
A Fresh Look at Bayesian Cramér-Rao Bounds for

Discrete-Time Nonlinear Filtering
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Abstract—In this paper, we aim to relate different Bayesian
Cramér-Rao bounds which appear in the discrete-time nonlinear
filtering literature in a single framework. A comparative theo-
retical analysis of the bounds is provided in order to relate their
tightness. The results can be used to provide a lower bound
on the mean square error in nonlinear filtering. The findings
are illustrated and verified by numerical experiments where the
tightness of the bounds are compared.

I. INTRODUCTION

The Cramér-Rao Bound (CRB) has become one of the

most popular tools to provide a lower bound on estimation

performance. For a vector of non-random (deterministic) pa-

rameters, it is given by the inverse of the Fisher information

matrix and it can be used to provide a lower bound on the

mean square estimation error (MSE) matrix of any unbiased

estimator [1]. For a random parameter, Van Trees presented

an analogous bound [2], which is often referred to in the

literature as the Bayesian CRB (BCRB), posterior CRB or the

Van Trees bound. The BCRB for a vector of random variables

is defined as the inverse of the Bayesian Information matrix

and it generally provides a lower bound on the MSE matrix

of any estimator [2], [3].

In discrete-time nonlinear filtering the parameter vector of

interest, which is modeled as randomly evolving over time and

is also known as state vector, is estimated from a sequence

of measurements available up to the current time. In [4],

Tichavský et al. presented an elegant approach to recursively

compute the BCRB for the general nonlinear filtering prob-

lem. During the same period of time, Bergman developed

independently similar results, but which are applicable to a

larger class of nonlinear models [5]. The BCRBs proposed

therein explore the information contained in the entire state

and measurement sequence up to the current time. This is

reflected in building up the Bayesian information matrix of

the joint (unconditional) distribution of the measurements

and states, from which the lower bound for estimating the

current state (i.e. the nonlinear filtering bound) can be found

by extracting the lower-right submatrix of the inverse of the

Bayesian information matrix [4], [5]. The solution proposed by

Tichavský et al. and Bergman can be considered as the state-

of-the-art for computing the BCRB in a nonlinear filtering

context.

Recently, the concept of conditional BCRB for discrete-time

nonlinear filtering was introduced [6], which can be employed

especially in adaptive sensor management applications. The

idea of the conditional BCRB is to evaluate the Bayesian

information matrix of a joint distribution of the state sequence

and the current measurement, but conditioned on the past mea-

surement sequence. As a result, the conditional BCRB gives

a bound on the conditional MSE matrix which is different

to the BCRB of [4], [5], which holds for the unconditional

MSE matrix. In [7], the concept of conditional BCRB has been

further extended by introducing alternative approximations to

compute the bound introduced in [6], and by introducing a

new type of conditional BCRB which is based on evaluating

the Bayesian information matrix of the marginal distribution

of the current state and current measurement, conditioned on

the past measurement sequence. Even though the authors of

[6], [7] relate their work to existing approaches available in

the literature, the relation of the proposed conditional BCRBs

in terms of tightness among each other and with respect to

the BCRB of [4], [5] for the unconditional MSE matrix is

missing.

An early attempt to relate different versions of BCRBs (but

not in the nonlinear filtering context) was performed by the

excellent work of Bobrovsky et. al [8]. The ideas presented

therein were picked-up again in the book by Van Trees but

again in a more general context [3]. In [9], different versions

of BCRBs were explored and their computation in graphical

models via factor graphs and message passing algorithms were

suggested.

The aim of this paper is to relate different versions of BCRBs

appearing in the nonlinear filtering literature to each other in

a single framework. In total, four different versions of BCRBs

are identified to provide a lower bound on the unconditional

MSE of nonlinear filtering. The relation among the different

BCRBs in terms of tightness is assessed theoretically, and it is

shown that in the special case of linear Gaussian systems all

bounds coincide. The theoretical findings are then verifed in

numerical examples to illustrate the tightness of the different

bounds.

