
PHYSICAL REVIEW B 90, 155425 (2014)

Diffusion-induced dissipation and mode coupling in nanomechanical resonators
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We study a system consisting of a particle adsorbed on a carbon nanotube resonator. The particle is allowed
to diffuse along the resonator, in order to enable study of, e.g., room-temperature mass sensing devices. The
system is initialized in a state where only the fundamental vibration mode is excited, and the ring-down of
the system is studied by numerically and analytically solving the stochastic equations of motion. We find two
mechanisms of dissipation, induced by the diffusing adsorbate. First, short-time correlations between particle
and resonator motions means that the net effect of the former on the latter does not average out, but instead
causes nonexponential dissipation of vibrational energy. For vibrational amplitudes that are much larger than
the thermal energy this dissipation is linear; for small amplitudes the decay takes the same form as that of a
nonlinearly damped oscillator. Second, the particle diffusion mediates a coupling between vibration modes that
opens a new dissipation channel by enabling energy transfer from the fundamental mode to the excited modes,
which rapidly reach thermal equilibrium.
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I. INTRODUCTION

Nanoelectromechanical (NEM) resonators hold great
promise for applications in inertial mass sensing [1,2]. Carbon
nanotubes (CNTs) in particular are suited when striving
for high sensitivity [3,4], due to their extremely low mass.
Recently, using CNT resonators, yoctogram sensitivity was
achieved in experiments [5]. In mass sensing applications,
it is commonly assumed that an adsorbate, once attached to
the surface, remains in the same positions during the time
of measurement. However, at elevated temperatures thermal
fluctuations can cause the adsorbate to change its position
along the tube via diffusion. As the resonant frequency of the
system depends on the position of the adsorbate, this gives rise
to frequency fluctuations with accompanying phase noise.

For driven resonators, the effect of such frequency fluc-
tuations has recently been studied both theoretically [6–9]
as well as experimentally [10]. The effect manifests in a
broadening and/or changed shape of the resonant response.
However, broadening also arises from dissipation of mechan-
ical energy. Dissipation and the origin of Q-factor limitations
in nanoelectromechanical systems has been a long-standing
research topic where there are still unresolved issues [11–14].
Recently, the connection between dissipation and nonlinear
phenomena in NEM resonators has begun to attract attention.
This is partly because of the presence of nonlinear damping
[15,16] in carbon nanoresonators, and partly due to the
recognition that geometric nonlinearites themselves give rise
to dissipation [17] and spectral broadening [18]. While it was
shown in Refs. [6,8] that a diffusing particle on an otherwise
linear resonator induces both spectral broadening as well as
a nonlinear response to driving, we also expect the same
mechanism to give rise to dissipation and mode coupling.
In that case, two questions arise: in what manner does the
system relax to equilibrium, and what is the effect of the mode
coupling on the the system dynamics? In the present study,
we investigate the characteristics of the dissipation process
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induced by the diffusing adsorbate in order to answer these
questions.

For concreteness, we model a diffusing adsorbate along a
carbon nanotube resonator and study the decay of mechanical
energy in the system. In order to isolate the dissipative con-
tribution to the resonance broadening, we simulate ring-down
measurements such as the ones performed in Refs. [19,20].
Our model is a doubly clamped one-dimensional resonator
constrained to move in the plane. A small mass is adsorbed
on the resonator, and allowed to diffuse along it as shown in
Fig. 1. The resonator is excited in its lowest flexural vibration
mode, by means of, e.g., a nearby gate, and the subsequent
free evolution of the system is studied.

An example of the distribution of mechanical energy
between flexural modes during a simulated ring-down ex-
periment is shown in Fig. 2. A nonexponential decay of
the mechanical energy of the fundamental mode is evident;
eventually thermal equilibrium is reached. In Sec. III we show
that, in the limit of a single flexural mode, the observed
decay can be divided into two distinct regimes. In the first
regime the vibration amplitude is large, the adsorbate is
trapped at an antinode of the vibration, and the mechanical
energy decays linearly. In the second regime the amplitude is
small and the adsorbate diffuses freely along the nanotube,
which exhibits nonexponential dissipation characteristic of
nonlinearly damped resonators. This damping is due to the
fact that the inertial force acting on the particle causes its
motion to have frequency components twice that of the
fundamental mode. Because of retardation, this short-time
correlation between adsorbate motion and resonator motion
causes dissipation, an effect also seen in molecular dynamics
studies on graphene resonators [21]. In addition, as the particle
changes position, a mode coupling is induced that opens a
new channel of dissipation, allowing the transfer of energy to
higher-lying modes and causing them as well to equilibrize.
As we discuss in Sec. IV, this new dissipation channel means
that while the results of Sec. III are qualitatively robust, a
quantitative error arises; the rate of decay due to the mode
coupling is linearly proportional to the number of higher modes

