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SE-412 96 Göteborg, Sweden
Telephone +46 (0)31 772 1000
www.chalmers.se

Author email: friska@chalmers.se

ISSN 1652-0769
Technical Report MC2-291

Cover: Clockwise from top left: a setup for microwave photon detection
using cascaded three-level systems (Paper V); time evolution of the coher-
ent state in a resonator, dispersively coupled to a qubit, conditioned on the
qubit state (Paper I); a model for a giant multi-level atom coupled at sev-
eral points (possibly wavelengths apart) to a 1D waveguide (Paper VII);
zoom-in on part of a transmon qubit coupled to surface acoustic waves,
realizing a giant atom (Paper VI).

Printed by Chalmers Reproservice
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Quantum optics with artificial atoms
ANTON FRISK KOCKUM

Applied Quantum Physics Laboratory
Department of Microtechnology and Nanoscience
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Abstract

Quantum optics is the study of interaction between atoms and photons. In
the eight papers of this thesis, we study a number of systems where artificial
atoms (here, superconducting circuits emulating the level structure of an
atom) enable us to either improve on known concepts or experiments from
quantum optics with natural atoms, or to explore entirely new regimes
which have not been possible to reach in such experiments.

Paper I shows how unwanted measurement back-action in a parity mea-
surement can be avoided by fully using the information in the measure-
ment record. Paper III is a proof-of-principle experiment demonstrating
that an artificial atom built from superconducting circuits can mediate a
strong photon-photon interaction. In Papers II and V, we theoretically
investigate whether this interaction can be used in a setup for detecting
propagating microwave photons, making the photon to be detected impart
a phase shift on a coherent probe signal. We find that one atom is not
enough to overcome the quantum background noise, but it turns out that
several atoms cascaded in the right way can do the trick.

In Paper IV, we explain experimental results for a driven artificial atom
coupled to photons in a resonator. The last three papers all deal with an
artificial atom coupled to a bosonic field at several points, which can be
wavelengths apart. Paper VI is a ground-breaking experimental demon-
stration of coupling between an artificial atom and propagating sound in
the form of surface acoustic waves (SAWs). The short SAW wavelength
makes the atom “giant” in comparison; the effects of this new regime is ex-
plored theoretically in Paper VII, where the multiple coupling points are
shown to give interference effects affecting both the atom’s relaxation rate
and its energy levels. In Paper VIII, an artificial atom in front of a mirror
is used to probe the mode structure of quantum vacuum fluctuations.

Keywords: Quantum optics, quantum stochastic calculus, quantum mea-
surement, transmon, circuit QED, photon detector, parity measurement,
surface acoustic waves, artificial atoms
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Göran Johansson
Physical Review Letters 112, 093601 (2014)

VI. Propagating phonons coupled to an artificial atom
Martin V. Gustafsson, Thomas Aref, Anton Frisk Kockum, Maria K.
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Chapter 1

Introduction

Quantum optics is the study of interaction between light and matter at a
fundamental level, where the physical description needs to include quantum
mechanics to account for the dynamics of single photons and atoms. For
a long time, it was not clear whether such a regime was accessible to
experiments. In 1952, Erwin Schrödinger, one of the founding fathers of
quantum mechanics, wrote “we are not experimenting with single particles,
any more than we can raise Ichthyosauria in the zoo” [1]. At that time,
there were experiments involving single particles, but the only experimental
records were traces in cloud chambers and the like, i.e., the measurements
were destructive.

Decades after Schrödinger’s comment, experiments started to catch
up with theory. The Nobel Prize in Physics 2012 was awarded to Serge
Haroche and David Wineland for their contribution to this field over the
years [2–4]. They had demonstrated that single atoms could be used to
probe photon states in a microwave cavity [5–8] and, conversely, that sin-
gle ions could be trapped, cooled, and probed with laser light [9–13]. In
both cases, the measurements are gentle enough to allow for continuous
manipulation of the fragile quantum systems. Incidentally, one of the first
big achievements for both research groups was to create and measure a
superposition state known as a “Schrödinger cat state” [14, 15].

While we now have the tools to test theoretical predictions from quan-
tum optics in practice, the experiments are still hard to implement and
suffer from some limitations. However, in recent years there has been
tremendous progress in performing analogues of quantum optics experi-
ments using other systems [16, 17]. These systems, known as artificial
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atoms, can be designed to emulate relevant properties of natural atoms.
One example is artificial atoms made of superconducting circuits, which
can have a multi-level structure with transitions at microwave frequencies.
The artificial atoms not only make it easier to investigate known aspects of
quantum optics; they also open up exciting possibilities of exploring new
regimes which are not found in natural atoms.

In this thesis, we pursue both paths. Firstly, we study systems where
artificial atoms overcome experimental limitations for natural atoms, real-
izing clear demonstrations of various known quantum optics phenomena.
Secondly, we show examples where artificial atoms take us to new quantum
optics regimes not possible for natural atoms. Some of the work presented
in the eight appended papers falls into both categories.

In the following part of the introduction, we survey developments and
motivations driving the field of quantum optics with artificial atoms, such
as the use of microwave circuitry and the quest for a quantum computer.
We end with an overview of the thesis.

1.1 Quantum optics in superconducting circuits

As we have seen, quantum optics experiments were originally performed
with natural atoms, sometimes placed in cavities formed by mirrors. This
approach is known as cavity quantum electrodynamics (cavity QED or
CQED) [18, 19]. In the last few decades, other systems such as quan-
tum dots [20], nitrogen-vacancy centers in diamond [21], and rare-earth
ions in crystals [22] have also attracted attention. However, perhaps the
most versatile and promising of the new experimental approaches to quan-
tum optics is that of superconducting circuits [23–28], often referred to as
circuit quantum electrodynamics (circuit QED or cQED).

In the case of superconducting circuits, transmission lines on a chip are
used to guide microwave photons to and from artificial atoms. The artifi-
cial atoms come in different varieties, but they are all based on Josephson
junctions [29, 30] in combination with traditional circuit elements like ca-
pacitances and inductances.

All the elements of the superconducting circuits can be manufactured
on a chip with lithographic methods. This allows for detailed design of
properties suitable for the experiments one has in mind. It is possible to
set the transition frequencies of the artificial atoms as well as the coupling
strength between the artificial atoms and the transmission lines (the envi-
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Figure 1.1: A micrograph of the artificial atom used to mediate photon-photon
interactions in Paper III. The two sawtooth-shaped aluminium islands are coupled
both capacitively and via Josephson junctions (the tiny structure connecting the
islands in the middle). This superconducting circuit emulates a three-level atom,
which couples to a transmission line for microwave photons (the middle aluminium
strip with ground planes above and below). When the incoming probe photons
at frequency ωp and control photons at ωc interact with the transitions of the
artificial atom, the atom imparts a phase shift on the probe signal depending on
the strength of the control signal. The phase-shifted probe signal is then read out
using homodyne detection. Micrograph by Io-Chun Hoi.

ronment) with good precision; in fact, in some experiments one can even
tune these important parameters in situ. The combination of easy-to-use
conventional microwave electronics and a lithographic manufacturing pro-
cess also means that there is good potential to scale up superconducting
circuit setups to larger systems, which will be necessary in order to build
a future quantum computer.

The control of superconducting circuits allows for some quantum optics
experiments to be performed easier and more cleanly than is possible with
natural atoms. This is the main reason why all experimental papers in
this thesis (Papers III, IV, VI, and VIII) use superconducting circuits.
The pure theory papers (Papers I, II, V, and VII) are also written with
superconducting circuits in mind as the first experimental realization, but
in most cases there are no insurmountable obstacles to implementing their
suggested experiments in other systems.

A good example where superconducting circuits outperform natural
atoms is provided in Paper III. In that paper, we use a three-level artificial
atom in an open transmission line to mediate an effective photon-photon
interaction between a probe signal and a control signal resonant with the
first and the second atom transition, respectively, as shown in Fig. 1.1. We
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demonstrate phase shifts of tens of degrees in the probe signal when the
control signal is on a single-photon level. Comparable experiments with
natural atoms placed in optical fibres are at best able to achieve phase
shifts of less than a milliradian per photon [31–33].

Another example is the experiment in Paper VIII. There, an artificial
atom is placed close to the end of a transmission line. This setup mimics
the situation of a natural atom placed in front of a mirror. While such an
experiment has been performed with natural atoms [34], the superconduct-
ing circuit offers several advantages. One is that the artificial atom is fixed,
but its effective distance to the mirror can be tuned by changing its transi-
tion frequency. The natural atom must be physically moved and is hard to
keep rigidly in place. The other distinction between the two cases is that
the superconducting circuit setup is effectively one-dimensional (1D), while
the natural atom couples to a three-dimensional (3D) environment. These
two differences make it easier to detect the interference effect of the mirror
on the atom relaxation rate in the superconducting circuit. The move from
3D to 1D has in the last few years led to several experiments with artifi-
cial atoms in open transmission lines [35–41] (plus Papers III and VIII),
significantly improving on earlier efforts with natural atoms [42–46] and
quantum dots [47, 48], even though the latter ones use elaborate focussing
to overcome the drawbacks of the 3D geometry.

From the discussion so far one might get the impression that supercon-
ducting circuits hold the answer to all problems in quantum optics. The
reality is more complicated; superconducting circuits certainly have draw-
backs compared to other systems. For example, two natural atoms of the
same species are guaranteed to have identical features, but it is impossible
to fabricate two artificial atoms with superconducting circuits and make
sure that they are the same in every way. Another problem is the fact that
the field of circuit QED is still young compared to other approaches, e.g.,
ion traps, and some tools available in experiments with optical photons are
still missing from the toolkit for microwave superconducting circuits. An
important example is an efficient single-photon detector for propagating
photons, which exists in several variations for optical frequencies [49, 50],
but is more difficult to achieve for microwave photons since their energies
are several orders of magnitude lower than the energies of optical photons.

In Papers II and V, we try to remedy this drawback and investigate
the limits of a possible photon-detection scheme in circuit QED (there are
also other proposals [51–55]). The scheme is based on the Kerr-like photon-
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photon interaction we demonstrated experimentally in Paper III. A photon,
with frequency close to that of the first transition in the artificial atom,
is sent through a transmission line along with a coherent probe signal,
which has a frequency close to that of the second transition of the artificial
atom. If the atom can mediate a strong enough interaction between the
probe and the photon, the presence of a photon can be read out from a
measurement on the probe signal. While Paper II shows that it is not
enough to use a single artificial atom to achieve sufficient signal-to-noise
ratio (SNR) for photon detection, Paper V demonstrates that cascading
several artificial atoms in the right way makes it possible. An important
advantage compared to existing optical photon detectors is that ours does
not destroy the photon to be detected; the detection is said to be quantum
nondemolition (QND). Nondemolition detection schemes based on Kerr
interactions for optical photons have also been suggested [56, 57], but seem
harder to implement with natural atoms.

1.2 Reaching new regimes with artificial atoms

The advantages of superconducting circuits extolled in the previous sec-
tion begs the question: if we can do things so much better with artificial
atoms and have such freedom of design, can we not then reach new regimes
inaccessible with natural atoms? Yes, we can! Comparing to the previous
section, we here try to distinguish between parameter regimes that are
merely very hard to reach with natural atoms (but are easier to achieve
with artificial ones) and regimes which don’t exist in nature, but can be
designed for artificial atoms. The border between the two is not sharp.

Above, we focussed on quantum optics experiments with superconduct-
ing circuits and other artificial atoms. To fully appreciate the possibilities
afforded by engineered quantum systems, we also need to introduce the
field of quantum optomechanics, where the interaction between light and
mechanical vibrations is studied [58–65]. The typical experimental setup
is an optical cavity where one of the mirrors can move. The quantized
vibrations of the mirror then couples to the photons in the cavity. This
kind of setup has been realized in a large variety of systems in recent
years [66–73]. Of special interest is quantum electromechanics, where the
photons are provided in electrical circuits [74–78]. A corresponding exper-
imental setup is then an LC-oscillator where one of the capacitor plates
can vibrate, realizing a coupling to the microwave photons in the electrical
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Figure 1.2: An artist’s impression of an artificial atom coupled to SAWs. An
interdigitated structure of metal fingers (an interdigital transducer, IDT) can
convert microwave photons to phonons and vice versa. The structure to the left
functions as both a loudspeaker and a microphone, letting us communicate with
the artificial atom to the right via sound waves that travel on the surface of a
microchip. Illustration by Philip Krantz (krantznanoart.com).

circuit. Mechanical vibrations have been cooled to their quantum ground
state in both optomechanical and electromechanical setups in the last few
years [79, 80]. To complete the circle, there is now a theoretical proposal
for implementing an analogue of optomechanics in superconducting mi-
crowave circuits without any moving parts [81]. Instead, two Josephson
junctions form a loop to make a superconducting quantum interference de-
vice (SQUID) [30, 82], which can act as an effective movable mirror. The
“movement” is achieved by tuning the magnetic field passing through the
loop.

In the large zoo of artificial and natural atoms together with other en-
gineered quantum systems, much of the interesting physics is a result of
cross-breeding. There are many ongoing efforts to create hybrid systems
that combine the best characteristics of different systems while avoiding
their shortcomings [17, 83–92]. The general trend seems to be that super-
conducting circuits act as a hub for most of these efforts thanks to the ease
with which such systems can be designed, manufactured, and controlled.

Papers VI and VII provide an excellent example of a hybrid system
that uses mechanical vibrations and an artificial atom made from super-
conducting circuits to open up a new regime. In the experiment of Paper

http://www.krantznanoart.com/
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VI, illustrated in Fig. 1.2, surface acoustic waves (SAWs) are coupled to
an artificial atom. The SAWs are vibrations that travel on the surface
of a solid; they have seen widespread use in microwave technology, e.g.,
providing minute bandpass filters in cellphones [93–96]. Here, the SAWs
propagate on a piezoelectric material, which makes it possible for them
to contact the superconducting electrical circuit that is the artificial atom.
For the first time, it is now possible to perform quantum optics experiments
with sound taking on the role of light.

Since the sound travels much slower than light (a difference of roughly
five orders of magnitude), but at the same frequency, it has a correspond-
ingly shorter wavelength. This is what makes the experiment realize an
entirely new regime, that of a “giant atom”. In previous quantum op-
tics studies with both natural and artificial atoms, the size of the atom
was almost always negligible compared to the wavelength of the light. In
the SAW setup, the atom is no longer point-like in this sense, but in-
stead couples to the sound waves at several different points that can be
wavelengths apart. This gives rise to new interference effects, resulting in
frequency-dependent relaxation rates and energy level renormalizations for
the artificial atom, which is the topic of the theoretical study in Paper VII.

Another area where superconducting circuits allow us improve exper-
iments or reach new regimes is relativistic physics [97]. The SQUID em-
ulation of a mirror can be made to “move” at an appreciable fraction of
c, the speed of light. This has been used to demonstrate the dynamical
Casimir effect [98–101], where a moving mirror creates pairs of photons
from vacuum. There are also proposals to test the twin paradox on a chip
[102] and the effect of relativity on quantum teleportation [103].

1.3 Quantum fluctuations of the vacuum

The relativistic physics that now is within reach for superconducting cir-
cuits is often connected to quantum vacuum fluctuations. These are at
the heart of many quantum physics phenomena, including several that
are relevant for the appended papers. As a basic example, consider the
Hamiltonian for a harmonic oscillator,

H = p2

2m + mω2x2

2 , (1.1)

where p is the momentum, m is the mass, ω is the angular frequency, and x
is the position of the oscillator. In quantum physics, x and p are operators
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with the commutation relation [x, p] = i~, where ~ = h/2π (h is Planck’s
constant). Using this, and defining the annihilation and creation operators

a =
√
mω

2~

(
x+ ip

mω

)
, (1.2)

a† =
√
mω

2~

(
x− ip

mω

)
, (1.3)

the Hamiltonian can be rewritten as [104]

H = ~ω
(
a†a+ 1

2

)
. (1.4)

The operator a†a counts the number of excitations of the oscillator. We
see that even if the oscillator is in its ground state (zero excitations), it
still has an energy ~ω

2 . This is the vacuum energy; the oscillator is never
completely still.

The electromagnetic field can be described as a collection of harmonic
oscillators where the excitations are photons [105, 106]. Thus, in the elec-
tromagnetic vacuum there are photons flitting in and out of existence,
which leads to several interesting effects. One example is the static Casimir
effect [107], where two stationary mirrors in vacuum experience an attrac-
tive force due to there being fewer allowed electromagnetic field modes
between them than elsewhere. The Casimir force is a result of more vac-
uum fluctuations pushing from the outside than from the inside. This
effect has been detected experimentally [108]. Vacuum effects in relativis-
tic settings include the dynamical Casimir effect mentioned above as well
as Hawking radiation [109] and the Unruh effect [110].

The presence of vacuum fluctuations also affects atoms. A well-known
example is the Lamb shift [111, 112], a renormalization of energy levels in
the hydrogen atom. This kind of shift has also been measured for artifi-
cial atoms in superconducting circuits [113] and we calculate it for a giant
artificial atom in Paper VII. Another effect of the vacuum fluctuations is
that they induce relaxation of excited atom states [105, 114–116]. This
is the quantum version of the fluctuation-dissipation theorem, which con-
nects random fluctuations in the environment of a system with dissipation
from that system [117–119]. Dissipation from a quantum system to an
environment occurs in all the appended papers.

In Paper VIII, we use an artificial atom to map out the structure of
vacuum fluctuations in front of a mirror (the end of a transmission line), as
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Figure 1.3: Sketch of an artificial atom probing quantum vacuum fluctuations in
front of a mirror. The superconducting circuit that is the artificial atom is placed
at a distance L from the termination of a transmission line to ground, which is
an effective mirror. By modulating the transition frequency ωa of the atom, the
distance to the mirror can be changed in terms of wavelengths λ = 2πc/ωa, where
c is the speed of light in the transmission line. Changing the effective distance L/λ
places the atom at a node (blue line) or antinode (red line) of vacuum fluctuation
modes.

illustrated in Fig. 1.3. The information is extracted by measuring the re-
laxation rate of the atom as we tune its frequency, thus effectively changing
its distance to the mirror.

Finally, quantum fluctuations of the vacuum are also important in the
context of measurements on quantum systems [120]. The fluctuations re-
sult in an unavoidable noise background, which must be overcome. This is
a vital point for the different measurement schemes analyzed in Papers I,
II, and V.

1.4 Quantum computing and parity measurement

We have already alluded to the building of a quantum computer as an
important motivation for much of the development in quantum optics in
the last decades. The idea of a quantum computer was introduced by
Feynman in 1982 [121]. In contrast to a classical computer, which operates
using bits that can be in the two states 0 and 1, a quantum computer would
work with quantum bits, qubits. Qubits have eigenstates denoted |0〉 and
|1〉, but they can exist in a superposition of these states,

|ψ〉 = α |0〉+ β |1〉 , (1.5)

where α and β are complex numbers satisfying the normalization condition
|α|2 + |β|2 = 1 [122]. Such a superposition state can be represented on a
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Figure 1.4: The Bloch sphere representation of a qubit. The basis states are
located at the north and south poles. The various possible superpositions of the
two can then be converted to unique coordinates on the sphere, since an equivalent
parametrization of the superposition is |ψ〉 = cos θ2 |0〉+ eiφ sin θ

2 |1〉.

Bloch sphere, shown in Fig. 1.4.

Simply put, the possibility of putting a qubit in superposition states
enables a parallelization of computation that provides an advantage com-
pared to classical computers. Several quantum computing algorithms have
been developed that can provide a great speed-up for solving certain classes
of problems [123–127].

To build a fully working quantum computer, an architecture must be
found that is scalable and uses long-lived qubits that can both be measured
and work in gate operations [128]. Several systems, with both natural and
artificial atoms, are being investigated for this purpose [16, 26, 28, 129–
133]. However, so far only a few qubits have been made to work together
[134–137] (not counting the D-Wave machines [138–144]). Hence, before
we see large-scale quantum computers we will first have quantum simula-
tors [145–152], where a smaller number of qubits are used to investigate
quantum physics problems that are intractable on classical computers; it
takes 2N classical bits to simulate N quantum two-level systems, but it
only takes N qubits.

It is also hard to make qubits that can maintain a superposition state
for a long time. Coupling to environmental noise like vacuum fluctuations
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Encoding Measurements Correction

|ψ〉 • •
Bit
flip
error

M12
Flip iff M12 = −1,M23 = 1

|0〉
M23

Flip iff M12 = −1,M23 = −1

|0〉 Flip iff M12 = 1,M23 = −1

Figure 1.5: A circuit diagram for the three-qubit bit-flip error-correction code. In
the first step, quantum controlled-NOT (CNOT) gates are applied to produce the
state |ψ3〉 from |ψ〉 (see Eq. (1.6)). After a bit-flip error occurs, parity measure-
ments are done and correcting flips are applied to the qubits depending on the
measurement results (-1 means the qubits are in opposite states, +1 that they are
in the same state).

leads to decoherence of the qubit. For superconducting qubits there has
been tremendous progress in the last few years, increasing coherence times
from microseconds to above a millisecond [153–155]. This is not enough in
itself to enable computations with low enough error rate, but it is at the
threshold for being useful in quantum error correction codes, where several
qubits together represent and store the information of a single “logical
qubit” [156–159]. This redundancy allows for a kind of “majority vote”
system where if one qubit fails, that can be detected and corrected using
the others.

In the last years, 2D surface codes have emerged as a good, scalable
candidate for error correction in quantum computing [160, 161]. These and
other codes use parity measurements to detect errors without disturbing
the encoded logical qubit. A parity measurement on two or more qubits is
a measurement which determines whether an even or odd number of them
are in the same state. The measurement does not give any information
about the states of the individual qubits, preserving their superposition
states. Thus a parity measurement on two qubits tells us if they are in
either some superposition of |00〉 and |11〉 or in some superposition of |01〉
and |10〉. It does not give us any clue about whether any single qubit is in
state |0〉 or |1〉.