II. PROBLEM STATEMENT

Consider the following discrete-time nonlinear system

xk = fk(xk−1,vk), (1a)

zk = hk(xk,wk), (1b)



where zk ∈ Rnz is the measurement vector at discrete time

k, xk ∈ Rnx is the state vector and fk(·) and hk(·) are

arbitrary nonlinear mappings of appropriate dimensions. The

noise vectors vk ∈ Rnv , wk ∈ Rnw and the initial state x0 are

assumed mutually independent white processes with arbitrary

but known probability density functions (pdfs). We further

introduce Xk = [xT

0 , . . . ,x
T

k ]
T and Zk = [zT1 , . . . , z

T

k ]
T which

denote the collection of augmented states and measurement

vectors up to time k, and where T stands for matrix transpose.

In nonlinear filtering, one is interested in estimating the current

state xk from the sequence of available noisy measurements

Zk. The corresponding estimator is denoted as x̂k(Zk), which

is a function of the measurement sequence Zk . The perfor-

mance of any estimator x̂k(Zk) is commonly measured by

the mean-square error (MSE) matrix,

M(x̂k) = Ep(xk,Zk)

{

(x̂k(Zk)− xk)(·)
T
}

, (2)

where Ep(xk,Zk){·} denotes expectation with respect to the

joint density p(xk,Zk). The minimum MSE (MMSE) estima-

tor is

x̂MSE , x̂MSE
k (Zk) , Ep(xk|Zk){xk}, (3)

where p(xk|Zk) denotes the filtering density. The correspond-

ing MSE matrix M(x̂MSE) represents the optimal performance

and thus gives the tightest lower bound on the performance of

any estimator.

For discrete-time linear systems with additive Gaussian noise,

the MMSE estimator is given by the celebrated Kalman filter

and the (minimum) MSE matrix is equivalent to the covariance

matrix of the Kalman filter. For nonlinear systems defined

as in (1), closed-form expressions for the MMSE estimator

and its MSE matrix generally do not exist. In this case, it

is rather difficult to evaluate the optimal performance bound

and one has to resort to other techniques providing a lower

bound on the MSE matrix. In the literature, different types of

Bayesian bounds have been proposed for lower bounding the

MSE matrix, see [3] for an excellent overview. For nonlinear

filtering, however, the BCRB is identified as the perhaps most

popular tool to provide a lower bound on the performance of

any estimator. In this paper, we investigate how to provide a

lower bound for the MSE matrix M(x̂k) by different versions

of the BCRB.

III. DIFFERENT VERSIONS OF THE BCRB

A. The joint unconditional BCRB

The idea of the joint unconditional BCRB presented in [4],

[5] is to provide a lower bound on the MSE matrix of the

sequence of states Xk. Let X̂k(Zk) = [x̂T

0 (Zk), . . . , x̂
T

k (Zk)]
T

denote the collection of estimators up to time k based on

the measurement sequence Zk and a-priori known initial pdf

p(x0). Then, the MSE matrix for estimating the state sequence

Xk can be bounded as follows

M(X̂k) = Ep(Xk,Zk)

{

(X̂k(Zk)−Xk)(·)
T

}

≥ [J0:k]
−1, (4)

where the matrix inequality A ≥ C means that the difference

A −C is a positive semi-definite matrix. The matrix J0:k is

known as Bayesian information matrix of the state sequence

Xk and its inverse gives the BCRB for estimating Xk. Let us

introduce the gradient and Laplace operators

∇s =

[

∂

∂s1
, . . . ,

∂

∂sn

]T

, (5)

△t

s = ∇s∇
T

t , (6)

for any vectors s and t. Then, J0:k can be expressed as

J0:k = Ep(Xk,Zk)

{

−△Xk

Xk
log p(Xk,Zk)

}

. (7)

The MSE matrix for estimating the state xk can be found by

taking the (nx × nx) lower-right submatrix of M(X̂k). This

can be expressed mathematically by introducing a mapping

matrix

U = [0, · · · ,0, Inx
], (8)

such that

M(x̂k) = UM(X̂k)U
T

≥ U [J0:k]
−1 UT ∆

= [J̃k]
−1 = B1, (9)

holds, where Inx
is the (nx × nx) identity matrix and 0 is a

matrix of zeros of appropriate size. A recursive formula for

computing J̃k, which does not require the inversion of large

matrices such as J0:k, has been derived in Tichavský et al. and

Bergman [4], [5]. In the following, B1 is referred to as the

joint unconditional BCRB (JU-BCRB), since its computation

is based on the evaluation of the Bayesian information matrix

of the joint density p(Xk,Zk).