1098-0121/2014/90(15)/155425(8) 155425-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.90.155425


CHRISTIN EDBLOM AND ANDREAS ISACSSON PHYSICAL REVIEW B 90, 155425 (2014)

FIG. 1. (Color online) A particle of mass m is adsorbed on a
one-dimensional resonator of mass M and length L. The transverse
displacement of the resonator at coordinate X along the nanotube axis
is w(X,t); x(t) is the position of the adsorbed particle. The resonator
is initialized in its fundamental vibration mode, and the effect of the
stochastically diffusing particle on the ring-down of the resonator is
studied.

(up to a parameter-dependent cutoff), and hence their total
energy. This result is analogous to those found in Refs. [17,18]
when introducing conservative geometric nonlinearities in
clean nanoresonators.

II. EQUATIONS OF MOTION FOR A RESONATOR
WITH A DIFFUSING PARTICLE

As shown in Fig. 1, we consider a resonator of length L with
mass M = Lρ and bending rigidity κ . Neglecting longitudinal
displacement, the Lagrangian density for the unperturbed
resonator is [22]

L0 = 1
2ρẇ2 − 1

2σw2
X − 1

2κw2
XX. (1)

Here, w = w(X,t) is the transverse displacement (see Fig. 1),
X is the coordinate measured along the resonator, and wX =
∂w/∂X. In the limit of small vibration amplitude and/or large
prestrain, the built-in tension σ can be assumed independent
of w. The unpertubed eigenfrequencies ωn and eigenmodes
φn(X) are found from solving the corresponding equation of
motion; see Appendix A. For convenience, we will work with
eigenmodes normalized so that

∫
dxφnφm = Lδnm, and with

boundary conditions corresponding to a doubly clamped beam:
w(0) = w(L) = wX(0) = wX(L) = 0.
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FIG. 2. (Color online) Dimensionless mode energies as function
of time during ring-down of the fundamental mode. Here ε � 10−2

and T = 500 K. For clarity, only the lowest lying flexural modes are
shown; higher modes behave similarily. The dashed line indicates the
thermal energy in dimensionless units. The system is initialized in a
state where all energy (E0(0) � 104kBT ) is in the fundamental mode,
and then allowed to evolve freely. As can be seen, the effect of the
particle diffusion is to damp out the fundamental mode and establish
equilibrium with higher-lying modes.

Including the adsorbate of mass m = εM at X = x(t), the
total Lagrangian is

L = L0 + 1
2mδ(x − X)[ẋ2 + (ẇ + ẋwX)2]. (2)

Here, the term added to the resonator Lagrangian density L0

is the kinetic energy 1
2mṙ2 of the adsorbed particle, where its

position r(t) = (x(t),w(x(t),t)).
We expand the displacement in eigenmodes, w(X,t) =∑
n qn(t)φn(X), and by variation of L we find the equations of

motions

q̈n + ω2
nqn − εφn(x)

∑
k

ω2
kqkφk(x) = 0, (3)

ẋ − 1

γ

∑
k,�

ω2
kqkq�φkφ

′
� =

√
Dη(t). (4)

In order to allow for the thermal diffusion of the adsorbate,
a stochastic force has been introduced in the right-hand
side of Eq. (4). By the fluctuation-dissipation theorem, this
force is accompanied by a damping rate γ . Thus, η(t) is a
δ-correlated Gaussian noise, i.e., 〈η(t)η(t ′)〉 = δ(t − t ′), and
D = 2kBT /mγ . Throughout, we assume reflecting bound-
ary conditions for the diffusing particle. Finally we note
that Eqs. (3) and (4) are derived using the approximation
∂2
t w(x(t),t) ≈ −∑

n ω2
nqn(t)φn(x), which is equivalent to

claiming that the effect of the added mass is a small correction
to the unperturbed motion, as well as an assumption of strong
damping (mẍ � mγ ẋ) that allows the inertial term to be
neglected.

