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Abstract

The aim of this thesis is to provide a framework for the estimation and anal-
ysis of transcription networks in human cancer. The methods we develop are
applied to data collected by The Cancer Genome Atlas (TCGA) and sup-
porting simulations are based on derived models in order to re�ect real data
structure. Nevertheless, our proposed models apply to network construction
for any data type. The thesis includes four papers, all of them adressing
di�erent aspects of network estimation.

Statistical analysis of high-dimensional data requires regularization. Net-
work model validation amounts to selection of regularization parameters
which control sparsity and, possibly, some common structure across di�erent
data classes (here, types of cancer). In paper I we present a bootstrap-based
method to perform sparsity selection and robust network construction. We
show, by simulation studies, that our proposed methods select sparsity to
control false positive rate, rather than match the size of the true underlying
network.

In paper II we address the problem of uncertainty in network estimation.
Since network estimation is very unstable, uncertainty is an important issue
to focus on, in order to avoid overintepretation of results. Using ideas from
information theory, we introduce a method that assesses uncertainty by pre-
senting a set of network candidate estimates, rather than a single network
model. The method enables us to show that di�erent network topologies have
di�erent estimation properties, and that each network estimation method's
performance depends on this topology.

It is often of interest to identify and study the commonalities and di�er-
ences in network estimates across several classes (here, types of cancer) and
data types. Statistical network models, like the graphical lasso, provide a
framework in which several classes and data types can be integrated. Pa-
per III makes use of such framework and presents a method that allows for
large scale sparse inverse covariance estimation of several classes. Through
application of priors, we account for plausible connections across di�erent
data types. The proposed method also encourages the expected modular
structure of biological networks and corrects for unbalanced sample sizes
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across classes. The estimated networks are part of a publicly accessible re-
source termed Cancer Landscapes (cancerlandscapes.org), which provides
a setting for interactive analysis in relation of pathway and pharmacological
databases, diagnoses, survival associations and drug targets.

Traditionally, the analysis of genomic data has aimed for the study of dif-
ferential expression. In paper IV we propose a way to integrate di�erential
expression analysis with network estimation. To that end we extend upon
existing methods in order to jointly estimate sparse mean vectors and pre-
cision matrices across several classes, thus gaining over analyses that focus
on one or the other. Additionally, by assuming a block diagonal structure in
the precision matrices, the problem can be recast into an ensemble classi�er
where each block becomes part of either a linear or a quadratic discriminant
function.

Keywords: Inverse covariance matrix, precision matrix, graphical mod-
els, high-dimension, low-sample, networks, sparsity, fused lasso, elastic net,
cancer, TCGA pan cancer analysis, online resource, discriminant analysis,
classi�cation.
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Chapter 1

Introduction

1.1 Background

ATTAGCACCCATATTAGCCTGATTTTTGAA. How is life encoded? Long
sequences of four nucleotides; known as adenine, thymine, cytosine and gua-
nine; form the DNA molecule and contain the inherited instructions to build
and operate a living organism. For a human being, these instructions are
enclosed in 23 chromosomes, each one containing between 48 to 250 million-
long nucleotide sequences, adding up to 3.2 billion letters. An average book
contains about half a million characters (including blank spaces).

Analyzing and understanding this code is a challenging task. Much has been
done since the �rst organism, the Bacteriophage MS2, had his instruction
book written or, as we more precisely say today, was sequenced (Fiers et al.,
1976). Yet, a lot of work remains to be done.

In an oversimpli�ed picture, the nucleotides in a DNA sequence are grouped
into units called genes, which in turn form groups coding the instructions on
how to carry out the complex tasks inside a cell. Studying how the genes
interact to form these groups is one of the many ways to try to decipher and
understand the instructions book.

Genes' interactions can be thought of as a network, with the genes as nodes
and edges representing the nature of their interaction, if any. The problem
then becomes to �nd (estimate) these edges using data collected from the
instruction books from many individuals. Estimating networks is not a new
problem; it is indeed a common one in di�erent disciplines (engineering,
computing, social sciences) and a number of methods to solve it are available.

In this thesis work we focus on the statistical estimation of genetic networks
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2 1. Introduction

and some of the challenges involved in the process, such as assessing uncer-
tainty and the quality of the estimates.

1.2 Gene Regulatory Networks

A gene regulatory network is a description of how genes interact with each
other to form modules and carry out cell functions. These networks can
help us, by characterizing the implied dependencies for the genes, in system-
atically understanding complex molecular mechanisms for certain biological
processes. In this thesis we have a particular interest in genes as disease
drivers and model their interactions using genetic data for di�erent types of
cancers. Recent analysis has shown genes in a particular network topology,
hub genes, to be possible disease drivers, identifying them as key tumorigenic
genes (Kendall et al., 2005; Mani et al., 2008; Nibbe et al., 2010; Slavov and
Dawson, 2009).

We study such gene interactions through network estimation of di�erent
genomic data and several cancer classes (see Chaper 1). We focus on di�erent
problems that arise in network estimation for high-dimensional data, such as
regularization, joint estimation, parameter estimation uncertainty and model
validation. To this end we present novel methods and describe them in the
four papers included in this thesis. We also make use of well known statistical
tools, which we describe brie�y in the chapters preceding the papers.

In Chapter 2 we introduce the genetic alterations and genomic data we work
with. Chapter 3 contains a review of network estimation methods, in par-
ticular methods based on partial correlation. Once a network estimate is
available, there are a number of tools that can be used for its analysis; we
present therefore in Chapter 4 a number of graph theoretical concepts and
measures that are helpful in summarizing the information contained in a net-
work. Uncertainty in estimation and model validation are the least addressed
topics in the network estimation literature, and one of our main interests.
Papers I and II study this problem and make use of generalized linear models
and rate-distortion theory, which we summarize in Chapter 5.



Chapter 2

Genetic alterations and

genomic data

2.1 Cancer systems biology

The study of cancer systems biology involves investigating alterations that
occur at a molecular level. This is a relatively new scienti�c area, but is well
known that cancer is caused by genetic anomalies. Cancer systems biology
aims thus to increase our understanding on the e�ect this genetic alterations
have on an organism, namely, the uncontrolled growth of cancerous cells and
formation of tumors (Pe'er and Hacohen, 2011; Jörnsten et al., 2011).

The central dogma of molecular biology (see Figure 2.1) describes the �ow
of information within a biological system and states that the transfer of
information from a protein to either DNA or RNA is not possible. Following
the dogma, a framework for the study of complex biological processes, such
as cancer at a molecular level, can be established.