B. The marginal unconditional BCRB

Naturally, the marginal density

p(xk,Zk) =

∫

p(Xk,Zk) dXk−1 (10)

can also be used to define a lower bound. The resulting bound

M(x̂k) ≥ [Jk]
−1 = B2, (11)

where

Jk = Ep(xk,Zk)

{

−△xk

xk
log p(xk,Zk)

}

(12)

is here called the marginal unconditional BCRB (MU-BCRB).

Bobrovsky et al. showed that the BCRB derived from the

marginal density is always greater than or equal to the BCRB

which is obtained from the joint density, see Proposition 1 in

[8] for a proof. Thus, we can conclude that

B2 ≥ B1 (13)

must generally hold, i.e. the marginal unconditional BCRB

is at least as tight as the joint unconditional BCRB. Note

that a larger lower bound provides a stronger result, and 0 is

always the smallest lower bound. This result is rather intuitive

since the computation of the joint unconditional BCRB relies

on evaluating the information contained in the whole state

and measurement sequence, while the marginal unconditional

BCRB extracts information only from the most recent state

we are interested in, and the whole measurement sequence.



C. The joint conditional BCRB

Another class of BCRBs can be found by decomposing the

measurement vector into two parts, e.g., as follows

Zk =

[

zk
Zk−1

]

. (14)

The MSE matrix of any estimator X̂k(Zk) can be decomposed

accordingly, yielding

M(X̂k) = Ep(Zk−1)Epc

{

(X̂k(Zk)−Xk) (·)
T

}

(15)

with pc = p(Xk, zk|Zk−1). The inner expectation in (15) is

the conditional MSE matrix denoted as:

M(X̂k

∣

∣Zk−1) = Epc

{

(X̂k(Zk)−Xk) (·)
T

}

. (16)

Similar to the proof for the unconditional MSE matrix given

in [2], it can be shown that

M(X̂k

∣

∣Zk−1) ≥ [J0:k(Zk−1)]
−1 (17)

holds, see [10] for details, where J0:k(Zk−1) is the joint

conditional Bayesian information matrix given by

J0:k(Zk−1) = Epc

{

−∆Xk

Xk
log p(Xk, zk|Zk−1)

}

. (18)

Thus, the relation in (15) can be further lower bounded by

M(X̂k) = Ep(Zk−1){M(X̂k

∣

∣Zk−1)}

≥ Ep(Zk−1){[J0:k(Zk−1)]
−1}. (19)

A lower bound for M(x̂k) then can be finally computed as

follows:

M(x̂k) = UM(X̂k)U
T

≥ Ep(Zk−1)

{

U [J0:k(Zk−1)]
−1UT

}

∆
= Ep(Zk−1)

{

[J̃k(Zk−1)]
−1

}

= B3, (20)

where [J̃k(Zk−1)]
−1 gives a lower bound for the conditional

MSE matrix M(x̂k|Zk−1).
The important result of (20) is that averaging the lower bound

of the conditional MSE matrix over the past measurement

sequence Zk−1 yields a lower bound B3 for the unconditional

MSE matrix of any estimator. It has been shown in [6] that

a recursive computation of the quantity [J̃k(Zk−1)]
−1 is not

possible without introducing further approximations. Hence, in

order to obtain exact results it is necessary to directly compute

the inverse of the (k + 1)nx × (k + 1)nx matrix J0:k(Zk−1),
which eventually becomes impractical as time k increases.

Even though the bound presented in (20) is an unconditional

BCRB, it is termed hereinafter the joint conditional BCRB

(JC-BCRB) in order to highlight its dependency on the evalu-

ation of the joint conditional Bayesian information matrix of

the density p(Xk, zk|Zk−1). The joint conditional BCRB can

be further related to the joint unconditional BCRB defined in

Section III-A according to the following theorem.

Theorem 1. Assuming suitable regularity conditions are ful-

filled [11], it holds that

B3 ≥ B1, (21)

Proof: See Appendix

From Theorem 1 we learn that the joint conditional BCRB

is at least as tight as the joint unconditional BCRB.