The nonlinear system of Eqs. (3) and (4) is numerically
integrated using a second-order algorithm [23]. The system is
initialized in a state where all energy is stored in the fundamen-
tal mode, qn(t = 0) = 0,n > 0, and the particle is adsorbed
at x = L/2. The resonator dimensions have been chosen to
be experimentally realistic: length 1 μm, diameter 5 nm, and
fundamental resonant frequency ω0 = 2π × 108 MHz. Some
results are shown in Figs. 2 and 3, using parameters D =
D/ω0L

2 = 2.85 × 10−4, ε = 1.82 × 10−2 (corresponding to
an adsorbate mass m similar to that of a mid-sized protein
molecule or a larger collection of noninteracting smaller
adsorbates), and γ = 0.241ω0. The initial amplitude q0 is here
chosen such that E0(t = 0) = 0.044, where En = ω2

nq
2
n/ω

2
0L

2

is the dimensionless kinetic energy stored in mode n.
The main features to note are the initially linear decay

of energy in the fundamental mode, the initial trapping of
the adsorbate near the center of the resonator followed by
diffusion along the length, and the eventual thermalization of
all vibration modes. Also note that the higher-lying modes
reach an internal equilibrium very rapidly compared to the
slow decay of the fundamental mode energy. These results are
further discussed in Sec. IV.

As illustrated in Fig. 3, one can identify two distinct limiting
cases. The first, high-amplitude limit is characterized by the
particle being trapped at the antinode of the vibration around
x ≈ L/2. In this regime, the energy of the resonator decays
linearly in time. As the amplitude of the resonator vibrations
decreases, thermal fluctuations overcome the inertial trapping
potential, the particle starts to diffuse along the entire length
of the nanotube, and the decay rate is no longer linear.
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FIG. 3. (Color online) Top: fundamental mode energy as a func-
tion of time, together with a linear fit to the initial decay. Center: the
parameter ω0E/γD, shown below to govern the qualitative behavior
of the system, as a function of time. The horizontal dashed line
indicates where ω0E = γD. Bottom: evolution of the probability
distribution p(ξ,t), where ξ = x/L, for the particle to be at a certain
position 0 < ξ < 1 along the resonator as a function of time. For
large initial amplitudes, the particle remains inertially trapped at the
antinode of the vibration around ξ ≈ 0.5. The corresponding energy
decay is linear in time. As the thermal fluctuations overcome the
inertial trapping potential, the particle diffuses freely, and the energy
decays algebraically towards equilibrium.

The regime is determined by the parameter ω0E0/γD =
1
2mω2

0q
2
0/kBT , the ratio between vibrational and thermal

energy of the adsorbate. The inertial trapping potential is
proportional to the vibrational energy, so the particle remains
confined as long as ω0E0/γD � 1, and diffuses freely when
ω0E0/γD � 1. This parameter is shown as a function of time
in the center panel of Fig. 3, illustrating the agreement between
the value of ω0E0/γD and the behavior of the adsorbate.

The diffusion constant D depends on the adsorbate and
resonator materials. While measurements of the diffusion
constants of several elements on graphite exist it is not clear

that these are applicable to diffusion along a nanotube. The
values for diffusion constants and adsorbate masses used in the
simulations were chosen to provide good numerical stability,
facilitate comparison with results obtained from perturbation
theory, and to visualize the different regimes as clearly as
possible. Interestingly, as will be seen in Sec. III, the leading
relevant parameters that determine the ring-down dynamics in
the pertubative regimes are the dimensionless ratios εDγ /ω0

[trapping regime, Eq. (10)] and εω0/γ [free diffusion regime,
Eq. (13)]. Since we have Dγ = 2kBT/mω0L

2 by virtue
of the fluctuation-dissipation theorem, the precise value of
the diffusion constant is not crucial in the trapping regime,
provided D 	 (L/q0)2(kBT/mω0). The ratio εω0/γ for the
free diffusion regime becomes εmω0L

2D/2kBT . Since D is
expected to depend exponentially on temperature, probing a
large parameter range can thus be done by varying T .

