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1 Introduction

In this note we consider twisted (2,0) theory on a Lorentzian six-manifold of the form

M1,5 = C × M4 where C is a flat, Lorentzian two-manifold [1].1 This setup is inter-

esting since it could give some insight into the conjectured correspondence between four-

dimensional gauge theory and two-dimensional CFT known as the AGT-correspondence [2,

3]. This is one part of a larger web [4–8] of dualities and relations that can be derived

assuming the existence of the elusive superconformal theory in six dimensions known as

(2,0) theory [9, 10].

In previous work [1] the twisted theory on M4 was calculated explicitly in terms of

the free tensor multiplet. It was shown that on a flat background there is a Q-exact and

conserved stress tensor but that these properties did not immediately extend to a general

curvedM4. The problem was located to the stress tensor for the bosonic self-dual two-form

which turned out not to be conserved on a general four-manifold. However, this issue needs

to be remedied since the procedure of topological twisting should result in theories with

Q-exact stress tensors defined on a generally curved background [11–13].

Here we construct an action for the full theory that is Q-exact off-shell using two differ-

ent kinds of auxiliary field. The free theory splits into two parts, one of which is equivalent

to Donaldsson-Witten theory, and hence this sector can be taken off-shell following the

standard techniques described in [14–16].

In the other sector there is a self-dual tensor field whose presence in the Q transfor-

mation rules leads to an unwanted metric dependence. However, by the introduction of an

1The twisting is carried out in Minkowski signature where the non-compact part of the Lorentz group

prevents a full twist but where a low energy limit still produces supercharges with the required properties

for a topological theory.
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auxiliary vector field we are able to eliminate this metric dependence in a similar fashion

as in [17]. Also in this sector, this step leads to a formulation where the scalar supercharge

is nilpotent off-shell and after constructing a Q-closed and covariant Lagrangian for the

entire theory these properties become manifest also for the stress-tensor. For the bosonic

self-dual two-form we have also added certain curvature terms to its equation of motion,

which becomes possible after the twisting is performed. Note that these terms cannot be

obtained in the original (2,0) theory in six dimensions but they are known from the closely

related interacting theory constructed in five dimensions in [5].

With these modifications of the theory that is naively obtained from twisting the six-

dimensional (2,0) theory on M4, we find an off-shell theory whose metric variations and Q

transformations commute. This feature then implies that the stress tensor can be derived

from a fermionic quantity V (given below) either by going via the Lagrangian or via λµν

(where Tµν = {Q, λµν}). In section 4 this is summarized in a commuting square whose

corners represent the four quantities involved, i.e., Tµν , λµν , V and its Q transform, the

Lagrangian.

In section 2 we review the four-dimensional theory obtained by twisting the six-

dimensional (2,0) theory on C × M4. The problem encountered previously and its res-

olution are briefly explained in section 3. In section 4 we construct an off-shell formulation

including a Q-exact action. Finally, in section 5 we summarise and comment on the results.

2 The twisted theory

For the convenience of the reader we here give a short review of the twisted theory, for

details see [1]. On a general background the six-dimensional (2, 0) theory admits no twist

that preserves any supersymmetry since the Spin(5) R-symmetry cannot be used to fully

twist the supercharges transforming in the larger six dimensional Lorentz group Spin(1, 5).

However, on specific backgrounds such as the one considered here of the formM6 = C×M4,

the Lorentz group is small enough. Here we twist by considering a new SU(2)′ as the

diagonal embedding

SU(2)′ = SU(2)r × SU(2)R , (2.1)

where the six dimensional Lorentz group is Spin(1, 1)×SU(2)l×SU(2)r and the R-symmetry

subgroup is given by

SU(2)R ×U(1)R ∼= Spin(3)× Spin(2) ⊂ Spin(5)R. (2.2)

The supercharges transform in the (111,222,222±) of SU(2)l × SU(2)r × SU(2)R × U(1)R
which after twisting results in two scalar supercharges on M4 of which we pick the one

with negative U(1)R charge.2 This charge satisfies Q2 = 0 and if one also finds a Q-exact

stress tensor the theory is topological on M4 [11].