The simple three-qubit code, which can protect against bit-flip errors,
is a pedagogical example showing how parity measurements can be used
in error correction [122] (and has been implemented with superconducting
circuits [162]). The process is shown schematically in Fig. 1.5. We take
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our logical state |ψ〉 from Eq. (1.5) and encode it using three qubits as

|ψ3〉 = α |000〉+ β |111〉 . (1.6)

It is important to note that the quantum no-cloning theorem [163, 164]
prevents us from merely creating three independent identical copies of |ψ〉;
we have to make this entangled state instead. Now, let us assume that the
third qubit is flipped. This gives

|ψ3,err〉 = α |001〉+ β |110〉 . (1.7)

If we first do a parity measurement on qubits 1 and 2, and then on qubits
2 and 3, we do not affect the state |ψ3,err〉. However, the result of the
measurements lets us draw the conclusion that qubit 3 has been flipped
(assuming that the probability of more than one qubit flipping is negligi-
ble). We can then apply a control pulse to this qubit, flipping it back to
its original state.

In Paper I, we show how parity measurements in circuit QED can be
improved by undoing unwanted measurement back-action. The setup we
investigate has two qubits coupled to a resonator. By driving the resonator
with a coherent microwave signal, and detecting the output in a suitable
way, one can for certain system parameters realize a parity measurement of
the two qubits [165]. However, the measurement also seems to give extra
back-action on one of the parity states, which would make it unsuitable for
practical use. In our paper, we are able to show that a careful analysis of
the measurement signal reveals all the information about this extra back-
action needed to undo it.

1.5 Overview of the thesis

This is a compilation thesis, consisting of an introductory text and ap-
pended reprints of eight papers. In the present chapter, we have given
an overview of the field, placing the work of the appended papers in their
proper context and explaining the motivation for them. In the next few
chapters, we will mainly review the theoretical tools used in the appended
papers. Although some of the appended papers include experiments, this is
a theory thesis, and we defer to the appended papers in question, together
with the theses of some of our experimental collaborators [40, 166–168],
for details about fabrication and measurement setups.
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Chapter 2 is devoted to the various components of the systems we con-
sider in the appended papers: transmission lines, surface acoustic waves,
and artificial atoms in the form of superconducting qubits. We review how
to formulate a quantum mechanical description of such electrical circuits
and say a few words about the Jaynes–Cummings model, which describes
interaction between an atom and a resonator.

Chapters 3–5 form the theoretical backbone of the thesis. In Chapter 3,
we begin to look at open quantum systems, where a small quantum system
is coupled to an environment with a large number of degrees of freedom. To
handle this situation, master equations are introduced which constitute an
effective description of the system under the influence of the environment.
This is used to some extent in all appended papers. From the master
equation we then move on to input-output theory, which deals in more
detail with excitations arriving at and leaving the small system.

The output from a system can be measured in various ways; this is
the topic of Chapter 4. It is especially important for Papers I, II, and V,
which deal with both parity measurements and photon detection. In these
papers, as well as in Papers VII and VIII, we also make use of the (S,L,H)
formalism for cascaded quantum systems, which is the topic of Chapter 5.
Here, input-output theory is extended to handle output from one system
being used as input for another.

Chapter 6 is an overview of the results in the appended papers. Briefly,
Paper I analyzes a scheme for parity measurement in circuit QED and
shows that an unwanted type of measurement back-action actually can be
avoided by fully using the information in the measurement record. Papers
II and V are theoretical investigations of a possible photon detector setup
for circuit QED, where artificial atoms mediate an interaction between
the photon to be detected and a coherent probe signal. In Paper II, we
show that one atom is not enough to overcome the quantum background
noise, but Paper V shows that several atoms cascaded in the right way can
do it. Paper III is a proof-of-principle experiment demonstrating that an
artificial atom in the form of a superconducting circuit can indeed mediate
the strong photon-photon interactions we rely on in Papers II and V.

In Paper IV, we explain experimental results for an artificial atom
coupled to photons in a resonator. The system exhibits rich dynamics
when driven and probed with signals at different frequencies. Finally,
Papers VI, VII, and VIII are all concerned with an artificial atom coupled
to a bosonic field at several points, which can be wavelengths apart. In
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Paper VIII, an artificial atom placed in front of a mirror is used as a probe
of the interference pattern in the mode structure of the quantum vacuum
fluctuations. Paper VI is a ground-breaking experimental demonstration
of coupling between an artificial atom and propagating sound in the form
of SAWs. The short wavelength of the SAWs makes the atom “giant” in
comparison; the effects of this new regime is explored further theoretically
in Paper VII, which shows how the multiple coupling points of the atom
give rise to interference effects affecting both the atom’s relaxation rate
and its energy levels.

Finally, we conclude in Chapter 7 by summarizing our work and looking
to the future. There are indeed many interesting directions to pursue in
the field of quantum optics with artificial atoms.



Chapter 2

Artificial atoms and 1D
waveguides

As we saw in Chapter 1, there are many systems that can be used for ex-
periments in quantum optics. The archetypical setup is either single atoms
or ions, trapped in an electromagnetic field, being manipulated with laser
light [2, 4, 11–13, 15, 129, 135, 136, 148, 169, 170], or the reverse, light
trapped between two mirrors interacting with passing atoms [2, 3, 5–8, 18,
19, 171, 172]. However, in the last decade or so, an increasing number
of quantum optics experiments have been done using artificial atoms in
superconducting circuits [23–28, 35, 37, 41, 101, 113, 137, 162]. The versa-
tility offered by superconducting circuits in designing the artificial atoms
and their couplings to the surroundings, as well as the simplicity of using
existing microwave technology for the signal processing in experiments, are
the main reasons behind this development.

Since all experimental papers in this thesis use superconducting cir-
cuits, and all the theoretical papers are written mainly with such imple-
mentations in mind, this chapter is devoted to the quantum theory of
electrical circuits. After we introduce the theoretical tools needed to go
from a classical circuit description to a quantum one, we will illustrate
their use on our two main components: the transmission line and the ar-
tificial atom known as a transmon [173]. We will also look at theory for
surface acoustic waves in piezoelectric materials and show how a transmon
can couple to such waves. Finally, we say a few words about regimes in
the Jaynes–Cummings model [174], which describes interactions between
an atom and photons in a resonator.
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2.1 Circuit QED

The process for quantizing circuits has already been well described in
Refs. [175–179]. In the following, we will cover the main points in these
references.

To arrive at a quantum description given an electrical circuit, the first
step is to write down the classical Lagrangian L [180] of the circuit. It
turns out to be convenient to work with node fluxes

Φn(t) =
∫ t

−∞
Vn(t′) dt′, (2.1)

where Vn denotes node voltage at node n, and node charges

Qn(t) =
∫ t

−∞
In(t′) dt′, (2.2)

where In denotes node current. With the node fluxes as our generalized
coordinates, the Hamiltonian H follows from the Legendre transformation
[180]

H =
∑

n

∂L

∂Φ̇n
Φ̇n − L. (2.3)

The generalized momenta ∂L
∂Φ̇n

will sometimes, but not always, be the node

charges Qn.
Up to this point, everything has been completely classical. To pro-

ceed to quantum mechanics, we promote the generalized coordinates and
momenta to operators with the canonical commutation relation

[
Φn,

∂L

∂Φ̇m

]
= i~δnm, (2.4)

where δnm is the Kronecker delta.
For quantum optics with superconducting circuits, three basic elements

are needed: capacitors, inductors, and Josephson junctions, illustrated in
Fig. 2.1. A Josephson junction consists of a thin insulating barrier between
two superconducting leads, and it can be modelled as a capacitor in parallel
with a nonlinear inductor characterized by the Josephson energy EJ.

The Lagrangians for capacitors and inductors are straightforward. The
energy of a capacitor with capacitance C is

CV 2

2 =
C
(
Φ̇1 − Φ̇2

)2

2 , (2.5)
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Figure 2.1: The three basic circuit elements used in quantum optics for supercon-
ducting circuits. From left to right: capacitance C, inductance L, and a Josephson
junction with capacitance CJ and Josephson energy EJ.

where V is the voltage across the capacitor, and for an inductor with
inductance L it is

LI2

2 =
{
V = Lİ

}
= (Φ1 − Φ2)2

2L , (2.6)

where I is the current through the inductor. In the Lagrangian, capacitive
terms (terms with Φ̇) represent kinetic energy and give a positive contribu-
tion, while inductive terms (terms with Φ) represent potential energy and
give a negative contribution. We thus have

LC =
C
(
Φ̇1 − Φ̇2

)2

2 , (2.7)

LL = −(Φ1 − Φ2)2

2L . (2.8)

For the Josephson junction, the contribution from the capacitive part
with CJ follows immediately from previous discussion. To get the contri-
bution from the nonlinear inductor, we use the Josephson equations [29,
30]

IJ = IC sinφ, (2.9)

φ̇ = 2e
~
V (t), (2.10)

where IJ is the supercurrent through the junction, IC is the critical cur-
rent (the maximum value of IJ), V (t) is the voltage across the junction,
φ = 2e (Φ1 − Φ2) /~ is a phase difference across the junction, and e is the
elementary charge. These equations give

∫ t

−∞
I(t′)V (t′) dt′ = EJ (1− cosφ) , (2.11)
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︸ ︷︷ ︸
∆x

Figure 2.2: Circuit diagram for a transmission line. C0 and L0 denote capacitance
per unit length and inductance per unit length, respectively, and ∆x is a small
distance which will go to zero in the continuum limit.

where we have identified the Josephson energy EJ = ~IC/2e. The La-
grangian for the Josephson junction is thus

LJJ =
CJ

(
Φ̇1 − Φ̇2

)2

2 − EJ (1− cosφ) . (2.12)

Note that the inductive term is a cosine function rather than the quadratic
function for a normal inductor; this is why the Josephson junction can be
seen as nonlinear inductance. This nonlinearity is essential for making
artificial atoms with different level structures. From normal capacitors
and inductors we can only get harmonic LC-oscillators.

2.2 The quantized transmission line

With the formalism for quantum circuits in hand, we now apply it to our
first building block in quantum optics with superconducting circuits: the
transmission line. A microwave transmission line is basically a coaxial
cable squashed onto a chip; it consists of a center conductor between two
ground planes. We will first consider an infinitely long transmission line
and then insert mirrors (gaps) to form resonators.

2.2.1 The infinite 1D waveguide

The transmission line can be modelled by the circuit depicted in Fig. 2.2
[181, 182]. Using Eqs. (2.7) and (2.8), we immediately get the Lagrangian

LTL =
∑

n

[
C0∆x

2
(
Φ̇n(t)

)2
− 1

2L0∆x
(Φn+1(t)− Φn(t))2

]
, (2.13)
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from which we can identify the conjugate momenta

∂LTL

∂Φ̇n
= C0∆xΦ̇n(t), (2.14)

which are the node charges Qn(t). Applying the Legendre transformation
(Eq. (2.3)) to LTL, inserting the definition of the node charges, and taking
the limit ∆x→ 0 (or rather ∆x→ dx) gives the Hamiltonian

HTL = 1
2

∫ ∞

−∞
dx
(
Q(x,t)2

C0
+ 1
L0

(
∂Φ(x,t)
∂x

)2)
, (2.15)

where Q(x,t) and Φ(x,t) are charge density and flux density, respectively.
The Lagrangian can also be written in a continuum form

LTL =
∫ ∞

−∞
dxL =

∫ ∞

−∞
dx
(
C0
2
(
Φ̇(x,t)

)2
− 1

2L0

(
∂Φ(x,t)
∂x

)2)
, (2.16)

and applying the Euler-Lagrange equations [106]

∂

∂µ


 ∂L
∂
(
∂Φ
∂µ

)


− ∂L

∂Φ
= 0, µ = x,t (2.17)

to the Lagrangian density L gives the wave equation

∂2Φ(x,t)
∂t2

− 1
L0C0

∂2Φ(x,t)
∂x2 = 0. (2.18)

This tells us that there will be left- and right-moving flux waves

Φ(x,t) = ΦL(kx+ ωt) + ΦR(−kx+ ωt) (2.19)

moving in the transmission line with velocity v = 1/
√
L0C0 and wavenum-

ber k = ω/v.
So far, all calculations have been classical. To quantize the field in the

transmission line, we promote the generalized coordinates and momenta
to operators with the commutation relation

[
Φ(x), Q(x′)

]
= i~δ(x− x′), (2.20)

where the delta function, rather than the Kronecker delta, appears since we
are working with a continuum model. From the form of the Hamiltonian in
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Eq. (2.15) it can be seen that we have a collection of harmonic oscillators.
We can thus rewrite the generalized coordinates and momenta in terms
of annihilation and creation operators, just like in Sec. 1.3. The left- and
right-moving fluxes become [175, 178, 183]

ΦL/R(x,t) =
√

~Z0
4π

∫ ∞

0

dω√
ω

(
aL/R,ωe

−i(±kx+ωt) + H.c.
)
, (2.21)

where H.c. denotes Hermitian conjugate, the annihilation and creation op-
erators obey the commutation relations

[
aX,ω, a

†
X’,ω′

]
= δ(ω − ω′)δXX′ , (2.22)

and Z0 =
√
L0/C0 is the characteristic impedance of the transmission line.

To connect to the discussion of quantum vacuum fluctuations in Sec. 1.3
and the measurement of their strength in a semi-infinite transmission line
in Paper VIII, it is illustrative to calculate the spectral density of the
voltage fluctuations in our open transmission line using Eq. (2.21). Using
V = ∂tΦ, we have [120]

SV V [ω] =
∫ ∞

−∞
dteiωt 〈V (t)V (0)〉

=
∫ ∞

−∞
dteiωt~Z0

4π

∫ ∞

0

dω′√
ω′

∫ ∞

0

dω′′√
ω′′

(−iω′)(−iω′′)

×
〈(

aL,ω′e−i(kx+ω′t) + aR,ω′e−i(−kx+ω′t) −H.c.
)

×
(
aL,ω′′e−ikx + aR,ω′′eikx −H.c.

)〉

= ~Z0
4π

∫ ∞

−∞
dteiωt

∫ ∞

0
dω′
√
ω′
∫ ∞

0
dω′′
√
ω′′2e−iω′tδ(ω′ − ω′′)

= ~Z0
2π

∫ ∞

0
dω′ω′2πδ(ω − ω′) = Z0~ω, (2.23)

where we assumed negligible temperature such that the only contribution

from the expectation value is terms on the form
〈
aa†

〉
= 1. The result

shows that the left- and right-travelling modes each contribute ~ω/2 to the
power spectral density SV V [ω]/Z0, which agrees well with our expectations
for the quantum vacuum fluctuations.
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2.2.2 Mirrors and resonators

We can now proceed to introduce boundary conditions in the open trans-
mission line. Grounding one end at x = 0 gives the boundary condition
Φ(0,t) = 0; it is equivalent to inserting a mirror in open space. It is also
possible to connect one end of the transmission line to ground via a capac-
itance or via a SQUID (the latter gives a tunable boundary condition, a
moving mirror, as discussed in Sec. 1.2).

A semi-infinite transmission line still has a continuum of modes, but the
boundary condition gives rise to a mode structure. This can be seen as an
interference effect between waves approaching the mirror and waves that
have been reflected off the mirror. In Paper VIII, we explore this mode
structure, which is imposed also on the vacuum fluctuations, by placing
an artificial atom close to a mirror and varying its resonance frequency.
The relaxation rate of the atom is proportional to the spectral density of
the voltage fluctuations at the atom transition frequency, which given the
boundary condition Φ(0,t) = 0 becomes SV V [ω]/Z0 = 2~ω sin2(kx).

A semi-infinite transmission line is also used in the experiment of Paper
III, where a three-level artificial atom placed close to a mirror is used to
mediate photon-photon interactions. Here, the main point of using the
mirror is to give unidirectionality that improves efficiency; all the photons
must go out in one direction, whereas in an open transmission line they
can be scattered by the atom in two different directions.

If we introduce boundary conditions at two points x = 0 and x = d
in an open transmission line, we create a resonator. Using Eq. (2.21) to
satisfy Φ(0,t) = 0 = Φ(d,t), we see that these boundary conditions enforce
aL,ω = −aR,ω and sin(kx) = 0. Thus, only modes with frequencies

ωn = nπv

d
= nπ

d
√
L0C0

, (2.24)

where n is an integer, remain [178]. We now have a discrete, yet still infi-
nite, collection of harmonic oscillators [177, 178]. In most applications only
the fundamental mode ω1 ≡ ωr is used, giving the well-known harmonic
oscillator Hamiltonian

H = ~ωr

(
a†a+ 1

2

)
, (2.25)

where a now is the annihilation operator for this localized mode.
In Papers I and IV, we consider setups with such resonators coupled

to artificial atoms. The next section shows how an artificial atom can
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Cg

+
−VgEJ CJ

Φ

Figure 2.3: Circuit diagram for a Cooper-pair box. The Josephson junction is
modelled by the capacitance CJ in parallel with a nonlinear inductor having
Josephson energy EJ. The node between the gate capacitance Cg and the Joseph-
son junction is called the ”island”.

be constructed from superconducting circuits, and Sec. 2.5 explores the
Hamiltonian that results from the interaction between an atom and a res-
onator.

2.3 The transmon qubit

There are several ways to build an artificial atom with superconducting cir-
cuits [27, 178, 184–190]. Their common denominator is the use of Joseph-
son junctions to provide a nonlinear element. In this section, we will give
an overview of one implementation, the transmon [173], which is used or
considered in all the appended papers of this thesis.

The transmon is a variation on the Cooper-pair box (CPB) [185, 186,
191], the circuit diagram of which is shown in Fig. 2.3. The CPB consists
of a small superconducting island connected to a superconducting reservoir
via a Josephson junction, which allows Cooper pairs to tunnel on and off
the island. The model also includes an external voltage source Vg coupled
to the island via a gate capacitance Cg, to determine the background charge
ng = CgVg/2e (measured in units of Cooper pairs) that the environment
induces on the island.

Using Eqs. (2.7) and (2.12) we get the CPB Lagrangian

LCPB =
Cg

(
Φ̇− Vg

)2

2 + CJΦ̇
2

2 − EJ(1− cos 2eΦ
~

) (2.26)

Applying the Legendre transformation, identifying the conjugate momen-
tum (the node charge) Q = (CJ + Cg)Φ̇ − CgVg, and removing constant
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Figure 2.4: The three lowest energy levels of a CPB plotted as a function of ng for
EJ/EC = 1 (left) and EJ/EC = 20 (right). The energy scale is normalized to the
level separation between the ground state and the first excited state at ng = 0.
The decreased sensitivity to charge noise in the transmon regime (EJ/EC � 1),
as well as the decreased anharmonicity, is apparent.

terms that do not contribute to the dynamics, we arrive at the Hamiltonian

HCPB = 4EC(n− ng)2 − EJ cosφ, (2.27)

where EC = e2/2(Cg + CJ) is the electron charging energy, n = −Q/2e is
the number of Cooper pairs on the island, and φ = 2eΦ/~.

We now promote Φ and Q to operators in the same way as in the
previous sections. This translates into a commutation relation for n and
φ, which since the Hamiltonian is periodic in φ should be expressed as [105,
179] [

eiφ, n
]

= eiφ. (2.28)

From this follows that e±iφ |n〉 = |n∓ 1〉, where |n〉 is the charge basis
counting the number of Cooper pairs. Using the resolution of unity [104]
and cosφ = (eiφ+e−iφ)/2 we can then write the Hamiltonian in the charge
basis as [177, 178]

HCPB =
∑

n

[
4EC(n− ng)2 |n〉〈n| − 1

2EJ (|n+ 1〉〈n|+ |n− 1〉〈n|)
]
.

(2.29)
The energy level structure of HCPB depends on the parameters EJ, EC,

and ng. As ng represents the influence of the environment, we would like
it to have little effect in order to have a stable, controllable system. This is
achieved when EJ � EC (the phase rather than the charge dominates), as
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is illustrated in Fig. 2.4. The price to be paid is a decrease in anharmonic-
ity, i.e., the difference between the transition energy needed to go from the
ground state to the first excited state and the transition energy needed to
go from the first excited state to the second excited state. To work as a
qubit, an artificial atom has to be anharmonic enough to be approximated
as a two-level system when driving the first transition; a signal driving the
atom from the ground state to the first excited state should not be able
to induce a further transition to the second excited state. Fortunately,
the influence of ng decays much faster than the anharmonicity when EJ is
increased, so the transmon can indeed be used as a qubit [173].

In the limit EJ � EC, the energy levels of the transmon are approxi-
mately given by [173]

Em = −EJ +
√

8EJEC

(
m+ 1

2

)
− EC

12
(
6m2 + 6m+ 3

)
. (2.30)

From this, we get the anharmonicity

α = E2,1 − E1,0 = (E2 − E1)− (E1 − E0) = −EC . (2.31)

Since EC � EJ, the anharmonicity is small compared to the transition
frequencies, but it can still be large enough compared to drive strengths and
relaxation rates in the system to ensure that the transmon can be operated
as a two-level system. To achieve a low EC, one adds a shunt capacitance in
parallel with CJ, often by designing the transmon in the form of two islands
that form an interdigitated finger structure with high capacitance. The
islands are usually connected by a SQUID (see Sec. 1.2) rather than a single
Josepshon junction. The SQUID functions as a Josephson junction with a
tunable EJ (controlled by the magnetic flux through the SQUID), which
means that the energy levels and transition frequencies of the transmon
can be tuned in situ during an experiment.

The transmon is not always operated as a pure two-level system. In
some cases, the second excited state of the transmon is actually used to
implement qubit gates [162, 192, 193]. Indeed, d-level systems, qudits,
make quantum computation possible with less resources [194–196] and can
simulate more quantum systems than qubits [197]; transmons seem well
suited to work as qudits [198, 199]. Another advantage of the transmon is
that the superconducting island shape can be designed to couple to several
other transmons or resonators [200, 201].
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2.4 Surface acoustic waves

While most papers in this thesis are concerned with transmons coupled to
photons in electric transmission lines, Paper VI shows that a transmon can
also interact with phonons in the form of surface acoustic waves. In this
section, we will first review classical theory for SAWs and then show how
they couple to a transmon.

2.4.1 Classical SAW theory

Surface acoustic waves are a type of vibrations in a solid that are confined
to the surface of the material, decaying exponentially in the bulk. Such
solutions to the wave equation in a 3D material were first found by Lord
Rayleigh in 1885 [202] and they are important in many natural phenom-
ena, e.g, in earthquakes. About 50 years ago, it was realized that SAWs in
piezoelectric materials can be used to convert long-wavelength electromag-
netic radiation to short-wavelength vibrations, which has proven extremely
useful in TV and cellphone technology [93–96]. Here, we will mainly follow
Ref. [93] to explain the basic mechanisms.