III. SINGLE-MODE DYNAMICS

To understand the observed energy decay we first focus on
a single flexural mode. This simplification of the equations
of motion is motivated by simulations, which have not shown
any qualitative dependence on the number of included modes.
That is, even when only the fundamental mode of the resonator
is included, the two regimes identified in Fig. 3 are evident.
Below, we will treat the two regimes separately, beginning
with the large amplitude case.

Considering only the fundamental mode, i.e., w(X,t) =
q0(t)φ0(X), one finds

q̈0 + ω2
0

[
1 − εφ2

0(x)
]
q0 = 0, (5)

ẋ = ω2
0

2γ
q2

0∂xφ
2
0(x) +

√
Dη(t). (6)

We measure time in units of ω−1
0 , and change to action

angle variables (E(t),θ (t)) via the transformations q0(t) =
L

√
E cos(ω0t + θ ) and q̇0(t) = −ω0L

√
E sin(ω0t + θ ). Then,

the equations take the form

∂τE = −εφ2
0E sin 2ν, (ν = θ + τ ), (7)

∂τ θ = −εφ2
0 cos2 ν, (8)

∂τ ξ = ω0

2γ
E cos2 ν∂ξφ

2
0 +

√
Dη(τ ), (9)

where ξ = x/L, τ = ω0t and D = D/ω0L
2. Thus, it is

quite clear from Eq. (7) that performing a rotating wave
approximation here leads to ∂τE = 0 and that the effect of
the particle diffusion is only to cause fluctuations in resonant
frequency. Hence, in order for ∂τE 
= 0, ξ must contain a
frequency component sin 2ν which arises from the first term in
Eq. (9). It follows that the observed decay in energy stems from
short-time correlations with frequency 2ω0 between particle
and resonator motions.

A. Large amplitude vibrations, confined particle

When ω0E/γD 	 1, the thermal fluctuations cannot over-
come the inertial trapping potential and the adsorbate fluctuates
around the antinode of the flexural mode. In this regime, the
phase noise is typically small and can be neglected when esti-
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mating the decay rate. Furthermore, as the particle is at all times
in the vicinity of the antinode we can make the approximation
∂ξφ

2
0 ≈ 2φ0(0)φ′′

0 (0)ξ = −kξ , which renders the diffusion
equation (9) linear. Solving for the particle motion yields

ξ (τ ) =
√
D

∫ τ

dτ ′ η(τ ′)e−(ω0k/2γ )
∫ τ

τ ′ dτ ′′E(τ ′′) cos2 ν ′′
.

Inserting back into the equation for E , omitting the term
vanishing upon averaging over fast fluctuations, and assuming
E to be slow, one finds

∂τE ≈ 1

2
εDkE sin 2τ

∫ τ

−∞
dτ ′ e−[kω0E(τ )/2γ ]

∫ τ

τ ′ dτ ′′ cos2 τ ′′
.

Averaging over fast oscillations,

∂τE ≈ εDkEI

(
kω0E(τ )

γ

)
where the integral I is defined as

I (x) = 1

2π

∫ 2π

0
dτ sin 2τ

∫ τ

−∞
dτ ′ e−x

∫ τ

τ ′ dτ ′′ cos2 τ ′′
.

The integral is well approximated by the expression I (x) ≈
−{4 + √

π [(x/2) coth(x/2) − 1]}−1. Hence, for large ampli-
tudes such that kω0E(τ )/γ 	 1, the decay becomes linear, i.e.,

∂τE ≈ −ε
2Dγ√
πω0

. (10)

Comparisons with simulation show that this result is correct
within an order of magnitude, even when excited modes
are included; see Fig. 6. However, as discussed in Sec. IV,
adding excited modes introduces more channels of decay, and
consequently increases the decay rate.

B. Small amplitude vibrations, unconfined particle

If ω0E/(γD) � 1, the system (7)–(9) can be solved by
means of perturbation theory. This limit can be seen to be
equivalent to the assumption that the vibration amplitude be
small enough that the particle is not inertially trapped at an
antinode, and falls in the typical parameter regime encountered
in most experimental situations. As an example, for a single
Kr atom on a 100-MHz CNT resonator vibrating with an
amplitude of q0 = 3 nm at T = 1 K, one has ω0E/γD =
Evib/kBT ≈ 0.03.