The scalars Φ of (2,0) theory transform in the vector 555 of Spin(5)R and thus after

twisting consist of one self-dual two-form Eµν and one complex scalar σ. The symplectic

2This charge corresponds to the one that would become scalar on C under the full twisting in the

Euclidean scenario [1].
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Majorana-Weyl spinor Ψ after twisting contains two sets of fields with opposite U(1)R-

charge, all of which are Grassmann. The first set consists of a scalar η, a one-form ψµ and

a self-dual two-form χµν . The second set is a copy of the aforementioned one with opposite

U(1)R-charge, denoted with a tilde. The self-dual three-form H gives rise to a one-form A

and a two-form F which we split into its self-dual and anti-self-dual parts F+ and F−.

The equations of motion of the twisted theory after reduction to a flat M4 is given by

∂ρ∂
ρEµν = 0

∂ρ∂
ρσ = 0

∂ρ∂
ρσ̄ = 0

∂[µAν] = 0

∂[µF
±

νρ] = 0

∂µA
µ = 0

∂µψ̃
µ = 0

∂µη̃ − ∂ν χ̃µ
ν = 0

(∂[µψ̃ν])
+ = 0

∂µψ
µ = 0

∂µη − ∂νχµ
ν = 0

(∂[µψν])
+ = 0

(2.3)

where the notation (. . . )+ refers to the self-dual part.

This set of equations is invariant under the supersymmetry transformations

δEµν = iχµνv

δψ̃ν = ivAν − v∂µEν
µ

δAµ = ∂µη

δχµν = 0

δη = 0

δF+
µν = 0

δF−

µν = −4∂[µψν]v

δχ̃µν = 2ivF+
µν

δψν = −vi
√
2∂ν σ̄

δσ =
√
2η̃v

δσ̄ = 0

δη̃ = 0

(2.4)

where v is a Grassmann parameter. As written the transformations in the left hand column

close on-shell using the equation of motion ∂µη − ∂νχµ
ν .

The free theory splits into two sectors corresponding to the two columns in (2.4). The

first consists of {Eµν , ψ̃µ, Aµ, χµν , η}, henceforth called the E-sector, and the second con-

taining the Yang-Mills field strength {Fµν , χ̃µν , ψµ, σ, σ̄, η̃}, referred to as the F -sector. The

latter sector correspond to the field content of Donaldsson-Witten theory, i.e. the unique

twist of pure N = 2 supersymmetric Yang-Mills. Note that the supersymmetry transfor-

mations also corresponds to Donaldsson-Witten theory except for δF , a point to which we

will return in section 4. The former sector does not stem from any N = 2 multiplet.3 How-

ever, it is closely related to the Vafa-Witten twist [8] of N = 4 supersymmetric Yang-Mills

and the topological twisting of five-dimensional supersymmetric Yang-Mills [5, 18]. These

connections stem from the fact that both the four- and five-dimensional untwisted theories

can be obtained by compactifications of (2,0) theory [19].

3 Conserved stress-tensor

In [1] it was shown that there exists a conserved and Q-exact stress tensor on a flat back-

ground, which we here split into the two sectors defined in the previous section. It is then

3An N = 2 hypermultiplet would result in one bosonic and two fermionic vectors.
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given by the sum of the two stress tensors

T
µν
i = {Q, λµνi } , (3.1)

where

λ
µν
1 =

1

2

(

ψ̃(µ∂ρEν)
ρ + ∂ρψ̃

(µEν)
ρ − ∂(µψ̃ρEν)

ρ

+ iψ̃(µAν) − 1

2
gµνψ̃ρ∂σE

ρσ − i

2
gµνψ̃ρA

ρ

)

,

(3.2)

and

λ
µν
2 =

1

2

(√
2iψ(µ∂ν)σ − i

2
χ̃(µ

ρF
−ν)ρ − i√

2
gµνψρ∂

ρσ

)

. (3.3)

Since any stress tensor on a curved background must reduce to the above in the flat

limit a natural guess for the curved stress tensor is by covariantising λµνi . Furthermore, by

the symmetries of the theory there are no curvature corrections that can be added to λµνi
and since the terms in λµνi have only one derivative no new curvature factors can arise by

ordering (see [1] for details).

