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Abstract—This paper deals with Gaussian approximations to
the posterior probability density function (PDF) in Bayesian
nonlinear filtering. In this setting, using sigma-point based ap-
proximations to the Kalman filter (KF) recursion is a prominent
approach. In the update step, the sigma-point KF approximations
are equivalent to performing the statistical linear regression
(SLR) of the (nonlinear) measurement function with respect to
the prior PDF. In this paper, we indicate that the SLR of the
measurement function with respect to the posterior is expected to
provide better results than the SLR with respect to the prior. The
resulting filter is referred to as the posterior linearisation filter
(PLF). In practice, the exact PLF update is intractable but can be
efficiently approximated by carrying out iterated SLRs based on
sigma-point approximations. On the whole, the resulting filter, the
iterated PLF (IPLF), is expected to outperform all sigma-point
KF approximations as demonstrated by numerical simulations.

Index Terms—Bayes’ rule, Kalman filter, nonlinear filtering,
sigma-points, statistical linear regression

I. INTRODUCTION

A lot of problems in science and engineering deal with
the estimation of the state of a dynamic process from noisy
observations [1]. In the Bayesian framework, the probability
density function (PDF) of the current state given the available
measurements is necessary in order to estimate the current
state in an optimal manner. This PDF is referred to as the
posterior PDF and can be calculated recursively in two phases:
prediction and update.

If the measurement equation is non-linear/non-Gaussian,
the posterior PDF cannot be calculated analytically so ap-
proximations must be used in practice. If the posterior is
unimodal, Gaussian approximations usually provide sufficient
accuracy. Therefore, it is of interest to develop computationally
efficient Gaussian approximations. In this case, the prediction
step typically consists of calculating/approximating the first
two moments of a random variable that undergoes a possibly
nonlinear transformation. In the update step, we use the prior
PDF, the current measurement and Bayes’ rule to obtain the
posterior. For nonlinear measurements, the update step is more
difficult and is the focus of this paper.

In the Gaussian filtering update step, one possibility is
to set the maximum a posteriori (MAP) estimator as the
updated mean and obtain the updated covariance matrix by
linearising the measurement function around the MAP, as in
the iterated extended Kalman filter (IEKF) [2]. The posterior

approximation based on the MAP is asymptotically optimal
as the measurement noise tends to zero [3]. Nevertheless, the
most widely used Gaussian filtering update step algorithm
consists of approximating the updated mean by the linear
minimum mean square error (LMMSE) estimator and the
updated covariance by its mean square error matrix. The
LMMSE-based approximation is usually more accurate than
the MAP one as the metric to assess the filter performance is
usually the square error.

The LMMSE-based approximation is sometimes referred to
as (nonlinear) Kalman filter (KF) update [4, Sec. II.A] [5] or
Gaussian filter update [6]. This algorithm is equivalent to per-
forming statistical linear regression (SLR) of the measurement
function with respect to the prior PDF and calculating Bayes’
rule with the resulting linearised measurement model [7]. As
the KF is usually known in the literature as the solution to
the linear/Gaussian filtering recursion and the term Gaussian
filter can also refer to many other types of approximations
[8], we find it useful to refer to this algorithm as prior
linearisation filter (PrLF) in the context of this paper. The
PrLF update requires the calculation of some moments: the
mean and covariance matrix of the current measurement and
cross-covariance between the current state and the current
measurement [4]. In practice, these moments (PrLF moments)
cannot be calculated in closed-form so we require approxi-
mations. In this paper, we refer to these approximations as
approximations to the PrLF. For instance, the extended Kalman
filter (EKF) approximates the PrLF moments using analytical
linearisation while the unscented KF (UKF) [4], cubature KF
(CKF) [9] or linear regression KF [10] use sigma-points. The
main drawback of the PrLF and all its approximations is that
they often perform poorly if the measurement noise is low
enough [5]. Therefore, more accurate computationally efficient
approximations must be sought.