D. The marginal conditional BCRB

It is also possible to define the MSE matrix for estimating

xk with respect to the conditional MSE matrix according to

M(x̂k) = Ep(Zk−1)Epm

{

(x̂k(Zk)− xk) (·)
T
}

= Ep(Zk−1)

{

M(x̂k

∣

∣Zk−1)
}

, (22)

where pm = p(xk, zk|Zk−1) and the conditional MSE matrix

is given by

M(x̂k

∣

∣Zk−1) = Epm

{

(x̂k(Zk)− xk) (·)
T
}

. (23)

A lower bound on the conditional MSE matrix is then given

as follows

M(x̂k

∣

∣Zk−1) ≥ [Jk(Zk−1)]
−1, (24)

where Jk(Zk−1) is the marginal conditional Bayesian infor-

mation matrix given by

Jk(Zk−1) = Epm

{

−∆xk

xk
log p(xk, zk|Zk−1)

}

, (25)

with pm = p(xk, zk|Zk−1). The bound in (24) was first pro-

posed in [7]. However, its relation to the bound derived from

(17) has been overlooked. Following again the argumentation

of Bobrovsky et al. [8], the bounds for the conditional MSE

matrices can be further related to each other according to

[Jk(Zk−1)]
−1 ≥ [J̃k(Zk−1)]

−1. (26)

In this paper, however, we are interested in BCRBs for the un-

conditional MSE matrix. A lower bound for the unconditional

MSE matrix for any estimator x̂k(Zk) is given as follows:

M(x̂k) ≥ Ep(Zk−1){[Jk(Zk−1)]
−1} = B4. (27)

Again, averaging the lower bound for the conditional MSE

matrix over the past measurement sequence Zk−1 yields a

lower bound B4 for the unconditional MSE matrix of any

estimator. The unconditional bound B4 is termed hereinafter

the marginal conditional BCRB (MC-BCRB) in order to em-

phasize its dependency on the density p(xk, zk|Zk−1). From

the inequality preservation property of expectations it finally

follows that if (26) holds, then

B4 ≥ B3 (28)

must hold, i.e. the marginal conditional BCRB is at least as

tight as the joint conditional BCRB. Lastly, it is possible

to relate the marginal conditional BCRB to the marginal

unconditional BCRB according to

B4 ≥ B2. (29)

The proof of this inequality is omitted here, but it can be easily

checked that it follows from a slight modification of the proof

for Theorem 1.



TABLE I
RELATIONSHIP BETWEEN THE BCRBS

Name, Eq. Density of BIM BIM Bound

JU-BCRB, (9) p(Xk ,Zk) J0:k B1

MU-BCRB, (11) p(xk,Zk) Jk B2

JC-BCRB, (20) p(Xk , zk|Zk−1) J0:k(Zk−1) B3

MC-BCRB, (27) p(xk, zk|Zk−1) Jk(Zk−1) B4

IV. RELATIONSHIP BETWEEN THE DIFFERENT BCRBS

A. Nonlinear Systems

In the previous section it was shown that different versions

of BCRBs exist that all can be used for predicting the best

achievable performance for nonlinear filtering. The BCRBs

differ from each other in the amount of information they

extract, which is resembled by the evaluation of different

Bayesian information matrices. The amount of information

extraction also determines the tightness of the bound, i.e. the

capability to predict the best achievable nonlinear filtering

performance. Generally, the bounds can be ordered in terms

of tightness as follows

B4 ≥ B2 ≥ B1 (30a)

and

B4 ≥ B3 ≥ B1. (30b)

Thus, the BCRB proposed by Tichavský et al. and Bergman

[4], [5], which can be considered as the state-of-the-art today,

provides the least tight bound. This means, that the MSE

predicted by this bound might be far away from the achievable

MSE of the optimal filter. The three other bounds compared

in this paper are all tighter, where the marginal conditional

BCRB is the tightest bound. The most important properties of

the different BCRBs are summarized in Table II.

B. Linear Additive Gaussian Systems

An important special case occurs if the underlying system

is linear additive Gaussian, i.e.

xk = Fk · xk−1 + vk, (31a)

zk = Hk · xk +wk, (31b)

where Fk and Hk are arbitrary linear mapping matrices

of proper size, and where the noise densities are Gaussian

distributed according to vk ∼ N (0,Qk) and wk ∼ N (0,Rk).
The pdf of the initial state is also Gaussian and given by

p(x0) = N (x0;0,P0|0). For the system given by (31), the

following theorem holds:

Theorem 2. For linear additive Gaussian systems, the JU-

BCRB, MC-BCRB, JC-BCRB and MC-BCRB are equal, i.e.