Using a covariantised version of λµν one finds the stress tensor

T
µν
1 =

1

8

(

−4A(µAν) + 2gµνAρA
ρ
)

+
i

2
gµνDρηψ̃

ρ − iD(µηψ̃ν)

− i

4
gµνχρσD[ρψ̃σ] +

i

2

(

χσ(µDσψ̃
ν) − χσ(µDν)ψ̃σ

)

(3.4)

+
1

4
gµνDκEρκDσE

ρσ − 1

2
Dρ

(

DκE(µ
κE

ν)
ρ

)

+
1

2
D(µDκE

ρκEν)
ρ

T
µν
2 =

1

2

(

− gµνDρσD
ρσ̄ + 2D(µσDν)σ̄

)

+
1

8

(

−2F+µ
ρF

−ρν − 2F−µ
ρF

+ρν
)

+
i

2
gµνDρη̃ψ

ρ − iD(µη̃ψν) − i

4
gµν χ̃ρσD[ρψσ] (3.5)

+
i

2

(

χ̃σ(µDσψ
ν) − χ̃σ(µDν)ψσ

)

.

It turns out that the part of this stress tensor involving the bosonic self-dual two-form

(last line in (3.4)) is not conserved using the equations of motion obtained by twisting the

six-dimensional equations of motion,

D2Φ = 0 , (3.6)

which implies that Eµν , σ and σ̄ satisfies the corresponding four-dimensional equations.

One natural guess is that since the six-dimensional theory on a curved background is

conformally invariant only when the conformal coupling RΦ2 is included, it will generate

the needed terms in the twisted theory. It turns out that this is not enough [1] since an

addition to the equation of motion of the form

D2Eµν = aREµν (3.7)

does not enable the conservation of (3.4) for any value of a.
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In fact, after twisting, there are other possible curvature couplings allowed by the

index structure and symmetry. Such terms do not arise by twisting any six-dimensional

expressions but as we will show they solve the problem of conservation and also have a

very simple Lagrangian description.

The Ricci tensor gives the possibility to add to the equations of motion a term of the

form

D2Eµν = b(P+)µν
τσRτ

ρEσρ , (3.8)

where P+ is the projector on the self-dual part. It turns out that this projection is actually

proportional to the curvature scalar and so does not contribute anything new. The last

possible addition is a term of the form

D2Eµν = c(P+)µν
τσRτσ

ρλEρλ . (3.9)

It is now a simple matter to confirm that the stress tensor in (3.4) is conserved with

the additions to the equations of motion given by a = 1
2 , c = −1. The correct equation of

motion is then given by

D2Eµν =
1

2
REµν − (P+)µν

τσRτσ
ρλEρλ . (3.10)

This equation integrates to the Lagrangian.4

LE = EµνDρDρEµν +RµνρσEµνEρσ − 1

2
REµνEµν , (3.11)

which after a partial integration5 is equivalent to the simpler form

LE = −4DµEνµDρE
νρ. (3.12)

From here one can also easily verify that the stress tensor in (3.4) follows from a metric

variation of (3.12), keeping in mind the metric dependence of Eµν due to its self-duality

(see the appendix for details).

4 Q-exact action

After having found a Q-exact stress-tensor a natural question is if the action itself is Q-

exact. It turns out that this is the case but that there are a few subtleties. In fact, in the

end, we will find a commuting diagram shown in figure 1 for the different sectors. Here the

vertical direction corresponds to metric variations and should be considered to take place

under an integral in the sense that

δg

∫

M4

√
g V =

∫

M4

√
g δgµνλ

µν , (4.1)

as well as the more familiar

δg

∫

M4

√
g L =

∫

M4

√
g δgµνT

µν . (4.2)
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L
δg

// Tµν

V
δg

//

Q

OO

λµν

Q

OO

Figure 1. Relation between the fermionic quantity V and the stress tensor. The vertical direction

correspond to supersymmetry transformations and the horizontal direction to metric variations.