In this paper, we argue that, rather than performing SLR
of the measurement function with respect to the prior, SLR
should be performed with respect to the posterior. The intuition
behind this idea is that the approximation of the measurement
function should be accurate in the region of interest, which is
indicated by the posterior, not the prior. We later confirm and
formalise our intuition by showing that the mean square error
(MSE) of the linearisation is minimised if it is performed with
respect to the posterior. The resulting filter is referred to as



the posterior linearisation filter (PLF). The PLF is intractable
as we would need to know the posterior to approximate the
posterior. Nevertheless, we propose an approximation of the
PLF by performing iterated SLRs based on sigma-points.
This filter is referred to as the iterated PLF (IPLF) and is
expected to perform better than any PrLF-type algorithm, such
as EKF, UKF or CKF. This is due to the fact that the IPLF
approximates the PLF, which is expected to outperform the
PrLF.

The rest of the paper is organised as follows. In Section II,
we formulate the problem. The PLF is introduced in Section
III. The mathematical justification behind the PLF is given
in Section IV. We provide the IPLF is Section V. Numerical
simulations for assessing the filter performance are given in
Section VI. Finally, conclusions are drawn in Section VII.

II. PROBLEM STATEMENT

In this section, we explain the approximations we consider
in the update step of Bayesian filtering. As we focus on
the update phase, the time index of the filtering recursion
is removed for the sake of notational simplicity. The state
x ∈ Rnx has a Gaussian prior PDF p (x) = N (x; x,P) with
mean x and covariance matrix P. The measurement equation
is

z = h (x) + η (1)

where z ∈ Rnz is the measurement, h (·) is the measurement
function and η is a zero-mean Gaussian measurement noise
with covariance matrix R.

The posterior PDF p (x |z ) of the state after observing
measurement z is obtained by Bayes’ rule

p (x |z ) ∝ p (z |x ) p (x) (2)

where ∝ means “is proportional to” and the likelihood p (z |x )
can be obtained using (1)

p (z |x ) = N (z; h (x) ,R) (3)

In practice, the posterior does not admit a closed-form ex-
pression so it must be approximated. In this paper, we seek a
Gaussian posterior approximation

q (x |z ) = N (x; xu,Pu) (4)

that is obtained using the enabling approximation

h (x) ≈ h̃ (x) = Ax + b + e (5)

where h̃ (x) is the approximation of h (x), A ∈ Rnz×nx ,
b ∈ Rnz and e ∈ Rnz is a zero-mean Gaussian distributed
random variable with covariance matrix Ω. The variable e
is uncorrelated with x and η. It should be noted that affine
measurement functions with additive Gaussian noise are the
only functions for which the posterior is exactly Gaussian.
The class of functions in (5) is therefore of particular interest
since it allows us to represent all such measurement functions
of importance.

Once the enabling approximation in (5) is employed,
p (z |x ) = N (z; Ax + b,Ω + R) and the posterior moments
become

xu = x + PAT
(
APAT + Ω + R

)−1
(z−Ax− b) (6)

Pu = P−PAT
(
APAT + Ω + R

)−1
AP (7)

A. Relations with previous work

In the Gaussian filtering literature, there are three impor-
tant kinds of linearisations that are used in (5): analytical
linearisation at the prior mean, analytical linearisation at the
MAP estimate and SLR w.r.t. the prior PDF. As finding the
MAP estimate or performing SLR w.r.t. the prior is not always
tractable, different approximations to these linearisations have
been proposed. These give rise to different filters but their
foundation is the use of one of these linearisations.

More specifically, if we select Ω = 0, and A and b
by analytical linearisation at the prior mean, the resulting
algorithm is the EKF. If we select Ω = 0, and A and b
by analytical linearisation at the MAP estimate, obtained by
a Gauss-Newton search, the resulting algorithm is the IEKF
[2]. If we select A, b and Ω using SLR with respect to the
prior, the resulting algorithm is the PrLF. If the PrLF moments
are approximated using sigma-points drawn from the prior, the
resulting algorithms are the widely used sigma-point KFs, e.g.,
UKF or CKF.

In Section III, we propose a fourth type of linearisation to be
used in (5), for which a practical implementation is developed
in Section V.