Applying a force F to a 3D solid material can give rise to particle
displacements u. To describe this, one defines the stress tensor

Tij = Fi
Aj
, i,j = x,y,z, (2.32)

where Fi is the force in direction i and Aj is the cross-section area in
direction j (the area vector is taken as the normal pointing outwards from
the volume under consideration). The stress gives rise to a strain

Sij = ∂ui
∂j

, i,j = x,y,z, (2.33)

which measures the fractional change of length in the material. The stress
and the strain are related by an elasticity tensor, or stiffness coefficient,

Tij = cijklSkl. (2.34)

From symmetry considerations it is possible to show that Tij = Tji, reduc-
ing the number of independent stresses to six. These can be gathered in a
vector

T = (Txx, Tyy, Tzz, Tyz, Tzx, Txy). (2.35)
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Similarly, we can define a strain vector S, where the last three entries are
symmetrizations,

S = (Sxx, Syy, Szz, Syz + Szy, Sxz + Szx, Sxy + Syx) . (2.36)

We are then left with
T = cS, (2.37)

where c is a 6× 6 stiffness matrix.
For a dielectric material, there is a similar relation between an applied

electric field E and the electrical displacement D,

D = εE, (2.38)

where ε is a 3 × 3 permittivity matrix. In most materials, the processes
of Eqs. (2.37) and (2.38) are independent of each other. However, in a
piezoelectric material, the arrangement of the atoms is such that a strain
will give rise to a polarization charge, and vice versa. The result is that
we get two coupled equations,

T = cS− eTE, (2.39)

D = eS + εE, (2.40)

where e is a 3× 6 matrix known as the piezoelectric constant and eT is its
transpose. To see the interplay between electricity and vibrations, we will
consider as an example a compressional wave moving in the x direction in
a material with e11 6= 0. Eqs. (2.39)-(2.40) then become

T1 = c11S1 − e11E1, (2.41)

D1 = e11S1 + ε11E1. (2.42)

Following Ref. [93], we will now connect to Sec. 2.2, showing that this ex-
ample is equivalent to a transmission line. To see this, we first introduce
the particle displacement velocity v = ∂tu (we drop subscripts from here
on). Since S = ∂xu, taking the time derivative of Eq. (2.41) and rearrang-
ing the terms gives

∂v

∂x
= 1
c

∂T

∂t
+ e

c

∂E

∂t
. (2.43)

Then, solving Eq. (2.39) for S, inserting the result into Eq. (2.40), solving
the resulting equation for E and inserting that result in Eq. (2.43) leads
to

∂v

∂x
= 1
c′
∂T

∂t
+ e

εc′
∂D

∂t
, (2.44)
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where we have defined

c′ = c+ e2

ε
≡ c(1 +K2). (2.45)

K2 = e2/εc is called the electromechanical coupling ; it is a defining prop-
erty for piezoelectric materials. In the most strongly piezoelectric materi-
als, like lithium niobate (LiNbO3), K2 ≈ 5 · 10−2, while gallium arsenide
(GaAs), which was used in the experiment of Paper VI, has K2 ≈ 7 · 10−4.

In the quasi-electrostatic approximation, D is constant (assuming that
the material has no free charges and that there is external voltage applied).
With this and the definition in Eq. (2.32), Eq. (2.44) becomes

∂v

∂x
= 1
c′A

∂F

∂t
(2.46)

for a cross-section area A.

To get a second equation that will help us connect this to a trans-
mission line model, we consider the effect of stress on an infinitesimal
cube with sides dx, dy, and dz, having mass density ρm. On one side of
the cube, there is a force Tdydz, while on the opposite side the force is
(T + (∂xT ) dx) dydz. Newton’s second law, F = ma, used on the net force
gives

∂T

∂x
dxdydz = ρmdxdydz ∂v

∂t
, (2.47)

which can be rewritten as

∂F

∂x
= ρmA

∂v

∂t
. (2.48)

Eqs. (2.46) and (2.48) are of the same form as the equations for voltage
V and current I in a transmission line,

∂V

∂x
= −L0

∂I

∂t
, (2.49)

∂I

∂x
= −C0

∂V

∂t
. (2.50)

Making the identifications

V ↔ −F, I ↔ v, L0 ↔ ρmA, C0 ↔
1
c′A

, (2.51)
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Figure 2.5: SAW propagation on a substrate. The particle motion includes both
compression in the x direction, which is the propagation direction of the SAW,
and shearing in the y direction.

we can thus extract the acoustic wave propagation velocity

vwave = 1√
L0C0

= 1√
ρmA

1
c′A

=
√

c′

ρm
. (2.52)

The example above was for an acoustic wave moving in the bulk of
a piezoelectric material. A surface acoustic wave is more complicated, as
shown in Fig. 2.5. If we let x be the propagation direction (the surface is
the xz plane), the SAW will include compressional motion in the x direction
and shearing in the y direction (this gives in total elliptical particle motion),
along with an electrostatic wave. Since we are interested in connecting to
electronics, it is convenient to make the electric potential at the surface, φ,
our main variable. Given φ, ux and uy will be fixed by material parameters.

The full SAW description involves permittivities and piezoelectric cou-
plings in several directions as well as an exponentially decaying part in the
y direction. With the reasonable approximations that the compressional
motion dominates and that the electrostatic part is described by the con-
stant potential φ in a shallow layer at the surface (zero elsewhere), it is
still possible to use a transmission line picture. The potential φ is then
equated to the voltage V in the transmission line and a transmission line
conductance Y0 is defined such that the total power carried by the SAW,
including both electrical and mechanical contributions, is

P = Y0 |φ|2 . (2.53)
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Figure 2.6: A sketch of an IDT. Two islands with periodically spaced metal fingers
of length W are connected to a voltage source VT. The voltage induces strain in
the piezoelectric substrate, launching SAWs to the left and right with electric
potential φL/R.

Since the conductance will depend on the width W of the SAW, a charac-
teristic conductance y0 is defined using the SAW wavelength λ,

y0 = λ

W
Y0. (2.54)

From calculations similar to those of the example above, but with some
more care taken to reflect that we are now at a surface, it can be shown
that [93]

y0 = 2πCsv0
K2 , (2.55)

where v0 is the SAW propagation velocity and Cs = ε0 + εp (εp being the
permittivity of the substrate and ε0 the permittivity of the medium above
the substrate).

With a theory for SAW propagation in place, the next step is to gen-
erate the waves. Current SAW technology is based on the interdigital
transducer (IDT), invented in 1965 [203]. An IDT consists of a num-
ber of metallic fingers placed periodically on the piezoelectric substrate as
sketched in Fig. 2.6. When an AC voltage VT is applied to the transducer,
it induces strain in the piezoelectric substrate and generates SAWs with
amplitude φ = µVT, where µ is a coupling constant that will be determined
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shortly. Conversely, a SAW wave arriving at the IDT structure will gener-
ate a current I = gmφ. The reciprocity between conversion from electrical
signal to SAW and vice versa leads to a relation between gm and µ [93]:

gm = 2µY0, (2.56)

where the factor 2 comes from the applied voltage generating waves with
amplitude µVT in each propagation direction (both to the left and to the
right).

To calculate µ for a single IDT finger pair of length W , we can ap-
proximate it as a capacitor with capacitance WCs and a uniform charge
density set by VT . This acts as a current source in the SAW transmission
line; the result is [93]

µ = icgK
2, (2.57)

where cg is a geometry factor on the order of 1. Its exact value depends
on the metallization ratio η, the ratio between the finger width a and the
inter-finger distance p. The result in Eq. (2.57) also assumes that we are
considering a frequency matching the resonance condition λ = 2p.

For the case of multiple fingers, one simply sums the individual finger
contributions, including the phase shift the SAW acquires travelling from
one finger to the next. If we, for convenience, ground one of the electrodes
and let the coordinates of the Np fingers of the other electrode be xk, we
get

|µ| = cgK
2

∣∣∣∣∣∣

Np∑

k=1
ei2πfxk/v0

∣∣∣∣∣∣
. (2.58)

If the fingers are equally spaced such that |xk − xk−1| = λ = v0/f0, the
result for an arbitrary frequency f is

|µ (f)| = cgK
2
sin
(
Npπ

f−f0
f0

)

sin
(
π f−f0

f0

) , (2.59)

which has the peak value NpK
2 on resonance, f = f0. The possibility to

choose finger spacings that couple preferentially to certain frequencies is
part of the reason why SAWs are widely used in filtering applications.

For a compact description of the IDT functions, it is useful to develop
an equivalent circuit model, shown in Fig. 2.7. The conversion of electrical
signal to SAW is represented by a real-valued acoustic admittance Ga.
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V CT Ga iBa

ZS

VT

gmφ CT Ga iBa ZL

VT

Figure 2.7: Circuit models for transmitter and receiver IDTs. Top: a transmitter
IDT where a voltage V is applied through a source impedance ZS, resulting in a
voltage VT over the IDT which consists of the capacitance CT between the two
electrodes and a complex acoustic admittance Ga + iBa. Bottom: a receiver IDT.
Here, the incoming SAW amplitude φ acts as a current source in the circuit, which
includes a load impedance ZL.

Since the power lost through such a circuit element, 1
2 |VT|2Ga, should

equal the emitted SAW power, 21
2 |φ|

2 Y0, we get

Ga = 2 |µ(f)|2 Y0 = −µgm. (2.60)

There is also an imaginary-valued acoustic admittance iBa, which arises
from the fact that SAWs generated at one finger can be picked up again
by another finger. It turns out that Ba is the Hilbert transform of Ga [93],

Ba(f) = 1
π
P
∫ ∞

−∞
df ′Ga(f ′)

f ′ − f , (2.61)

where P denotes principal value. For the case of equally spaced IDT fingers,
we have Ba(f0) = 0. In the equivalent circuit model, the capacitance
CT between the two electrodes is also included. When the IDT picks up
SAWs instead of emitting them, it is represented by a current source with
I = gmφ.
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gmφ Ga iBa Ctr LJ

Figure 2.8: Circuit model of a transmon coupled to SAWs. The transmon is
approximated as an LC-oscillator. The fingers of the transmon shunt capacitance
also serve as an IDT structure that connects to the SAWs.

2.4.2 Coupling SAWs to a transmon

In the previous subsection, we saw that SAWs can be described in terms
of a moving electric potential in a transmission line model. The differ-
ence compared to the photons in the purely electrical transmission line of
Sec. 2.2 is that the SAWs are mainly vibrations, the quanta of which are
phonons. We can also observe that the transmon of Sec. 2.3 couples to
charge and includes a large shunt capacitance, which is often designed in
an interdigitated finger structure similar to that of IDTs. It thus seems
possible to couple a transmon to SAWs, realizing quantum optics exper-
iments with slow-moving phonons instead of fast photons. This idea was
first presented in Refs. [167, 204] and realized in Paper VI.

To estimate the coupling we can get between the SAW phonons and a
transmon, we can consider the semiclassical circuit model shown in Fig. 2.8,
as is done in the appendix of Paper VI. Here, the capacitance Ctr between
the two electrodes is that of the transmon. The transmon SQUID is in-
cluded in the form of a nonlinear inductance LJ, which from the Josephson
equations, Eqs. (2.9) and (2.10), becomes

LJ = ~
2eIC cosφ, (2.62)

where now φ is the phase difference across the SQUID as defined in Sec. 2.1
and e is the elementary charge. In the semiclassical approximation, we
just consider a single excitation in the transmon and can thus neglect
the nonlinearity of LJ (φ � 1), such that the resonance frequency of the
transmon is

ωtr = 1√
LJCtr

. (2.63)

To make things easier, we also assume that we are on acoustic resonance,
such that Ba = 0 and does not affect ωtr.
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The damping factor of a parallel RLC circuit is given by

ζ = 1
2R

√
L

C
, (2.64)

so the rate at which the transmon relaxes to phonons is

Γ = ωtr
Ga

2

√
LJ

Ctr
= Npc

2
gK

2ωtr, (2.65)

where Np is the number of finger pairs. Here, we used Eqs. (2.54), (2.55),
(2.60), and (2.63), together with |µ| = NpcgK

2, Ctr = NpWCs, and
2πv0/λ = ωtr.

The result in Eq. (2.65) changes slightly if we use different finger struc-
tures (e.g., pairs of double fingers which can minimize problems with purely
mechanical reflections) or another metallization ratio, but the main result
stands: with a few fingers, depending on piezoelectric substrate, we can
get a relatively fast relaxation from the qubit to phonons. For exam-
ple, in Paper VI Np = 20 finger pairs were used on a GaAs substrate
with K2 = 7 · 10−4, which resulted in a relaxation rate to phonons of
Γ/2π = 38 MHz. Indeed, for a strongly piezoelectric substrate and many
IDT fingers, it even seems possible to reach a regime of ultrastrong cou-
pling, where Γ is on the order of ωtr.

From a quantum optics perspective, one of the main reasons that the
transmon coupled to SAWs is a very interesting system is that it forms
a “giant artificial atom”. Natural atoms used in traditional quantum op-
tics typically have a radius r ≈ 10−10 m and interact with light at optical
wavelengths λ ≈ 10−7−10−6 m [18, 169]. Sometimes the atoms are excited
to high Rydberg states (r ≈ 10−8 − 10−7 m), but they then interact with
microwave radiation (λ ≈ 10−3 − 10−1 m) [3, 19]. Microwaves also inter-
act with superconducting qubits, but even these structures are typically
measured in micrometers (although some recent designs approach wave-
length sizes [205]). Consequently, theoretical investigations of atom-light
interaction usually rely on the dipole approximation that the atom can
be considered point-like when compared to the light wavelength. This is
clearly not the case for the transmon coupled to SAWs, since here each IDT
finger is a connection point and the separation between fingers is always
on the order of wavelengths.

Inspired by the SAW-transmon setup, Paper VII investigates the physics
of an atom coupled to an open transmission line at a number of discrete
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Figure 2.9: A schematic model for a giant artificial multi-level atom, connected
at N points to left- and right-moving excitations in a 1D transmission line.

points, which can be spaced wavelengths apart. A sketch of this model
is shown in Fig. 2.9. While this is a model of the SAW-transmon setup,
approximating each finger as having a negligible width, it should also be
possible to realize with a variation of the transmon design, the “xmon”
[200], coupled to the usual superconducting transmission line considered
in Sec. 2.2. The Hamiltonian for our model is

H = Hatom +HTL +Hint, (2.66)

where we define the multi-level-atom Hamiltonian

Hatom =
∑

m

ωm |m〉〈m| , (2.67)

the transmission line Hamiltonian

HTL =
∑

j

ωj
(
a†RjaRj + a†LjaLj

)
, (2.68)

and the interaction Hamiltonian

Hint =
∑

j,k,m

gjkm
(
σm− + σm+

) (
aRje

−iωjxk/v + aLje
iωjxk/v + H.c.

)
, (2.69)

where σm− = |m〉〈m+ 1| and σm+ = |m+ 1〉〈m|. The atom has energy levels
m = 0,1,2, . . . with energies ωm (for brevity and simplicity, we will here
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and in the rest of the thesis work in units where ~ = 1). It is connected
to right- and left-moving modes Rj and Lj of the transmission line with
some coupling strength gjkm at N points with coordinates xk. We assume
that the time it takes for a transmission line excitation to travel with
velocity v across all the atom connection points is negligible compared to
the timescale of atom relaxation. Thus, only the phase shifts between
connection points need to be included in the calculations, not the time
delays.

The derivation of results such as relaxation rates of the atom requires
techniques that will be introduced in Chapter 3. Here, we will just briefly
state the results, which are closely connected to the classical theory for
IDTs in the previous subsection. Firstly, the relaxation rate becomes pro-

portional to
∣∣∣
∑N
k=1 e

iωjxk/v
∣∣∣
2
, just like the acoustic admittance Ga ∝ |µ|2

(see Eq. (2.58)). Thus, we can design our atom such that it only relaxes
fast at certain transition frequencies, but remains protected from decay at
others. Secondly, the atom transition frequencies are shifted by a small
amount (a Lamb shift), approximately proportional to the Hilbert trans-

form of
∣∣∣
∑N
k=1 e

iωjxk/v
∣∣∣
2
. This is similar to the imaginary acoustic admit-

tance iBa, which shifts the LC resonance frequency in the semiclassical
calculation above if the atom is not on resonance with the IDT structure.

The theoretical and experimental work on SAW-transmon and other
giant atom systems have only just started with Papers VI and VII. In
Chapter 7, we will give some possible directions for future work.

2.5 The Jaynes–Cummings model

With our building blocks for quantum optics in place, it is time to look
closer at how they can be combined. An important and common setup is
that of one or several atoms coupled to a resonator, illustrated for super-
conducting circuits in Fig. 2.10. The system consisting of a resonator and
one two-level atom (qubit) can be described by the Rabi Hamiltonian [206]

HRabi = ωra
†a+ ωa

2 σz + gσx
(
a+ a†

)
, (2.70)

where ωr is the frequency of the resonator, ωa is the transition frequency
of the atom, g is the strength of the coupling between the atom and the
resonator, a (a†) is the annihilation (creation) operator for the resonator
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Figure 2.10: An artist’s rendering of a transmission line resonator coupled to two
transmons. The dark blue line in the center is the center conductor of the trans-
mission line, interrupted by a capacitance to the left. The large dark blue areas
are ground planes. The golden sawtooth shapes form the large capacitances of the
two transmons (needed to achieve EJ/EC � 1) and the red dots are the Joseph-
son junctions (two junctions, instead of one, are used in a SQUID configuration to
allow tuning of EJ with an external magnetic field). Illustration by Philip Krantz
(krantznanoart.com).

mode, and the σi are Pauli matrices describing the atom. σx can be rewrit-
ten as σ+ + σ−, where σ− (σ+) is the lowering (raising) operator of the
atom.

In the last part of Eq. (2.70), we have the terms aσ− and a†σ+, which
will oscillate with frequency ωr + ωa in the interaction picture. Provided
that this frequency is much larger than g, which sets the relevant timescale
for the system dynamics, these terms will average out and we can neglect
them in our calculations. This approximation is known as the rotating
wave approximation (RWA) [207]. It reduces the Rabi Hamiltonian to the
Jaynes–Cummings Hamiltonian [105, 174, 208]

HJC = ωra
†a+ ωa

2 σz + g
(
aσ+ + a†σ−

)
. (2.71)

In this simpler model, the number of excitations in the system is con-

http://www.krantznanoart.com/
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served, allowing for an explicit solution of the Hamiltonian (solving the
Rabi Hamiltonian is also possible, but it is a much harder problem [209]).
It is straightforward to extend the Jaynes–Cummings model to include
more than two levels of the atom, as is often necessary when dealing with
the transmon [173], or to include more atoms; the latter case is called the
Tavis–Cummings model [210]. The only added complication is that the
photons need not couple equally strongly to different transitions or atoms.
In Paper IV, we study and explain experimental results in such a system,
where a multi-level transmon is coupled to a superconducting resonator.
There, we also apply drives to both the resonator and the transmon.

To understand the results of Paper IV, the concept of dressed states
[105, 211] is vital. When the interaction g between atom and resonator in
Eq. (2.71) is turned on, the eigenstates of the system are no longer “bare”
excitations of either resonator or atom, but instead dressed states that
mix atom and resonator excitations. Diagonalizing Eq. (2.71) gives the
eigenstates [105]

|n,+〉 = cos
(
ϕn
2

)
|e〉 |n〉+ sin

(
ϕn
2

)
|g〉 |n+ 1〉 , (2.72)

|n,−〉 = − sin
(
ϕn
2

)
|e〉 |n〉+ cos

(
ϕn
2

)
|g〉 |n+ 1〉 , (2.73)

where |n〉 is the bare resonator state with n photons, |g/e〉 is the bare atom
ground/excited state, and the angle ϕn is given by

tan (ϕn) = Ωn
∆
. (2.74)

Here, ∆ = ωa − ωr is the detuning between atom and resonator, and

Ωn =
√
∆2 + 4g2(n+ 1) (2.75)

is the splitting between the dressed states. The energies of the dressed
states are given by

E(n,±) =
(
n+ 1

2

)
ωr ±

1
2Ωn. (2.76)

The transition from bare to dressed states is illustrated in Fig. 2.11. If
one adds a drive to the system, as in Paper IV, this can be interpreted as
“dressing the dressed states”, giving doubly dressed states.
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∆
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Figure 2.11: Level diagrams for bare and dressed states in the Jaynes–Cummings
model. To the left, the bare states are represented in two ladders, one for |g〉 and
one for |e〉. The states |g〉n+ 1 and |e〉n are close in energy, separated by ∆, but
there are no transitions possible between the two. To the right, the coupling g is
switched on and the nearby states hybridize, forming a new ladder with different
level spacings.

A useful twist on the Jaynes–Cummings model is the dispersive regime,
which is when the detuning |∆| is much larger than the coupling strength
g. In this case, we can apply the unitary transformation

Udisp = exp
[
λ
(
aσ+ − a†σ−

)]
, (2.77)

where λ = g/∆, to Eq. (2.71), and do a perturbation expansion in the
small parameter λ. We defer the details of this calculation to Appendix A.
Keeping terms up to first order in λ, the result is

Hdisp = (ωr + χσz) a†a+ ωa + χ

2 σz, (2.78)

where χ = g2/∆. Perturbation to higher orders in λ is possible [212] and
the procedure can also be carried out for a multi-level atom [173].

The most important feature of the Hamiltonian in Eq. (2.78) is that the
atom and the resonator no longer interact by exchanging excitations. In-
stead, changing the state of the qubit will shift the resonator frequency and
changing the number of photons in the resonator will shift the qubit fre-
quency. Both these effects have been used to perform QND measurements
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of qubit states [24, 213] and photon number [8, 214]. The measurements
we consider in Paper I are all based on using a coherent signal to probe a
resonator dispersively coupled to one or two qubits.

Another advantage of the dispersive regime is that it allows us to trace
out the resonator degrees of freedom to achieve an effective description for
just the atom [165, 215, 216]. This procedure is an integral part of the
work in Paper I. It reduces the number of degrees of freedom in the system
from infinity to two and lets us see clearly what back-action a measurement
on the resonator has on the qubit.