First, let us see why we should expect to find the relationship in figure 1 in topological

theories of cohomological type. If a theory has a Q-exact action, L = {Q, V }, it follows that

δg

∫

M4

√
g L =

∫ √
g

(

1

2
Tr(δg){Q, V }+ δg{Q, V }

)

=

∫ √
g δgµν

{

Q,
1

2
Tr(δg)V +

δV

δgµν

}

,

(4.3)

i.e. the stress-tensor is Q-exact. However, care is needed when performing the above cal-

culation. Note that it breaks down if the supersymmetry variations do not commute with

the metric variations. Below we show that this indeed occurs for the E-sector. It is also

the case that the Lagrangian for the F -sector is only Q-exact on-shell and so the situation

is not as straight forward as in (4.3).

4.1 E-sector

It turns out that in the twisted theory at hand there is in the variation of ψ̃

δψ̃µ = ivAµ − vDρEµ
ρ , (4.4)

a metric dependence in the second term on the right hand side, due both to the covariance

and to the self-duality of Eµν . Since this term does not have the same dependence on the

metric as the other terms it follows that metric variations and supersymmetry transforma-

tions do not commute on ψ̃µ.

One of the consequences of this can be seen when trying to construct a fermionic

quantity that gives rise to λµν under a metric variation. In the expression for λµν1 (3.2)

there is a term of the form gµνψ̃ρDσE
ρσ. To generate this we look at the corresponding term

V = ψ̃ρDσE
ρσ (4.5)

4This Lagrangian coincides with the corresponding part of the one derived previously from a five-

dimensional perspective [5, 18] after reduction to four dimensions.
5In the absence of boundary terms.

– 6 –



J
H
E
P
1
1
(
2
0
1
4
)
0
3
2

However, under a metric variation, taking into account the metric dependence of Eµν , one

finds that

δg

∫ √
g V =

1

4

∫ √
g
(

δgµνgµνDσψ̃ρE
σρ + δgµνD[ρψ̃ν]Eµ

ρ
)

. (4.6)

Note that no term of the form δgµνgµνψ̃ρDσE
ρσ is generated.

The situation can be improved with the aid of an auxiliary field. If we insist on a

uniform metric dependence in the variation for ψ̃ a natural modification to do is to replace

E in this variation by a metric independent auxiliary field hµ. Thus we now have

δψ̃µ = ivAµ + hµ. (4.7)

To leave the on-shell theory unchanged we take the action for hµ to be

Lh =
1

2
h2 − hµDνE

µν , (4.8)

and use the supersymmetry variation

δhµ = −ivDµη. (4.9)

With this modification it is straight forward to find

V1 = −
(

1

2
(iAµ + hµ)−DνEµ

ν

)

ψ̃µ , (4.10)

that under a supersymmetry variation gives rise to the action

L1 =
1

2
AµA

µ − iχµνDµψ̃ν + iDµηψ̃µ +
1

2
hµh

µ − hµDνE
µν . (4.11)

Note that if we evaluate the auxiliary field on-shell the action for Eµν is exactly of the

form (3.12). Under a metric variation we find

λ
µν
1 =

i

2
A(µψ̃ν) − i

4
gµνAρψ̃ρ −

1

2
E(µ

ρD
ν)ψ̃ρ − 1

2
Eρ(µDρψ̃

ν)

− 1

4
gµνEρσDρψ̃σ +

1

2
ψ̃(µhν) − 1

4
gµνψ̃ρhρ.

(4.12)

One easily verifies that on-shell this expression reduces to the corresponding terms in (3.2).

Thus we now find that the metric variation of L1 and the supersymmetry variation of λµν1
both give

T
µν
1 = −1

2
AµAν +

1

4
gµνAρAρ +

i

2
χ(µ

ρD
ν)ψ̃ρ +

i

2
χρ(µDρψ̃

ν) − i

4
gµνχρσDρψ̃σ

− iD(µηψ̃ν) +
i

2
gµνDρηψ̃

ρ − 1

2
hµhν +

1

4
gµνhρh

ρ

− 1

2
Eρ(µDν)hρ +

1

2
Eρ(µDρh

ν) − 1

4
gµνEρσDρhσ

(4.13)

which on-shell coincides with (3.4). This use of an auxiliary field to eliminate the metric

dependence of Q and enforce its nilpotency off-shell is very similar in spirit to what is

carried out in [17].
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4.2 F -sector