Even though most of the cells in an organism contain its entire genome, at
any given time only a subset of the genes are active (expressed). Informa-
tion in the genome can thus be quantitatively studied through the genes'
expression levels. Expression is measured, using for example DNA microar-
ray technology, as the relative quantities of messenger RNA (mRNA).

Complementary information can be obtained studying micro RNA (miRNA),
which are small RNA molecules that can decrease (downregulate) or entirely
suppress the expression of one or more genes.

As opposed to the more traditional reductionistic approach of biological and
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4 2. Genetic alterations and genomic data

Figure 2.1: Central dogma of molecular biology. Blue arrows indicate
general transfers of information (believed to occur in most cells). Red arrows
indicate special transfers (known to occur under speci�c conditions such as
lab experiments).

biomedical research, the systems biology one has an interdisciplinary and
holistic perspective. Integration of di�erent data types is therefore an im-
portant aspect of systems biology in general, and it is where mathematical
models come to use. Gene network modelling, for example, has proved help-
ful in integrating several levels of genomic cancer data and addressing some
important problems such as (Adler et al., 2006; Akavia et al., 2010; Garraway
et al., 2005; Peng et al., 2010): (i) identi�cation of genes with altered copy
number as disease drivers; (ii) construction of features, based on molecular
data, for prediction of patient survival, and (iii) discovery of possible ther-
apeutic targets based on matching hubs in the networks to pharmacological
databases.

In the following sections the genetic alterations and cancer types studied in
this thesis are described brie�y. We also list some of the biggest consortia
working on genomic data recollection.

2.2 Genetic Alterations

The genome can undergo di�erent alterations which are measured with rag-
ing techniques, producing in turn di�erent data types. Below we brie�y
describe some of the genomic alterations that are of special interest in can-
cer systems biology.

• Single Nucleotide Variants. These are point mutations in the DNA
sequence, occurring when a single nucleotide (A, T, C or G) di�ers
between members of a pair of chromosomes.
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Figure 2.2: Single Nucleotide Variants. The two molecules of DNA di�er
at the highlighted base-pair location (a C/T polymorphism).

• Copy Number Alterations. CNA occur when the cell has an ab-
normal number of copies of a certain part of the DNA, sometimes of an
entire gene. These can be deletions, corresponding to fewer copies than
normal; or duplications, corresponding to more copies than normal.

Figure 2.3: Copy number alterations. The cylinders represent a region of
the genome. On the left side a deletion, and on the right side a duplication.

• Loss of Heterozygosity. Most human cells contain two copies of the
genome, one from each parent. Loss of heterozygosity occurs when one
parental copy of a certain region of the genome is lost.
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• Altered Methylation. DNA methylation involves the addition of a
methyl group to the cytosine (C) or guanine (G). High levels of methy-
lation in the promotor region of a gene often results in transcriptional
silencing of that gene.

2.3 Genomic data collection

The collection of genetic data is steadily growing. The consortia listed below
are currently working on making available comprehensive observations of
expression and genetic alterations for di�erent types of cancers.

• TCGA. Since 2006, the Cancer Genome Atlas has been analysing and
building up a comprehensive characterization of the genome of more
than 20 cancer types. Its goal is to scienti�cally improve our ability
to diagnose, treat and prevent cancer. The data is freely available
through the TCGA Data Portal (cancergenome.nih.gov).

• CGP. The Cancer Genome Project (www.sanger.ac.uk) collects ge-
nomic data from 50 di�erent types of cancers. The project focus on
searching alterations that help identifying genes which are critical to
the development of human cancers.

• ICGC. The primary goal of the International Cancer Genome Consor-
tium (icgc.org) are to generate comprehensive catalogues of genomic
abnormalities in tumors from 50 di�erent cancer types or subtypes.

• U-CAN. The U-CAN (u-can.uu.se) collects and organises patient sam-
ples that are taken before, during and after cancer therapy. Patient
data and radiological images are also collected. This material is in
turn used to develop methods to �ne-tune diagnoses and to better
characterise di�erent tumour diseases, in order to be able to choose an
optimal therapy for the individual patient.

2.4 Cancer types

In this thesis we employ data from TCGA. Papers I and II focus on network
modelling for one class of cancer while papers III and IV introduce joint
models of up to eight cancer classes (see paper IV). The cancers in question
are
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• Glioblastoma multiforme. This is the most common fast-growing
malignant brain tumor in adults. It accounts for about 15% of all brain
tumors and has a poor prognosis, with a median survival time of 12 to
14 months.

• Breast cancer. This is the most frequently diagnosed cancer and the
second most common cancer-related cause of death in women (although
male breast cancer can also occur). It originates from breast tissue,
most commonly inner lining of milk ducts or the lobules that supply
the ducts with milk. Early detection and improvements in treatment
have helped to steadily decrease the number of deaths it causes.

• Ovarian carcinoma. This type of ovarian cancer accounts for about
3% of all cancers in women. More than 90% of ovarian cancers are
classi�ed as epithelial and are believed to arise from the epithelium
(surface) of the ovary. It has poor prognosis due to a lack of an early
detection or screening test.

• Lung squamous cell carcinoma. This subtype of lung cancer makes
up 25 to 30% of all lung cancers and its major cause is smoking. It orig-
inates from cells that replace injured cells in the lining of the bronchi.

• Colon adenocarcinoma. This is the most common type of gastroin-
testinal cancer. It originates in the glandular structures located in the
inner layer of the colon. It can be treated and patients have a good
prognosis if the disease is detected early.

• Uterine carcinoma. Uterine carcinoma makes up around 80% of
the female reproductive system cancers. It develops from cells in the
endometrium, the lining of the uterus. About 69% of the cases can be
detected early giving a �ve-year survival rate of about 83%.

• Kidney clear cell carcinoma. This cancer is the most common
kidney cancer. It forms in the cells lining the small tubules that �lter
the blood and make urine. It is more common in men and can be
treated e�ectively if it is detected early.

• Head and neck squamous cell carcinoma. The membranes lining
the inside of the mouth, nose and throat are made up squamous cells,
where this type of cancers originate. It a�ects men twice as often as
women and smoking and heavy drinking is associated with increased
risk.
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2.5 Biological pathways

Network estimation is about �nding interactions between variables, given the
data. A collection of already known interactions at the gene and metabolic
level, the so called pathways, is publicly available at www.pathwaycommons.org.
Therefore, one way to perform biological analysis of network estimates for
genomic data, and further validate these estimates, is to �nd their over-
lap with the pathways. In this work, we have used the following pathway
databases to perform overlap analysis:

• The Human Protein Reference Database (HPRD), contains informa-
tion about interactions and disease associations for each protein in the
human proteome (www.hprd.org).