B1 = B2 = B3 = B4 (32)

holds.

Proof: See Appendix.

V. NUMERICAL APPROXIMATION OF THE MU-BCRB

Algorithms for computing the information matrices J̃k,

J̃k(Zk−1) and Jk(Zk−1) have been developed in [4]–[7].

With these methods, it is relatively easy to compute the

corresponding BCRBs B1, B3 and B4. In this section, we

devise a method on how Jk and thus the MU-BCRB B2 can

be computed.

In the following, we suggest a particle filter approximation

to evaluate Jk, see for instance [12]–[15] for an introduction

to particle filters. The choice of this approach is originally

inspired by [16] where they try to compute the mutual infor-

mation from a particle filter. We take into account that the

joint density can be decomposed as follows:

p(xk,Zk) = p(zk|xk) p(xk|Zk−1)p(Zk−1) (33)

Then, the information matrix Jk can be accordingly decom-

posed as:

Jk = Ep(xk,zk)

{

−△xk

xk
log p(zk|xk)

}

+Ep(xk,Zk−1)

{

−△xk

xk
log p(xk|Zk−1)

}

∆
= JI

k + JII
k , (34)

where the term containing the pdf p(Zk−1) disappears as

it does not depend on xk. The first term JI
k can be easily

approximated using Monte Carlo integration. In order to avoid

the computation of the Hessian, it is more convenient to Monte

Carlo approximate the following expression

JI
k = Ep(xk,zk)

{

[∇xk
p(zk|xk)][·]T

[p(zk|xk)]2

}

≈
1

Nmc

Nmc
∑

l=1

[

[∇xk
p(z

(l)
k |x

(l)
k )][·]T

[p(z
(l)
k |x

(l)
k )]2

]

, (35)

where x
(l)
k , z

(l)
k , l = 1, . . . ,Nmc, are independent and iden-

tically distributed samples such that (x
(l)
k , z

(l)
k ) ∼ p(xk, zk).

The second term JII
k is more difficult, since a closed-form

representation of the prediction density p(xk|Zk−1) is gen-

erally not available for nonlinear non-Gaussian systems. The

idea is to approximate this term using a particle filter. Assume

that a particle filter approximation of the posterior density

p(xk−1|Zk−1) at time step k − 1 is available,

p̂(xk−1|Zk−1) =

N
∑

j=1

w
(j)
k−1 δ(xk−1 − x

(j)
k−1), (36)

with positive weights

w
(j)
k−1 =

p(x
(j)
k−1|Zk−1)

q(x
(j)
k−1|Zk−1)

, (37)

where δ(·) is the Dirac delta function, q(x
(j)
k−1|Zk−1) is the

importance distribution and where
∑

j w
(j)
k−1 = 1 holds. Then,



an approximation of the prediction density is given by

p(xk|Zk−1) =

∫

p(xk|xk−1) p(xk−1|Zk−1) dxk−1

≈
N
∑

j=1

w
(j)
k−1 p(xk|x

(j)
k−1)

△
= p̂(xk|Zk−1).(38)

As a result, the prediction density in the particle filter can

be represented by a weighted mixture of transition densities,

which has the appealing advantage that gradients can be

easily computed. Reformulating JII
k in terms of gradients and

replacing the true density p(xk|Zk−1) with the corresponding

particle filter approximation p̂(xk|Zk−1), the term JII
k can be

finally approximated as

JII
k = Ep(xk,Zk−1)

{

[∇xk
p(xk|Zk−1)][·]T

[p(xk|Zk−1)]2

}

≈
1

Nmc

Nmc
∑

l=1

[

[∇xk
p̂(x

(l)
k |Z

(l)
k−1)][·]

T

[p̂(x
(l)
k |Z

(l)
k−1)]

2

]

, (39)

where x
(l)
k , Z

(l)
k−1, l = 1, . . . , Nmc, are independent and

identically distributed samples such that (x
(l)
k ,Z

(l)
k−1) ∼

p(xk,Zk−1). The algorithm to compute the MU-BCRB for

the most general model (1) is summarized in Algorithm 1.