Let us now turn to the sector containing F+
µν and F−

µν . Recall that they correspond to the

components H+µν and H−µν of the six-dimensional self-dual three-form. The contribution

to the stress tensor of these fields where derived in [1] by considering first the stress-tensor

for a general three-form and only later imposing self-duality, fixing the numerical factors

by supersymmetry. This approach is forced on us since the self-dual three-form does not

have a covariant Lagrangian. As will soon become evident there are also here some sub-

tleties regarding the construction of V2 generating the wanted terms and also making the

diagram in figure 1 commute. From the similarities of this sector with Donaldsson-Witten

theory [11] one would expect the action to be Q-exact in the same way [20]. This is indeed

the case apart from one subtle point.

Looking at the stress tensor we are led to consider

V2 =
1

8
Fµν χ̃

µν − i√
2
ψµ∂µσ. (4.14)

From the form of the supersymmetry variations of F+ and F− we immediately find a

problem here since only δF− is non-zero, but from the self-duality of χ̃ only the term with

F+ survives in the above expression. Thus it seems difficult to generate the term χ̃µνDµψν

in the action. This is easily amended by recalling that the six-dimensional theory only gives

us information on-shell. This means that it cannot distinguish between the supersymmetry

variations for F+ and F− given in (2.4) and a (metric independent) variation given by

δFµν = −4∂[µψν]v , (4.15)

which reduces to the ones in (2.4) using the equation of motion (∂µψν)
+ = 0. Using the

above expression the supersymmetry variation of V2 is given by

δQV2 =
i

2
∂µψν χ̃

µν − 1

4
FµνF

+µν − ∂µσ̄∂µσ − iψµ∂µη̃. (4.16)

The second term can be rewritten as FµνF
+µν = 1

2FµνF
µν + 1

4ǫ
µνρσFµνFρσ. In this expres-

sion the second term is topological and thus will not contribute to the stress-tensor. Under

a metric variation one then finds that

δgδQ(
√
gV2) =

√
g δgµνT

µν
2 + δg

(

i

2

√
g∂µψν χ̃

µν

)

. (4.17)

The second term on the right-hand side might seem disturbing but it turns out to be crucial

for the Q-exactness of Tµν . This term is zero on-shell but gives a contribution to the metric

variation. Rewriting the above expression slightly we have

√
g δgµνT

µν = δgδQ(
√
gV2)− δg

(

i

2

√
g∂µψν χ̃

µν

)

. (4.18)

Also here we find that supersymmetry and metric variations do not commute, the first

term is not Q-exact. However it is the case that

δgδQ(
√
gV2) = δQ

(

δg(
√
gV2)− δχ̃(

√
gV2)

)

+ δg

(

i

2

√
g∂µψνχ̃

µν

)

, (4.19)
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L
δg

// Tµν

V
δg − δχ̃

//

Q+ dψ ∧ χ̃

OO

λµν

Q

OO

Figure 2. The F -sector relation between V2 and T
µν

2
prior to the introduction of the auxiliary

field Bµν .

where δχ̃ denotes the metric variation of the field χ̃. Notice that the last term is precisely

the negative of the last term in (4.18). Using this we find that

√
gδgµνT

µν = δQ

(

δg(
√
gV2)− δχ̃(

√
gV2)

)

. (4.20)

Thus the stress-tensor is indeed Q-exact with Tµν
2 = {Q, λµν2 } where

√
gδgµνλ

µν
2 = δg(

√
gV2)− δχ̃(

√
gV2) , (4.21)

in agreement with the relevant terms in the previously derived λµν2 given in (3.3). Thus,

as it stands, the relationship between V2 and Tµν
2 can be summarised in figure 2.

Following [14–16] there is an off-shell formulation also for this sector. To ensure the

nilpotency of Q we introduce a self-dual auxiliary field Bµν and take

V2 =
1

8

(

Fµν −
1

2
Bµν

)

χ̃µν − i√
2
ψµDµσ , (4.22)

together with the supersymmetry variations

δχ̃µν = 2ivBµν

δBµν = 0 .
(4.23)

This achieves two things: firstly the variations now manifestly squares to zero off-shell, but

we now also have

δgδQ(
√
gV2) =

√
gδgµνT

′µν
2 , (4.24)

where T ′µν
2 reduces on-shell to Tµν

2 in (4.20). This makes the diagram in figure 1 commute

also for this sector.

