the
future possible operation behavior. This visualization is highly
complicated because the routing behavior is an indirect con-
sequence of the requirements to start executing an operation,
which involve, for example, the state of a resource, patients,
or another operation. These operation requirements can result
in many types of routing behavior, which will be almost
impossible to describe in a graphical model.



This paper presents EVAH, which is an event-based ar-
chitecture that offers flexibility and scalability and give the
emergency department personnel a dynamic capability to react
to variations.

The next important step is to use the gathered information
to also calculate prognosis for the coming hours at the ED.
This will help the staff to rapidly reorganize and adapt the
resources and processes to better meet the patient needs.

REFERENCES

[1] The Apache Software Foundation. Apache ActiveMQ.
[2] M J Ball. An overview of total medical information systems. Methods

Inf. Med, 10:73–82, 1971.
[3] K. Bengtsson, P. Bergagård, C. Thorstensson, B. Lennartson,

K. Åkesson, C. Yuan, S. Miremadi, and P. Falkman. "sequence
planning using multiple and coordinated sequences of operations". IEEE

Transactions on Automation Science and Engineering, 9(2):308–319,
2012.

[4] K. Bengtsson and B. Lennartson. Patient coordination in emergency
departments using visualization of operation behavior. In 2013 IEEE

Symposium on Computational Intelligence, Singapore, pages 58–63,
April 2013.

[5] K. Bengtsson and B. Lennartson. Flexible specification of operation be-
havior using multiple projections. Automation Science and Engineering,

IEEE Transactions on, 11(2):504–515, 2014.
[6] Kristofer Bengtsson. Flexible design of operation behavior using

modeling and visualization. PhD thesis, Department of Signals and
Systems, Chalmers University of Technology, Göteborg, Sweden, 2012.

[7] Kristofer Bengtsson, Bengt Lennartson, Oscar Ljungkrantz, and
Chengyin Yuan. Developing control logic using aspect-oriented pro-
gramming and sequence planning. Control Engineering Practice,
21(1):12 – 22, 2013.

[8] Christos G. Cassandras and Stéphane Lafortune. Introduction to
Discrete Event Systems, second edition. Springer, 2008.

[9] Gianpaolo Cugola and Alessandro Margara. Processing flows of
information: From data stream to complex event processing. ACM

Comput. Surv., 44(3):15:1–15:62, 2012.
[10] Robert W. Derlet and John R. Richards. "overcrowding in the nation’s

emergency departments: Complex causes and disturbing effects". Annals

of emergency medicine, 35(1):63–68, 2000.
[11] Omar A El Sawy and Paul A Pavlou. It-enabled business capabilities

for turbulent environments. MIS Quarterly Executive, 7(3), 2008.
[12] Diimitrios Georgakopoulos, Mark Hornick, and Amit Sheth. An

overview of workflow management: From process modeling to work-
flow automation infrastructure. Distributed and Parallel Databases,
3:119–153, 1995.

[13] Mark Graban. "Lean Hospitals". Taylor & Francis Group, 2009.
[14] D. Harel. Statecharts: A visual formalism for complex systems. Science

of Computer Programming, 8:231–274, 1987.
[15] Reinhold Haux. Health information systems - past, present, future.

International journal of medical informatics, 75(3):268–2281, 2006.
[16] Richard J. Holden. "lean thinking in emergency departments: A critical

review". Annals of emergency medicine, 57(3):265–278, 2011.
[17] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduc-

tion to Automata Theory, Languages, and Computation (3rd Edition).
Addison Wesley, 2006.

[18] H. Kerzner. Project Management: A Systems Approach to Planning,

Scheduling, and Controlling, Ninth Edition. J. Wiley & Sons, 2006.
ISBN 0471741876.

[19] B. Lennartson, K. Bengtsson, C. Yuan, K. Andersson, M. Fabian,
P. Falkman, and K. Åkesson. Sequence planning for integrated product,
process and automation design. IEEE Transactions on Automation

Science and Engineering, 7(4):791–802, 2010.
[20] R. Levin and C. Kirkpatrick. Planning and Control with PERT/CRM.

McGraw-Hill, 1966.
[21] David Luckham. The Power of Events: An Introduction to Complex

Event Processing in Distributed Enterprise Systems. Addison-Wesley
Professional, 2002.

[22] Sameer Malhotra, Desmond Jordan, Edward Shortliffe, and Vimla L.
Patel. Workflow modeling in critical care: Piecing together your own
puzzle. Journal of Biomedical Informatics, 40(2):81 – 92, 2007.

[23] R. Mans, W. van der Aalst, , and N. Russell. "implementation of a
healthcare process in four different workflow systems". Technical report,
Technische Universiteit Eindhoven, 2009.

[24] Brenda M Michelson. Event-driven architecture overview. Patricia
Seybold Group, 2, 2006.

[25] J. Perez, J. Jimenez, A. Rabanal, A. Astarloa, and J. Lazaro. FTL-
CFree: A fuzzy real-time language for runtime verification. Industrial
Informatics, IEEE Transactions on, 2014.

[26] P Schloeffel, T Beale, G Hayworth, S Heard, and H Leslie. The
relationship between cen 13606, hl7, and openehr. In HIC 2006 and

HINZ 2006 Proceedings, pages 24–28, Brunswick East, Vic.: Health
Informatics Society of Australia, 2006.

[27] M. Sköldstam, K. Åkesson, and M. Fabian. Modelling of discrete
event systems using finite automata with variables. In Proc. 46th IEEE
Conference on Decision and Control, New Orleans, USA, Dec 2007.

[28] Nina Sundström, Oskar Wigström, Petter Falkman, and Bengt Lennart-
son. Optimization of operation sequences using constraint program-
ming. In 14th IFAC Symposium on Information Control Problems in
Manufacturing, INCOM’12, Bucharest, 2012.

[29] A. Taivalsaari and I. Moore. Prototype-Based Object-Oriented Pro-

gramming: Concepts, Languages, and Applications. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 1st edition, 2001.

[30] David J Teece, Gary Pisano, and Amy Shuen. Dynamic capabilities and
strategic management. Strategic Management Journal, 18(7):509–533,
1997.

[31] Catherine L. Wang and Pervaiz K. Ahmed. Dynamic capabilities: A
review and research agenda. International Journal of Management

Reviews, 9(1):31–51, 2007.
[32] Y Whang, L Kung, and T Byrd. Leveraging event-driven it architecture

capability for competitive advantage in healthcare industry: A mediated
model. In Thirty Fourth International Conference in Information

Systems, Milan, 2013.
[33] James M. Wilson. Gantt charts: A centenary appreciation. European

Journal of Operational Research, 149(2):430 – 437, 2003.
[34] M. C. Zhou and F. DiCesare. Petri net synthesis for discrete event

control of manufacturing systems. Kluwer Academic Publishers, 1993.