III. POSTERIOR LINEARISATION FILTER

As indicated in Section II-A, the PrLF selects the parameters
of approximation (5) using SLR with respect to the prior. In
this section, we first review the concept of SLR of a function
with respect to a PDF, which indicates the region of the state
space where the linearisation is accurate. We then motivate
why the SLR of the measurement function should be done with
respect to the posterior, instead of the prior, to obtain a suitable
approximation h̃ (x) in (5). The mathematical justification of
this step is deferred until Section IV.

A. Review of SLR

In this section, we explain the statistical linear regression
(SLR) of a function h (·) with respect to a PDF p (·), whose
first two moments are x and P. The SLR of h (·) is an
approximation of the form (5) in which the values of A,
b and Ω are chosen such that the first two moments of the
approximated joint variable

[
xT , h̃T (x)

]T
match those of the

joint variable
[
xT ,hT (x)

]T
. We get that [7]

A+ =ΨTP−1 (8)
b+ =z−A+x (9)

Ω+ =Φ−A+P
(
A+
)T

(10)



where

z =

ˆ
h (x)p (x) dx (11)

Ψ =

ˆ
(x− x) (h (x)− z)

T
p (x) dx (12)

Φ =

ˆ
(h (x)− z) (h (x)− z)

T
p (x) dx (13)

Another interesting property is that the SLR of a function h (·)
provides the best affine approximation of h (·) in the mean
square error (MSE) sense and its MSE w.r.t. p (·) [7]. That is,(

A+,b+
)

= arg min
(A,b)

E
[
(h (x)−Ax− b)

T
(h (x)−Ax− b)

]
where the expectation is taken with respect to p (·) and

Ω+ = E
[(

h (x)−A+x− b+
) (

h (x)−A+x− b+
)T ]

so tr
(
Ω+
)

is the MSE.

B. SLR in the update step

As we mentioned in the previous section, the SLR of a
function with respect to a PDF provides us with the best linear
approximation of the function in the region where the PDF
lies. This fact is widely used in the update step of Bayesian
filtering to get an enabling approximation of the form (5).
The conventional way to apply SLR in the update step is
to approximate the nonlinear measurement function as in (5)
using SLR with respect to the prior. The resulting algorithm is
the PrLF, which can be easily approximated using sigma-point
methods as in the UKF or CKF. In Appendix A, we prove for
completeness that the LMMSE approximation to the posterior
(which is approximated by UKF and CKF) is the same as the
PrLF.

It is known that the PrLF and therefore all of its approxima-
tions do not work well with nonlinear measurement functions
if the measurement noise is low enough [5]. In the following,
we provide one possible interpretation of this drawback of
the PrLF in terms of the accuracy of the approximation (5).
This interpretation motivates the introduction of the posterior
linearisation filter (PLF).

If the measurement noise is low enough, the posterior PDF
is considerably narrower than the prior PDF. Then, if the
measurement function is nonlinear and we have performed
SLR with respect to the prior, chances are that the linear
approximation of the measurement function is not accurate
in the region where the posterior actually lies, which is our
region of interest. That is, before we process the measurement,
the PrLF provides us with the best linear approximation of
the measurement function in our region of interest, which
is indicated by the prior. However, when we receive the
measurement, the region of interest changes according to the
posterior, and the linear approximation given by SLR with
respect to the prior is not necessarily accurate in the new
region.

Intuition tells us that we should approximate the measure-
ment function in our region of interest. That is, the enabling

approximation (5) should be chosen by the SLR w.r.t. the
posterior PDF, not w.r.t. the prior. The algorithm that uses the
SLR of the measurement function with respect to the posterior
in the enabling approximation (5) is referred to as PLF. A
mathematical justification of using the PLF instead of the PrLF
is provided in Section IV. It should also be noted that the PLF
is intractable because it requires knowledge of the posterior
to approximate the posterior. Nevertheless, we can design an
iterative procedure to approximate the PLF. This is addressed
in Section V.