As superconducting circuits for quantum optics have been developed,
it has been realized that they make it possible to reach the regime of ul-
trastrong coupling, where g & 0.1ωr/a [217–220] (strong coupling, on the
other hand, is when g is greater than the rate of relaxation to the envi-
ronment). In this regime, the RWA breaks down, and either the full Rabi
Hamiltonian or some better approximation must be used [207]. Ultrastrong
coupling has been experimentally demonstrated in the last few years both
for optical photons interacting with electrons in quantum wells [221], with
natural molecules [222], in superconducting circuits [223, 224], in a two-
dimensional electron gas (2DEG) [225, 226], and with magnons [227]. As
we mention in the outlook for Papers VI and VII, it should also be possible
to reach this interesting regime with SAWs coupled to a transmon.

While we use the Jaynes–Cummings model in Papers I and IV, in the
rest of the appended papers we deal with one or several artificial atoms
coupled to an infinite or semi-infinite transmission line. Experiments in
these kinds of systems have only recently reached high quality in super-
conducting circuits [35–41]; theoretical studies of one [183, 228–240] or
several atoms [241–251] have been done for a longer time, recently also
for the case of ultrastrong coupling [219, 252, 253]. The crucial difference
compared to the Jaynes–Cummings model is that the artificial atom here
couples to a continuum of modes, which can transport excitations away
from the atom. To study these systems, we need to use master equations
and input-output theory, which is the topic of the next chapter.





Chapter 3

Master equations and
input-output theory

For a closed quantum system, a system which does not interact in any way
with its surroundings, the Hamiltonian H of the system gives us all the
information we need to derive its time evolution. We can either describe
the dynamics in the Schrödinger picture, where the state of the system,
|ψ〉, evolves in time according to the Schrödinger equation [104]

d
dt |ψ〉 = −iH |ψ〉 , (3.1)

and system operators are constant, or in the Heisenberg picture, where
the state is constant and a system operator c evolves according to the
Heisenberg equation [104]

ċ = −i [c,H] . (3.2)

Another, more general, way to describe the state and its evolution in
the Schrödinger picture is to use the density matrix ρ = ∑

iwi |ψi〉〈ψi|,
which represents an ensemble of states (many experiments) with wi giving
the probability of the system being in the state |ψi〉. The time evolution
for ρ is given by the Liouville–von Neumann equation

ρ̇ = −i [H, ρ] , (3.3)

which is easily derived from the Schrödinger equation [104]. The density
matrix representation is the most convenient one when we open up the sys-
tem to influence from the outside. Given ρ, one can compute expectation
values from 〈c〉 = tr (cρ), and the time evolution is given by ∂t 〈c〉 = tr (cρ̇).
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In this chapter, we will start to study open quantum systems, i.e.,
quantum systems that are coupled to a surrounding environment, often
called a bath. We will first derive a master equation, which gives an ef-
fective description of the system density matrix, including the effects of
interaction with the bath but tracing out the bath degrees of freedom. We
then consider input-output theory for the quantum system, and develop
a stochastic description of the bath effects, which will be useful in later
chapters.

3.1 Master equation for an open quantum system

The problem we face when considering an open quantum system is one
of size: our system couples to an environment which consists of infinitely
many other quantum systems. To find an effective description of only
the system itself, we need to make a number of approximations, which
fortunately are well justified in many experiments. The procedure is well
described in many books [116, 254, 255]; here, we will mainly follow the
treatment in the last one.

To illustrate the derivation of a master equation, we consider a model
where our quantum system is a single two-level atom, coupled to a bath
consisting of an infinite number of harmonic oscillators of different reso-
nance frequencies. The Hamiltonian is

H = Hatom +Hbath +Hint, (3.4)

Hatom = ωa

2 σz, (3.5)

Hbath =
∑

j

ωjb
†
jbj , (3.6)

Hint =
∑

j

gj(bj + b†j)(σ− + σ+), (3.7)

Note that we do not make the RWA on the interaction Hamiltonian, even
though we will assume that the coupling gj is weak. It will become clear
later that making the RWA too early in the master equation derivation
eliminates essential terms.

To simplify calculations, we move to the interaction picture,

X̃(t) = ei(Hatom+Hbath)tXe−i(Hatom+Hbath)t, (3.8)
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for all operators X. The equation for the time evolution of the transformed
density matrix of the total system (atom plus bath), can then be written

˙̃ρtot(t) = −i
[
H̃int(t), ρ̃tot(t)

]
. (3.9)

The solution of this equation is

ρ̃tot(t) = ρ̃tot(0)− i
∫ t

0
dτ
[
H̃int(τ), ρ̃tot(τ)

]
, (3.10)

which can be inserted back into Eq. (3.9). If we then trace over the bath
degrees of freedom, the result is an equation for the effective atom density
matrix ρ,

˙̃ρ(t) = trbath

(
−i
[
H̃int(t), ρ̃tot(0)

]
−
∫ t

0
dτ
[
H̃int(t),

[
H̃int(τ), ρ̃tot(τ)

]])
.

(3.11)
Every step leading up to Eq. (3.11) has been exact. To go further, we

need two approximations. First is the Born approximation, which relies on
the coupling gj to be weak and the bath to be large compared to the atom.
With these conditions fulfilled, it is reasonable to assume that the bath
density matrix ρbath does not change significantly due to the interaction
with the atom. We also assume the atom and the bath to be in a separable
state initially; this means that we have ρtot(t) ≈ ρ(t)⊗ ρbath.

The second approximation is the Markov approximation, which states
that the bath has no memory, i.e., the interaction between the atom and
bath is so weak, and the bath is so large, that any imprint the atom makes
on the bath at time t′ does not come back and affect the dynamics of
the atom at a later time t. This allows us to replace ρ(τ) with ρ(t) in
Eq. (3.11). All this, together with 〈Hint〉bath = 0, reduces Eq. (3.11) to

˙̃ρ(t) = −
∫ t

0
dτtrbath

([
H̃int(t),

[
H̃int(τ), ρ̃(t)ρ̃bath

]])
. (3.12)

To proceed from Eq. (3.12) is not hard, only somewhat tedious. The
details of the calculations have therefore been deferred to Appendix B.
Once the trace over the bath has been taken, the RWA has been applied,
terms have been collected, and the transformation back from the interac-
tion picture has been done, the final result can be compactly expressed
as

ρ̇ = −i
[
ω′a
2 σz, ρ

]
+ ΓD [σ−] ρ. (3.13)
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Here, Γ is the atom relaxation rate, given by

Γ = 2πJ(ωa)g2(ωa) (3.14)

where J(ω) is the bath density of states and g(ωj) = gj . The superoperator
D [X] ρ = XρX† − 1

2X
†Xρ − 1

2ρX
†X in Eq. (3.13) is said to be on the

Lindblad form [256]. It should be noted that the form of the terms in
the master equation ensures that the density matrix properties ρ = ρ†,
tr (ρ) = 1, and ρ > 0 are preserved.

In the master equation, we also have a new atom transition frequency

ω′a = ωa + P
∫ ∞

0
dωJ(ω)g2(ω)

( 1
ω + ωa

− 1
ω − ωa

)
. (3.15)

The difference compared to the isolated atom is a Lamb shift. If we had
made the RWA too early, the first term in the integral would be missing
[257, 258].

In the derivation of Eq. (3.13), we assumed negligible temperature, i.e.,〈
b†jbj

〉
bath

= 0, but it is also possible to include a finite temperature T ,

giving
〈
b†jbj

〉
bath

= 1
e~ωj/kBT − 1

≡ n̄(ωj ,T ), (3.16)

where kB is Boltzmann’s constant. The result is a modification of Eq. (3.13)
to

ρ̇ = −i
[
ω′′a
2 σz, ρ

]
+ (1 + n̄(ωa,T ))ΓD [σ−] ρ+ n̄(ωa,T )ΓD [σ+] ρ, (3.17)

where we now see that the thermal excitations in the bath can excite
the atom via the D [σ+] ρ term. Furthermore, the Lamb shift also gets
thermal contributions, leading to the new atom transition frequency ω′′a .
The expression for this new frequency is a more complicated version of
Eq. (3.15), including terms with n̄(ω,T ) in the integral.

Master equations are used in all the appended papers; to interact with
the quantum systems we want to study, we have to connect them to the
outside world. From a purely theoretical viewpoint, the master equation
derivation in Paper VII is the most interesting, since it is made for a
giant artificial atom, a case which does not seem to have been considered
previously.
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3.2 Input-output theory

While the master equation gives us an effective description of the quantum
system that is coupled to an environment, it does not immediately tell us
what the output of the system is, or how that output depends on some
input. This is the topic of input-output theory. Let us study again the
example of the previous section, with a two-level atom coupled to a bath of
harmonic oscillators. The Hamiltonian (slightly rewritten for convenience
which becomes clear during the calculations) is

H = Hatom +Hbath +Hint, (3.18)

Hatom = ωa
2 σz, (3.19)

Hbath =
∫ ∞

0
dωωb†(ω)b(ω), (3.20)

Hint = i

∫ ∞

0
dω

√
Γ (ω)
2π

(
b†(ω)σ− − σ+b(ω)

)
, (3.21)

where Γ (ω) is a frequency-dependent coupling strength. Here, we have
already made the RWA on the interaction Hamiltonian Hint.

To study input and output from the system, we follow the treatment
in Ref. [259]. We begin by extending the lower integration limits to −∞
in Eqs. (3.20) and (3.21). This is an acceptable approximation, since only
terms with frequencies close to ωa are important. With this modification
done, we write down the Heisenberg equation for the atom and bath op-
erators. Using the commutation relations [σ−, σ+] = −σz, [σ−, σz] = 2σ−,

and
[
b(ω), b†(ω′)

]
= δ(ω − ω′) gives

ḃ(ω) = −iωb(ω) +

√
Γ (ω)
2π σ−, (3.22)

σ̇− = −iωaσ− + σz

∫ ∞

−∞
dω

√
Γ (ω)
2π b(ω). (3.23)

Defining b0(ω) = b(ω, t = t0) as the initial bath state at some initial time
t0 < t lets us write the solution to the first equation as

b(ω) = e−iω(t−t0)b0(ω) +

√
Γ (ω)
2π

∫ t

t0
dt′σ−(t′)e−iω(t−t′). (3.24)
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Now we make the Markov approximation that Γ (ω) varies slowly around
ωa and thus can be taken to be constant in this region, Γ (ω) = Γ . This
gives the idealized description of white noise, which is delta-correlated (the
damping of the atom at time t will only depend on the bath at time t, not
on the bath at any previous time). We also define the in-field

bin(t) = 1√
2π

∫ ∞

−∞
dωe−iω(t−t0)b0(ω). (3.25)

Inserting the expression for b(ω) from Eq. (3.24) into Eq. (3.23) with this
addition gives, after a little algebra, that the equation for σ− can be written

σ̇− = −iωaσ− +
√
Γσzbin(t) + Γ

2 σzσ−. (3.26)

From this we see two things. Firstly, the in-field from the bath will affect
the evolution of the atom operator σ−. Secondly, even if there is no input
from the bath, the coupling will still give rise to damping of σ− (since
σzσ− = −σ−) with a rate which we recognize as the dephasing rate Γ/2,
half of the relaxation rate for an atomic excitation.

Another way to solve the Heisenberg equation for b(ω) is to define
b1(ω) = b(ω, t = t1) as the future bath state at some future time t1 > t.
This gives

b(ω) = e−iω(t−t1)b1(ω)−
√
Γ (ω)
2π

∫ t1

t
dt′σ−(t′)e−iω(t−t′), (3.27)

and defining the out-field

bout(t) = 1√
2π

∫ ∞

−∞
dωe−iω(t−t1)b1(ω) (3.28)

lets us write the time-reversed equation for σ− as

σ̇− = −iωaσ− +
√
Γσzbout(t)−

Γ

2 σzσ−. (3.29)

Using that Eqs. (3.26) and (3.29) should give the same result at time t
now gives the important result

bout(t) = bin(t) +
√
Γσ−(t), (3.30)

which connects input and output, the goal of this section.
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3.3 Quantum stochastic calculus

As was mentioned in Sec. 1.3, there is a deep connection between stochastic
fluctuations in an environment and dissipation from a system coupled to
that environment [116–119]. With the results from the previous sections
of the current chapter, we can now develop a description of the bath which
emphasizes its stochastic character. This description, quantum stochastic
calculus, will be very useful when we later deal with more advanced input-
output scenarios (in particular, measurements on a quantum system).

In the previous section, we defined the in-field bin(t) in Eq. (3.25). Set-
ting t0 = 0 for simplicity from here on, we can calculate the commutation
relation

[
bin(t), b†in(t)

]
= 1

2π

∫ ∞

−∞
dω
∫ ∞

−∞
dω′e−iωt+iω′t′

[
b0(ω), b†0(ω′)

]

= 1
2π

∫ ∞

−∞
dωe−iω(t−t′) = δ(t− t′), (3.31)

which strengthens the view of bin(t) as white noise. We define [116, 259]

Bt =
∫ t

0
dsbin(s), (3.32)

which is known as a quantum Wiener process. From this we get the quan-
tum noise increments

dBt =
∫ t+dt

t
dsbin(s), (3.33)

which is often written in differential form as dBt = bin(t)dt.
Now we can write down the time evolution operator U(t) ≡ U(t,0) ≡

Ut, which is defined to evolve a state from time 0 to time t as |ψ(t)〉 =
U(t) |ψ(0)〉 in the Schrödinger picture or to evolve an operator X in the
Heisenberg picture as X(t) = U †(t)X(0)U(t). Using the Schrödinger equa-
tion and the Hamiltonian in Eqs. (3.18)–(3.21), we get, in the rotating
frame of Hbath,

U(t) = T exp
[
− i

∫ t

0
dt′
(
Hatom + i

√
Γ

2π

×
∫ ∞

−∞
dω
(
b†(ω)σ−eiωt

′ − σ+b(ω)e−iωt′
))]

= T exp
[
−iHatomt+

√
Γ
(
B†tσ− − σ+Bt

)]
, (3.34)
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where T is the time-ordering operator. Note that we here have replaced
the b’s with b0’s to get the final result.

We would like to expand Eq. (3.34) for a small increment in t to get
dUt. However, care is required when dealing with stochastic increments.
There are two approaches to the problem: Stratonovich calculus and Itō
calculus [116, 259–262].

In Stratonovich calculus, an integral of some function or system oper-
ator f(t) with stochastic increments is defined as

∫ t

0
f(t′) dBt′ = lim

n→∞

n∑

j=0

1
2 (f(tj) + f(tj+1))

(
Btj+1 −Btj

)
. (3.35)

The advantage of this approach is that the chain rule of ordinary calculus
continues to hold for stochastic increments, i.e., d(AB) = A(dB)+(dA)B.
The downside is that the terms in the sum defining the integral don’t nec-
essarily commute, as the terms are defined on overlapping time intervals.

In Itō calculus, the same integral is instead defined as

∫ t

0
f(t′) dBt′ = lim

n→∞

n∑

j=0
f(tj)

(
Btj+1 −Btj

)
, (3.36)

which ensures that the terms in the sum commute, as they only overlap
on a time interval of length zero (f(tj) only depends on Bt with t < tj).
The price to pay is that the chain rule has to be modified to d(AB) =
A(dB)+(dA)B+(dA)(dB). In the following we will work with Itō calculus,
since the fact that f(t)dBt commute makes calculating expectation values
easier.

Before we can find dUt, we need to calculate expectation values such
as

〈
dBtdB†t

〉
=

∫ t+dt

t
dt′
∫ t+dt

t
dt′′

〈
0
∣∣∣bin(t′)b†in(t′′)

∣∣∣ 0
〉

=
∫ t+dt

t
dt′
∫ t+dt

t
dt′′

〈
0
∣∣∣
[
bin(t′), b†in(t′′)

]∣∣∣ 0
〉

=
∫ t+dt

t
dt′
∫ t+dt

t
dt′′δ(t′ − t′′) 〈0|0〉

=
∫ t+dt

t
dt′ = dt, (3.37)

where we have used bin(t) |0〉 = 0 in the first equality. This tells us that

in vacuum expectation values we can treat dBtdB†t as dt, which explains
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why we need to keep the second-order term in the chain rule. Calculations
similar to Eq. (3.37) give that dBtdBt, dB†tdB

†
t , and dB†tdBt are all 0.

Together, these results are known as the Itō rules for vacuum expectation
values, and they show why Bt is called a quantum Wiener process. The Itō
rules can be generalized to having the bath in a thermal state [116, 259].

Expanding Eq. (3.34) using Itō calculus now gives

dUt =
[
− iHatomdt+

√
Γ
(
σ−dB†t − σ+dBt

)

+1
2
(
−iHatomdt+

√
Γ
(
σ−dB†t − σ+dBt

))2
+O

(
t3/2

) ]
Ut

=
[
− iHatomdt+

(
LdB†t − L†dBt

)
− 1

2L
†Ldt+O

(
t3/2

) ]
Ut,

(3.38)

where we have introduced the common notation L =
√
Γσ−. With this

expression for the time evolution in hand, we can now also derive the Itō
Langevin equation for an atom operator c [116, 259],

dc(t) = d(U †t cUt) = dU †t cUt + U †t cdUt + dU †t cdUt
= −i [c(t), Hatom(t)] dt+D† [L] c(t)dt

+ [c(t), L(t)] dB†t +
[
L†(t), c(t)

]
dBt, (3.39)

where D† [L] c = L†cL − 1
2

{
L†L, c

}
, and we have used the Itō rules for

vacuum expectation values.
To calculate expectation values of atom operators, we can either stay

in the Heisenberg picture and use Eq. (3.39), or we can find an effective
density matrix for the atom in the Schrödinger picture. To do the latter,
we note that

〈c(t)〉 = tratomtrbath [(c(t)⊗ 1bath) (ρatom(0)⊗ ρbath(0))]
= tratomtrbath

[
U †(t) (c(0)⊗ 1bath)U(t) (ρatom(0)⊗ ρbath(0))

]
,

(3.40)

where 1bath is the identity operator in the bath Hilbert space. We also
assume that the atom+bath state factorizes at time t = 0 as |ψ0〉 ⊗ |0〉,
where |ψ0〉 is some pure atom state. By using the cyclic property of the
trace, we can then rewrite this equation as

〈c(t)〉 = tratom [c(0)ρ(t)] , (3.41)
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where ρ(t) is the effective atom density matrix

ρ(t) = trbath

[
U(t) (ρatom(0)⊗ ρbath(0))U †(t)

]
. (3.42)

From the Itō Langevin equation for c, Eq. (3.39), we get

〈dc(t)〉 = 〈ψ0, 0 |dc(t)|ψ0, 0〉
=

〈
ψ0
∣∣∣−i [c(t), Hatom(t)] +D† [L] c(t)

∣∣∣ψ0
〉

dt

= tratom

[(
−i [c(t), Hatom(t)] +D† [L] c(t)

)
ρ(0)

]
. (3.43)

But since we also have

〈dc(t)〉 = tratom [c(0)dρ(t)] , (3.44)

the cyclic property of the trace gives us an equation of motion for the
effective density matrix,

dρ(t) = −i [Hatom, ρ(t)] dt+D [L] ρ(t)dt, (3.45)

where we have removed the time arguments t = 0 from the Schrödinger
picture atom operators. Remembering that L =

√
Γσ−, we see that we

have rederived the master equation for the atom, Eq. (3.13).

3.4 Fock-state input

As a first application of quantum stochastic calculus, we can consider a
specific type of input to our quantum system (our atom): a Fock state with
a specific number of excitations (e.g., photons). This situation is especially
important for papers II and V, where we design a photon detector and test
it by simulating an input of one or zero photons.

A general formalism for handling Fock-state input was developed very
recently [263, 264], building on some earlier efforts [265, 266]. Here, we
will follow Ref. [263] to derive a generalization of the master equation
from Sec. 3.1 which encompasses the fact that N photons are impinging
on our quantum system. The setup we consider is schematically depicted
in Fig. 3.1.
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Figure 3.1: A Fock-state wavepacket with envelope ξ(t) interacting with a quan-
tum system. In this illustration, the quantum system is a two-level atom. The
time t is defined by when the wavepacket part ξ(t) interacts with the atom.

3.4.1 Deriving the coupled master equations

First, we define the Fock state [267, 268]

|1ξ〉 =
∫ ∞

−∞
dωξ̃(ω)b†(ω) |0〉 , (3.46)

where ξ̃(ω) is the spectral density function describing how the photon is
superposed over different modes. The spectrum is assumed to be con-
fined to a small bandwidth around a center frequency ωc, which is close
to the relevant transition frequency of the system the photon is going to
interact with. Under this assumption, we can then define a slowly vary-
ing envelope ξ̃(ω) → ξ̃(ω)e−iωct. The Fourier transform of this envelope,

F
[
ξ̃(ω)

]
= ξ(t), is the temporal shape of the photon, normalized according

to
∫

dt |ξ(t)|2 = 1. In the time domain we then have

|1ξ〉 =
∫ ∞

−∞
dtξ(t)b†in(t) |0〉 , (3.47)

and a Fock state with N photons can be defined as

|Nξ〉 = 1√
N

(∫ ∞

−∞
dtξ(t)b†in(t)

)N
|0〉 . (3.48)
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Assuming, like we did in Sec. 3.3, that the atom+bath state factorizes
at time t = 0 as |ψ〉 ⊗ |0〉, where |ψ〉 is some pure atom state, we can now
proceed in a similar manner as in that section to derive an equation for the
effective density matrix of the atom. It turns out to be more complicated
than before, since the atom now can absorb excitations from the bath,
which was not the case when the bath was in the vacuum state. Recall
that all equations in Sec. 3.3 were derived using the Itō vacuum expectation
rules for combinations of dBt and dB†t . Fortunately, it can be shown that
these rules still hold unchanged even for asymmetric Fock state expectation
values 〈Mξ |. . .|Nξ〉 [263]. Thus, Eqs. (3.38) and (3.39) can still be used.