5 Conclusions

The topological twisting of abelian (2,0) theory on C×M4 gives rise, after compactification

on C, to a four-dimensional Euclidean theory with a stress tensor that is Q-exact and

conserved on a general M4. The twisted free theory can be divided into two sectors,

one containing the bosonic self-dual two-form consisting of {Eµν , ψ̃µ, Aµ, χµν , η} and one

– 9 –



J
H
E
P
1
1
(
2
0
1
4
)
0
3
2

containing the Yang-Mills field strength {Fµν , χ̃µν , ψµ, σ, σ̄, η̃}. The latter is equivalent to

Donaldsson-Witten theory [11] which has an off-shell formulation that can be obtained

using the techniques of, e.g., [14–16] (see also [20]).

The other sector is more subtle however. Here the metric dependence of the bosonic

two-form, and in particular the transformation rules where it enters, make the construction

of a Q-exact action and a commuting square somewhat complicated. But again it is possible

to find a satisfactory set of transformation rules by the introduction of an auxiliary field.

The main result is that in the off-shell formulation found here there is a simple relationship

between the Lagrangian and its stress-tensor and the two fermionic quantities, V and λµν ,

that generate the aforementioned ones under a Q transformation. This relationship can be

summarised by a commutative diagram, valid for both off-shell sectors and displayed here

again for the benefit of the reader:

L
δg

// Tµν

V
δg

//

Q

OO

λµν

Q

OO

The fermionic quantities Vi are given by

V1 = −
(

1

2
(iAµ + hµ)−DνEµ

ν

)

ψ̃µ , (5.1)

for the E-sector and

V2 =
1

8

(

Fµν −
1

2
Bµν

)

χ̃µν − i√
2
ψµDµσ , (5.2)

in the F -sector. Here hµ and Bµν are the two auxiliary fields needed for the off-shell

formulation, the latter being self-dual. The explicit expressions for the remaining quantities

appearing in the commuting squares of the two different sectors were presented in the

previous section.

The problem previously encountered in [1] regarding the conservation of the stress

tensor on a curved background are here alleviated by certain curvature corrections to the

bosonic equations of motion. This results in a theory that integrates to an action that is

Q-exact.

One can also compare this theory to what one would obtain by first compactifying (2,0)

theory on a circle and then compactify once again with a twist down to four dimensions.

In the first step we arrive at five-dimensional supersymmetric Yang-Mills. The topological

twist of the five-dimensional theory has been investigated [5, 18] on manifolds of the type

R+×M4. Even though this is not a compactification of the type we are considering here it

is still possible to compare the resulting theories onM4. It is easy to check that a truncated

version of the twisted five-dimensional Lagrangian corresponds to the one presented here.
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In light of these results it would be interesting to see how the theory depends on the

higher modes on C. There are arguments [2, 5] for why the theory on C should become

holomorphic after the full twist in the Euclidean setup and it would therefore be of interest

to see if and how this manifests itself here.
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A Metric variation of self-dual forms

When performing metric variations in a theory with self-dual two-forms it is important

that their self-duality is preserved. To see how this is done we consider the self-duality

constraint in the form

A+ = ⋆A+, (A.1)

where A+ is a two-form and ⋆ is the Hodge dual. From the metric dependence of the Hodge

dual we see that A+ fails to be self-dual under the perturbed metric g + δg. Let us then

assume that A+ → A+ + δgA
+ as g → g + δg. In the perturbed metric the self-duality

condition then reads

δgA
+ = (δg⋆)A

+ + ⋆δgA
+, (A.2)

which is equivalent to
1

2
(1− ⋆)δgA

+ =
1

2
(δg⋆)A

+. (A.3)

To preserve the relation A+ = ⋆A+ under metric variations we must therefore impose the

anti-self-dual variation above.6 Since the self-dual part of δgA
+ is unconstrained we can

take it to vanish. In components the variation above takes the form

δgA
+
µν =

1

2
δgρρ

′

ǫµνρ
σA+

ρ′σ − 1

8
δgλτgλτ ǫµν

ρσA+
ρσ. (A.4)
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