1) Illustrative example: In order to clarify the concepts
of the previous discussion, we find it convenient to use the
following illustrative example. The prior PDF is Gaussian with
mean x = 3 and variance P = 4. The measurement equation
is

z = ax3 + η (14)

where η is the measurement noise with variance R = 0.1 and
a = 0.01. In this example, the required moments, i.e., (11)-
(13) can be calculated analytically [11] so we can use the exact
PrLF instead of an approximation, such as the UKF or CKF.

We analyse the case where we measure z = 1.5. The prior
and posterior PDFs are shown in Figure 1. In this figure, the
posterior has been obtained by using a dense grid of points.
This method is not generally practical because of its high
computational burden so it is convenient to find computa-
tionally efficient approximations to the posterior. The PrLF
approximates the posterior by the enabling approximation (5)
using SLR of the measurement function with respect to the
prior. The measurement function and its PrLF approximation
are shown in Figure 2. The linearisation used in the PrLF
would be the best linearisation of h(·) if our region of interest
were given by the prior, which would be the case if we did
not know the measurement. The fact is that we know that
the measurement is z = 1.5 and we therefore argue that
the region of interest is now given by the posterior. The
linearisation of h(·) with respect to the posterior is also plotted
in Figure 2. It can be clearly seen that the PrLF linearisation
is quite different from the linearisation we would like to use
in the enabling approximation (5). As the linearisation of
the PrLF is not accurate in our region of interest, it is not
surprising that the resulting PrLF posterior approximation is
poor, see Figure 3. On the contrary, if we use the SLR of
the measurement function in the region of interest, given the
current measurement, i.e., SLR with respect to the posterior,
the resulting posterior approximation is rather accurate.

IV. MATHEMATICAL JUSTIFICATION OF THE PLF

In the previous section we provided the intuition behind the
PLF. In this section, we provide a mathematical justification
as to why the PLF is expected to outperform the PrLF. In
the PrLF, the values of A, b and Ω in (5) do not depend
on the measurement. Nevertheless, in the update step, the
measurement z is known and we can allow A, b and Ω to
depend on z, which means that we can find the values that
minimise the MSE of the measurement function approximation
for any given z. This implies that the resulting MSE of the
measurement function approximation averaged over the state
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Figure 1: Prior and posterior for z = 1.5. The posterior is markedly
narrower than the prior.
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Figure 2: Measurement function and the PrLF and PLF approximations.
We plot the linearisations in the 2σ-regions of the PDF that was used in
SLR. The dashed lines indicate 2σ-regions of the error term in (5). The
PrLF approximation is quite different from the PLF approximation, which
gives us the best approximation of h(·) for the current measurement.
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Figure 3: Posterior and the PrLF and PLF approximations. As the PrLF
linearisation of h(·) is not accurate, the PrLF approximation is inaccurate.
On the contrary, the PLF provides a quite accurate approximation.

and the measurement is lower than for the PrLF. This is
explained in the following.

We can write the MSE averaged over the state and the
measurement as

E
[
(h (x)−Ax− b)

T
(h (x)−Ax− b)

]
=

ˆ
p (z)

ˆ
p (x |z )

(h (x)−Ax− b)
T

(h (x)−Ax− b) dxdz (15)

The values of A,b that minimise (15) are given by SLR with
respect to the prior p (x). If A and b are instead functions of
z, rather than minimising (15) globally, we can minimise the
inner integral of (15) per each value of z

(A? (z) ,b? (z)) =

arg min
(A(z),b(z))

ˆ
p (x |z ) (h (x)−A (z) x− b (z))

T

(h (x)−A (z) x− b (z)) dx (16)

Taking into account the information we know from Section
III-A, A? (z) ,b? (z) are given by the SLR of h (·) with
respect to the posterior.