The corresponding Fokker-Planck equation (FPE) for the
distribution function p(ξ,E,ν,τ ) reads [24]

[∂ν + ∂τ ]p(ξ,E,ν,τ )

= εφ2
0E sin(2ν)∂Ep + εφ2

0

2
[1 + cos(2ν)]∂νp

− ω0E
4γ

[1 + cos(2ν)]∂ξ [p∂ξφ
2] + D

2
∂2
ξ p. (11)

As noted above, the dissipation of mechanical motion stems
from the correlation between the motion of the particle and
the resonating beam, induced by the last term in Eq. (11).
These correlations occur on a time scale ω−1

0 which is much
shorter than the scale of the rate of change of energy. Hence,
we can find the dissipation rate by making a separation
ansatz for fast and slow time scales by the approximation

p ≈ p0(E,τ )p1(E,ν,ξ ) (a more formal derivation is found in
Appendix B). This decouples Eq. (11) into one equation for
slow time scales and one for fast time scales, where particle
position is described by the latter:

∂νp1 = −ω0E
4γ

[1 + cos(2ν)]∂ξ [p1∂ξφ
2] + D

2
∂2
ξ p1. (12)

Assuming Evib/kBT � 1 one finds to first order in E the
steady-state solution

p1 = 1 + ω0E
Dγ

∑
n

λnfn

λn cos 2ν + 4 sin 2ν

λ2
n + 16

cos(nπξ ),

where λn = Dn2π2 and fn = ∫ 1
0 dξ cos(nπξ )φ2

0(ξ ). Inserting
this solution into the FPE (11), and integrating over position ξ

and the fast variable ν yields

∂τp0(E,τ ) = ε
2ω0

Dγ

∑
n

λnf
2
n

λ2
n + 16

∂E (E2p0). (13)

The solution to this equation is p(E,τ ) = E−2f ( 1−αEτ
E ), where

α = ε
mω2

0L
2

kBT

∑
n

f 2
n

λn

16 + λ2
n

. (14)

If p(E,0) = δ(E − E0) the ensemble averaged energy 〈E〉
decays without dispersion and one obtains the characteristic
ring-down of a nonlinearly damped oscillator,

〈E(τ )〉 = E0

1 + αE0τ
. (15)

This expression does indeed agree well with simulation in the
parameter space where perturbation theory is valid; see Fig. 4.
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FIG. 4. (Color online) Damping parameter α, as calculated by
Eq. (14) (solid line) and by a numerical fit (dots). The same simulation
parameters as in Fig. 2 were used, with the exception of the initial
amplitude, here E0(0) = 10−4. The ratio ω0E0/γD was varied by
changing the simulation temperature. We see that the perturbative
approach is indeed valid for ω0E0/γD � 1. In the intermediate region
ω0E0/γD � 1, Eq. (14) overestimates the magnitude of the damping,
but captures the overall shape of the curve and the location of the
maximal damping.
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becomes more sensitive the more energy is put into the system, which
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To include dispersion, and to reach a proper thermal
equilibrium state, fluctuation corrections must be included.
As shown in Appendix B, this leads to the following Fokker-
Planck equation for the reduced probability density,

∂τp0 = α∂EE2[p0 + (εDγ /ω0)∂Ep0].

Noting that (εDγ /ω0) = 2kBT/(Mω2
0L

2), we see that this
FPE also gives the proper thermal equilibrium stationary
solution p0(τ → ∞) ∝ exp(−Mω2

0q
2
0/2kBT ).

IV. MULTIMODE DYNAMICS, THERMALIZATION

While the qualitative behavior of the dynamics remain un-
changed by incorporating more flexural modes, a quantitative
change takes place. If the higher-lying modes are initially at
rest, we find that exciting the system in only the fundamental
mode rapidly causes the higher modes to be thermalized. Once
in thermal equilibrium, they provide additional channels for
energy dissipation from the fundamental mode.