Using the identity

dBt |Nξ〉 = dt
√
Nξ(t) |(N − 1)ξ〉 , (3.49)

which can be shown rather easily [263], together with Eq. (3.39) gives that
the equation of motion for the expectation value of an atom operator c in
the Heisenberg picture is

〈dc(t)〉 = 〈ψ,Nξ |dc(t)|ψ,Nξ〉
=

〈
ψ,Nξ

∣∣∣−i [c(t), Hatom(t)] +D†[L(t)]c(t)
∣∣∣ψ,Nξ

〉
dt

+
〈
ψ,Nξ

∣∣∣[c(t), L(t)] dB†t +
[
L†(t), c(t)

]
dBt

∣∣∣ψ,Nξ

〉

=
〈
ψ,Nξ

∣∣∣−i [c(t), Hatom(t)] +D†[L(t)]c(t)
∣∣∣ψ,Nξ

〉
dt

+ 〈ψ, (N − 1)ξ |[c(t), L(t)]|ψ,Nξ〉 ξ∗(t)dt
+
〈
ψ,Nξ

∣∣∣
[
L†(t), c(t)

]∣∣∣ψ, (N − 1)ξ
〉
ξ(t)dt. (3.50)

Apparently, we need to evaluate several expectation values on the form
〈ψ, nξ |X(t)|ψ,mξ〉 for different atom operators X(t) in order to eventually
find 〈c(t)〉. From Eqs. (3.39) and (3.49) we get

〈ψ, nξ |dX(t)|ψ,mξ〉 = 〈ψ, nξ |−i [X(t), Hatom(t)]|ψ,mξ〉 dt
+
〈
ψ, nξ

∣∣∣D†[L(t)]X(t)
∣∣∣ψ,mξ

〉
dt

+ 〈ψ, (n− 1)ξ |[X(t), L(t)]|ψ,mξ〉
√
nξ∗(t)dt

+
〈
ψ, nξ

∣∣∣
[
L†(t), X(t)

]∣∣∣ψ, (m− 1)ξ
〉√

mξ(t)dt.
(3.51)

Thus, we see that we end up with a system of equations that couple down-
wards. Solving these equations starting from 〈ψ,0 |X(t)|ψ,0〉 will eventu-
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ally give 〈c(t)〉. The initial conditions are

〈ψ,nξ |X(0)|ψ,mξ〉 =
{
〈ψ |X(0)|ψ〉 , if n = m,
0, if n 6= m.

(3.52)

To get a less cumbersome description in terms of an effective atom
density matrix instead, we define ρm,n in analogy with Eq. (3.41):

〈ψ, nξ |X(t)|ψ,mξ〉 = tratom (ρm,n(t)X) . (3.53)

With this definition Eq. (3.51) can either be written as

〈ψ, nξ |dX(t)|ψ,mξ〉 = tratom

(
ρm,n(t)

(
−i [X,Hatom] +D†[L]X

))
dt

+tratom (ρm,n−1(t) [X,L])
√
nξ∗(t)dt

+tratom

(
ρm−1,n(t)

[
L†, X

])√
mξ(t)dt, (3.54)

or as
〈ψ, nξ |dX(t)|ψ,mξ〉 = tratom (dρm,n(t)X) . (3.55)

Combining these two equations and using the cyclic property of the trace
gives the system of equations

dρm,n(t)
dt = −i [H, ρm,n(t)] +D [L] ρm,n(t)

+
√
n [L, ρm,n−1(t)] ξ∗(t)

+
√
m
[
ρm−1,n(t), L†

]
ξ(t), (3.56)

which can be solved by starting from the equation for ρ0,0(t) and working
your way upwards. From Eqs. (3.52) and (3.53) it follows that the initial
conditions are

ρm,n(0) =
{
|ψ〉 〈ψ| , if n = m,
0, if n 6= m.

(3.57)

Note that ρm,n = ρ†n,m, which reduces the number of equations that need
to be solved. The final result is ρN,N (t), which allows us to calculate the
expectation value of any atom operator when a wavepacket containing N
photons interacts with the atom.

This formalism can be extended in a number of ways. For example, it
allows for the bath state to be in a superposition of Fock states. Also, one
can include a coupling between the atom and the gauge process increment
dΛ(t) = b†inbindt, but these things are outside the scope of this thesis as
they are not used in Papers II and V. The interested reader is referred to
Refs. [263, 264].
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3.4.2 Example – a photon meeting an atom

To illustrate the formalism for Fock-state input, we will now look more
closely at the simplest example possible: a single-photon wavepacket im-
pinging on a two-level atom. The atom Hamiltonian is, in the rotating
frame of the photon center frequency ωph,

Hatom = ∆

2 σz, (3.58)

where ∆ = ωa − ωph. We assume the photon wavepacket to have the
Gaussian envelope

ξ(t) =
(
Γ 2

ph

2π

)1/4

exp
(
−
Γ 2

ph (t− tph)2

4

)
, (3.59)

where tph is the time when the center of the photon wavepacket arrives at
the atom and Γph is the bandwidth of the photon.

The coupled density matrix equations become

ρ̇0,0 = −i
[
∆

2 σz, ρ0,0

]
+ ΓD [σ−] ρ0,0, (3.60)

ρ̇0,1 = −i
[
∆

2 σz, ρ0,1

]
+ ΓD [σ−] ρ0,1 + ξ∗(t)

[√
Γσ−, ρ0,0

]
, (3.61)

ρ1,0 = ρ†0,1, (3.62)

ρ̇1,1 = −i
[
∆

2 σz, ρ1,1

]
+ ΓD [σ−] ρ1,1 + ξ(t)

[
ρ0,1,
√
Γσ+

]

+ξ∗(t)
[√
Γσ−, ρ1,0

]
, (3.63)

with initial conditions ρ0,0(0) = ρ1,1(0) = ρatom(0), and ρ0,1(0) = ρ1,0(0) =
0.

The density matrix can be solved analytically by writing ρm,n as a
combination of Pauli matrices [269]. However, as this is somewhat tedious,
we limit ourselves to plotting, in Fig. 3.2, numerical solutions for the atom
excitation probability Pexc(t). This shows how the arrival of the photon
leads to a high probability of exciting the atom when the photon is on
resonance. The exact probability depends on the wavepacket shape [235].

In paper II, we perform a similar calculation to model the effect of a
single photon arriving at a three-level transmon. The photon frequency
is close to the first transition frequency of the transmon. We study, for
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Figure 3.2: The dynamics of a single-photon wavepacket encountering a two-level
atom. The red line shows the temporal shape of the Gaussian wavepacket of
the photon, and the blue line shows the excitation probability of the atom as a
function of time. Parameters: ∆ = 0, tph = 5/Γ , Γph = Γ , ρatom(0) = |g〉 〈g|.

different shapes of the photon wavepacket, how the presence of the photon
affects a coherent probe which is close in frequency to the second transition
of the transmon. Even in this case, one can get far by a purely analytical
treatment. However, in Paper V we include several cascaded transmons;
the Fock-state input formalism is still used, but we are restricted to nu-
merical simulations.

In this chapter, we have developed formalisms to handle open quantum
systems. We can now give an effective description for how a quantum sys-
tem dissipates excitations to an environment and how input-output works
for such a system. In the next chapter, we will use the quantum stochastic
calculus further to answer the question: what is the effect of a measurement
on the output from the quantum system?





Chapter 4

Quantum measurements

To characterize a quantum system, we need to measure it. In this way,
measurements are an integral part of all the appended papers that include
experiments (III, IV, VI, and VIII). However, the purely theoretical Pa-
pers I, II, and V are also concerned with measurements, or rather how to
improve them. It transpires that measuring a quantum system is more
complicated than measuring a classical one. This is due to two things:
unavoidable noise from quantum vacuum fluctuations and measurement
back-action, i.e., measuring one component of an entangled state can alter
the other components, as was discussed in Sec. 1.4.

In this chapter, we will first look at an example to illustrate further
how a measurement on the output from a quantum system can give rise
to back-action on that system. We will then use the stochastic quantum
calculus from Chapter 3 to derive stochastic master equations (SMEs) de-
scribing the effect of both photon detection and homodyne detection on the
system output. Finally, we consider another type of measurement, used in
experiments in some of the appended papers, where both drive and probe
tones are applied to the system. This two-tone spectroscopy is most easily
understood by calculating the susceptibility of the system.

4.1 Measurement back-action and SMEs

Our goal of this section is to incorporate the effect of measurements in the
time evolution of the system density matrix. We will begin with a simple
example to gain more intuition into the effects of a measurement.
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Figure 4.1: The weakly entangled state of Eq. (4.3) illustrated using the Bloch
sphere representation for the probe qubit.

4.1.1 An example of back-action

Imagine that we have a system consisting of a qubit in the superposition
state

|Ψ〉s = α |0〉+ β |1〉 . (4.1)

We now want to do a measurement on this system. A measurement will
involve sending in a probe to interact with the system. We will use the
simplest probe possible, a second qubit. This probe qubit interacts with
the system qubit for some time, entangling the two, and then enters a
measurement apparatus which can do a projective measurement. From
the result of the projective measurement on the probe qubit, we will try
to infer information about the system qubit state.

The simplest version of this protocol is when the two qubits become
fully entangled, giving a state for system+probe

|Ψ〉s+p = α |00〉+ β |11〉 . (4.2)

In this case, measuring the probe qubit to be in state |Ψ〉p = |1〉 (|0〉)
will then project the system qubit into the state |Ψ〉s = |1〉 (|0〉). In other
words, the act of measuring the probe qubit gives back-action on the system
qubit.

There are two ways we can alter the protocol above to get more in-
teresting back-action. Firstly, we can choose to measure the probe qubit
in some other basis (above we measured in the Z basis). Secondly, the
entanglement can be weaker. Consider the weakly entangled state

|Ψ〉s+p = α |00〉+ β |1〉s
(

cos ε2 |0〉p + sin ε

2 |1〉p
)
, (4.3)
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pictured in Fig. 4.1. If we now measure the probe qubit in the Z basis we
get

|Ψ〉s =





α|0〉+β cos ε/2|1〉√
|α|2+|β|2 cos2 ε/2

, if Z = +1,
|1〉 , if Z = −1.

(4.4)

That is, measuring Z = +1, which we do with probability |α|2+|β|2 cos2 ε/2,
only gives us a little information about the system qubit if ε is small. In
turn, the back-action of the measurement is small. If we look at the probe
qubit in the Y basis instead we find

|Ψ〉s =
{
α |0〉+ βeiε/2 |1〉 , if Y = +1,
α |0〉+ βe−iε/2 |1〉 , if Y = −1. (4.5)

Here, we see that the measurement does not give any information about the
probabilities of finding the system qubit in state |0〉 or |1〉. This is because
the probabilities for the different Y measurement results are always 1/2
each; they do not depend on α or β. However, the Y measurement still
gives rise to a back-action on the system qubit in the form of a phase kick.
Moreover, provided that we know the degree of entanglement ε, we know
exactly what the phase kick was given the measurement result.

This last example is closely connected to the work in Paper I. There, we
consider sending in probe photons which become entangled with a system
qubit. Measuring the photons in one way gives information about the qubit
state, but measuring them in another way only gives rise to a measurement
back-action in the form of phase kicks. These phase kicks can be calculated
and undone given the measurement record, which becomes important if the
system is scaled up to two qubits and one wants to do a parity measurement
on them.

4.1.2 Time evolution of the density matrix

In the example above, we arrived at the final state of the system, condi-
tioned on the measurement result, by projecting into the subspace corre-
sponding to the measurement result and then tracing out the probe. In
general, we consider the time evolution of a density matrix

ρ(t) = U(t)ρ(0)U †(t) (4.6)

for the combined Hilbert space of the system and the probe. We use the
abbreviated notation U(t) = U(t,0) for the time evolution operator.
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The measurement can give different outcomes i, corresponding to pro-
jecting the probe into the state |i〉p in the Hilbert space of the probe.
The probability of outcome i is pi = tr (|i〉〈i| ρ |i〉〈i|). If we assume that
the probe is initialized in some ground state |0〉p, then the system density
matrix, after the measurement result becomes i, is given by

ρs
i(t) = 1

pi

〈
i
∣∣∣U(t) (ρs(0)⊗ |0〉〈0|)U †(t)

∣∣∣ i
〉

= 1
pi
Ωi(t)ρs(0)Ω†i (t), (4.7)

where we defined the operator Ωi(t) = 〈i |U(t)| 0〉. This operator lives
in the system Hilbert space and gives an effective description of the time
evolution of the system conditioned on measurement results. Note that

the probability can now be rewritten pi(t) = tr
(
Ωi(t)ρs(0)Ω†i (t)

)
.

Assuming that the measurement takes place during some short time
dt, we arrive at the equation of motion for the system density matrix [122,
177],

ρi(t+ dt) = 1
pi(dt)

Ωi(dt)ρ(t)Ω†i (dt), (4.8)

where we have dropped the superscript on ρ. It is important to note that
Eq. (4.8) is very different from the master equation we derived in Sec. 3.1.
The difference is that we have now allowed for measurements, which means
that probabilities come into play and turns Eq. (4.8) into a stochastic equa-
tion. An equation of this type, which gives the time evolution of a system
conditioned on measurement results, is often referred to as a quantum tra-
jectory equation [270–273]. While an ordinary master equation describes
the average evolution of a system over many experiments, a quantum tra-
jectory is like a single run of an experiment. Thus, averaging over the
possible measurement outcomes (many runs of the experiment) will let us
recover the ordinary master equation from a quantum trajectory equation;
we will see examples of this in the following sections.

4.2 Photon detection

As a first example of a quantum measurement, we will discuss photon de-
tection. To do this, we consider our quantum system to be a harmonic
oscillator with annihilation operator a such that Hsys = ωra

†a. This sys-
tem is coupled to a bath of harmonic oscillators just like the atom in the
examples of the previous chapter. Given that the relaxation rate of our
system is κ, we have L =

√
κa.
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To begin with, we assume that all photons leaking out from the res-
onator arrives at the detector. Two measurement outcomes are possible
during a short time dt: either no photon is detected or one photon is
detected. We can calculate the corresponding Ωi operators using the ex-
pression for the time evolution operator from Eq. (3.38), modified to a
harmonic oscillator:

Ω0(t+ dt, t) =
〈

0
∣∣∣∣1− iHsysdt+

√
κ
(
adB†t − a†dBt

)
− κ

2a
†adt

∣∣∣∣ 0
〉

= 1− iHsysdt−
κ

2a
†adt, (4.9)

Ω1(t+ dt, t) =
〈

1
∣∣∣1− iHsysdt+

√
κ
(
adB†t − a†dBt

)∣∣∣ 0
〉

+
〈

1
∣∣∣∣
(
−iHsysdt+

√
κ
(
adB†t − a†dBt

))2
∣∣∣∣ 0
〉

=
√
κa
√

dt, (4.10)

where we have used the Itō rules for vacuum expectation values and |1〉 =
1√
dt

dB†(t) |0〉 [272].

Inserting these results in Eq. (4.8) gives

ρ0(t+ dt) =

(
1− iHsysdt− κ

2a
†adt

)
ρ0(t)

(
1 + iHsysdt− κ

2a
†adt

)

〈(
1 + iHsysdt− κ

2a
†adt

) (
1− iHsysdt− κ

2a
†adt

)〉

=
ρ0(t)− i [Hsys, ρ0(t)] dt− κ

2

{
a†a, ρ0(t)

}
dt+O(dt2)

1− κ 〈a†a〉dt+O(dt2)

=
(
ρ0(t)− i [Hsys, ρ0(t)] dt− κ

2
{
a†a, ρ0(t)

}
dt
)

×
(
1 + κ

〈
a†a

〉
dt
)

+O(dt2)

= ρ0(t)− i [Hsys, ρ0(t)] dt− κ

2
{
a†a, ρ0(t)

}
dt

+κ
〈
a†a

〉
ρ0(t)dt+O(dt2), (4.11)

and carrying out a similar calculation for ρ1(t) leaves us with

dρ0 =
(
−i [Hsys, ρ0] + κ

〈
a†a

〉
ρ0 −

κ

2
{
a†a, ρ0

})
dt, (4.12)

dρ1 = aρ1a†

〈a†a〉 − ρ1, (4.13)



62 Quantum measurements

where we suppressed the time arguments for brevity.
To combine these results into a single SME, we define the stochas-

tic process N(t), which counts the number of photons detected up to
time t. We then have the stochastic increment dN(t) with the property
dN(t)2 = dN(t), since in a small enough time interval one can only detect
0 or 1 photons. The stochastic increment also has the expectation value

E [dN(t)] = κ
〈
a†a

〉
dt, which is the probability of detecting one photon

during the time dt. With this notation, Eqs. (4.12) and (4.13) give the
SME

dρ =
(
−i [Hsys, ρ] + κ

〈
a†a

〉
ρ− κ

2
{
a†a, ρ

})
dt

+
(
aρa†

〈a†a〉 − ρ
)

dN(t), (4.14)

which describes how the system state develops, conditioned on the mea-
surement record N(t). To make the connection to the master equations
of Sec. 3.1, remember that Eq. (4.14) is a quantum trajectory equation. If
we average over many trajectories, using the expectation value for dN(t),
we recover a master equation on the Lindblad form,

ρ̇ = −i [Hsys, ρ] + κD [a] ρ. (4.15)

In the above derivation, we assumed that all output from the system
reaches the photon detector, and that the detector is perfect. A more
realistic situation is one where the detector only registers a fraction η of
the photons from the system. The parameter η is called the measurement
efficiency. When η < 1, the SME will include an ordinary Lindblad term
describing the loss of the undetected photons. This clarifies the picture of
the ordinary master equation as a description of average effects on the sys-
tem where we lack information of their exact behaviour in each trajectory.
The final expression for the SME including measurement efficiency is [272]

dρ =
(
− i
~

[Hsys, ρ] + (1− η)κD [a] ρ
)

dt

+G [a] ρdN(t)− 1
2ηκM

[
a†a

]
ρdt, (4.16)

where we have introduced the notation G [c] ρ = cρc†

〈c†c〉 − ρ, M [c] ρ = cρ +

ρc† −
〈
c+ c†

〉
ρ, and where now E [dN(t)] = ηκ

〈
a†a

〉
dt. An SME of this
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type, with the addition of a qubit coupled to the harmonic oscillator, is
central to Paper I, where we among other things investigate how to undo
unwanted measurement back-action from a photon detection measurement.

In Sec. 1.1, we related how an efficient single-photon detector for prop-
agating photons is missing in the experimental toolbox of circuit QED, and
how Papers II and V are concerned with fixing this problem. However, the
proposed setup in those papers is not directly described by an SME like
Eq. (4.16), but instead uses a homodyne measurement on a coherent probe
signal to realize an effective photon detection. The theoretical description
of such a measurement is the topic of the following section.

4.3 Homodyne detection

In the absence of a good photon detector, homodyne detection is the chief
measurement technique used in quantum optics with superconducting cir-
cuits. In this section, we will derive an SME for homodyne detection fol-
lowing Refs. [177, 254]. A different derivation can be found in Ref. [272].

A simple theoretical model of homodyne detection is depicted in Fig. 4.2.
The output from the system that we wish to measure is fed into one of
the two input ports of a 50/50 beamsplitter. At the other input port, a
strong coherent signal at the same frequency from a local oscillator (LO), is
applied. The two outputs from the beamsplitter are then detected by sep-
arate photon detectors and the final measurement signal, the homodyne
current, is the difference of the two photocurrents. It should be clearly
noted that this is a theoretical model which captures the essential physics.
The actual experimental implementation for superconducting circuits is
different; since microwave photon detectors are lacking, the signal is first
amplified, then down-converted in frequency, and finally sampled with an
analog-to-digital converter [274, 275].

We can use the same formalism as in the previous section to derive
the Ωi operators for each of the two photon detectors. However, we must
remember that the inputs to the two detectors are mixes of dBt, driven by
the coherent signal, and dAt, driven by the system output. For a 50/50
beamsplitter, these mixes are given by

dC(1)
t = 1√

2
(dAt + dBt) , (4.17)

dC(2)
t = 1√

2
(dAt − dBt) . (4.18)
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Figure 4.2: The model for homodyne detection. The system output is mixed with
a strong coherent signal at a beamsplitter and photon detection (red devices in
the figure) is performed on the two outputs. The homodyne current j(t) is found
as the difference of the two photon detector signals in the limit of an infinitely
strong local oscillator.

We must also find the time evolution operator for the B vacuum. The
coherent signal from the LO, with amplitude β (|β|2 is the photon flux),
gives terms like β∗dBt instead of

√
κa†dBt as we had previously. Keeping

in mind that |0〉 now really means |0〉A ⊗ |0〉B, we get

Ω0(t+ dt, t) =
〈

0
∣∣∣1− iHsysdt+

√
κ
(
adA†t − a†dAt

)
+ βdB†t

∣∣∣ 0
〉

+
〈

0
∣∣∣∣−β∗dBt −

κ

2a
†adt− |β|2 dt

∣∣∣∣ 0
〉

= 1− iHsysdt−
κ

2
(
a†a+ |β|2

)
dt, (4.19)

Ω1/2(t+ dt, t) =
√
κ

2 (a± β)
√

dt, (4.20)

where we used 〈1|1/2 = 1√
2
√

dt 〈0| (dAt ± dBt) and the Itō rules. With these

results in hand, we can write down the equation of motion for the density
matrix for the three different measurement results. Defining the stochas-
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tic photon counting processes N1(t) and N2(t) with their corresponding
stochastic increments like in the previous section, we get an SME.

The SME for homodyne detection then follows as a result of taking
the limit of an infinitely strong LO, i.e., β → ∞. Carrying through this
analysis, which requires some work that is well described elsewhere [177,
254], eventually leads to the SME

dρ = −i [Hsys, ρ] dt+ κD [a] ρdt+√κηM
[
ae−iφ

]
ρdW (t), (4.21)

where dW (t) is a Wiener increment, φ is a phase set by the LO, and we
have included the measurement efficiency η. The phase φ determines which
quadrature of the signal is measured. The Wiener increment is a random
variable with E [dW (t)] = 0 and variance dt. Using the first property, we
see that averaging over many quantum trajectories given by Eq. (4.21) once
again lets us recover the ordinary Lindblad master equation, Eq. (4.15).

The measurement signal associated with our SME is the homodyne
current

j(t)dt = √κη
〈
ae−iφ + a†eiφ

〉
dt+ dW (t), (4.22)

which we get by taking the limit β → ∞ of the normalized photocurrent
(N1(t)−N2(t))/β [177, 254]. Eq. (4.22) shows two things clearly. Firstly,
changing φ indeed determines which quadrature is measured; if φ = 0,

we get information about
〈
a+ a†

〉
, while if φ = π/2, we get information

about i
〈
a† − a

〉
. Secondly, the signal will be noisy, even for a vacuum

bath, due to the stochastic increment dW (t). The latter can be seen as an
effect of vacuum fluctuations.