The MSE tr (Ω? (z)) of the measurement function condi-
tioned on the measurement is

tr (Ω? (z)) =

ˆ
p (x |z ) (h (x)−A? (z) x− b? (z))

T

(h (x)−A? (z) x− b? (z)) dx

As proved in Appendix B, the MSE averaged over the state and
the measurement of the measurement function approximation
provided by any other linearisation, including that of the PrLF
and MAP (as in the IEKF), is equal or larger than the MSE
provided by the PLF. Therefore, the PLF approximation to the
measurement function is optimal in the MSE sense. As the
performance of these filters basically depends on the quality
of the approximation (5), the PLF is expected to outperform
the PrLF and MAP filters.

V. ITERATED POSTERIOR LINEARISATION FILTER

In this section, we provide a practical algorithm to approxi-
mate the PLF, called the iterated PLF (IPLF). The PLF selects
the enabling approximation (5) using SLR with respect to the
posterior. The problem is that the posterior is what we aim
to approximate, so it is unknown. The PLF approximation
provided by the IPLF is based on carrying out iterated SLRs.
That is, since we do not have access to the posterior, we
perform SLR with respect to the best available approximation
of the posterior. At the end of each iteration, we expect
to obtain an improved approximation of the posterior which
means that we can use it to obtain a better SLR that we
compute at the next iteration.

More specifically, we build a sequence
(
xiu,P

i
u,A

i,bi,Ωi
)

i ∈ N of Gaussian posterior and measurement function
approximations in the following way. We start with the prior
moments x1

u = x, P1
u = P and calculate A1,b1,Ω1 using the

SLR of h (·) with respect to x1
u, P1

u. Based on A1,b1 and
Ω1, we obtain x2

u and P2
u, which characterise the posterior
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Figure 4: Illustration of IPLF. The true posterior is shown in blue, the
prior in black, the PrLF posterior approximation in green and 3 more
iterations of the IPLF in red. A number on the maximum of each PDF
represents variable i in the IPLF recursion, see Algorithm 1. The PrLF
is simply the first step of the recursion and is not a good approximation
of the posterior. If we continue with the IPLF iteration, we attain an
accurate approximation.

approximation for i = 2, from (6) and (7). An interesting
observation is that this is the posterior approximation provided
by the PrLF. However, as we want to perform SLR with
respect to the posterior, we can continue the iteration until
convergence. At every step, we obtain Ai,bi,Ωi based on xiu
and Pi

u. Then, we calculate xi+1
u and Pi+1

u from (6) and (7)
using Ai,bi,Ωi. In practice, the required integrals of SLR,
which are (11)-(13), can be approximated using any sigma-
point method, e.g., the unscented transform (UT) [4]. The steps
of the IPLF are summarised in Algorithm 1.

Algorithm 1 The update step of IPLF
Input: Prior moments x1

u = x, P1
u = P.

Output: Posterior moments xiu, Pi
u.

- Initialise by setting i = 1.
repeat

• Calculate the SLR Ai,bi,Ωi:
– Approximate (11)-(13) for xiu, Pi

u , e.g., using the UT.
– Obtain Ai, bi and Ωi from (8)-(10) using xiu, Pi

u instead
of x, P.

• Compute posterior approximation moments xi+1
u , Pi+1

u :
– Use Ai, bi and Ωi in (6) and (7).

• i← i+ 1
until convergence, see Section V-A.

Before addressing the convergence rule, let us first analyse
how the IPLF works in the illustrative example of Section
III-B1. The integrals required for the SLRs are calculated
analytically and the results of the IPLF recursion for the illus-
trative example are shown in Figure 4. The PrLF corresponds
to the first step of the IPLF and is not a good approximation
of the posterior. As we continue with the IPLF iteration, the
posterior approximation becomes closer and closer to the true
posterior. It is appealing that the improvement in performance
of the IPLF with respect to the PrLF is quite significant with
just a few more iterations.