The thermalization of the higher modes stem from the
stochastic additive noise term in Eq. (3). As initially E0 	
En>0, the transient behavior is described by q̈n + ω2

nqn ≈
εω2

0q0φnφ0 ∝ ε
√
E0, n > 0. To a first approximation, we

would thus expect the energy of the higher-lying modes to
have a transient behavior 〈En〉 ∼ ε2E0t. In order to investigate
this, we define the thermalization time τtherm as the time when
the energy of an excited mode first exceeds the thermal energy.
Simulations were made at a constant temperature but for values
of ε and E0(0) ranging over several orders of magnitude;
the resulting values for τtherm are shown in Fig. 5. The data
have been fitted to a model τtherm ∝ (εaE0)b, and the exponent
a = 1.86 (b ≈ 1.2) was determined by minimizing the sum
of squared residuals of the linear fit shown as a black line
in Fig. 5. The slight deviation from the theoretical value of
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FIG. 6. (Color online) Slope of the decay of the fundamental
mode during the initial, linear regime, as a function of the number
of modes N included in the simulation; black circles are data points
while the red dashed line is a linear fit. The values have been divided
by −εDγ /ω0 to show the agreement with the theoretical case (10).
As more excited modes are included, more decay channels are opened
and the rate of decay increases.

a = 2 is likely due to the present definition of τtherm, which
will always be smaller than the time taken for all higher-lying
modes to reach kBT .

The parameters ε and E0(0) are straightforward to vary
in experiments, e.g., by using different-sized nanoclusters
as adsorbates and by varying the driving force used before
beginning the ring-down. Hence, the linear dependence found
in Fig. 5 should be possible to verify experimentally.

In addition, we note that for E0(0) 	 kBT , the thermaliza-
tion of excited modes occur on a time scale much shorter than
the decay of the fundamental mode. Consequently, on the time
scale relevant for studying the ring-down of the resonator, it is
a good approximation to assume that all excited modes are in
thermal equilibrium.

The fact that the mode coupling strength and energy transfer
between modes are determined only by the energy in the
modes is further corroborated by considering the decay rate
of the fundamental mode energy once the higher modes have
thermalized. As shown in Fig. 6, for each additional mode
we include in the simulation, an additional channel for energy
transfer away from the fundamental mode is made available
and the decay rate (initially) increases linearly with the number
of added modes. As each individual mode has the same
energy ∼kBT , each mode contributes an equal amount to the
fundamental mode dissipation.

Clearly, there must be a cutoff at which this is no longer
true. Such a cutoff can be estimated by noting that due to the
influence of the fundamental mode, the dissipation of energy
from the fundamental mode is associated with adsorbate
dynamics occurring on a time scale ω−1

0 corresponding to a
diffusion length scale of

√
2πD/ω0. If this length is larger than

half the wavelength of the nth mode, the effective coupling
to this mode will average to zero and not contribute to
dissipation. The wavelength is λn = 2L/(n + 1), giving the
cutoff condition that only modes with n � nmax ≈ √

2/πD
will contribute to the dissipation of the fundamental mode.
For the parameter values used in Fig. 6 we find nmax ≈ 20.
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V. CONCLUSIONS

We have studied the effect of a diffusing adsorbed particle
on a vibrating one-dimensional nanomechanical resonator,
initially excited in its fundamental flexural mode. Studying the
free ring-down of the mode, focusing on the energy transfer
induced by the diffusion we find that there are two effects that
cause vibrational energy to dissipate.

First, the inertial force exerted on the adsorbed particle
causes short-time correlations between adsorbate motion and
flexural vibrations. For large initial amplitudes such that
mω2

0q
2
0/kBT 	 1, the particle is trapped at the antinode of

vibration, and the decay of vibrational energy is linear in time,
approximately given by expression (10). For lower amplitudes,
when the particle diffuses freely along the resonator, the decay
takes the same form as that of a nonlinearly damped oscillator
according to Eq. (15).

Second, the diffusing particle also provides a stochastic
coupling between different flexural vibration modes. This
stochastic coupling provides an additional channel for energy
transfer from the fundamental mode for each added flexural
mode. This second mechanism can further significantly lower
the ring-down time of the fundamental mode and causes rapid
thermalization among the higher modes. The dissipation rate
due to the mode coupling is linear in the number of included
excited modes (up to a parameter-dependent cutoff), meaning
that a single-mode treatment of a resonator is qualitatively
but not quantitatively correct. The exact thermalization rate
of the excited modes depends on adsorbate mass (ε), device
geometry (ω0), and initial amplitude [E0(0)]; parameters that
are readily accessible in experiments.