Algorithm 1 Computation of the MU-BCRB

(1) At time k = 0, generate x
(j)
0 ∼ p(x0) and evaluate

∇x0
p(x

(j)
0 ) and p(x

(i)
0 ) for j = 1, ..., Nmc. Compute the

initial Bayesian information matrix J0 from

J0 ≈
1

Nmc

Nmc
∑

j=1

[∇x0
p(x

(j)
0 )][∇x0

p(x
(j)
0 )]T

[p(x
(j)
0 )]2

(2) For k = 1, 2, . . . , and l = 1, . . . , Nmc do:

– Sample x
(l)
k ∼ p(xk|x

(l)
k−1) and z

(l)
k ∼ p(zk|x

(l)
k ).

– Compute the gradient ∇xk p(z
(l)
k |x

(l)
k ) and

p(z
(l)
k |x

(l)
k ), and evaluate JI

k according to (35).

– Simulate a particle filter with N particles that ap-

proximates p(xk|Zk−1) according to (38).

– Compute approximations of the gradient

∇xk p̂(x
(l)
k |Z

(l)
k−1) and the density p̂(x

(l)
k |Z

(l)
k−1),

and evaluate JII
k according to (39).

– Evaluate Jk using (34) and compute the MU-BCRB

from (11).

VI. COMPUTATIONAL COMPLEXITY

In this section we compare the computational requirements

of the different BCRBs. For the subsequent complexity calcu-

lations we assume that the state vector dimension nx is much

smaller than the number of Monte Carlo runs Nmc and the

number of particles N in the particle filter, i.e., nx << Nmc

and nx << N .

For the computation of the different BCRBs, all approaches

require the inversion of an information matrix. The recursive

TABLE II
COMPUTATIONAL COMPLEXITY OF THE BCRBS

Name Reference Complexity

JU-BCRB (B1) [4] O(Nmc)

MU-BCRB (B2) - O(NmcN)

JC-BCRB (B3), exact [6] O(NmcN) +O(((k + 1)nx)3)

JC-BCRB (B3), approx. [6], [7] O(NmcN)

MC-BCRB (B4) [7] O(NmcN
2)

approach for computing the JU-BCRB (B1) [4], the MU-

BCRB (B2) and the MC-BCRB (B4) are based on inverting

an (nx × nx) information matrix. The computational com-

plexity of the matrix inversion depends on its type and the

specific technique used for the inversion, but can be roughly

approximated with O(n3
x) [17]. According to [6] the exact

computation of the JC-BCRB (B3) requires the inversion of

an (k + 1)nx × (k + 1)nx information matrix, yielding the

computational complexity O(((k + 1)nx)
3). This complexity

can be further reduced to O(n3
x) by using the approximate

recursive computations of the JC-BCRB (B3) that were sug-

gested in [6], [7]. Besides the necessary matrix inversions,

the computation of the different BCRBs require the averaging

over different Monte Carlo runs. Furthermore, the BCRBs

B2, B3 and B4 additionally require the cost of running

particle filters. While the particle filter based computation of

the information matrices of the MU-BCRB and the JC-BCRB

has a complexity of O(NmcN) and O(N), the complexity to

compute the information matrix of the MC-BCRB is O(N2),
see also [7]. The overall computational complexity for the

different BCRBs is summarized in Table II. It can be con-

cluded that the computation of the JU-BCRB has the lowest

complexity, while the computation of the tightest bound B4

has the highest computational complexity. Additionally, it has

to be noted that all bounds except the JU-BCRB rely on a

particle filter approximation of the information matrix. The

particle filter approximation generally suffers from the “curse

of dimensionality” [18], and thus these bounds are expected

to provide only acceptable results in state-space models with

relatively low state vector dimension nx. In scenarios with

high state vector dimension nx, the JU-BCRB shall be used

as the preferred tool for providing a lower bound on the MSE

matrix.