The SME for homodyne detection is important for the calculations in
Paper I. There, we study homodyne measurements on a resonator disper-
sively coupled to one or two qubits. Depending on which quadrature is
measured, the information about the qubit state(s) that can be extracted,
and consequently the back-action of the measurement on the qubit(s), can
be very different. Interestingly, even though the measurement back-action
is partly random due to the stochastic increments dW (t) in Eq. (4.21), we
can still extract it exactly from the measured homodyne current, since that
also includes dW (t).

In Papers II and V, we use homodyne detection to construct an effective
photon detector. There, we also combine Eq. (4.21) with the formalism
for Fock-state input given in Sec. 3.4 and with the formalism for cascaded
quantum systems which is the topic of Chapter 5. The essential question in
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Papers II and V is whether we can get a strong enough signal to overcome
the ever-present noise dW (t).

To demonstrate the effects predicted in Papers I, II, and V in experi-
ment, a high measurement efficiency η is essential. Achieving this is not
easy; amplifiers are needed to process the weak signals considered, and
they generally add a lot more noise on top of that of the quantum vacuum,
giving low η. Fortunately, in the last years parametric amplifiers based on
Josephson junctions have been developed, pushing η up towards 0.5 and
above [276–282].

As a final remark, it should be noted that the SMEs for photon de-
tection and homodyne detection require some extra care when used in
analytical or numerical calculations. They are not ordinary differential
equations; the stochastic components make them fundamentally different.
For general analytical solutions and efficient numerical algorithms, the in-
terested reader can consult Ref. [283].

4.4 Susceptibility

In the previous sections, we considered different ways of doing measure-
ments on the output from a quantum system. Another way to characterize
the system, often used in experiments, is to investigate its response to one
or more external drive signals. To this end, the input-output theory of
Sec. 3.2 is useful. However, in two-tone spectroscopy, where the system is
driven at one frequency ωd and the response to a weak probe at another
frequency ωp is measured, it becomes hard to find an appropriate rotating
frame to work in. In this case, it is helpful to calculate the susceptibility
of the system instead. The method is applied in Papers III, IV, and VI.

We follow Ref. [284] and consider a system with Hamiltonian

Hsys = H0 +H1, (4.23)

where H1 is a small perturbation, caused by a coherent probe signal α(t)
being applied to the system operator c,

H1 = cα(t) = c
(
αe−iωpt + α∗eiωpt

)
. (4.24)

We want to find the response (the change) ∆ 〈d〉 of a system operator d
to this perturbation. Since the perturbation is small, the response can be
assumed linear,

∆ 〈d(t)〉 =
∫ t

−∞
dt′χdc(t− t′)α(t′), (4.25)
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where χdc(t) is the susceptibility.

The time evolution for the system density matrix ρ = ρ0 + ρ1 (ρ1 � ρ0
since the perturbation is weak) is governed by the Liouville–von Neumann
equation, Eq. (3.3),

ρ̇(t) = ρ̇0(t)+ρ̇1(t) = −i [H0, ρ0(t)]−i [H0, ρ1(t)]−i [H1, ρ0(t)]−i [H1, ρ1(t)] .
(4.26)

Moving to the interaction picture,

ρ̃(t) = eiH0tρ(t)e−iH0t, (4.27)

and ignoring the last term of Eq. (4.26) since it is second order in the
perturbation, we get

˙̃ρ1(t) = −i
[
H̃1(t), ρ̃0(t)

]
, (4.28)

which has the solution

ρ̃1(t) = −i
∫ t

−∞
dt′
[
c̃(t′), ρ̃0(t′)

]
α(t′). (4.29)

The response we seek is thus

∆ 〈d(t)〉 = tr
(
d̃(t)ρ̃1(t)

)
= i

∫ t

−∞
dt′
〈[
c̃(t′), d̃(t)

]〉
α(t′), (4.30)

where the expectation value is taken with respect to the unperturbed den-
sity matrix ρ0 and we have used that the trace is unchanged under cyclic
permutations. We assume ρ0 to describe equilibrium, such that the ex-
pectation value in Eq. (4.30) only depends on the time difference t − t′.
Making the change of variables τ = t− t′, we then have

∆ 〈d(t)〉 = i

∫ ∞

0
dτ
〈[
c̃(0), d̃(τ)

]〉
α(τ − t). (4.31)

Fourier transforming this gives

χdc(ωp) = i

∫ ∞

0
dτ 〈[c(0), d(τ)]〉 e−iωpτ . (4.32)

When we have an open quantum system such that ρ0 is governed by a
master equation ρ̇0 = Lρ0 (where L is called the Liouvillian and is used
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to abbreviate equations like Eq. (3.13)), the two-time correlators are cal-
culated as [116]

〈c(0)d(t)〉 = tr
(
deLtρc

)
, (4.33)

〈d(t)c(0)〉 = tr
(
deLtcρ

)
. (4.34)

For some advice on computing the susceptibility numerically, see Ref. [285].
In this chapter and the previous one, we have now covered master

equations for open quantum systems, how to handle input and output in
such systems, and how to describe different kinds of measurements on the
system output. What remains to discuss is how to handle the output from
one system being used as an input for a second one (or fed back as an
input for the first). This is the topic of the next chapter.



Chapter 5

Cascaded quantum systems

With artificial atoms enabling quantum optics experiments in more com-
plex, interconnected systems, it becomes important to have theoretical
tools that can deal with such setups. In the previous chapters, we have
dealt with input-output theory for open quantum systems, developing
along the way quantum stochastic calculus which also helped us describe
measurements on the system output. In this chapter, we will extend these
methods to cascaded quantum systems, where the output from one quan-
tum system is used as the input for another.

Cascaded quantum systems have been studied theoretically for decades
[116, 270, 286], but it is only recently that a compact formalism has been
developed which allows for simple calculation of an effective description
for any number of cascaded systems. In the following, we will derive the
basics of this (S,L,H) formalism [287, 288] and give examples of how it
can be applied in situations that arise in some of the appended papers.

5.1 The (S,L,H) formalism

Consider the situation depicted in Fig. 5.1, where we have two quantum
systems that are described by Hamiltonians H1 and H2, respectively. We
let the first system be coupled via an input-output port to the environment
by a coupling operator L1. The output from the first system is fed into
the second system, which is coupled to the environment via L2. The time
evolution operator for the combined system can then be found by first time
evolving the state of system 1 for a small time dt, then evolving the state
of system 2 for that small time, and so on. We assume here that there
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H1 H2

Figure 5.1: Two quantum systems cascaded such that the output from system 1
becomes input to system 2. Using stochastic quantum calculus, we can derive an
effective description for the total system.

is negligible time delay in relaying a signal from the first system to the
second. The first part of the time evolution (from time 0 to time dt) is
then, using Eq. (3.38),

U
(2)
dt U

(1)
dt =

(
1 + dU (2)

0

) (
1 + dU (1)

0

)
= 1− i (H1 +H2) dt

+ (L1 + L2) dB†0 −
(
L†1 + L†2

)
dB0

−1
2
(
L†1L1 + L†2L2

)
dt− L†2L1dt

= 1− i
(
H1 +H2 + 1

2i
(
L†2L1 − L†1L2

))
dt

−1
2 (L1 + L2)† (L1 + L2) dt

+ (L1 + L2) dB†0 − (L1 + L2)† dB0. (5.1)

From this, we see that the total system behaves as if it had a Hamiltonian

H = H1 +H2 + 1
2i

(
L†2L1 − L†1L2

)
and was coupled to the environment via

an operator L = L1 + L2 [262].

The above derivation suggests that an open quantum system could be
assigned a doublet G = (L,H), and that the series product of two systems
is given by

G = G2 / G1 =
(
L1 + L2, H1 +H2 + 1

2i
[
L†2L1 − L†1L2

])
. (5.2)

Note that the total doublet is not invariant under interchange of 1 and
2. This reflects the ordering of the two systems; the output from one is
fed into the other, not the other way around. It is possible to extend
the formalism to systems having several input-ouput ports. The L then
becomes a column vector of coupling operators and the above expression
still holds.
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So far, we have only used the L and H in (S,L,H). The final part
of the triplet, S, is called the scattering matrix. It is an addition to the
formalism needed to describe systems with scattering between multiple
channels [288], such as beamsplitters or circulators. Such devices have
neither L nor H; they are simply systems which take several inputs and
mix them into several outputs. The S describes this scattering process, and
provides a way to use the (S,L,H) formalism to handle connections between
a multitude of different quantum systems. To exemplify, the triplet for a
50/50 beamsplitter is given by

GBS =
(( 1√

2 − 1√
2

1√
2

1√
2

)
,

(
0
0

)
, 0
)
. (5.3)

Actually, the S also comes in handy for a single-channel case. In a
situation when the distance between two systems, G1 and G2, is non-
negligible, the (S,L,H) formalism can still be made to work if one inserts
a phase shift φ between the two systems in the calculation. However, we
must still assume that the time it takes to travel the distance in question is
small compared to the timescale on which the systems evolve. The phase
shift is inserted by placing the triplet Gφ = (eiφ,0,0) between G1 and G2.

Another component one would like to incorporate in many setups is a
coherent signal. Noting that this is just a displaced vacuum, one can show
that a coherent signal, sending in |α|2 photons per second, is described by
the triplet Gα = (1,α,0).

5.2 (S,L,H) rules and examples

The series product we derived above is the basis for the (S,L,H) formalism.
To allow for assembly and coupling of systems in many ways, we need to
define two additional operations: concatenation (“stacking systems”) and
feedback (using an output from a system as an input for the same system).
We also need to modify the series product to include S. In this section, we
establish the full set of rules for all three (S,L,H) operations and illustrate
their use with examples from some of the appended papers.

5.2.1 Series product, concatenation, and feedback

The three operations of the (S,L,H) formalism are illustrated in Fig. 5.2.
The series product / from Eq. (5.2) generalizes, when including the scat-
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G1 G2 G2 / G1=

G1

G2

G1 �G2=

Gb

a

c

b

a

c

Gb→c

a

b

a

b

=

Figure 5.2: Illustrations of the three operations in the (S,L,H) formalism. From
top to bottom: series product G2 / G1, concatenation product G1 � G2, and
feedback.

tering matrix, to [287, 288]

G2 / G1 =
(
S2S1, S2L1 + L2, H1 +H2 + 1

2i
(
L†2S2L1 − L†1S†2L2

))
. (5.4)

To assemble systems we also need the concatenation product �, which
is given by

G2 �G1 =
((

S2 0
0 S1

)
,

(
L2
L1

)
, H2 +H1

)
. (5.5)

Finally, there is also a rule for the feedback operation [(S,L,H)]k→l =
(S̃,L̃,H̃), which represents feeding the kth output of a system into the lth
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input of the same system. The result is

S̃ = S[/k,/l ] +




S1,l
...

Sk−1,l
Sk+1,l

...
Sn,l




(1− Sk,l)−1
(
Sk,l . . . Sk,l−1 Sk,l+1 . . . Sk,n

)
,

(5.6)

L̃ = L /[k] +




S1,l
...

Sk−1,l
Sk+1,l

...
Sn,l




(1− Sk,l)−1 Lk, (5.7)

H̃ = H + 1
2i






n∑

j=1
L†jSj,l


 (1− Sk,l)−1 Lk −H.c.


 , (5.8)

where S[/k,/l ] and L /[k] are the original scattering matrix and coupling vector
with row k and column l removed [289, 290].

Once we have the (S,L,H) for our total system,

G =


S,



L1
...
Ln


 , H


 , (5.9)

we can extract the master equation for the total system as

ρ̇ = −i [H, ρ] +
n∑

i=1
D [Li] ρ. (5.10)

The average output from port i of the system is simply given by 〈Li〉.

5.2.2 Example 1 – coupled cavities and a circulator

For a first example of how to use the (S,L,H) formalism, we will now look
at a simplified version of a setup used in Paper I to model a bandpass
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Ga1β

Ga2 Gb1

Gb2

Figure 5.3: Top: Illustration of the setup for the two coupled cavities. The κi
denote photon loss rates through the cavity sides. Bottom: A schematic picture
of the same setup, showing how to set up the (S,L,H) triplet for the total system.
It should be understood as follows: The uppermost input is that which is fed in
through the left side of the first cavity, the middle input is that which enters the
first cavity from the right, and the last input is that which enters the second cavity
from the right. The first output is that which exits, or is reflected from, the left
side of the first cavity. The second output is that which exits, or is reflected from,
the left side of the second cavity. Finally, the last output exits, or is reflected
from, the right side of the second cavity.

filter. In this version, depicted schematically in Fig. 5.3, a coherent signal
impinges on a two-sided cavity from the left. The output from the right
side of the cavity is then sent on, hitting a second two-sided cavity from
the left. We imagine there being a circulator between the two cavities
to prevent the signal reflected off the second cavity from returning and
interacting with the first cavity. The circulator is assumed perfect and does
not enter as a separate component in the (S,L,H) calculations. In the case
of an imperfect circulator, one can include it as a three-port device with a
scattering matrix. This was done in Paper V to investigate the impact of
circulator efficiency on the photon detection ability of cascaded transmons.

We begin by writing down the (S,L,H) triplets of the system compo-
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nents shown in Fig. 5.3. The incoming coherent signal is simply represented
by

Gβ = (1, β, 0) , (5.11)

where |β|2 is the photon flux, measured in units of photons per second.
The first cavity has the triplet

Ga =
((

1 0
0 1

)
,

(√
κ1a√
κ2a

)
, Ha

)

= (1,√κ1a,Ha)� (1,√κ2a,0) ≡ Ga1 �Ga2 (5.12)

where a is the annihilation operator for the mode in the cavity, κ1 and κ2
are the photon loss rates through the left and the right side of the cavity,
respectively, and

Ha = ∆aa
†a (5.13)

is the Hamiltonian of the cavity in a frame rotating with the frequency
ωβ of the input signal; ∆a = ωa − ωβ is the detuning from the cavity
frequency ωa. The decomposition of the cavity triplet using concatenation
in Eq. (5.12) is useful since it lets us properly deal with using one of the
cavity outputs as input for the second cavity, which has the triplet

Gb = Gb1 �Gb2 = (1,√κ3b,Hb)� (1,√κ4b,0) , (5.14)

with everything defined in analogy with the case of the first cavity.
With the individual components in place, we now use the schematic in

Fig. 5.3 together with the rules for concatenation and the series product
to calculate triplet for the combined system,

G = (I �Gb1 �Gb2) / ((Ga1 / Gβ)�Ga2 � I)

=


13,




0√
κ3b√
κ4b


 , Hb




/


13,



β +√κ1a√

κ2a
0


 , Ha + 1

2i
√
κ1
(
βa† − β∗a

)



=
(

13,




β +√κ1a√
κ2a+√κ3b√

κ4b


 ,

Ha +Hb + 1
2i
√
κ1
[
βa† − β∗a

]
+ 1

2i
√
κ2κ3

[
ab† − a†b

])
. (5.15)
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Here, 1n denotes the n×n identity matrix and we inserted identity triplets
I = (1,0,0) in some places to make sure that the right channels are con-
nected.

From Eq. (5.10) we now see that the master equation for the combined
system is

ρ̇ = −i
[
Ha +Hb + 1

2i
√
κ1
(
βa† − β∗a

)
+ 1

2i
√
κ2κ3

(
ab† − a†b

)
, ρ

]

+D [β +√κ1a] ρ+D [√κ2a+√κ3b] ρ+D [√κ4b] ρ. (5.16)

Noting that

D [a+ b] ρ = D [a] ρ+D [b] ρ+ aρb† + bρa†

−1
2
((
a†b+ b†a

)
ρ+ ρ

(
a†b+ b†a

))
, (5.17)

after some algebra we are able to rewrite the master equation as

ρ̇ = −i
[
Ha +Hb − i

√
κ1
(
βa† − β∗a

)
, ρ
]

+ (κ1 + κ2)D [a] ρ+ (κ3 + κ4)D [b] ρ
+√κ2κ3

([
b, ρa†

]
+
[
aρ, b†

])
. (5.18)

The first two lines in this equation would be the full result if the two cavities
were not connected; the third line contains the unidirectional coupling
between the cavities. If we want to determine the signal that exits from
the right side of the second cavity, we solve this master equation and use
it to calculate

√
κ4 〈b〉.

The motivation for including this type of setup in Paper I was to model
a bandpass filter. To prove that a cavity acts as a filter for a signal, it is
enough to study the steady state of the signal that is reflected from the first
cavity, i.e., β +√κ1 〈a〉ss as given by the input-output relation Eq. (3.30).
Using commutation relations for the a’s and b’s together with the cyclic
property of the trace, we get that the steady state of 〈a〉 is given by

0 = d
dt 〈a〉 = tr (aρ̇) = −√κ1β −

(
i∆a + 1

2κ1 + 1
2κ2

)
〈a〉 , (5.19)

which leads us to

〈a〉ss = −
√
κ1β

i∆a + 1
2κ1 + 1

2κ2
. (5.20)
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It is reassuring to note that the steady state of the first cavity does not
depend in any way on the parameters of the second cavity, which is as it
should be since the coupling is unidirectional. Assuming κ1 = κ2 ≡ κa,
the steady-state reflected signal form the first cavity is thus

β +√κa 〈a〉ss = β − κaβ

i∆a + κa
. (5.21)

We see that the photon flux, the absolute value squared of the above quan-
tity, is 0 when the input signal is on resonance with the cavity, i.e., when
∆a = 0. Furthermore, the photon flux is exactly half of the input when
∆a = ±κa. This shows that the cavity acts as a filter with bandwidth 2κa.

5.2.3 Example 2 – a giant artificial atom

For a second (S,L,H) example, we turn to the analysis of the giant artificial
atom in Paper VII. There, we consider a multi-level atom coupled to an
open transmission line at multiple points. The most basic version of this
setup is a two-level atom coupled at two points to the transmission line.
In the (S,L,H) formalism, we can handle this system by letting the output
from the first coupling point pass through a phase shift (accounting for
the distance between coupling points, assuming that the travel time is
negligible) and then be fed back to the atom at the second coupling point.

The setup we consider, together with its (S,L,H) model, is depicted
in Fig. 5.4. We first look at the part of the atom interacting with the
right-travelling modes. This part has an (S,L,H) triplet GR, which can be
divided into two, GR,1 and GR,2, one for each connection point. Including
the Hamiltonian ∆a

2 σz, where ∆a = ωa − ωp is the detuning of the atom
transition frequency from some probe frequency ωp, in GR,1, we have

GR,1 =


1,

√
Γ1
2 σ−,

∆a

2 σz


 , (5.22)

GR,2 =


1,

√
Γ2
2 σ−, 0


 , (5.23)

where Γk is the relaxation rate of the atom via connection point k. The
Γk are divided by 2 here since only half of the relaxation goes to the right-
travelling modes.
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GR,1 GR,2

GL,1 GL,2

Gφ

Gφ

Figure 5.4: Top: Illustration of the setup for the giant artificial atom. The atom
is coupled at two points to the transmission line, which supports right- and left-
travelling modes. Bottom: A schematic picture of the same setup, showing how to
set up the (S,L,H) triplet for the total system. The atom is conceptually divided
into two parts, one interacting with each direction of the travelling modes. The
output of each such mode from its first interaction point is fed through a phase
shift and the returns to the atom at the second interaction point.

We now find GR from the calculation

GR = [(Gφ / GR,1)�GR,2]1→2

=



(
eiφ 0
0 1

)
,


e

iφ
√

Γ1
2 σ−√

Γ2
2 σ−


 , ∆a

2 σz




1→2

=


eiφ,


eiφ

√
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2 +

√
Γ2
2


σ−,

1
2σz

(
∆a + 1

2
√
Γ1Γ2 sin (φ)

)
 ,

(5.24)
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where we used all the rules from Eqs. (5.4)–(5.8) and eiφ−e−iφ = 2i sin(φ).
In the same way, we get

GL = [(Gφ / GL,2)�GL,1]1→2

=


eiφ,


eiφ

√
Γ2
2 +

√
Γ1
2


σ−,

1
4σz

√
Γ1Γ2 sin (φ)


 , (5.25)

and thus the total triplet for our system is

Gtot = GR �GL

=
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

(
eiφ 0
0 1
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,


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(
eiφ
√
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2 +

√
Γ2
2
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√
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2
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
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∆a +
√
Γ1Γ2 sin (φ)

2 σz


 .

(5.26)

With the total triplet in hand, Eq. (5.10) gives us the master equation.
With the simplifying assumption Γ1 = Γ2 ≡ Γ , the result is

ρ̇ = −i
[
∆a + Γ sin (φ)

2 σz, ρ

]
+
∣∣∣1 + eiφ

∣∣∣
2
ΓD [σ−] . (5.27)

Thus, the effect of the feedback in the giant artificial atom is to introduce a
shift of the resonance frequency by Γ sin (φ) (a Lamb shift) and to give an

effective relaxation rate
∣∣∣1 + eiφ

∣∣∣
2
Γ . Both these modifications depend on

the phase shift φ, which is determined by the distance between the coupling
points and the resonance frequency of the atom. This means that we have
a frequency-dependent coupling, which is discussed further in Paper VII.
There, we also do the derivation in the traditional master equation way
(see Sec. 3.1), which gives a more precise account for the Lamb shift.

The method used here for the giant atom is also applicable to the case
of an atom placed in front of a mirror. In that case, the right-travelling
output from the atom gets a phase shift as it travels to the mirror and
back, and is then fed back to the atom as the left-travelling input. In this
case one also gets a frequency and distance dependence of the relaxation
rate and the atom frequency. The varying relaxation rate is investigated
experimentally in Paper VIII; it can be interpreted as a measure of the
vacuum fluctuation strength in the transmission line, and this strength
varies since the mirror imposes a boundary condition giving nodes and
anti-nodes for the vacuum modes.
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The (S,L,H) formalism concludes our overview of the theoretical meth-
ods used in the appended papers. With the full theoretical toolbox from
Chapters 2–5 in hand, we are now ready to take a closer look at the ap-
pended papers in the following chapter.



Chapter 6

Paper overview

In this penultimate chapter, we give an overview of the eight appended
papers upon which this thesis is based. The focus of the overview is on
explaining the main ideas of the papers and showing how the theoretical
methods of the previous chapters are applied in practice. Broadly put,
all the appended papers are theoretical or experimental studies of systems
where artificial atoms enable us to either improve on known concepts or
experiments from quantum optics with natural atoms, or to explore new
regimes which have not been possible to reach with natural atoms.

