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Abstract

Metagenomics is the study of microbial communities on the genome level by
direct sequencing of environmental and clinical samples. Recently developed
DNA sequencing technologies have made metagenomics widely applicable and
the field is growing rapidly. The statistical analysis is however challenging due
to the high variability present in the data which stems from the underlying bi-
ological diversity and complexity of microbial communities. Metagenomic data
is also high-dimensional and the number of replicates is typically few. Many
standard methods are therefore unsuitable and there is a need for developing
new statistical procedures.

This thesis contains two papers. In the first paper we perform an evaluation of
statistical methods for comparative metagenomics. The ability to detect differ-
entially abundant genes and control error rates is evaluated for eleven methods
previously used in metagenomics. Resampled data from a large metagenomic
data set is used to provide an unbiased basis for comparisons between methods.
The number of replicates, the effect size and the gene abundance are all shown
to have a large impact on the performance. The statistical characteristics of
the evaluated methods can serve as a guide for the statistical analysis in future
metagenomic studies. The second paper describes a new statistical method for
the analysis of metagenomic data. The underlying model is formulated within
the framework of a hierarchical Bayesian generalized linear model. A joint
prior is placed on the variance parameters and shared between all genes. We
evaluate the model and show that it improves the ability to detect differentially
abundant genes.

This thesis underlines the importance of sound statistical analysis when the
data is noisy and high-dimensional. It also demonstrates the potential of sta-
tistical modeling within metagenomics.

Keywords: Metagenomics, Statistical methods, Hierarchical Bayesian models,
Statistical power, False discovery rate, Environmental genomics, Generalize
linear models, Count data.
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Chapter 1

Introduction

The term metagenomics was first coined in 1998 and refers to the study of
communities of microbes (Handelsman et al., 1998). As opposed to the classi-
cal genomics approach where individual organisms are studied one at a time,
metagenomics enables sampling of a whole community simultaneously giving
a snapshot view of all the genes present. This was originally performed using
slow and expensive Sanger sequencing and the first metagenomes encompassed
around 15000 DNA fragments (Sanger and Coulson, 1975; Healy et al., 1995).
The introduction of next generation sequencing (NGS) methods, where millions
of DNA fragments can be sequenced in parallel, has resulted in an increased
throughput and lowered the price per base substantially (Schuster, 2008). This
made metagenomics a much more widely applicable methodology and in a re-
cent studies encompass several millions of fragments each (Fierer et al., 2012;
Yatsunenko et al., 2012; Ward et al., 2013). In addition bacteria who can-
not be cultured in the laboratory can be studied using metagenomics (Schloss
and Handelsman, 2005). The value of the new knowledge produced by meta-
genomics is immense, examples include the linking of human diseases to gut
microbiota (Karlsson et al., 2013), the detection of novel enzymes in uncul-
turable bacteria(Hess et al., 2011) and characterization of communities that
impact energy uptake in the gut (Turnbaugh et al., 2006).

A typical modern metagenomic analysis starts with extracting the microbial
DNA from an environmental sample. The DNA is then sequenced using high-
throughput sequencing yielding a vast number of short DNA fragments called
reads. Depending on the technology used the length of reads vary from and
average of 30 base pairs up to 400, with some recent technologies producing
even longer reads (Metzker, 2010). There are several ways to process the reads
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2 1. Introduction

further in terms of quality control and assembling them into longer sequences.
Next, the reads are quantified by matching them against a reference database
of choice. This process is called "binning" as reads with similar origin are
binned together into groups. Depending on the target of interest, the reads
are matched against databases containing species specific sequences, groups
of genes with similar function or individual genes. The end result is a list
of bins and their corresponding number of reads in each metagenomic sample.
More extensive descriptions of the metagenomic analysis can be found in recent
papers (Wooley et al., 2010; Hugenholtz and Tyson, 2008).

Given a list of counts, the next step is often to statistically compare meta-
genomes in order to detect differences (Tringe et al., 2005). Unfortunately the
statistical analysis is complicated by high levels of both biological and technical
variability (Wooley and Ye, 2009). The biological variability stems from the
high diversity and complexity of microbial communities (Delmont et al., 2011).
The bacterial species composition is for example known to vary considerably
between samples (David et al., 2014). In addition, many bacterial species have
plastic genomes and exhibit large variability in the gene content, even between
individual members of a population (Kashtan et al., 2014). There is also a con-
siderable variation in the presence of other organisms including viruses (Reyes
et al., 2010). Technical sources of errors include the handling of samples and
extraction of DNA which can introduce biases towards certain species (Morgan
et al., 2010). The sequencing is also known to introduce errors as well as be
biased with respect to the GC-content and repetitive contents (Benjamini and
Speed, 2012). Furthermore the number of genes being investigated is typically
very large (tens of thousands) while the number of replicates are low requiring
methods that have the power to detect differences yet the specificity to avoid
false positives. All these factors contribute to making statistical inference of
metagenomic data complex.