We also show the measurement function and the SLR used
at the final step of the IPLF in Figure 5. By comparing this
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Figure 5: Comparison between the true measurement function and the
linearisations used by the PrLF and the IPLF. We plot the linearisations
in the 2σ-regions of the PDF that was used in SLR. The dashed lines
indicate 2σ-regions of the error term in (5). The SLR of the IPLF is
plotted with respect to the last posterior approximation, see Figure 4.

figure with Figure 2, it is remarkable the similarity between
the measurement function approximations of the PLF and the
IPLF. Once we obtain the measurement, the PrLF linearisation
is not a good approximation of h (·) because the state is
expected to lie in a smaller area, which is given by the
posterior, and the SLR in this area is quite different from
the SLR with respect to the prior. On the contrary, IPLF
seeks to linearise the measurement function with respect to
the posterior. This is done by performing repeated SLRs with
respect to the best available approximation to the posterior,
which is given by PDF of the last iteration. The resulting
posterior approximation is much more accurate than for the
PrLF as can be seen in Figure 4.

Finally, we want to show that the improvement indicated
by Figures 4 and 5 results in a lower error in state estimation.
We estimate the root mean square error (RMSE) of several
estimators averaged over the state and the measurement using
Monte Carlo simulation. We use 105 samples of the state and
the measurement and the results are: posterior mean 1.12,
IPLF 1.18, PrLF 1.80. As expected, the IPLF outperforms the
PrLF. The posterior mean produces the lowest error as it is
the minimum MSE estimator.

A. Convergence rule

In this section, we propose a converge rule to determine
when we should stop the IPLF iteration. The idea is that
the IPLF recursion should finish if the change in the pos-
terior approximation at a given iteration is negligible. In
this section, we denote the ith Gaussian approximation as
Ni (x) = N

(
x; xiu,P

i
u

)
. A usual method to evaluate the

similarity between PDFs is the Kullback-Leibler divergence
(KLD). Therefore, we stop the recursion if

D (Ni ‖Ni+1 ) < Γ (17)



where Γ is a threshold and the KLD of Ni+1 (·) from Ni (·)
is

D (Ni ‖Ni+1 ) =

ˆ
Ni (x) log

Ni (x)

Ni+1 (x)
dx

=
1

2

[
tr
((

Pi+1
u

)−1
Pi
u

)
+
(
xi+1
u − xiu

)T (
Pi+1
u

)−1 (
xi+1
u − xiu

)
− ln

( ∣∣Pi
u

∣∣∣∣Pi+1
u

∣∣
)
− nx

]
In principle, we could have also chosen the KLD

D (Ni+1 ‖Ni ) rather than (17). However, in the examples
of Section VI, (17) works better. The main reason why this
happens is that the KLD in (17) is large if Ni+1 (·) is small in
the region where Ni (·) is large [12]. As exemplified in Figure
4, Ni+1 (·) is expected to be more concentrated than Ni (·)
until the algorithm converges. Therefore, in order to increment
the value of the KLD before the algorithm converges, it is
convenient to use the KLD (17) rather than D (Ni+1 ‖Ni ).

B. A comparison with other iterated filters

Iterated sigma-point filters have previously been proposed
in [13] and [14] but with ad-hoc approaches. In [13], only
one set of sigma-points is generated and used to approximate
the prior moments. Using these prior moment approximations
the iteration proceeds similarly to the IEKF [2]. However, the
analytical linearisation of the IEKF is replaced by an ad-hoc
linearisation that mixes SLR w.r.t. the prior and analytical
linearisation at the current MAP estimate. In [14], the iter-
ation requires several ad-hoc parameters and conditions and
the overall effect of the iteration is that several corrections
are performed with the same measurement even though we
observe it only once. Furthermore, the underlying philosophy
of the filters in [13] and [14] is also different from ours as
they attempt to find the MAP estimate while our objective is
to approximate the PLF.

VI. NUMERICAL EXAMPLE

In this section, we compare the performance of the IPLF
with other filters commonly used in the literature. Specifically,
we compare it with the following approximations of the PrLF:
EKF, UKF and CKF. The UT of the UKF and IPLF has been
implemented with Ns = 2nx + 1 sigma-points and the weight
of the sigma-point located on the mean is 1/3. The threshold
Γ = 10−1. The prediction step of the IPLF is performed as in
the UKF. In addition, we have also tested the IEKF, which is
a MAP filter, with 50 iterations.