With recent advances in readout of the real-time evo-
lution of nanomechanical oscillators [19,20] together with
the ability to deposit individual particles on ultrahigh-Q
carbon nanotube resonators [5], the proposed effects should
be possible to observe experimentally. These result also have
bearing on the numerical analysis in Ref. [21] which showed
a dramatic change in Q factor for an Au cluster deposited
on a graphene resonator at the onset of particle diffusion.
Finally, the existence of a trapping regime where adsorbate
diffusion is suppressed implies that mass sensing experiments
above cryogenic temperatures may be possible, given that the
resonator is driven strongly enough.
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APPENDIX A: DETERMINING THE ωn and φn(X)

Here, we derive the flexural eigenmodes and eigenfrequen-
cies for the unperturbed resonator. The equation of motion
corresponding to the Lagrangian (1) is

ρẅ − σ∂2
Xw + κ∂4

Xw = 0. (A1)

Defining φn(X) and ωn through w(X,t) = e−iωntφn(X), we
find that the eigenmodes satisfy the equation

−ρω2
nφn − σφ′′

n + κφ′′′′
n = 0. (A2)

The corresponding characteristic equation is

κk4 − σk2 − ρω2
n = 0 (A3)

with roots ±k+
n , ±ik−

n , where

k±
n =

√√
σ 2

4κ2
+ ρω2

n

κ
± σ

2κ
, n = 0,1,2, . . . . (A4)

Hence, the eigenmodes can be written as

φ2n = A2n ch k+
2n

(
X − L

2

)
+ A′

2n cos k−
2n

(
X − L

2

)
,

φ2n+1 = B2n+1 sh k+
2n+1

(
X − L

2

)

+B ′
2n+1 sin k−

2n+1

(
X − L

2

)
, (A5)

where the boundary conditions φn(0) = φn(L) = φ′
n(0) =

φ′
n(L) = 0 have been used to divide the φn into even and odd

sets of eigenmodes. Similarily, we find that the eigenfrequen-
cies ωn are determined from the equation

k∓
n

k±
n

= ± tan k−
n

L
2

tanh k+
n

L
2

, (A6)

where upper/lower signs correspond to odd/even n. A good
approximation for the ratio ωn/ω0 is (2n + 1)2/9. Finally, the
integration constants An and Bn are determined. The boundary
conditions demand that

A′
n = −cosh k+

n
L
2

cos k−
n

L
2

An, B ′
n = − sinh k+

n
L
2

sin k−
n

L
2

Bn (A7)

whereas the normalization condition
∫

dXφ
†
mφn = Lδmn

determines

|An|2 = 2

[
1 + sh k+

n L

k+
n L

+ ch2 k+
n

L
2

cos2 k−
n

L
2

(
1 + sin k−

n L

k−
n L

) ]−1

,

|Bn|2 = 2

[
1 − sh k+

n L

k+
n L

− sh2 k+
n

L
2

sin2 k−
n

L
2

(
1 − sin k−

n L

k−
n L

) ]−1

.

(A8)

The final undetermined phase is chosen so that the eigenfunc-
tions φn are real.

APPENDIX B: FORMAL PERTURBATION THEORY

The perturbation theory sketched in Sec. III B can be put on
more formal grounds. In this appendix we derive the reduced
FPE by means of the methods in Ref. [24]. Introducing the
variable ν = ω0t + θ , the FPE reads

∂τp = εφ2
0E sin(2ν)∂Ep

(
εφ2

0

2
[1 + cos(2ν)] − 1

)
∂νp

− ω0E
2γ

[1 + cos(2ν)]∂ξ [p∂ξφ
2] + D∂2

ξ p. (B1)

Upon expanding p = ∑
n pn(E,ξ,τ )e2inν and introducing

the vector p = [. . . ,p1,p0,p1, . . .]⊥, the FPE can be
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rewritten as

∂τ p = εL̂1p + D
2

L̂2p,

where L̂1p = φ2
0[EÂ∂E + iB̂N̂ ]p and

L̂2p = −4iD−1N̂p − ω0E
2Dγ

B̂∂ξ [p∂ξφ
2] + ∂2

ξ p.

The matrices Â, B̂, N̂ , have components Am,n =
(2i)−1[δm,n+1 − δm,n−1], Bm,n = δm,n + 2−1[δm,n+1 + δm,n−1],
and Nm,n = nδm,n.