• The National Cancer Institute Pathway Interaction Database (NCI-
NATURE), is a collection of known biomolecular interactions and key
cellular processes assembled into signaling pathways (pid.nci.nih.gov).

• REACTOME (www.reactome.org), which is a pathway database for
di�erent omics levels.

• IntAct Molecular Interaction Database (IntAct), which is a molecular
interaction database (www.ebi.ac.uk).

We describe below the steps to perform network estimates overlap with the
pathways. First, we map identi�ers in the databases to our set of variables
using the o�cial gene symbols. We then compute the length of the shortest
path (see Chapter 5), Pij for gene pairs (i, j) in the database using Johnson's
algorithm (Johnson, 1977). Pathway overlap is then computed as a fold
enrichment, which is the expected number of times an estimated network Θ,
contains an edge for genes with a path of length k. In detail, fold enrichment
is de�ned as

Pr(Pij = k | edge (i, j) present in Θ)

Pr(Pij = k | edge (i, j) present in Θpermuted)
.

The network Θpermuted is obtained by randomly permuting the rows and
columns in Θ, which is equivalent to randomly re-assigning gene names.
We used a path-length k = 1, 2 in our calculations. The numerator and
denominator were estimated as follows:

Pr(Pij = k | edge (i, j) present in Θ) =
∑
i<j

I{Pij = k | θij 6= 0}/N,
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where p is the number of genes in the network and N = p(p − 1)/2 is the
total number of possible edges. Similarly,

Pr(Pij = k | edge (i, j) present in Θpermuted) =

R∑
r=1

∑
i<j

I{Pij = k | θij,permuted 6= 0}/NR

where R is the number of random permutation graphs created.
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Chapter 3

Network Estimation

Network estimation methods can be classi�ed into four categories according
to the way they measure the dependency level between variables; they are
Bayesian networks, information theory-based, correlation-based and partial
correlation-based methods (Allen et al., 2012). Estimation of networks is
usually understood as estimation of sparse networks, since a fully connected
network does not provide actionable insights into the dependency structure
of the variables.

Papers I and II address a problem common to all network estimation methods
and present a framework which can be applied to any of them. Papers III
and IV introduce extensions to current partial correlation-based methods to
better suit the analysis of biological data.

Below we present a brief summary of the �rst three types of estimation meth-
ods, Bayesian networks, information theory-based methods and correlation-
based methods. Given the particular focus of papers III and IV in partial
correlation-based methods, we present a more comprehensive review of such
methods in the next section.

Bayesian networks

Construction of Bayesian networks is based on searching for a probabilistic-
network structure with a high posterior probability. The solution is con-
strained to a graphical model that represents a set of variables and their
independencies. Examples of methods to compute Bayesian networks are
BNArray (Chen et al., 2006), B-course (Myllymäki et al., 2002), BNT (Mur-
phy, 2001) and Werhli's implementation of BN (Werhli et al., 2006).

11



12 3. Network Estimation

Information Theory-based Methods

This type of method uses mutual information to determine the dependen-
cies between variables and removes indirect candidate interactions using the
data processing inequality. The best known algorithm of such type is the
Algorithm for the Reconstruction of Accurate Cellular Networks, ARACNE
(Margolin et al., 2006).

Correlation-based Methods

The most straightforward way of estimating a network is by thresholding the
sample covariance matrix, keeping only the strongest connections between
pairs of variables. An example of a correlation-based method is theWeighted

Correlation Network Analysis, WGCNA (Langfelder and Horvath, 2008).
Another approach is to estimate the covariance matrix through penalized
maximum likelihood as in Bien and Tibshirani (2011).

3.1 Review of partial correlation-based methods

Partial correlation-based methods make use of Gaussian graphical model-
theory. The dependency is measured as the partial (conditional) correlation
between variables, which is given by the inverse of the correlation matrix.
The most common implementation of sparse partial correlation-based meth-
ods is the graphical lasso (glasso).

The genomic data we are interested in analysing are usually high-dimensional.
Current technology allows for measurements of tens of thousands of genes,
however, we seldom have access to more that a few hundred samples. For
correlation and partial correlation-based methods it is indeed necessary to
look for sparse estimates of the correlation or partial correlation matrices,
since the empirical estimate of the correlation matrix is not positive de�nite
and can be highly variable in the high-dimensional settings.

Under the assumption of normality, the problem of estimating the partial
correlations is equivalent to estimating the inverse correlation matrix. For
genomic data, this amounts to stating that the transcription of gene i is
conditionally independent of the transcription of gene j given all the others
(i.e. there is no link between i and j in the corresponding network), if and
only if the (i, j)-th element in the precision matrix is zero.

For a single Gaussian graphical model, Dempster (1972) formulated this as
the combinatorial problem of optimizing the location of zeros in the matrix.
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Such an approach is too computationally intensive and indeed unfeasible for
high dimensions. More recently, focus has shifted to models in which the the
number of estimated parameters is constrained. Meinshausen and Buhlmann
(2006) estimate each variable through an L1 penalized regression on the rest
of the variables. Later on, extensions and generalizations were proposed
by Yuan and Lin (2007), Banerjee et al. (2008), D'Aspremont et al. (2008)
and Friedman et al. (2008). All of these approaches produce estimates of
the inverse covariance matrix referred to as the graphical lasso. Below we
present some of the most recent network estimation methods based penalized
maximum-likelihood.

Assume that the data X are observations from N(0,Σ), where we assume
without loss of generality that the data is centered, and Σ is the covariance
matrix. Let Θ = Σ−1, penalized likelihood methods seek to optimize the
function

l(Θ) = ln (det (Θ))− tr (SΘ)− g(λ,Θ),

where S = 1
nX

TX is the empirical covariance matrix, g is a suitable function
of Θ which imposes the desired constrains on the model, and λ is a tuning
parameter which can be a vector or a matrix.

For the glasso method g(λ,Θ) = λ‖Θ‖1 = λ
∑

i 6=j |θij | and θij is the ij-
th element of Θ. This penalty is known as the lasso penalty (Tibshirani,
1996), and therefore referred to as the graphical lasso in this context. The
parameter λ controls the degree of sparsity in Θ, the larger λ is, the more
elements in Θ will be shrunk to zero.