We consider an air-traffic control scenario, where an aircraft
executes a maneuvering turn in a horizontal plane. The state
vector at time k is xk =

[
pkx, ṗ

k
x, p

k
y , ṗ

k
y ,Ω

k
]T

where Ωk is
the turn rate at time k and,

[
pkx, p

k
y

]T
and

[
ṗkx, ṗ

k
y

]T
are the

position and velocity vector in the x and y coordinates at
time k respectively. The kinematics of the turning motion are
modeled by

xk+1 = F
(
Ωk
)
xk + vk (18)

where

F (Ω) =


1 sin Ωτ

Ω 0 −
(

1−cos Ωτ
Ω

)
0

0 cos Ωτ 0 − sin Ωτ 0
0
(

1−cos Ωτ
Ω

)
1 sin Ωτ

Ω 0
0 sin Ωτ 0 cos Ωτ 0
0 0 0 0 1

 (19)

and τ is the sampling period and vk is the process noise at
time k. We assume that vk is zero-mean Gaussian distributed
with covariance matrix

Q =


q1
τ3

3 q1
τ2

2 0 0 0

q1
τ2

2 q1τ 0 0 0

0 0 q1
τ3

3 q1
τ2

2 0

0 0 q1
τ2

2 q1τ 0
0 0 0 0 q2

 (20)

where q1 and q2 are parameters of the motion model. As is
usually assumed in tracking, vk is independent of vm if m 6=
k.

The sensor produces range, bearings and range rate mea-
surements modelled by [15]

zk =


√

(pkx)
2

+
(
pky
)2

atan2
(
pky , p

k
x

)
pkxṗ

k
x+pky ṗ

k
y√

(pkx)2+(pky)
2

+ wk (21)

where atan2 (·, ·) is the four-quadrant inverse tangent and wk

is the zero-mean Gaussian measurement noise at time k such
that wk is independent of wm if m 6= k.

In order to illustrate how the filter performances vary
with the accuracy of the measurements, we consider a sce-
nario where the tracking system has two measurement modes
with different accuracies. Sensors with different accuracies
are usually used in sensor management applications. In the
first type of measurement, the covariance matrix of wk is
R1 = diag

([
σ2
r,1, σ

2
θ,1, σ

2
ṙ,1

])
and, in the second, R2 =

diag
([
σ2
r,2, σ

2
θ,2, σ

2
ṙ,2

])
. In this example, measurements of

the second type are performed every M time steps. The target
trajectory used to evaluate the filter performance is shown in
Figure 6. The total number of time steps in the simulation is
160.

The prior at time 0 is

p(x0) = N
(
x0; x̄0,Σ0

)
(22)

where Σ0 = diag
([
σ2
px , σ

2
ṗx
, σ2
py , σ

2
ṗy
, σ2

Ω

])
, with σ2

px =

σ2
py = 200 m2, σ2

ṗx
= 10 m2/s2, σ2

ṗy
= 50 m2/s2, σ2

Ω =

10−3 rad2/s2, and the prior mean x̄0 is chosen randomly from
a Gaussian PDF with mean identical to the true initial state
and covariance matrix Σ0. The scenario parameters are shown
in Table I. Every 20 steps, the accuracy of the measurement is
much higher and the approximations to the PrLF (EKF, UKF,
CKF) are expected to perform worse than the IPLF [5].

We assess the filters by Monte Carlo simulation with 1000
runs. The performances of EKF and IEKF are quite poor. EKF
diverges in all runs and IEKF diverges in 35.1% of the runs so
they are not further considered. The rest of the filters do not
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Figure 6: Turning target tracking scenario. The trajectory of the target is
represented in blue. The target position every ten time steps is represented
by a blue circumference and its initial position by a filled blue circle.
The sensor position is represented by a red cross.