Expanding in eigenmodes of the operator L̂2, as p =∑
n βn(E,τ )vn(ξ,E), where L̂2vn = −μn(E)vn yields

(
∂τ + Dμn

2

)
βn = ε

∑
m

〈wn,L̂1βmvm〉.

The inner product is here defined as 〈u,v〉 ≡ ∫
dξ u†v and

the right eigenvectors wn satisfy the adjoint equation L∗
2wn =

−μ∗
nwn with

L∗
2 = 4iD−1N̂ + ω0E

2Dγ
B̂(∂ξφ

2
0)∂ξ + ∂2

ξ .

For time scales τ > D−1, we can make the approximation

∂τβ0 = ε
∑

n

〈w0,L̂1βnvn〉,
(B2)

βn�1 ≈ 2ε

Dμn

〈wn,L̂1β0v0〉.

Combining the two gives

∂τβ0 = ε〈w0,L̂1β0v0〉

+ 2ε2

D
∑
n�1

〈
w0,L̂1

(
μ−1

n 〈wn,L̂1β0v0〉
)

vn

〉
. (B3)

1. Perturbation theory for Eigenvectors

The eigenvectors of L̂2 cannot obtained exactly. However,
if the parameter η ≡ ω0E

2Dγ
� 1 we can find them perturbatively

to first order in η. Each eigenvector-eigenvalue pair has
composite indices (n,m) and is to first order given by

vnm ≈ v(0)
nm + ω0E

2Dγ

∑
pq 
=mn

〈
w(0)

pq,B̂∂ξ v(0)
nm∂ξφ

2
0

〉
μ

(0)
nm − μ

(0)
pq

v(0)
pq,

wnm ≈ w(0)
nm − ω0E

2Dγ

∑
pq 
=mn

〈
w(0)

pq,B̂
(
∂ξφ

2
0

)
∂ξ v(0)

nm

〉
(
μ

(0)
nm − μ

(0)
pq

)∗ w(0)
pq,

μnm ≈ μ(0)
nm + ω0E

2Dγ

〈
w(0)

nm,B̂∂ξ v(0)
nm∂ξφ

2
0

〉
.
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FIG. 7. (Color online) Equilibrium distribution pst.(E). (Black
triangles) Distribution obtained from numerical simulation of
Equations. (7)–(9) after relaxation. (Red line) The distribution p(E) =
(εDγ /ω0) exp ( − E(εDγ /ω0)).

The unperturbed eigenvalues are μ(0)
nm = n2π2 + 4iD−1m and

the corresponding eigenvector has the kth component[
v(0)

nm

]
k

= [
w(0)

nm

]
k

= [
√

2 cos(nπξ ) + δn,0(1 −
√

2)]δk,m.

2. Derivation of FPE for reduced density β0(E,τ )

To obtain the FPE for the slowly varying coefficient
β0(E,τ ), corresponding to the probability density p0(E,τ ) in
the main text, we first observe that

〈w0,L1F (E)vnm〉

= (i/2)∂E

[
EF (E)

∫
dξφ2

0([vnm]1 − [vnm]−1)

]
(B4)

for an arbitrary function F (E). With F (E) = β0(E) we then
recover the expression in Eq. (13),

ε〈w0,L̂1β0v0〉 = ε
2ω0

Dγ

∑
n

f 2
n

λn

(λn)2 + 16
∂E [E2β0].

For the fluctuation correction, the lowest-order term arises
from considering only the unperturbed eigenvectors,

2ε2
〈
w0

0,L̂1
((

μ0
nm

)−1〈
w0

nm,L̂1β0v0
0

〉)
v0

nm

〉
= 2ε2

∑
n

f 2
n λn

λ2
n + 16

∂EE2∂Eβ0

= α

(
εDγ

ω0

)
∂EE2∂Eβ0.

Hence, to lowest order in E and to second order in ε, the FPE
reads

∂τβ0 = α∂EE2

(
β0 +

(
εDγ

ω0

)
∂Eβ0

)
.

The stationary solution to this equation is the equilibrium
distribution p(E) = (εDγ /ω0) exp[−E(εDγ /ω0)] which we
also confirm by direct numerical simulation (see Fig. 7).
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