A similar problem, but so far only studied in the linear regression context, is
the elastic net (Zou and Hastie, 2008), where the penalty function is given
by

g(λ, α,Θ) = λ
∑
i 6=j

[
α|θij |+ (1− α)θ2ij

]
.

The elastic net often outperforms the lasso as a variable selection method.
It also has a grouping e�ect, in which parameter estimates for strongly cor-
related variables tend to be zero, or not, simultaneously.

In the presence of several classes of samples that share parameters, it is
necessary to jointly estimate the precision matrices. Joint estimation models
have been proposed by Guo et al. (2011), Yuan and Lin (2007), and Guo
and Wang (2010). The assumptions are that the data for each group are
drawn from a multivariate normal distribution with covariance matrix Σk,
k = 1, 2, . . . ,K.

Guo et al. (2011) proposed a model in which common sparsity structure (lo-
cation of zeros in the precision matrices) is achieved. They �nd the solution
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to this problem by iteratively optimizing the K likelihood functions

l(Θk) = ln
(

det
(

Θk
))
− tr

(
SkΘk

)
− λ

∑
i 6=j

ωij | θkij |,

where Θk =
(
Σk
)−1

and ωij =
(∑K

k=1 | θkij |
)−1/2

. The problem can thus be

solved by repeatedly applying glasso to the precision matrix and updating
the penalty so it decreases in each iteration for links that must be present
across all classes.

A similar approach that also guarantees a common sparsity pattern, but not
equal values, is the sparse group lasso (Yuan and Lin, 2006). It optimizes
the likelihood function

l ({Θ}) =

K∑
k=1

nk

[
ln
(

det
(

Θk
))
− tr

(
SkΘk

)]

− λ1
K∑
k=1

∑
i 6=j
| θkij | −λ2

∑
i 6=j

√√√√ K∑
k=1

(
θkij

)2
,

where {Θ} = {Θ1,Θ2, . . . ,ΘK}. Here, the �rst term in the second row is
the lasso penalty, controlled by λ1; and the second term corresponds to the
so called group penalty (an L2 type norm), controlled by λ2. The group
penalty considers the vectors (θ1ij , θ

2
ij , . . . , θ

K
ij ) for all i 6= j and penalizes

their Euclidean norm, thus achieving common zeros across classes for large
enough values of λ2.

Going one step further, some methods look for exactly equal values of the
estimated parameters across classes, instead of a common pattern of zeros
only. The octagonal shrinkage and clustering algorithm for regression, OS-
CAR, described in Bondel and Reich (2008), has been proposed to solve this
problem in the context of linear regression. The OSCAR penalty can be
extended to network estimation just as the lasso was extended to graphical
models. The resulting log-likelihood function is

l ({Θ}) =
K∑
k=1

nk

[
ln
(

det
(

Θk
))
− tr

(
SkΘk

)]
− λ1

K∑
k=1

∑
i 6=j
| θkij | −λ2

∑
k<k′

∑
i 6=j

max{θkij , θk
′
ij }.

Like the group lasso, it contains a lasso penalty controlled by λ1 to tune the
network sparsity. The di�erence is that is adds a second penalty (an L∞
type norm) on the maximum for all pairwise combinations across classes of
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the precision matrices' elements. Large enough values of λ2 have the e�ect
of shrinking the values of θkij and θ

k′
ij towards each other.

OSCAR has the drawback of being di�cult to solve. A more tractable way
to approach the problem of joint estimation with equal values across classes
is suggested by Danaher et al. (2014). In this case, the log-likelihood takes
the form

l ({Θ}) =
K∑
k=1

nk

[
ln
(

det
(

Θk
))
− tr

(
SkΘk

)]
− λ1

k∑
k=1

∑
i 6=j
| θkij | −λ2

∑
k<k′

∑
i,j

|θkij − θk
′
ij |.

Like group lasso and OSCAR, sparsity is controlled by a lasso penalty (λ1)
but this time the equality in parameter values is encouraged by a fused
penalty (an L1 type norm, Hoe�ing (2010)). The fused penalty is controlled
by λ2 which, like OSCAR, shrinks θkij and θ

k′
ij towards each other for large

enough values.

All of these methods have in common the need to select the value for the
tuning parameters λ1 and λ2, which induce di�erent sparsity and common-
ality patterns across classes, thus producing di�erent models which require
validation.

In the next chapter we review some of the model validation techniques and
describe some common statistical tools we employ in papers I and II, in order
to make the material in them easily accessible to the reader.
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Chapter 4

Network model validation and

uncertainty in estimation

A number of di�erent methods are available to tune the parameters λ1 and
λ2 for the network estimation methods described in the previous chapter.
This problem, often referred to as the model validation problem, is complex
and subject of ongoing research. Below we present common model valida-
tion approaches: cross-validation (CV) and Bayesian Information Criterion
(BIC). We also describe some common statistical tools used in papers I and
II.

4.1 Cross-validation

Probably the simplest validation method is K-fold CV. K-fold CV involves
the following steps:

• Split the data X in K equal (or almost equal) sizes by randomly as-
signing them to groups (folds) X1, X2, . . . , XK . Let X−k be the data
without the k-th fold.

• Select a sequence of size M of tuning parameters of interest.

• For k = 1, 2, . . .K do

1. Estimate the network models m1,m2, . . . ,mM using X−k.

2. Compute Lk(mj), the likelihood function for model mj evaluated
on data set X−k.

• Compute the total likelihood as
∑K

k=1 Lk(mj).

17
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• Select the modelm∗ which maximizes the total likelihood from previous
step.

4.2 Bayesian Information Criterion

In the case of the graphical lasso, the BIC for estimate Θ̂λ is de�ned as:

BIC(λ) = −n ln(det(Θ̂λ)) + ntr(SΘ̂λ) + ln(n)
∑
i<j

I
{
θ̂ij,λ 6= 0

}
where n is the sample size, S is the empirical covariance estimate and the
number of non-zero elements in Θ̂λ are the degrees of freedom for the model
(Schwarz, 1978). BIC can easily be generalized for joint models such as the
fused or the group lasso, by de�ning the degrees of freedom as the number
of unique (di�erential) non-zero estimated parameters in the model.

Another measure is the Akaike Information Criterion (AIC), de�ned as (Dana-
her et al., 2014):

AIC(λ1, λ2) =

K∑
k=1

−n ln(det(Θ̂k
λ1,λ2)) + ntr(SkΘ̂k

λ1,λ2) + 2
∑
i<j

I
{
θkij,λ1,λ2 6= 0

}

4.3 The bootstrap

Approaches to network model validation at edge level have also been con-
sidered. In de Matos Simoes and Emmert-Streib (2012), subsampling is
used to collect frequency statistics on edge presence/absence. The frequency
statistics are then for testing the edges to be part of the �nal estimate.