In the broad perspective the area of statistics for metagenomics is still largely
unexplored (Knight et al., 2012). Several statistical methods have been ap-
plied to metagenomics data but few novel ones have been developed (see paper
I ). The approaches tried include zero inflation (Paulson et al., 2013), non-
parametric tests (Segata et al., 2011) and moderation of variance with the
method presented in paper II appended to this thesis. Which of the many
factors that are the most important to account for is yet unknown. In terms
of statistical development a comparison can be made to the field of transcrip-
tomics and the statistical analysis of microarrays. Microarrays enabled the
analysis of several thousands of RNA transcripts simultaneously and were in-
troduced in 1995 (Schulze and Downward, 2001). Initially many aspects of the
variability were unknown and even whether the use of replicates was necessary
(Lee et al., 2000). However, due to the low reproducibility the importance of
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proper normalization between samples and the benefits of new statistical meth-
ods soon became apparent. The example posed by microarrays underlines the
potential of proper modeling the variability in large-scale molecular data. This
suggests that further improvements can be made in the statistical analysis of
metagenomic data and a similar development of dedicated statistical methods
is needed to enable its full potential.
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Chapter 2

Summary of papers

2.1 Paper I – Statistical evaluation of methods

for comparative metagenomics

The aim of Paper I is to provide a comprehensive evaluation of statistical ap-
proaches for comparative metagenomics. The evaluation includes eleven meth-
ods that have been previously used on metagenomic data including both stan-
dard statistical tests as well as recently developed methods. The evaluation
focuses on three different parts; the ability to rank genes based on differential
abundance, the distribution of p-values under the null hypotheses as well as
the ability to control the false discovery rate. In addition, the performance
of the methods was measured for varying group sizes (number of replicates),
effect sizes (fold change) and raw abundance (mean counts). The combination
of these analyses is intended to give a full picture of the methods performance
on metagenomic data both in terms of power to detect differences but at the
same time controlling false positive rates.

Many comparative studies rely on a combination of data simulated from statis-
tical models and real data sets. However, simulated datasets are based on model
assumptions and inherently contain biases towards different models. Real data
is free from these assumptions but there is no information about which genes
are differentially abundant. In paper I we use resampled data from a real
metagenomic data set to avoid the biases of simulated data but still have con-
trol of differential abundance. The resampled data is generated by randomly
selecting a subsample to form an empirical null distribution. Differential abun-
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6 2. Summary of papers

dance is then simulated by thinning the observed counts. The resampled data
thus provides a realistic setting compared to simulated data.

The analysis showed that there were considerable differences between methods.
This includes large differences in ranking performance between methods. Most
methods also had biases in their p-value estimates with some methods being
conservative and some optimistic. The most obvious aspect was the ability to
handle overdispersion and methods that were unable to capture the variability
in the data had a substantially lower performance in all aspects measured. Two
methods were observed to have high performance across most settings. These
were a generalized linear model based on an overdispersed Poisson distribution
as well as the recently developed metagenomeSeq (Paulson et al., 2013). The
study provides a guide to method selection for future analyses of metagenomic
data.

2.2 Paper II – A hierarchical Bayesian method

for the ranking of genes based on differential

abundances

The focus of paper II is a new statistical method for detecting differentially
abundant genes in metagenomic data. The model is formulated within the
framework of a generalized linear model using a log link and the base variabil-
ity of a Poisson distribution. The model captures the variability of the data
by adding a random effect using a normal distribution with a gene specific
overdispersion parameter. The key feature of the model is a global prior on the
overdispersion parameters shared between all genes. This stabilizes the vari-
ance estimates of each gene. Similar methods that share variance information
have proved very useful when analyzing microarrays (Smyth, 2004). However,
the hierarchical structure of the model on top of the Poisson distribution makes
it hard to treat analytically and MCMC (Markov Chain Monte Carlo) is used
to fit the model to the data. The method is evaluated using both simulated
data and data resampled from a real metagenome. By comparing to a nested
model that does not share variance information we show that adding the global
prior has a positive impact on the ability rank genes based on differential abun-
dance. The conclusion is that modeling the variability of the data has large
impact in metagenomics.



Chapter 3

Future work

As stated paper one aims to be a comprehensive evaluation of statistical meth-
ods for metagenomics. There are two key additions needed to fulfill this aim.
Firstly there are a few methods for metagenomics that have not been included
both recent developments and older methods. Most important among these are
methods primarily developed for RNAseq. Even though these are not specif-
ically developed for metagenomics they target overdispersed count data and
have been used in a few metagenomic studies. Notable examples include edgeR
(Robinson et al., 2010), DESeq (Anders and Huber, 2010) and Voom(Law et al.,
2014). The second necessary addition is the inclusion of another dataset to use
for resampling. The dataset currently used is relevant but is limited to the hu-
man gut and the slightly outdated sequencing technique of 454 pyrosequencing
(Yatsunenko et al., 2012). A second data set sequenced with Illumina technol-
ogy will be added.

With regards to paper II the statistical method described has been shown to
perform very well on the resampled metagenomic data. However the Markov
Chain Monte Carlo implementation used is unable to handle large amounts
of data. The current analyses in the paper were all made using JAGS (Just
Another Gibbs Sampler) which has many merits (Plummer, 2003). It has both
an easy way to formulate models and a good interface with R. In addition it
features a module intended to improve the performance of generalized linear
models. Even though this module does improve the convergence in out model
it has a bug which causes the JAGS to crash when too many samples are
taken. The results in the article have been generated using the glm-module
however results have later been validated by running JAGS without the glm-
module. Unfortunately sampling without the glm-module runs takes a consid-
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8 3. Future work

erably longer time. The problem can be solved by either using another sampler
or by possibly re-parameterizing the model to improve mixing.

There are still several aspects of metagenomic data that are unexplored and
could present interesting topics for research. For example recent studies have
shown that metagenomic data may exhibit an increase in the number of zeros
present due to sampling biases (Paulson et al., 2013). The generalized linear
model framework used in paper II can be extended to handle zero-inflation.
In a same way that paper II investigated whether a global prior on the vari-
ance would increase the ability to detect differentially abundant genes in meta-
genomics the benefits of zero-inflation could be evaluated in a future study.
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