VII. NUMERICAL EXPERIMENTS

In this section, we conduct numerical experiments in order

to compute the different bounds presented in the previous

sections for two non-linear state space models. Consider the

dynamic state space equations given below.

xk = αxk−1 + β
xk−1

1 + x2
k−1

+ γ cos(1.2k) + vk (40a)

zk = κx2
k + wk. (40b)

where vk and wk are mutually independent zero mean Gaus-

sian noise sequences with variances Q and R, and the initial

state is zero mean Gaussian with variance P0|0 respectively.
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Fig. 1. PF RMS error compared with different BCRBs for Example-1

The model is known as univariate non-stationary growth model

[10]. We will illustrate the differences of the bounds on

two examples where the parameters α, β, γ, κ,Q,R, P0|0 are

chosen differently.

A. Example-I

In the first example, we set the parameters as α = 1, β =
5, γ = 8, κ = 1/20, Q = 1, R = 1 and P0|0 = 1. We compute

the bounds by averaging over Monte-Carlo runs. 100 000 runs

are done for the computation of B1, B2 and B3 and 1000
MC runs are done for the computation of B4. A bootstrap

particle filter with 1000 particles is used for the computation

of the bounds B2, B3 and B4. In Figure 1, all the bounds

are depicted together with the average RMSE of a particle

filter which runs with 1000 particles. The average RMSE is

computed over 100 000 runs. The results show that JC-BCRB

(B3) is tighter than JU-BCRB (B1) and MC-BCRB (B4) is

tighter than MU-BCRB (B2) which is consistent with our

findings, see also (30). In addition, it can be seen that JC-

BCRB (B3) is crossing MU-BCRB (B2) which means that

they cannot be related in terms of tightness to each other. All

the bounds are close to the average RMSE of the particle filter

for this example. One realization of the true state is plotted

together with the particles and their mean in Figure 2.

B. Example-II

In our second example, we illustrate a simplified model,

where the parameters are chosen as α = 1, β = 0, γ =
0, κ = 1/20, Q = 1, R = 1 andP0|0 = 1. For this choice of

parameters, the posterior distribution of the state is bimodal.

100 000 MC runs are done for the computation of B1, B2

and B3 and 1000 MC runs are done for the computation of

B4, where for the computation of the bounds B2, B3 and

B4 a bootstrap particle filter with 1000 particles is used. In

Figure 3, one can observe that MC-BCRB (B4) is the tightest

bound. Both JC-BCRB (B3) and MU-BCRB (B2) are tighter
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Fig. 2. One realization of the true state, the particles, and the mean of the
particles for the model given in Example-I
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Fig. 3. PF RMS error and corresponding BCRBs for Example-2

than JU-BCRB (B1), as expected. The average RMSE of the

bootstrap particle filter is computed over 100 000 MC runs and

the particle filter is using 1000 particles. Notice that, none of

the bounds are close to the average RMSE of the particle

filter. This is because the posterior distribution is bimodal and

the BCRB does not account for the spread of the means. The

average RMSE of the PF increases in time as the mean of the

modes separate from each other and the mean of the particles

is in the middle of the two modes or when the particles in

one mode are depleted and the mean converges to a single

mode (not necessarily to the correct one). For illustration, one

realization of the true state is plotted together with the particles

and their mean in Figure 4.

VIII. CONCLUSION

In this paper, we aim at describing different BCRB bounds

in a unifying framework for nonlinear filtering in order to

provide a better perception of the existing bounds in the liter-

ature. Furthermore, we provided the basic relations, in means

of tightness, between different bounds and provided simple

numerical examples for the illustration of their performance.
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APPENDIX

PROOF OF THEOREM 1

It is easy to show that

M(X̂k) ≥ Ep(Zk−1)

{

[J0:k(Zk−1)]
−1

}

(41)

holds. The joint conditional Bayesian information matrix is

given by

J0:k(Zk−1) = Epc

{

−∆Xk

Xk
log p(Xk, zk|Zk−1)

}

, (42)

which can be rewritten using Bayes’ rule according to

pc
∆
= p(Xk, zk|Zk−1) =

p(Xk,Zk)

p(Zk−1)
. (43)

Thus, we can further decompose

−∆Xk

Xk
log p(Xk, zk|Zk−1) = −∆Xk

Xk
log p(Xk,Zk)

+∆Xk

Xk
log p(Zk−1)

= −∆Xk

Xk
log p(Xk,Zk), (44)

where the second equality holds since p(Zk−1) does not de-

pend on Xk. Inserting (44) into (42) and taking the expectation

w.r.t. Zk−1 on both sides of (42) givesEp(Zk−1){J0:k(Zk−1)} = Ep(Xk,Zk)

{

−∆Xk

Xk
log p(Xk,Zk)

}

= J0:k. (45)

Jensen’s inequality now yields the relationEp(Zk−1)

{

[J0:k(Zk−1)]
−1

}

≥ [J0:k]
−1. (46)

Extracting the (nx × nx) lower-right submatrix on both sides

of (46) does not alter the inequality, so that

B3 ≥ B1 (47)

must hold, which concludes our proof.