The bootstrap is a method estimate the distribution function of the data
and use it for subsampling, which in turn can be used to estimate statistics
of interest, e.g. the variance or the bias of an estimate. Below is a brief
description on how the bootstrap can be used in general.

Let X = (x1, x2, . . . , xn) be a random sample of size n drawn from the dis-
tribution F . The empirical distribution function F̂ is de�ned as the function
that assigns probability 1/n to each xi, i = 1, 2, . . . , n. The natural extension
to an event A is thus PrF̂ (A) = #{xi ∈ A}/n.

The parameters of the distribution F (a function t of F ), can be estimated
through the plug-in principle. The plug-in estimate of a parameter θ = t(F )
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is de�ned to be θ̂ = t(F̂ ). A bootstrap sample is de�ned to be a random
sample of size n from F̂ . In practical terms, this means that a bootstrap
sample Xb = (xb1, x

b
2, . . . , x

b
n) is sample of size n, drawn with replacement

from the original data X = (x1, x2, . . . , xn). For an estimator θ̂ = s(X) we
de�ne a bootstrap replication as θ̂b = s(Xb). The (approximate) bootstrap
estimate θ̂B is an aggregated estimate of bootstrap replications θ̂b for b =
1, 2, . . . , B.

In some applied situations, the resampling scheme explained above may not
be optimal. An example is that of genetical data (such as expression lev-
els) where sampling with replacement is equivalent to having two or more
patients with exactly the same values for all variables in the study, which
is unrealistic. There are resampling schemes that address this issue, one of
them being the jackknife, which predates the bootstrap and uses samples
that leave one observation out of the original sample. The jackknife proce-
dure limits the number of new samples that can be obtained much more than
the bootstrap, but it still shares theoretical similarities with the bootstrap
with the advantage of being simpler to compute.

Plenty of theoretical work has been published dealing with the properties of
the bootstrap and the jackknife estimates for common statistics, such as the
mean, the standard error and the bias. In these three cases, the jackknife
provides an approximation to the corresponding bootstrap estimators, but it
can be inconsistent for non-smooth statistics such as the median. One way
to solve this issue is to resample by leaving out d > 1 observations at the
time: if more than d =

√
n but fewer than n observations are left out, then

the jackknife estimate is consistent for the median (Efron and Tibshirani,
1994).

A suitable resampling scheme for genetic data is, for example, leave-10%-
out. To perform network model validation with help of the bootstrap we
�rst collect frequency statistics from bootstrap estimates. These can be
frequency statistics of any binary decision, such presence/absence or fusing
of edges. An aggregated bootstrap estimate is then constructed where the
weights of the edges are equal to the proportion of bootstrap estimates in
which they are present or fused. The �nal model is constructed by selecting
cuto� thresholds 0 < t1 ≤ 1 and 0 < t2 ≤ 1 and keeping edges with weights
at least equal to t1, as well as fusing edges with corresponding weights larger
or equal to t2 in the aggregated bootstrap estimate.

The approach described above does not completely solve the model valida-
tion problem, since selection of the cuto� thresholds is needed. Also, its
performance is dependent on the original sparsity selected for the construc-
tion of the aggregated bootstrap estimate. In paper I we describe a method
in which the frequency statistics collected from bootstrap are modelled as
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a mixture of Beta-Binomial distributions. This approach circumvents the
selection of cuto� thresholds and provides a way to construct network es-
timates from bootstrap aggregation. Below we describe succinctly describe
the Beta-Binomial model.

4.4 Generalized linear models for count data

Linear statistical models are a common tool for the analysis of many di�erent
types of data. Sparse versions of linear regression have been applied to the
construction of networks (Meinshausen and Buhlmann, 2006) or to model
the e�ects of certain variables into transcription networks (Jörnsten et al.,
2011).

Linear models assume a response variable y to be a linear combination of
certain predictors X, that is y = Xβ + ε, where ε is a random variable such
that E(ε) = 0 and Var(ε) = σ2. In general, such linear models should be
considered a �rst order approximation of potentially more realistic models
that are nonlinear in the parameters, called generalized linear models.

A generalized linear model assumes that the response variable y has a known
distribution fY , that is y ∼ fY (x;β). In this thesis work, we make use of
generalized linear models to address the network validation problem (selec-
tion of sparsity level). To this end, we model frequency statistics of edge
presence/absence across bootstrap estimates. A Beta-Binomial model and
its zero-in�ated version are the models of choice. Here we describe them
brie�y.

4.4.1 Beta-Binomial model

Beta-Binomial density

The Beta-Binomial model is commonly used to model overdispersed bino-
mial data. Overdispersion is taken into account by letting the binomial
probability of success p be beta distributed.

Let Y ∼ Bin(n, p). The density for X is given by

fY (k) =

(
n

k

)
pk(1− p)n−k.
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The prior distribution for p is Beta(α, β) with density

fp(p) =
1

B(α, β)
pα−1(1− p)β−1,

where B is the Beta function de�ned as B(x, y) =
∫ 1
0 t

x−1(1− t)y−1.

Note that the Beta distribution is conjugate to the Binomial, since

pk(1− p)n−k ∼ pα−1(1− p)β−1.

This fact allows us to compute the posterior distribution in closed form using
Bayes' Theorem.

Indeed, the posterior Beta-Bin(n, µ, α, β) distribution has the density

f(k) =

∫ 1

0
fy(k)fp(p)dp

=

(
n

k

)
1

B(α, β)

∫ 1

0
pk+α−1(1− p)n−k+β−1dp

=

(
n

k

)
B(k + α, n− k + β)

B(α, β)
.

Zero-In�ated Beta-Binomial density

The modelling assumptions of the Beta-Binomial distribution may be insuf-
�cient when the count data has an excess of zero values. This is a relevant
situation in our applications since we are interested in sparse networks, where
most of the edges are absent. A zero-in�ated model becomes necessary in
high-dimensional settings, when the lack of edges can mask the distribution
of the remaining edge presence counts.

The Zero-In�ated Beta-Binomial distribution, ZIBB(n, µ, ν, α, β), models
overdispersed data as a mixture with two components: one for the zero-
counts and another for the rest of the counts. The density is given by

f(y) = νI{y = 0}+ (1− ν)fBB(y),

where ν is the probability of a zero-count, and fBB is the density for the
Beta-Binomial distribution de�ned above.