Table I: Parameters for the turning target example

Parameter Value
τ 1 s
q1 1 m2/s3

q2 1.75 · 10−4rad/s3

σ2
r,1 50 m2

σ2
θ,1 (8π/180)2 rad2

σ2
ṙ,1 0.1 m2/s2

σ2
r,2 0.01 m2

σ2
θ,2 (0.01π/180)2 rad2

σ2
ṙ,2 10−3 m2/s2

M 20

diverge. The root mean square (RMS) error for the position,
velocity and turn rate against time for the rest of the algorithms
are shown in Figure 7. The IPLF error at time steps multiple
of 20 is much lower than the error of PrLF algorithms due
to the high accuracy of the measurement. The consequence of
this is that at other time steps, especially between time steps
40 and 120, the RMS error of the IPLF is much lower than
the error of PrLF algorithms. As a result, on the whole, IPLF
clearly outperforms PrLF algorithms.

We show the average number of iterations of the IPLF
against time in Figure 8. For the given converge rule, the IPLF
does not require a high number of iterations to converge, which
increase for accurate measurements. The execution times in
milliseconds of our non-optimised Matlab implementation
of the algorithms are: CKF and UKF (40) and IPLF (80).
The computational burden of IPLF can be adjusted with the
parameter Γ that controls the stopping rule of the recursion.
A higher value of Γ implies a lower computational burden. If
Γ is high enough, the IPLF reduces to the UKF.

VII. CONCLUSIONS

In this paper, we have developed the PLF and its practical
approximation, the IPLF. The PLF is based on performing
SLR of the measurement function with respect to the posterior
instead of the prior. This is motivated by the fact that the
approximation of the measurement function should be accurate
in the region of interest, which is indicated by the posterior.
The PLF is intractable but can be efficiently approximated by
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Figure 7: RMS errors against time for turning target example (a) position
(b) velocity (c) turn rate. On the whole, IPLF provides a lower error,
especially between time steps 40 and 120.
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Figure 8: Average number of iterations of the IPLF against time. For
accurate measurements, more steps are carried out in the recursion.

the IPLF. The IPLF is based on performing iterated SLR of
the measurement function with respect to the best available
approximation of the posterior. On the whole, as the IPLF
is an approximation of the PLF, it is expected to outperform
PrLF and its approximations, e.g., EKF, UKF and CKF.

Future work will address the convergence of the IPLF and
its extension to smoothing problems and Bayesian graphical
models.
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APPENDIX A

In this appendix, we show that the PrLF update is equiv-
alent to the LMMSE approximation to the posterior, which
is sometimes referred to as (non-linear) Kalman filter. The
updated mean and covariance matrix of the PrLF are

xu = x + P
(
A+
)T (

A+P
(
A+
)T

+ Ω+ + R
)−1

(
z−A+x− b+

)
(23)

Pu = P−P
(
A+
)T (

A+P
(
A+
)T

+ Ω+ + R
)−1

A+P

(24)

where A+, b+ and Ω+ are given by (8)-(10). From (8), we
get P (A+)

T
= Ψ. If we also substitute (9), (10) into (23)

and (24), we complete the proof

xu =x + Ψ (Φ + R)
−1

(z− z) (25)

Pu =P−Ψ (Φ + R)
−1

ΨT (26)

where z, Ψ and Φ are provided by (11)-(13). Equations (25)
and (26) correspond to the LMMSE posterior moments, which
are approximated by widely known algorithms such as UKF
or CKF [4], [9].

APPENDIX B

In this appendix, we prove that the MSE averaged over
the state and the measurement of the measurement function
approximation provided by PLF is lower or equal than for
any other linearisation A (z), b (z), including that of the PrLF
and MAP (as in the IEKF). The MSE tr (Ω) of linearisation
A (z) ,b (z) can be written as

tr (Ω) =

ˆ
p (z) dz

ˆ
p (x |z ) (h (x)−A (z) x− b (z))

T

(h (x)−A (z) x− b (z)) dx

Because of (16), we get

tr (Ω) ≥
ˆ
p (z) dz

ˆ
p (x |z ) (h (x)−A? (z) x− b? (z))

T

(h (x)−A? (z) x− b? (z)) dx

=

ˆ
p (z) tr (Ω? (z)) dz

where the last integral is the MSE averaged over the state and
the measurement of the PLF measurement function approxi-
mation.
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