PROOF OF THEOREM 2

In order to proof Theorem 2 it is sufficient to show that the

different Bayesian information matrices are equal, i.e.

J̃k = Jk = J̃k(Zk−1) = Jk(Zk−1) (48)

holds. In [4] it is shown that for linear Gaussian systems the

matrix J̃k can be computed from the following recursion

J̃k = [Qk + FkJ̃
−1
k−1F

T

k ]
−1 +HT

kR
−1
k Hk, (49)

which is initialized with J̃0 = P−1
0|0. Clearly, this expression

is independent of Zk−1 which implies that the conditional

Bayesian information matrices J̃k(Zk−1) and Jk(Zk−1) must

be independent of Zk−1. This is also the reason why it suffices

to proof (48), since in this case the expectations for computing

B3 and B4 can be dropped. The equivalence of J̃k(Zk−1) and

J̃k has been proven in [10, Theorem 2] and is not repeated

here. Instead, we focus on showing that Jk and Jk(Zk−1)
reduce to the expression given in (49). By making use of

Bayes’ rule p(xk,Zk) = p(xk|Zk) · p(Zk) the expression in

(12) can be rewritten as

Jk = Ep(xk,Zk)

{

−△xk

xk
log p(xk|Zk)

}

. (50)

It is well known that the posterior density in the linear

Gaussian case is given by p(xk|Zk) = N (xk; x̂k|k,Pk|k),
where x̂k|k and Pk|k can be computed recursively using the

Kalman filter. Thus, straightforward evaluation of (50) yields

Jk = [Pk|k]
−1

= [Pk|k−1 −Pk|k−1H
T

k [HkPk|k−1H
T

k +Rk]
−1

×HkP
T

k|k−1]
−1.

=
[

[P−1
k|k−1 +HT

kR
−1
k Hk]

−1
]−1

(51)

= [Qk + FkPk−1|k−1F
T

k ]
−1 +HT

kR
−1
k Hk (52)

where the third equality follows from using the matrix in-

version lemma [19]. By further taking into account that

Jk−1 = P−1
k−1|k−1 holds, the expression in (52) can be written

as a recursion, yielding

Jk = [Qk + FkJ
−1
k−1F

T

k ]
−1 +HT

kR
−1
k Hk, (53)

which is initialized with J0 = P−1
0|0. Since both recursions

in (49) and (53) are initialized with the same matrix P−1
0|0

this yields that J̃k = Jk ∀k must hold. For the marginal

conditional Bayesian information matrix Jk(Zk−1) in (25),

the decomposition p(xk, zk|Zk−1) = p(zk|xk) · p(xk|Zk−1)
yields

Jk(Zk−1) = Ep(xk,zk|Zk−1)

{

−△xk

xk
log p(zk|xk)

}

+Ep(xk|Zk−1)

{

−△xk

xk
log p(xk|Zk−1)

}

(54)

In linear Gaussian systems, the likelihood and the predic-

tion density are given by p(zk|xk) = N (zk;Hk,Rk) and

p(xk|Zk−1) = N (xk; x̂k|k−1,Pk|k−1). Further evaluating the

expression in (54) yields

Jk(Zk−1) = HT

kR
−1
k Hk +P−1

k|k−1 (55)



which is the same as the RHS of (51). Hence, by following

the same argumentation as above we can conclude that the

recursion

Jk(Zk−1) = [Qk + FkJ
−1
k−1F

T

k ]
−1 +HT

kR
−1
k Hk, (56)

must hold, which is initialized with J0(Z−1) = P−1
0|0. As (56)

is the same as (49) and both recursions are initialized with the

same matrix P−1
0|0, we can conclude that J̃k = Jk(Zk−1) ∀k

must hold. This completes the proof.
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