4.4.2 Estimation of a mixture model's parameters: the EM

algorithm

In Paper I we model the edge presence/absence counts as random observa-
tions from two populations: the positives (edges present in the true network)
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and the negatives (edges absent in the true network). Each population is
in turn modelled accordingly to either a Beta-Binomial or a Zero-In�ated
Beta-Binomial, thus de�ning a mixture model with two components or three
components. Estimation of the parameters is carried out by the expectation-
maximization (EM) algorithm, which we describe below.

Let Y = (y1, y2, . . . , yN ) be the data (the observed counts in our case) and
f1 and f2 the distributions of the two populations from which the elements
in Y are drawn. Further, let ∆ be some unobserved binary variable with
Pr(∆ = 1) = π. Thus the data can be written as Y = (1 − ∆)Y1 + ∆Y2,
where Y1 ∼ f1 and Y2 ∼ f2. The density of Y becomes

fY (y) = (1− π)f1(y) + πf2(y). (4.1)

Suppose we know the values of ∆i, i = 1, 2, . . . , N ; then the log-likelihood
of 4.1 would be

L(θ;Y,∆) =

N∑
i=1

{(1−∆i) ln [f1(yi|θ1)] + ∆i ln [f2(yi|θ2)]}

+
N∑
i=1

{(1−∆i) ln(1− π) + ∆i ln(π)} ,

where θ = (θ1, θ2) and θ1 and θ2 are the vectors of parameters for f1 and f2,
respectively. It can be easily seen that the MLE's of θ1 correspond to the
MLEs of f1 computed on the data for which ∆i = 0. Similarly, the MLEs of
θ2 correspond to the MLE's of f2 computed on the data for which ∆i = 1.
The MLE for π is the proportion of the data for which ∆i = 1.

Suppose now that we know the parameters θ and π. We can substitute the
values of ∆i by their expectations, called responsibilities

γi(θ) = E(∆i|θ, π, Y ) = Pr(∆i = 1|θ, π, Y ),

and estimate these as the relative density of observations in each class.

The full set of estimates is obtained by iterating these two steps until con-
vergence. A summary of the steps is given below.

EM algorithm for two-component mixture

1. Compute initial values for the parameters θ̂1, θ̂2 and π̂.

2. E-Step. Compute the responsibilities

γ̂i =
π̂f1(yi|θ̂1)

(1− π̂)f1(yi|θ̂1) + π̂f2(yi|θ̂2)
, i = 1, 2, . . . , N.
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3. M-Step. Compute the MLE of f1 and f2.

θ̂1 = max
θ1

N∑
i=1

(1− γ̂i) ln [f1(θ1|yi)]

θ̂2 = max
θ2

N∑
i=1

γ̂i ln [f2(θ2|yi)]

π̂ =
1

N

N∑
i=1

γ̂i

4. Iterate steps 2 and 3 until convergence.

4.5 Rate-Distortion theory

In paper II we study the problem of network estimation uncertainty. In this
context, uncertainty is to be understood as the variability of the network
estimate (which edges are present and which are absent). Going one step
further, we claim that a network estimate has regions (modules) which have
potentially di�erent uncertainty levels. The problem of model validation be-
comes a question of assessing di�erent levels of uncertainty. Similar concepts
have been applied in the information theory �eld, where the problem of image
compression is related to the variability of the image's di�erent regions. We
borrow strength from information theory and apply rate-distortion theory,
used for selecting image compression rates, to do network model selection.

Rate-distortion theory has been previously used outside the information the-
ory �eld for model selection in cluster analysis (Jörnsten, 2009) and sparse
regression (Jauhiainen et al., 2012) on high-dimensional data. To perform
model selection using rate-distortion theory we proceed as follows.

Suppose we haveM models, for which we want to do simultaneous selection.
In our case, the models correspond to the di�erent network modules. Each
model, is indexed by some rate value, such as the number of estimated pa-
rameters or a tuning parameter. Also, for each model, is possible to assess
the distortion as the inverse of some goodness-of-�t measure, such as the
likelihood or the residual sum of squares.

Our goal is to minimize the overall distortion (i.e. the inverse goodness-of-
�t) constrained to a �x rate (number of parameters). In other words, we �x
the total number of parameters we are willing to pay to achieve some overall
explanatory power. Figure 4.1 shows, in solid lines, the rate-distortion curves
for four models; the dashed lines have all a �xed slope ∆. It can be shown
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Figure 4.1: Rate-Distortion curves. The solid curves represent the rate-
distortion curves to four di�erent regions. The dashed curves represent a
�xed slope. To minimize distortion given a �xed rate select points with
equal tangent slope.

that the overall distortion is minimized by selecting the points where the
dashed lines are tangents to the rate-distortion curves. At this points, the
�xed rate constraint is ful�lled with a value equal to the sum of the rates for
the corresponding selected points.

If any other point is selected, rather than the ones with equal tangent slope,
there is always one trade-o� move possible between a pair of modules that
increase the overall distortion. Suppose for model 1 the rate is increased
from R1 to R1 + δ1, leading to a distortion decrease from D1 to D1− ε1. At
the same time, decreasing the rate for model 2 from R2 to R2 − δ2 leads to
a distortion increase from D2 to D2 + ε2 where ε1 > ε2.



Chapter 5

Network analysis

Once a network has been estimated, a number of tools are available for
its characterization. From the biological point of view it is interesting to
study the overlap of the estimated network with known pathways (possibly
measured as fold enrichment) or to �nd the hub genes, which are genes with
a large number of connections.

Mathematically, the study of networks or graphs belongs to graph theory. In
this chapter we de�ne networks in the context of graph theory and intro-
duce some important graph properties which we can use to, among others,
formally de�ne the concept of hub.

5.1 Graph theory

A network or graph G is de�ned as a pair G = (V,E), where V is the set of
vertices (or nodes) and E is the set of edges (or links). Since an edge connects
two vertices, the elements of set E are subsets of V with two elements each.
If the set E is unordered the graph G is called undirected; if E is ordered,
then G is directed. If there are no edges from a node to itself the graph is
called simple. If the elements of E have real values associated to then the
graph is called weighted; otherwise these values can all considered to be 1,
in which case the graph is called unweighed. Here we will focus on simple,
undirected, weighted and unweighted graphs.