Little research is done in isolation these days; all the appended papers
are collaborations between several researchers. As a part of the paper
overview, I will briefly clarify my own contribution to each of the appended
papers.

6.1 Paper I – Undoing measurement-induced de-
phasing in circuit QED

In Sec. 1.4, we discussed how parity measurements on qubits are an in-
tegral part of many error correction schemes for quantum computing. A
proposal for how to carry out a 2-qubit parity measurement in circuit QED
was presented in 2010 [165] (there are now also similar schemes for measur-
ing 3- and 4-qubit parity [291, 292], and even to measure N -qubit parity
using an ancilla qubit [293]). The idea is to place two qubits in a cavity,
tune the system into the dispersive regime (see Sec. 2.5), and send in a
coherent microwave signal at the resonance frequency of the cavity. The
dispersive shifts of the qubits can then be arranged such that if the qubits
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are in opposite states their effects on the cavity resonance frequency cancel,
while if they are in identical states they will cooperate to shift the cavity
frequency up or down. Performing homodyne detection on one quadrature
of the outgoing signal will only reveal whether it is on resonance with the
cavity or not, thus only giving information about the parity of the two
qubits (and no information about their individual states). However, akin
to the example in Sec. 4.1.1, the parity measurement comes with additional
back-action in the form of phase kicks to the states in one of the parity
subspaces. Averaging over many measurements, these phase kicks look like
measurement-induced dephasing.

In Ref. [216], Tornberg and Johansson showed that part of this dephas-
ing can be undone. It turns out that monitoring the homodyne current
(the measurement signal, see Sec. 4.3) gives information about the phase
kicks, similar to the example in Sec. 4.1.1. However, it appeared that only
part of the information about the phase kicks could be extracted this way,
and thus the problem of measurement-induced dephasing remained.

In Paper I, we look at measurements on both one and two qubits in a
cavity, using both homodyne detection and photon detection in the SME
formalism of Secs. 4.2 and 4.3. We show that all the information about
phase kicks can be extracted from the measurement signal in all these
cases, and thus that the measurement-induced dephasing in principle can
be completely undone.

The key insight for the positive result of Paper I was that Ref. [216]
considered the steady-state case, i.e., the coherent probe is turned on at
time t = 0 and is never turned off. We try to undo the phase kicks we have
information about, once a long time has passed. The problem with this
approach is that there will always be probe photons left in the cavity which
have yet to leak out and reach the detector. Each such remaining probe
photon is entangled with the qubits and carries information about their
phase, which we need to completely undo the dephasing. The solution is
simple: we analyze the situation where the probe signal has been turned
off at a time t = toff > 0, and we have waited some time after that to let
the remaining photons leak out of the cavity and reach the detector.

In this way, we acquire all information about the phase kicks. For
the case of homodyne detection, the information consists of the homodyne
current from time t = 0 and onwards, while for the case of photon detection
it is all the times when a photon was detected. The calculation for the case
of photon detection, including tracing out the cavity degrees of freedom
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to derive an effective SME for one qubit, has not been done previously
to our knowledge. The effective SME for homodyne detection has been
derived before [165, 215], but the result that all the measurement-induced
dephasing can be undone if the probe is turned off, is new.

The positive result on undoing the phase kicks completely is, of course,
only achieved in the limit of perfect detectors. Presently, there are no
efficient photon detectors for propagating microwave photons and the ho-
modyne detection schemes struggle with amplifier noise, as discussed in
Sec. 4.3. To see if our results could be tested with currently available
experimental equipment, we model the case of homodyne detection with
imperfect detectors and limited bandwidth. We use the (S,L,H) formal-
ism of Chapter 5 to insert a second cavity, acting as a bandpass filter (see
Sec. 5.2.2) through which the output from the cavity with the qubits was
passed. According to the results from this model, it should be feasible
to demonstrate some undoing of measurement-induced dephasing already
with existing technology. This year, such an experimental confirmation of
our results was achieved in Delft [294].

For Paper I, my contribution consisted of deriving the equations used,
performing the numerical simulations, interpreting results, and writing
most of the manuscript.

6.2 Paper II – Breakdown of the cross-Kerr scheme
for photon counting

In Sec. 1.1, we saw that one of the missing experimental tools for quan-
tum optics with superconducting circuits is a good detector of propagating
photons at microwave frequencies, although there are proposals to remedy
this [51–55]. Paper II is an investigation of the possiblity to use a three-
level transmon to mediate a cross-Kerr type interaction between photons
to construct a photon detector. Generally, a Kerr interaction between two
modes with annihilation operators a and b, respectively, is of the form
χKa

†ab†b. If the interaction strength χK is large enough, the presence of
photons in one mode will change the frequency of the photons in the other
mode, giving them a phase shift.

In our approach, a single photon, which we wish to detect, is close
to resonance with the first transition in the transmon. The idea is that
the arrival of this photon at the transmon will induce a phase shift in a
coherent probe, which is close to resonance with the second transition of
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the transmon. This phase shift can then be read out from a homodyne
detection on the probe. The question is whether the shift is large enough
to be discernible over the unavoidable vacuum noise.

We model the system at hand in two different ways. In the first ap-
proach, we place a cavity, which will be our photon source, to the left of
the transmon. Using the (S,L,H) formalism of Chapter 5, we derive the
master equation for the total system. Then, adding a homodyne measure-
ment on the coherent probe after it has interacted with the transmon gives
us a stochastic master equation (see Sec. 4.3). By numerically simulating
many quantum trajectories, some starting with one photon in the cavity
and some with zero photons in the cavity, we get a distribution of mea-
surement results (integrated homodyne currents) for each case. From the
separation and widths of the two distributions we extract the signal-to-
noise ratio (SNR).

The second approach is to use the Fock-state input-output formalism
of Sec. 3.4. Here, it is more straightforward to consider different shapes of
the photon wavepacket. Also, it turns out that the system of equations for
the density matrix is analytically solvable. We are thus able to extract the
SNR in a different way than before; the result is the same as in the first
approach.

The main result of the paper is that a single transmon can not give
an SNR above 1, which means that it will not function as a good photon
detector. Even putting several transmons one after another in the trans-
mission line does not help. If they are too close together, they will act as
a single transmon; if they are far apart, the SNR is still below 1 since a
large part of the probe and the signal are reflected off the first transmons
and does not propagate onwards. Other ideas, such as squeezing the probe
field and varying the ratio of the two transmon relaxation rates, also fail
to produce a good SNR. The basic problem is that the transmon can only
handle one photon at a time, which means that the cross-Kerr interaction
only shifts the probe signal by an amplitude of “less than one photon”, no
matter how strong the probe is. This is not enough to clearly distinguish
a signal above the vacuum noise, which can be said to have the amplitude
of half a photon.

For Paper II, I contributed by collaborating on deriving equations and
performing numerical simulations, and by discussing ideas and results. I
also assisted in the writing of the manuscript.



6.3 Paper III – Giant cross-Kerr effect for propagating ... 85

6.3 Paper III – Giant cross-Kerr effect for prop-
agating microwaves induced by an artificial
atom

Paper III is an experimental investigation of the cross-Kerr effect we tried
to use for photon detection in Paper II. Two setups are tested: a single
three-level transmon in an open transmission line and a transmon at the
end of a transmission line. In both cases two coherent signals are sent in:
one, the “control”, close to resonance with the first transmon transition,
and another, the “probe”, close to resonance with the second transition.
See Fig. 1.1 for an illustration of the open transmission line case.

As was mentioned in Sec. 1.1, similar setups using natural atoms have
only achieved a weak photon-photon interaction, where a single control
photon only imparts a phase shift of less than a milliradian on the probe
[31–33]. In Paper III, we report as our main result phase shifts of tens of
degrees when both the probe and the control are on the single-photon level.
By single-photon level for the coherent signals, we mean a signal power
such that on average one photon arrives at the transmon per relaxation
time. An important thing to note is that the phase shift is larger when
the transmon sits at the end of a transmission line. This is due to the fact
that all signals only travel one way in this setup; in an open transmission
line, the transmon output splits up with half of it leaving in each of the
two possible propagation directions.

The behaviour of the transmon in the experiment is well explained by a
model where the decoherence is mainly due to relaxation to the transmis-
sion line. The model uses a master equation and input-output theory as
given in Chapter 3. In Paper II we assume the idealized case where relax-
ation to the transmission line is the only decoherence mechanism. While
the setup in Paper II will not work as a photon detector, an improved
version of it considered in Paper V will. The results of Paper III give us
good reason to believe that the setup of Paper V can be made to work in
practice.

In the work on Paper III, I had the main responsibility for the theoret-
ical part. I also assisted in fitting the data and gave input on the writing
of the manuscript.
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6.4 Paper IV – Detailed modelling of the sus-
ceptibility of a thermally populated, strongly
driven circuit-QED system

In Paper IV, we look at results from an experiment where a transmon was
placed in a resonator. This setup realizes the Jaynes–Cummings model
discussed in Sec. 2.5, but with a multi-level atom rather than a two-level
one.

To probe the system, a weak coherent signal is sent into the resonator
and its transmission coefficient is measured. With the first transmon tran-
sition frequency relatively close to the resonance frequency of the cavity,
transmission peaks are observed at frequencies corresponding to transitions
between dressed states (see Sec. 2.5).

A strong coherent drive is then applied close to the first transmon
transition. The result is that we get doubly dressed states, where both the
resonator and the drive interact with the transmon. As the frequencies of
both probe and drive are varied, a rich pattern of resonances appear. We
are able to model the experimental results with good precision for a range of
drive strengths using a master equation (including a thermal population of
the bath, see Sec. 3.1) and calculating the susceptibility for the weak probe
(see Sec. 4.4). The features in the data can all be qualitatively explained
in terms of the doubly dressed states and multi-photon transitions between
them.

For Paper IV, I did most of the theoretical work. I set up the model,
wrote code for numerical simulations, and explained qualitatively the fea-
tures in the data. I also assisted in writing the manuscript.

6.5 Paper V – Quantum nondemolition detection
of a propagating microwave photon

Paper V is a theoretical study building on Paper II in the search for a
detector of propagating microwave photons. While we found in Paper II
that the effective photon-photon interaction mediated by a single three-
level transmon was too weak to allow for photon detection, we did not give
up on the idea. Paper II also showed that cascading several transmons in
an open transmission line did not help, due to problems with reflections,
but in Paper V we hit upon a setup which avoids these problems.
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Quantum Nondemolition Detection of a Propagating Microwave Photon
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The ability to nondestructively detect the presence of a single, traveling photon has been a long-standing
goal in optics, with applications in quantum information and measurement. Realizing such a detector is
complicated by the fact that photon-photon interactions are typically very weak. At microwave frequencies,
very strong effective photon-photon interactions in a waveguide have recently been demonstrated. Here we
show how this type of interaction can be used to realize a quantum nondemolition measurement of a single
propagating microwave photon. The scheme we propose uses a chain of solid-state three-level systems
(transmons) cascaded through circulators which suppress photon backscattering. Our theoretical analysis
shows that microwave-photon detection with fidelity around 90% can be realized with existing
technologies.

DOI: 10.1103/PhysRevLett.112.093601 PACS numbers: 42.50.Dv, 42.50.Lc, 42.65.-k, 85.60.Gz

Quantum mechanics tells us that a measurement perturbs
the state of a quantum system. In the most extreme case,
this leads to the destruction of the measured quantum
system. By coupling the system to a quantum probe, a
quantum nondemolition [1] (QND) measurement can be
realized, where the system is not destroyed by the meas-
urement. Such a property is crucial for quantum error
correction [2], state preparation by measurement [3,4], and
one-way quantum computing [5]. For microwave frequen-
cies, detection of confined photons in high-Q cavities has
been proposed and experimentally demonstrated by several
groups [6–9]. They all exploit the strong interaction
between photons and atoms (real and artificial) on the
single photon level. Detection schemes for traveling pho-
tons have also been suggested [10–12], but in those
proposals the photon is absorbed by the detector and the
measurement is therefore destructive. Proposals for
detecting itinerant photons using coupled cavities have
also been suggested, but they are limited by the trade-off
between interaction strength and signal loss due to reflec-
tion [13]. Other schemes based on the interaction of Λ-type
atomic level structures have been suggested, but the
absence of such atomic level structures in solid-state
systems make them unsuited to the microwave regime
[14–16].
Here, we present a scheme to detect a propagating

microwave photon in an open waveguide. At its heart is
the strong effective nonlinear interaction between micro-
wave fields induced by an artificial atom to which they are
coupled. A single photon in the control field induces a
detectable displacement in the state of a probe field, which

is initially in a coherent state. The control field is not
absorbed, making the protocol QND. The protocol may be
operated either synchronously (in which the control pho-
tons arrive within specified temporal windows) or asyn-
chronously [17].
Figure 1 illustrates the scheme. The effective nonlinear

interaction between the control photon and the probe
field is realized by N noninteracting artificial atoms (trans-
mon devices [18]) coupled to the transmission line.
Transmons are particularly attractive in light of recent work
demonstrating strong atom-field coupling in the single-
photon regime in open waveguides [19]. We treat the atoms
as anharmonic three-level ladder systems with energy

FIG. 1 (color online). A chain of N transmons cascaded from
microwave circulators interacts with control and probe fields,
which are close to resonance with the 0-1 and 1-2 transition,
respectively. In the absence of a control photon, the chain is
transparent to the probe. A control photon with temporal profile
ξðtÞ drives each transmon consecutively, which then displaces the
probe field, which is detected by homodyne measurement.
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Figure 6.1: A schematic of the photon-detection setup considered in Paper V. The
photon wavepacket ξ(t) to be detected (close to resonance with the first transmon
transition) and the coherent probe of amplitude αp (close to resonance with the
second transmon transition) are guided by circulators to each transmon in turn.
This adds up the effective photon-photon interactions, giving a clear difference in
the probe depending on whether there was a photon present or not. Illustration
by Sankar R. Sathyamoorthy.

The setup studied in Paper V is shown in Fig. 6.1. By placing each
transmon at the end of a transmission line, and connecting the lines with
circulators, we force both the photon wavepacket and the coherent probe
to travel unidirectionally. The main result of the paper is that this makes
the effective photon-photon interactions add up to give a

√
N increase in

SNR for N transmons in the chain. Just like in Paper II, the analysis is
based on an SME for homodyne detection, the (S,L,H) formalism to handle
cascaded quantum systems, and the formalism for Fock-state input. An
important point compared to other photon-detector proposals is that the
photon we detect is not absorbed, but travels on, making the detection
“nondemolition”.

We analyze a number of possible imperfections in the setup that could
affect an experimental implementation of the proposal. The effects of mea-
surement efficiency for the homodyne detection of the probe, the shape of
the photon wavepacket, dephasing, varying coupling strengths, and losses
in the circulators are all considered. With the promising developments
regarding measurement efficiency referred to in Sec. 4.3, the most critical
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issue is probably the circulators. We find that a 5% power loss in each
circulator can be tolerated in the setup, but with power loss approaching
10% the SNR will not increase no matter how many transmons are added
to the chain.

While we have yet to see an experimental implementation of the pro-
posal in Paper V, there is a recent paper which seeks to improve further on
the setup [295]. There, each transmon is placed in a cavity. The photon to
be detected travels the same path as before, but each cavity is probed by a
separate coherent signal. This appears to reduce the number of transmons
needed to achieve good SNR.

For Paper V, my main contribution was to derive most of the equations
in the theoretical models. I also assisted in some numerical calculations,
discussed the results, and gave input on the manuscript.

6.6 Paper VI – Propagating phonons coupled to
an artificial atom

Paper VI is an experiment which opens up new realms in quantum optics.
Here, we make phonons in the form of surface acoustic waves (see Sec. 2.4)
interact with an artificial atom, a transmon. The idea for this setup was
first given in Ref. [204]. With the SAWs propagating on a piezoelectric sub-
strate, the interdigitated shunt capacitance of the transmon (see Sec. 2.3)
can be designed to act as an IDT, converting between electrical excitations
of the atom and propagating phonons.

We perform several tests with the experimental setup in Fig. 1.2 to con-
firm that the artificial atom couples to the SAWs. The tests are all inspired
by the similarity of the setup with a transmon in an open transmission line.
Firstly, the reflection coefficient for a SAW probe sent towards the trans-
mon is shown to be power-dependent, consistent with the fact that the
anharmonic artificial atom can only handle one phonon at a time. Sec-
ondly, driving the transmon electrically while listening for its emission of
SAWs gives results consistent with multi-phonon emission at the trans-
mon transition frequencies. Furthermore, the slow propagation velocity of
the SAWs, about 2900 m/s, lets us see that the SAW emission from the
transmon arrives at our detector roughly 40 ns after the electrical drive
is turned on. This is consistent with the distance between the transmon
and the detector. Thirdly, we perform a hybrid two-tone spectroscopy on
the transmon where we drive it electrically and probe it via SAWs. This
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is similar to the experiment in Paper IV; we observe resonances that we
can identify with the multi-level structure of the transmon dressed by the
electrical drive.

The experiments are modelled with a master equation and input-output
theory from Chapter 3. For the two-tone spectroscopy, we also use the
susceptibility of Sec. 4.4. In the experiment, the transmon can be seen to
couple to the phonons at several points (each finger of the IDT structure)
that are on the order of wavelengths apart. In Paper VII, we show that
this leads to a frequency-dependent relaxation rate, but since we only ever
listen to the SAWs at a single frequency, it is not necessary to include the
frequency-dependence in the model to explain the experimental data.

For Paper VI, I contributed by setting up the quantum model, writing
code for numerical simulations, and assisting in the data fitting. I also
assisted in the interpretation of results and gave input on the manuscript.

6.7 Paper VII – Designing frequency-dependent
relaxation rates and Lamb shifts for a giant
artificial atom

Inspired by the breakthrough in Paper VI, Paper VII is a theoretical study
of a giant artificial atom coupled to an open 1D environment. As we ex-
plained in Sec. 2.4.2, both natural and artificial atoms are usually very
small compared to the wavelength of the photons (or phonons) they inter-
act with. Therefore, there has until the arrival of paper VI not been much
reason to study “giant” atoms.

The theoretical model we employ for the giant artificial atom is shown
in Fig. 2.9 and discussed in Sec. 2.4.2. We consider an atom which couples
to left- and right-moving 1D fields at a number of points that can be far
enough apart for the field to get a sizable phase shift travelling from one
point to the next. However, we assume the travel time itself to be negligible
compared to the timescale set by the atom relaxation time. Relaxing this
assumption is an interesting direction for future work.

We set up a Hamiltonian for the atom plus the 1D fields (the envi-
ronment), including the aforementioned phase shifts, and then proceed in
the fashion of Sec. 3.1 and Appendix B to derive a master equation for
the multi-level atom (we also do an (S,L,H) calculation similar to that
of Sec. 5.2.3). This leads to the two main results of the paper. Firstly,
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the atom relaxation rate becomes frequency-dependent. The distance be-
tween coupling points leads to different phase shifts, and thus either con-
structive or destructive interference, for different frequencies. This means
that by choosing the distance between coupling points, one can design the
frequency-dependence of the coupling to suit whatever needs one might
have. For example, it is possible to arrange things such that the first tran-
sition of the transmon relaxes slowly, while the second transition relaxes
fast. By driving the transmon to the second excited state, it should then
be possible to create population inversion.

Secondly, the interference between coupling points also leads to a more
complicated expression for the Lamb shift than for a “small” atom, since
the virtual photons (vacuum fluctuations) that create this frequency renor-
malization can now interact with the atom in several places. Of course,
the Lamb shift can now also be designed by choosing the coupling points
coordinates appropriately.

Beside the theoretical analysis, Paper VII also proposes a second pos-
sible experimental implementation of a giant artificial atom besides that
seen in Paper VI. We believe one could use a variation of the transmon
design, called the “xmon” [200] to couple to an ordinary superconducting
transmission line at several points. By meandering the transmission line
in a suitable way, the distance between coupling points could be on the
order of wavelengths.

For Paper VII, my contribution consisted of setting up the theoreti-
cal model, deriving the equations, performing numerical simulations, dis-
cussing the results, and writing the manuscript.

6.8 Paper VIII – Probing the quantum vacuum
with an atom in front of a mirror

Paper VIII can be considered an experimental demonstration of a precursor
to the case of multiple coupling points discussed in Paper VII. In Paper
VIII, a transmon is placed at a distance from the end of a transmission
line as sketched in Fig. 1.3. The end of the transmission line acts as a
mirror, and thus the transmon interacts twice with any incoming signal;
once when it first hits the transmon and then again when it returns to the
transmon after having reflected off the mirror. This leads to interference
effects just like in Paper VII. The transition frequency of the artificial
atom sets the distance to the mirror in units of wavelength and determines
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whether there will be constructive or destructive interference, giving strong
or weak coupling between the atom and the transmission line.

Another view of the situation is that the mirror is a boundary condition
which imposes a mode structure on the vacuum in the transmission line. If
the atom transition frequency corresponds to an antinode of this structure,
the atom will couple strongly to the line and relax quickly. If instead
the atom sits at a node, it will relax slowly. By sending in a coherent
probe at different frequencies, we can measure the atom relaxation rate.
The relaxation rate is proportional to the spectral density of the vacuum
fluctuations in the transmission line (see Sec. 2.2). In the experiment, we
can vary the transmon transition frequency and thus map out the strength
of the vacuum fluctuations in the vicinity of the mirror.

The structure of the vacuum in cavities have been measured before in
various systems [296, 297], but here we have a semi-infinite transmission
line instead. The results we get are also much cleaner than previous efforts
with natural atoms in front of a mirror [34], as discussed in Sec. 1.1.

We measure a change in relaxation rate of the atom of about an order of
magnitude as we tune its transition frequency close to a node. The lowest
value of the spectral density of the vacuum fluctuations that we observe
is 0.02~ω, which should be compared with the expected value of ~ω in an
open transmission line or 2~ω at an antinode in front of a mirror.

The experimental results are modelled with a master equation and the
input-output theory of Chapter 3. To arrive at the frequency-dependence
of the coupling, using an (S,L,H) derivation similar to that of Sec. 5.2.3 is
an easy route.

For Paper VIII, I contributed by collaborating on setting up the the-
oretical model and discussing the results. I also assisted in the writing of
the manuscript.