Networks can compactly be described by their adjacency matrix A. For a
simple, undirected and unweighted graph, the adjacency matrix is a square
binary matrix with elements aij = 1 = aji, i 6= j, if an edge is present
between nodes vi and vj . If no edge is present then aij = 0 = aji. For a

25
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weighted network aij gives the weight for the edge between nodes vi and vj .

A number of properties can be de�ned on the nodes or edges of a graph.
Below we de�ne some of these. Let G = (V,E), V = {v1, v2, . . . , vn} and
E = {e1, e2, . . . , em},

• Degree. The degree of a node vi is de�ned a the number of edges
coming into or going out from it.

• Path. A path pij between two nodes vi and vj is a sequence of con-
nected nodes (there exists an edge between them) such that it connects
vi and vj , that is, pij = {vi = vi0 , vi1 , vi2 , . . . , vik = vj}. The length of
a path is the number of elements in it.

• Shortest path. The shortest path is any path between nodes vi and vj
with the minimum number of edges required.

• Distance. The distance between two nodes vi and vj is the length of
the shortest path between them.

• Neighbours. The neighbours of degree d of a node vi are the nodes
reachable from vi within distance d.

• Cycle. A cycle is a path that starts and ends at the same node.

• Farness. The farness of a node vi is the sum of the distances from itself
to all other nodes vj .

• Centrality. The inverse of farness, also called closeness.

• Betweeness centrality. Let pij be the shortest path between nodes vi
and vj . The betweeness of a node vk is the number of all pij that con-
tain vk, that is, how often a node is part of the shortest path between
any two other nodes (Freeman, 1977).

• PageRank. Originally conceived as a way to characterize the impor-
tance to web pages connected by hyperlinks, PageRank (Page et al.,
1999) is an algorithm that assigns weights to nodes in a graph propor-
tional to number of edges coming into it. Equivalently, the weight of a
node is proportional to the total weight of nodes connected to it. The
distribution of the weights represents the probability of arriving to a
particular node by randomly moving from one node to another.

Networks can exhibit di�erent topologies according to the number and loca-
tion of their edges. A certain topology enables a network to be more suitable
for a certain task. Common topologies encountered in biological networks
are hubby, banded (forming chains) and scale-free networks. We describe
these topologies below.
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Figure 5.1: Network topologies.

• Hubby. Networks with a relative high number of hubs are called hubby.
Hubs are the nodes with highest degree in the. The precise value of
the degree depends on the number of nodes and edges in the graph,
however, a node is typically considered as a hub if has a degree above
the average degree for all nodes.

• Banded. A banded network, also called a chain network, where each
node is connected to two and only two other nodes.

• Scale-free. In a scale-free network the degree distribution follows a
power law, that is, if a node vi is selected at random then the proba-
bility that its degree is k is proportional to k−γ (typically 2 ≤ γ ≤ 3).

The three types of topology are illustrated in Figure 5.1.

5.2 Finding groups/modules in networks

Biological networks are not completely random. Genes form groups to per-
form complex tasks, therefore, the networks show a certain modular structure
(also referred to as community). Communities are usually found by cluster-
ing the nodes of a network. As in any clustering method, the end result
depends on how the distance between nodes is de�ned.

Some useful distance measures are de�ned below. Throughout the text we
assume that we have a network with adjacency matrix A = [aij ].

• Correlation/partial correlation. When the adjacency matrices are given
by the (sparse) correlation matrices, the dissimilarity can be de�ned
in terms of the correlation values themselves. In this case, the com-
munities found are groups of nodes with high correlation values. The
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dissimilarity between nodes vi and vj is given by

d(i, j) = 1− |aij |.

A similar de�nition applies for partial correlation matrices.

• Jaccard index. This measures the similarity between two nodes vi and
vj as the quotient between the number of edges that vi and vj have
in common, and the number of edges coming into vi or vj . Let ai· be
the i-th row of the adjacency matrix, the dissimilarity between nodes
vi and vj is given by

d(i, j) = 1− ai· · aj·
‖ai· + aj·‖1

.

• Cosine similarity. The cosine similarity considers distance as the cosine
of the angle between two vectors. The dissimilarity is given by

d(i, j) = 1− ai· · aj·
‖ai·‖‖aj·‖

,

where ai· is de�ned as above.

• Topological overlap. This measure attempts to establish similarity
between nodes as a function of the number of neighbours they have in
common (Yip and Horvath, 2007). Let Nd(i) be the set for neighbors
of degree d for node vi. The topological overlap dissimilarity is given
by

d(i, j) = 1− td(i, j)

td(i, j) =

{
|Nd(i)∩Nd(j)|+aij

min{Nd(i),Nd(j)}+1−aij if i 6= j

1 if i = j.

A di�erent way of �nding communities is proposed by Clauset et al. (2004).
There, the idea is to �nd subsets of strongly connected nodes, but with weak
connections between them. In terms of the adjacency matrix, the procedure
is equivalent to �nding an ordering of the rows and columns that creates a
nearly block diagonal matrix.



Chapter 6

Summary of Papers

Paper I:
Sparsity selection and robust network estimation via
bootstrap

Current high-throughput techniques allow for the observation of many vari-
ables. However, it is not always possible to collect a comparable number of
samples. Therefore, omics data is often high-dimensional and regularization
is required in the analysis. Network estimation methods are popular tools
to analyze di�erent types of omics data and regularization is imposed by
the selection of a tuning parameter that controls the overall sparsity of the
network estimate.

Common model validation techniques such as cross-validation and the Bayesian
Information Criterion have been applied to this problem, but their perfor-
mance is unsatisfactory. Also, sparsity selection has focused on selecting a
threshold parameter that matches the size of the estimated network with the
size of the true network. However, the size of the true network is generally
unknown, and even if it could be estimated, it is not obvious that selecting
a threshold in this way results in a quality estimate. Depending on sample
size and signal strength, the number of false positives in such way selected
estimate can be large. Instead, the goal should be to assemble a reproducible
network with few false positives. Controlling the number of false positives is
crucial in order to avoid overinterpretation and erroneous conclusions in the
scienti�c disciplines where the network models are applied.

Bootstrap methods are already prevalent in the network inference litera-
ture, mainly as a tool to produce a stable �nal network. The network is

29
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constructed by retaining the edges that appear frequently in the bootstrap
networks, thus resulting in a more robust estimate. In Paper I we extend
the bootstrap approach and develop a method that (i) selects an appropri-
ate sparsity level for controlling the presence of false positive edges, and
(ii) constructs a �nal network estimate that improves over naive bootstrap
thresholding methods.