Chapter 7

Summary and outlook

In this thesis, we have studied a number of systems where artificial atoms
enable us to either improve on known concepts or experiments from quan-
tum optics with natural atoms, or explore new regimes which have not
been possible to reach with natural atoms. Chapter 2 covered the sys-
tems considered: artificial atoms and transmission lines, made from su-
perconducting circuits, and surface acoustic waves. The theoretical tools
of circuit quantization, master equations, input-output theory, stochastic
master equations for quantum measurements, and the (S,L,H) formalism
for cascaded quantum systems were reviewed in Chapters 2–5.

The focus of the first appended papers is quantum measurements. In
Paper I, we show how unwanted measurement back-action (in the form
of measurement-induced dephasing) can be undone when probing one or
two qubits dispersively coupled to a resonator. The results apply to both
homodyne detection and photon detection, and are relevant for parity mea-
surements, which are needed to implement error-correcting surface codes
for quantum computing. Recently, the effect was confirmed in an experi-
ment [294].

Papers II, III, and V treat the problem of detecting propagating pho-
tons at microwave frequencies. We consider a setup where artificial three-
level atoms mediate an effective photon-photon interaction between the
propagating signal we want to detect and a coherent probe. In Paper II,
we show that although the artificial atom can mediate a quite strong in-
teraction, it is not enough to overcome the fundamental quantum noise
limitations and make the setup work as a photon detector. However, in
Paper V we then show that by cascading a number of three-level atoms
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in the right way, we can overcome the vacuum noise and achieve a good
signal-to-noise ratio. An important advantage of our system compared to
the photomultipliers for optical photons is that the setup with three-level
atoms is nondestructive, i.e., the photon can propagate onward after be-
ing detected. Paper III is an experimental study of the photon-photon
interaction we can mediate with a three-level atom. We show that we can
impart a phase shift of tens of degrees per photon when both the signal and
the probe are at the single-photon level. This is several orders of magni-
tude larger than what has been achieved for propagating photons in other
systems with natural atoms.

Looking to the future, it will be interesting to see whether the parity
measurement and photon detection schemes discussed here will find prac-
tical applications. For the photon detection, one could investigate whether
the setup can be made to resolve photon numbers as well, not only the
absence or presence of photons. As shown in Ref. [295], cavities could be
used to further improve the detection efficiency.

In Paper IV, we study experimental results for an artificial atom cou-
pled to photons in a cavity. The atom is subject to a strong drive signal
and the cavity is probed with a weak signal. We are able to explain the
rich dynamics exhibited by the system, involving multi-photon transitions,
in terms of dressed states formed by the atom and the cavity photons, and
in terms of doubly dressed states which occur when the aforementioned
dressed states interact with the strong drive on the atom.

Papers VI, VII, and VIII investigate an artificial atom coupled to a
bosonic field at several points, spaced wavelengths apart. This is a new
regime which has not been reachable in quantum optics with natural atoms.
Paper VI is an experimental demonstration of coupling between an artifi-
cial atom (a transmon) and phonons in the form of surface acoustic waves.
The low phonon propagation velocity makes the phonon wavelength much
shorter than that of microwave photons, allowing us to leave the regime
where the atom can be considered point-like compared to the field it inter-
acts with. Paper VII is a more in-depth analysis of the theory for this new
type of system. There, we find that the multiple coupling points between
atom and field allow us to design frequency-dependent coupling strength
and energy shifts for the “giant artificial atom”. Finally, in Paper VIII, an
artificial atom placed in front of a mirror is used as a probe of the inter-
ference pattern that arises in the mode structure of the quantum vacuum
fluctuations due to the presence of the mirror.
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The coupling between artificial atoms and surface acoustic waves demon-
strated in Paper VI offer many possibilities for further work [298]. For ex-
ample, a slow-moving phonon could be caught between two artificial atoms.
The many coupling points in the SAW-transmon setup should not only al-
low us to test predictions from Paper VII, they could also be a route to
the regime of ultrastrong coupling (see Sec. 2.5). Noting that the phonon
wavelength at microwave frequencies matches that of optical photons, it is
also worthwhile to consider whether this could be used for conversion be-
tween optical photons and microwave excitations; this is an active area of
investigation in some other setups [299, 300]. Finally, there has also been
some work on building networks for quantum information using phonons
rather than photons [301].

The theoretical work on the giant artificial atom in Paper VII intro-
duces a new timescale compared to the situation with a small atom. This
timescale, the time it takes to travel between coupling points, was assumed
to be small compared to the atom relaxation time in Paper VII, but this
assumption could be done away with. There is some previous work on an
atom placed far from a mirror which could guide such an effort [302]. It
would also be interesting to explore the regime where the coupling strength
at a single finger, or the total coupling strength, is ultrastrong.

The internal structure of a giant artificial atom also opens up new
possibilities for combining quantum systems. For example, the classic setup
from Sec. 2.5 with an atom in a cavity could be turned on its head; we can
now place a cavity in an atom. Whether this or other setups, e.g., an atom
inside an atom, give rise to new and interesting physics remains to be seen.

Taking a broader look at quantum optics with artificial atoms, hybrid
systems seem to be on the rise, as discussed in Sec. 1.2. Combining SAWs
and superconducting circuits as in Paper VII is just one example. In the
same vein, it could be possible to couple a transmon to graphene plasmons.

Finally, input-output theory and the (S,L,H) formalism of Chapter 5
are still being developed further, e.g., to include non-Markovian networks
[303]. Combining these theoretical tools with experimental advances for
superconducting circuits and well-developed software for numerical calcu-
lations [289, 304, 305] makes it feasible to consider larger setups with many
artificial atoms and resonators [306–309].

All in all, we have used artificial atoms to break new ground in quantum
optics, but we are only starting to tap the vast potential of this research
field.





Appendix A

Transformations

In this appendix, we give the details of two important unitary transforma-
tions: the dispersive transformation and the transformation to a rotating
frame. The first is given in Eq. (2.77), and lets us simplify the Jaynes–
Cummings Hamiltonian in Eq. (2.71) to Eq. (2.78). The second is useful
to eliminate time dependence and/or clarify which terms can be thrown
away when applying the RWA.

A.1 Properties and identities for unitary trans-
formations

We consider a unitary transformation U . If this transformation changes a

system state |ψ〉 into
∣∣∣ψ̃
〉

according to

∣∣∣ψ̃
〉

= U |ψ〉 , (A.1)

we can use that the Schrödinger equation should remain in the same form
after the transformation, i.e.,

i
d
dt |ψ〉 = H |ψ〉 , (A.2)

i
d
dt
∣∣∣ψ̃
〉

= H̃
∣∣∣ψ̃
〉
, (A.3)

to infer that the transformed Hamiltonian H̃ should be given by

H̃ = UHU † + iU̇U †. (A.4)
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Many unitary transformations are written as exponentials of operators.
Therefore, in calculations it is useful to know the Baker–Hausdorff lemma
[104]

exp (λG)A exp (−λG) = A+ λ [G,A] + λ2

2! [G, [G,A]] + . . . , (A.5)

where G and A are operators and λ is a scalar. Applying this to our system
of photons and an atom, it also good to know the commutation relations

[
a, a†

]
= 1, (A.6)

[
a, a†a

]
= a, (A.7)

[
a†, a†a

]
= −a†, (A.8)

[σ−, σ+] = −σz, (A.9)

[σ−, σz] = 2σ−, (A.10)

[σ+, σz] = −2σ+. (A.11)

The last three are easily derived using σ− = |g〉〈e|, σ+ = |e〉〈g|, and
σz = |e〉〈e| − |g〉〈g| .

A.2 Dispersive transformation

We start from the Jaynes–Cummings Hamiltonian in Eq. (2.71), repeated
here for convenience:

HJC = ωra
†a+ ωa

2 σz + g
(
aσ+ + a†σ−

)
. (A.12)

In the dispersive regime, |λ| = |g/∆| = |g/(ωa − ωr)| � 1, we then apply
to this Hamiltonian the unitary transformation

Udisp = exp
[
λ
(
aσ+ − a†σ−

)]
. (A.13)

The Baker–Hausdorff lemma, Eq. (A.5), gives

UdispaU
†
disp = a+ λ

[
aσ+ − a†σ−, a

]

+λ2

2
[
aσ+ − a†σ−,

[
aσ+ − a†σ−, a

]]
+O

(
λ3
)

= a+ λσ− + λ2

2
[
aσ+ − a†σ−, σ−

]
+O

(
λ3
)

= a+ λσ− + λ2

2 aσz +O
(
λ3
)
, (A.14)
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where we also used Eqs. (A.6) and (A.9). This also means that

Udispa
†U †disp =

(
UdispaU

†
disp

)†
= a† + λσ+ + λ2

2 a
†σz +O

(
λ3
)
.(A.15)

In a similar fashion, we calculate

UdispσzU
†
disp = σz + λ

[
aσ+ − a†σ−, σz

]

+λ2

2
[
aσ+ − a†σ−,

[
aσ+ − a†σ−, σz

]]
+O

(
λ3
)

= σz − 2λ
(
aσ+ + a†σ−

)

−λ2
[
aσ+ − a†σ−, aσ+ + a†σ−

]
+O

(
λ3
)

= σz − 2λ
(
aσ+ + a†σ−

)
− λ2σz

(
1 + 2a†a

)
+O

(
λ3
)
,

(A.16)

where we used σ+σ− = (1+σz)/2 and discarded constant terms since they
do not affect the dynamics if they are included in the Hamiltonian.

Finally, we also calculate

Udispσ−U
†
disp = σ− + λaσz +O

(
λ2
)
, (A.17)

where we only need to include the first-order terms since σ− only appears
in the weak interaction term of the Hamiltonian.

Applying our results to the transformation of the full Hamiltonian
yields

UdispHJCU
†
disp = ωra

†a+ λωr

(
aσ+ + a†σ−

)
+ λ2ωrσz

(
a†a+ 1

2

)

+ωa

2 σz − λωa

(
aσ+ + a†σ−

)
− λ2ωrσz

(
a†a+ 1

2

)

+g
(
aσ+ + a†σ−

)
+ λgσz

(
2a†a+ 1

)
+ gO

(
λ2
)

= ωra
†a+ ωa

2 σz + λgσz

(
a†a+ 1

2

)
+O

(
λ2
)
. (A.18)

Introducing the notation χ = g2/∆, the transformed Hamiltonian can be
written

Hdisp = (ωr + χσz) a†a+ ω0 + χ

2 σz, (A.19)
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which is Eq. (2.78).
It is worth noting that there is a slightly different route to this result

[310]. Defining

HJC = H0 +HI, (A.20)

H0 = ωra
†a+ ωa

2 σz, (A.21)

HI = g
(
aσ+ + a†σ−

)
, (A.22)

and
S = λ

(
aσ+ − a†σ−

)
, (A.23)

it is easy to show that
[S,H0] = −HI. (A.24)

Combining this result with the Baker–Hausdorff lemma gives

exp (S)HJC exp (−S) = HJC + [S,HJC] + 1
2! [S, [S,HJC]] + . . .

= H0 +HI + [S,HI]−HI + 1
2 [S,−HI] + . . .

= H0 + 1
2 [S,HI] + . . . , (A.25)

where the remaining terms are of second order or higher in S. Using
the final formula in Eq. (A.25) also gives the dispersive Hamiltonian in
Eq. (A.19), but it does not give any information about how individual
operators transform under Udisp, which can be useful in some contexts.

A.3 Rotating frame

As an example of a transformation that takes us to a rotating frame, we
will consider transforming the Rabi Hamiltonian, Eq. (2.70),

HRabi = ωra
†a+ ωa

2 σz + gσx
(
a+ a†

)
, (A.26)

by applying

Urot = exp
(
iωrta

†a+ i
ωa

2 tσz

)
. (A.27)

This will clarify the time dependence of the coupling terms and show when
the RWA is valid.
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Since this transformation involves time, we must include the second
term of Eq. (A.4), which becomes

iU̇rotU
†
rot = i

(
iωra

†a+ i
ωa

2 σz

)
UrotU

†
rot = −ωra

†a− ωa

2 σz. (A.28)

Clearly, the first two terms in Eq. (A.26) commute with Urot, so we only
need to find the transformations for the third term. Eqs. (A.5) and (A.10)
give

Urotσ−U
†
rot = σ− + i

ωa

2 t [σz, σ−] + 1
2!

(
i
ωa

2 t

)
[σz, [σz, σ−]] + . . .

= σ−

(
1− iωat+ 1

2! (−iωat)2 + . . .

)
= σ−e−iωat, (A.29)

which also leads to

Urotσ+U
†
rot =

(
Urotσ−U

†
rot

)†
= σ+e

iωat. (A.30)

In the same way, Eqs. (A.5) and (A.7) give

UrotaU
†
rot = ae−iωrt, (A.31)

Urota
†U †rot = a†eiωrt. (A.32)

Combining all these results, we arrive at the transformed Hamiltonian

Hrot = UrotHRabiU
†
rot + iU̇rotU

†
rot

= g
(
σ−e−iωat + σ+e

iωat
) (
ae−iωrt + a†eiωrt

)

= g

(
aσ+e

i(ωa−ωr)t + a†σ−ei(ωr−ωa)t

+aσ−e−i(ωa+ωr)t + a†σ+e
i(ωa+ωr)t

)
. (A.33)

The last two terms will always oscillate rapidly and can be discarded in
the RWA provided that g is small compared to ωa + ωr.





Appendix B

Deriving the master
equation

In this appendix, we present the full master equation derivation sketched
in Sec. 3.1. Beginning from the Hamiltonian in Eqs. (3.4)–(3.7), repeated
here,

H = Hatom +Hbath +Hint, (B.1)

Hatom = ωa

2 σz, (B.2)

Hbath =
∑

j

ωjb
†
jbj , (B.3)

Hint =
∑

j

gj(bj + b†j)(σ− + σ+), (B.4)

it was shown in Sec. 3.1 that the Born and Markov approximations lead
to the density matrix equation

˙̃ρ(t) = −
∫ t

0
dτtrbath

([
H̃int(t),

[
H̃int(τ), ρ̃(t)ρ̃bath

]])
, (B.5)

where ρ̃(t) is the atom density matrix in the interaction picture. From the
transformations in Appendix A, we get that the interaction Hamiltonian
in the interaction picture is

H̃int(t) =
∑

j

gj(bje−iωjt + b†je
iωjt)(σ−e−iωat + σ+e

iωat). (B.6)
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We will now proceed with the gritty details of the derivation that leads
to Eq. (3.13). It is convenient to define operators

s(t) = σ−e−iωat, (B.7)

b(t) =
∑

j

gjbje
−iωjt, (B.8)

such that the interaction Hamiltonian can be written

H̃int(t) =
(
b(t) + b†(t)

) (
s(t) + s†(t)

)
. (B.9)

When taking the trace in Eq. (B.5), the only nonzero terms will be

trbath

(
b(t)b†(τ)ρ̃bath

)
=

〈∑

j

gjbje
−iωjt

∑

k

gkb
†
ke
iωkτ

〉

bath

=
∑

j,k

gjgke
i(ωkτ−ωjt)δjk

=
∑

j

g2
j e
−iωj(t−τ), (B.10)

since
[
bj , b

†
k

]
= δjk and we assume negligible temperature, i.e.,

〈
b†jbj

〉
bath

=
0. With this, Eq. (B.5) becomes

˙̃ρ(t) = −
∫ t

0
dτ
∑

j

g2
j

[
e−iωj(t−τ)

(
s(t)s†(τ)ρ̃(t) + s†(t)s(τ)ρ̃(t)

)

−eiωj(t−τ)
(
s(t)ρ̃(t)s†(τ) + s†(t)ρ̃(t)s(τ)

)

−e−iωj(t−τ)
(
s(τ)ρ̃(t)s†(t) + s†(τ)ρ̃(t)s(t)

)

+eiωj(t−τ)
(
ρ̃(t)s(τ)s†(t) + ρ̃(t)s†(τ)s(t)

) ]
, (B.11)

where we have now also made the RWA. If we had made the RWA at
the start in the Hamiltonian, half of the terms that now remain would be
missing. This would not affect the final result for the relaxation rate, but
it would have an impact on the Lamb shift [257, 258].

We now replace the sum over bath modes with an integral, denoting
the density of states by J(ω). We also change variables in the time integral
to t′ = t − τ and extend the upper integration limit there to ∞, which is
justified since we have made the approximation that the bath correlations
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decay much faster than the timescale for the evolution of our system, the
atom. Reverting back from our definitions of s(t) and b(t), we arrive at

˙̃ρ(t) =
∫ ∞

0
dωJ(ω)g2(ω)

∫ ∞

0
dt′
[
e−i(−ω+ωa)t′ (σ−ρ̃(t)σ+ − ρ̃(t)σ+σ−)

+e−i(−ω−ωa)t′ (σ+ρ̃(t)σ− − ρ̃(t)σ−σ+)
+e−i(ω+ωa)t′ (σ+ρ̃(t)σ− − σ−σ+ρ̃(t))

+e−i(ω−ωa)t′ (σ−ρ̃(t)σ+ − σ+σ−ρ̃(t))
]
. (B.12)

Applying the identity

∫ ∞

0
dte−iωt = πδ(ω)− iP

( 1
ω

)
(B.13)

to Eq. (B.12) yields, after a little algebra,

˙̃ρ(t) = πJ(ωa)g2(ωa) (σ−ρ̃(t)σ+ − ρ̃(t)σ+σ− + σ−ρ̃(t)σ+ − σ+σ−ρ̃(t))

+iP
∫ ∞

0
dωJ(ω)g2(ω)

ω − ωa

× (σ−ρ̃(t)σ+ − ρ̃(t)σ+σ− − σ−ρ̃(t)σ+ + σ+σ−ρ̃(t))

+iP
∫ ∞

0
dωJ(ω)g2(ω)

ω + ωa

× (σ+ρ̃(t)σ− − ρ̃(t)σ−σ+ − σ+ρ̃(t)σ− + σ−σ+ρ̃(t)) . (B.14)

Clearing up terms and using the notation D [X] ρ = XρX†− 1
2X
†Xρ−

1
2ρX

†X gives

˙̃ρ(t) = 2πJ(ωa)g2(ωa)D [σ−] ρ̃(t)

+iP
∫ ∞

0
dωJ(ω)g2(ω)

ω − ωa
[σ+σ−, ρ̃(t)]

+iP
∫ ∞

0
dωJ(ω)g2(ω)

ω + ωa
[σ−σ+, ρ̃(t)] . (B.15)

Using

σ+σ− = 1 + σz
2 , (B.16)

σ−σ+ = 1− σz
2 , (B.17)



106 Deriving the master equation

we finally get

˙̃ρ(t) = 2πJ(ωa)g2(ωa)D [σ−] ρ̃(t)

−i
[
σz
2 , ρ̃(t)

]
P
∫ ∞

0
dωJ(ω)g2(ω)

( 1
ω + ωa

− 1
ω − ωa

)
. (B.18)

Transforming back out of the interaction picture, the only effect is to
remove the tilde from ρ̃(t) and bring back the term with ωa

2 σz. We thus
arrive at Eq. (3.13).
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[8] C. Guerlin, J. Bernu, S. Deléglise, C. Sayrin, S. Gleyzes, S. Kuhr, M.
Brune, J. M. Raimond, and S. Haroche, “Progressive field-state col-
lapse and quantum non-demolition photon counting”, Nature 448,
889 (2007).

http://www.jstor.org/stable/685266
http://www.jstor.org/stable/685266
www.nobelprize.org/nobel_prizes/physics/laureates/2012/advanced.html
www.nobelprize.org/nobel_prizes/physics/laureates/2012/advanced.html
http://dx.doi.org/10.1103/RevModPhys.85.1083
http://dx.doi.org/10.1103/RevModPhys.85.1083
http://dx.doi.org/10.1103/RevModPhys.85.1103
http://dx.doi.org/10.1103/RevModPhys.85.1103
http://dx.doi.org/10.1103/PhysRevLett.50.1903
http://dx.doi.org/10.1103/PhysRevLett.50.1903
http://dx.doi.org/10.1103/PhysRevLett.58.666
http://dx.doi.org/10.1103/PhysRevLett.58.666
http://dx.doi.org/10.1103/PhysRevLett.59.1899
http://dx.doi.org/10.1103/PhysRevLett.59.1899
http://dx.doi.org/10.1038/nature06057
http://dx.doi.org/10.1038/nature06057


108 Bibliography

[9] D. J. Wineland, R. E. Drullinger, and F. L. Walls, “Radiation-
Pressure Cooling of Bound Resonant Absorbers”, Physical Review
Letters 40, 1639 (1978).

[10] D. J. Wineland and W. M. Itano, “Spectroscopy of a single Mg+

ion”, Physics Letters A 82, 75 (1981).

[11] J. C. Bergquist, R. G. Hulet, W. M. Itano, and D. J. Wineland,
“Observation of Quantum Jumps in a Single Atom”, Physical Review
Letters 57, 1699 (1986).

[12] C. Monroe, D. M. Meekhof, B. E. King, S. R. Jefferts, W. M. Itano,
D. J. Wineland, and P. Gould, “Resolved-Sideband Raman Cooling
of a Bound Atom to the 3D Zero-Point Energy”, Physical Review
Letters 75, 4011 (1995).

[13] C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, and D. J.
Wineland,“Demonstration of a Fundamental Quantum Logic Gate”,
Physical Review Letters 75, 4714 (1995).

[14] M. Brune, E. Hagley, J. Dreyer, X. Mâıtre, A. Maali, C. Wunder-
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[150] A. A. Houck, H. E. Türeci, and J. Koch, “On-chip quantum simula-
tion with superconducting circuits”, Nature Physics 8, 292 (2012).

[151] I. M. Georgescu, S. Ashhab, and F. Nori, “Quantum Simulation”,
Reviews of Modern Physics 86, 153 (2014).

[152] J. Raftery, D. Sadri, S. Schmidt, H. E. Türeci, and A. A. Houck,
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C. J. P. M. Harmans, and J. E. Mooij, “Observation of the Bloch-
Siegert Shift in a Qubit-Oscillator System in the Ultrastrong Cou-
pling Regime”, Physical Review Letters 105, 237001 (2010).

[225] G. Scalari, C. Maissen, D. Turcinková, D. Hagenmüller, S. De Lib-
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