Through comprehensive simulation studies we show how the performance
of network estimation methods depends on the true network size, signal
strength and sample size. We also show that matching the sparsity of the
estimate to that of the true network fails to control the false positive rate.
Finally, we illustrate how our method controls the false positive rate and
how it is possible to post-process an estimate and correct for an excess of
false positive edges if the sparsity was not correctly selected.

Our proposed procedure is illustrated on a large-scale ovarian tumor sample
data from the Cancer Genome Atlas (TCGA). By assessing the fold enrich-
ment of functional groups (biological pathways), we show how we improve
both upon commonly used methods of choosing network sparsity, as well as
on the standard way of constructing a �nal estimate.

Paper II:
Can I trust my network? Local network resolution
elucidates uncertainty in estimation with di�erent
methods and across network topologies

Once the estimate of a parameter has been obtained, it is natural to ask
about its uncertainty. For point estimates, this question has been tradition-
ally answered by providing con�dence intervals. For networks, results are
usually presented as a single (point) estimate, thus ignoring the instability
and uncertainty of network estimation methods, leading to a substantial risk
of over-interpretation of the resulting network.

In this paper we introduce a novel framework for network analysis that uti-
lizes the estimation uncertainty in order to (i) produce a set of candidate
graphs for the network, akin to a con�dence set, (ii) enable a fair assess-
ment of competing network estimation methods, and (iii) show how di�erent
structural topologies exhibit di�erent estimation properties. The proposed
framework can be used with any estimation method that produces undi-
rected networks, e.g. likelihood based methods like glasso, or correlation
based procedures like WGCNA.
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The method extends concepts from information theory and image compres-
sion and assumes that the true network is modular (a common property in
e.g. biological networks). Just as with regions in an image, it is reasonable
to expect that modules in a network have di�erent estimation properties.
Also, just as the number of bits required to encode each region of an image
is a measure of its complexity, we measure the complexity of a module as a
number of candidate graphs. The candidate graphs are extracted from a set
of observed bootstrap networks, which guarantees that the estimated topol-
ogy is supported by the data. The number of candidates thus conveys the
uncertainty in the estimation procedure, where a large number of candidate
graphs implies low resolution and high uncertainty, and vice versa. We refer
to this concept as network component resolution (NetCoR).

Through simulation studies we demonstrate how common topologies for bi-
ological networks (random, hubby, banded and scale-free) have di�erent es-
timation properties and how estimation network performance depends on
topology.

We apply our method to a data set of breast cancer tumors from The Can-
cer Genome Atlas. We show that high resolution modules overlap better
with known pathways, whereas low resolution modules do not. This demon-
strates how NetCoR can be used in real applications, enabling discrimina-
tion between network components comprising credible �ndings and regions
that require additional experimentation before conclusions can be con�dently
drawn. We also classify the modules according to the four common topolo-
gies which, given the network estimation method, provides further insight
into the quality of the estimates.

NetCoR is under development to be released as an R package available from
the CRAN repository.

Paper III:
Exploration of pan-cancer networks by generalized
covariance selection and interactive web content

Current algorithms for network construction are not designed to work across
multiple diagnoses and technical platforms, thus limiting their applicability
to comprehensive pan-cancer datasets such as the Cancer Genome Atlas
(TCGA).

Here, we introduce a strategy for pan-cancer network modeling, based on
two novel contributions. First, we describe a generalization of sparse in-
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verse covariance selection (SICS) designed to integrate genetic, epigenetic
and transcriptional data from multiple cancers into a comparative network.
The method uses a new strategy involving non-informative priors to account
for the modular structure commonly observed in biological data and to inte-
grate several data types. The method also corrects for potentially unbalanced
sample sizes for di�erent cancers. Via simulations, the algorithm is shown
to be statistically robust and e�ective at detecting direct pathway links in
TCGA data.

Second, we propose to rationalize the interpretation of the derived net-
works by a new and publicly accessible tool Cancer Landscapes, (cancerland-
scapes.org). Cancer Landscapes is an interactive web-based tool in which
derived models can be graphically explored and linked to several pathway
and pharmacological databases. To evaluate the performance of the method,
we constructed a model of genetic, epigenetic and transcriptional data for
eight TCGA cancers, using data from 3900 patients. The derived model
rediscovered known mechanisms and contained interesting predictions. Pos-
sible applications include the prediction of regulatory relationships between
genes in particular cancers, comparison of network modules in across multiple
forms of cancer, and identi�cation of drug targets. The proposed algorithm
may also have interesting applications in other areas of investigation, such
as integration of multiple GWAS or biomarker studies.

Paper IV:
Joint estimation of sparse inverse covariance and mean
with applications to discriminant analysis

Networks provide second order information, in the form of pairwise connec-
tions, allowing for the study of gene di�erential connectivity. Traditionally,
the analysis of genomic data has been done either studying the di�erential
connectivity or the di�erential expression, which provides �rst order infor-
mation.

In Paper IV we propose to integrate and extend existing methods into a
joint framework to investigate a multi-class di�erential connectivity and dif-
ferential expression. Our method builds up the Gaussian graphical model
framework, thus assuming di�erential connectivity to be given by partial
correlations (precision matrix). With a minor additional constraint on the
precision matrices to be block diagonal, we show how to construct an en-
semble classi�er. The classi�er's quadratic component includes only dif-
ferential blocks (QDA blocks) and its linear component includes only the
non-di�erential blocks (LDA blocks).
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Estimation is done via maximization of a fused lasso penalized likelihood
using via alternating directions method of multipliers (ADMM). We estimate
the mean vectors and the precision matrices separately by iterating ADMM
maximization of the corresponding pro�le likelihoods.

We investigate the performance of our method through a simulation study.
We show that the tuning parameters are in complex dependency, resulting
in a complex dependency of network size, number of unique parameters es-
timated and proportion of di�erential parameters. Model selection becomes
then a complicated problem, we show how it can be guided with the help of
network estimation accuracy measures and misclassi�cation rate.

As an application to real data, we use our method on a training data set of
breast and ovarian tumours from The Cancer Genome Atlas (TCGA). We
obtain estimates for di�erential expression levels and di�erential connectiv-
ity for a range of the sparsity and fuse penalties. We analyze the estimated
models characteristics such as number of unique estimates parameters, net-
work sizes and proportion LDA and QDA blocks. We measure the overlap
of the estimated networks with known biological pathways as a fold enrich-
ment and propose a strategy to perform model selection with the help of fold
enrichment and misclassi�cation rate.
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