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MALIN KÄLLÉN 

Division of Energy Technology 

Department of Energy and Environment 

Chalmers University of Technology 

Abstract 
The global emissions of greenhouse gases are increasing and the development of mitigation 

measures is becoming more important. One of the alternatives proposed is carbon capture and 

storage, where the carbon dioxide emitted from large point sources is captured, compressed and 

stored in underground storage sites. Many of the largest point sources of carbon dioxide are 

power plants fuelled by fossil fuels. There are several technologies for adapting the combustion 

process to capture carbon dioxide. Chemical-looping combustion is one such option and has the 

advantage of keeping the fuel and the combustion air apart, thus avoiding energy consuming 

carbon dioxide-nitrogen separation. This is achieved by transferring oxygen from the air to the 

fuel by a cyclic oxidation and reduction of a solid metal oxide. The oxygen-carrying material 

needs to meet a number of requirements in order to achieve an efficient combustion process. 

Manganese oxides have promising properties as oxygen-carrier material and these can be further 

improved by combining the manganese with for example iron, silica and calcium. Chemical-

looping combustion is mainly developed as a technology for fluidised-bed combustion with the 

oxygen carrier present as the bed material in the form of small particles. To perform well in a 

circulating fluidised bed the oxygen carrier needs to be mechanically stable as well as have good 

reactivity with the fuel. During the development of manganese combined oxides, materials with 

such properties have been identified. 

The work presented in this thesis examines the performance of manganese combined oxides as 

oxygen carriers in interconnected fluidised beds with continuous circulation. The operation has 

been carried out in two reactor systems with gaseous fuels, in which the properties of the 

materials have been evaluated. It has been shown that full conversion of the fuel can be achieved 

during chemical-looping combustion in a 10 kWth reactor unit with a calcium manganite of 

perovskite structure as oxygen carrier. Furthermore, combined oxides of iron-manganese-silica 

and manganese-silica have been examined in a 300 Wth reactor unit. High fuel conversion was 

achieved with both combined oxides systems, but the mechanical stability of these materials was 

not satisfactory. It was found that the mechanical stability of combined oxides of manganese-

silica could be improved by adding titania to the material. Future work would include further 

investigation regarding the effect of the material composition on the performance. 

Keywords: carbon capture, chemical-looping, combined oxide, manganese oxide 



ii 

 

  



iii 

 

List of Publications 

 

This thesis is based on the work presented in the following publications: 

Paper I  Källén M, Rydén M, Dueso C, Mattisson T, Lyngfelt A. CaMn0.9Mg0.1O3-δ as 

oxygen carrier in a gas-fired 10 kWth chemical-looping combustion unit. Industrial 

and Engineering Chemistry Research. 2013;52:6923-32. 

Paper II Källén M, Hallberg P, Rydén M, Mattisson T, Lyngfelt A. Combined oxides of 

iron, manganese and silica as oxygen carriers for chemical-looping combustion. 

Fuel Processing Technology. 2014;124:87-96. 

Paper III Källén M, Rydén M, Lyngfelt A, Mattisson T. Chemical-Looping Using 

Combined Iron/Manganese/Silica Oxygen Carriers. In: Proceedings of the 3
rd

 

International Conference on Chemical Looping. Gothenburg, Sweden, 2014. 

Paper IV Källén M, Rydén M, Mattisson T, Lyngfelt A. Operation with combined oxides of 

manganese and silica as oxygen carriers in a 300 Wth chemical-looping 

combustion unit. In: Proceedings of the 12
th

 International Conference on 

Greenhouse Gas Technologies. Austin, USA. 2014. 

 

 

 

 

 

 

 

 

 

Contribution report: 

Paper I: principal author, responsible for part of the experimental work and for a 

majority of the data evaluation. 

Paper II, III and IV: principal author, responsible for experimental work and data evaluation. 



iv 

 

Related publications not included in this thesis: 

 Rydén M, Källén M, Jing D, Hedayati A, Mattisson T, Lyngfelt A. (Fe1-xMnx)TiyO3 based 

oxygen carriers for chemical-looping combustion and chemical-looping with oxygen 

uncoupling.  7
th

 Trondheim Conference on CO2 Capture, Transport and Storage, TCCS 

2013. Trondheim: Elsevier Ltd; 2013. p. 85-98. 

 

 Rydén M, Jing D, Källén M, Leion H, Lyngfelt A, Mattisson T. CuO-based oxygen-

carrier particles for chemical-looping with oxygen uncoupling - Experiments in batch 

reactor and in continuous operation. Industrial and Engineering Chemistry Research. 

2014;53:6255-67. 

 

 Hallberg P, Källén M, Jing D, Snijkers F, Van Noyen J, Rydén M, Lyngfelt A. 

Experimental investigation of CaMnO3-δ based oxygen carriers used in continuous 

chemical-looping combustion. International Journal of Chemical Engineering. 2014;2014.  



v 

 

Acknowledgement 

 

First of all I want to thank my supervisors Anders Lyngfelt and Magnus Rydén for always taking 

the time to discuss and answer my questions. Anders, thank you for your enthusiasm which 

always makes me want to improve and know more. Magnus, thank you for your relaxed attitude 

which always makes me calm down when I am stressed over things not going so well. I also want 

to thank Tobias Mattisson for always acting as my supervisor in practice, although not being it in 

theory. I would also like to take the opportunity to thank Henrik Leion for introducing me to the 

fascinating world of chemical-looping combustion back in 2009 and for finally making me 

understand that I wanted to become a PhD student after all. 

Louise, I want to thank you for being a great friend throughout our studies at Chalmers. We have 

shared all the joy and suffering during the education and I really appreciate to have you as my 

roommate now that we both decided to stay at Chalmers for another five years.  

A large part of this work has been carried out in the CLC-lab, and I am really grateful to Patrick, 

Peter, Matthias, Calle and Jesper for contributing to a cheerful working atmosphere. Even though 

we sometimes have our disagreements (mostly about cleaning), it is most often a joy to work in 

the lab thanks to you all. I also want to thank Ulf and Rustan for all practical help and for 

cheering me up when I have a bad experimental day. 

I am also very grateful to all my other colleagues for creating a great working atmosphere. I want 

to thank my fellow chemical-loopers Dazheng, Golnar, Sebastian, Volkmar, Martin, Pavleta, 

Mehdi, Pontus and Dongmei as well as all the people at Energy Technology. 

My greatest thankfulness goes to my family and my friends. Thank you for always being there 

and supporting me. A special thanks to my parents who taught me to be curious and that I should 

always do my best. Finally and foremost, Hasse, it is your love and support that keeps me going 

and I am so grateful for sharing life with you. 

  



vi 

 

  



vii 

 

Table of Contents 

 

Abstract ............................................................................................................................................. i 

List of Publications ......................................................................................................................... iii 

Acknowledgement ............................................................................................................................ v 

1. Introduction ............................................................................................................................... 1 

1.1. Chemical-Looping Combustion ........................................................................................ 1 

1.2. Oxygen Carriers ................................................................................................................. 3 

1.3. Objective of Study ............................................................................................................. 5 

2. Experimental ............................................................................................................................. 7 

2.1. Oxygen-Carrier Materials .................................................................................................. 7 

2.2. Experimental Setups .......................................................................................................... 8 

2.2.1. 300 W Unit ................................................................................................................. 8 

2.2.2. 10 kW Unit ............................................................................................................... 10 

2.3. Data Analysis ................................................................................................................... 12 

3. Results ..................................................................................................................................... 15 

3.1. Operation with Calcium Manganite Perovskite (Paper I) ............................................... 15 

3.2. Phase Diagrams for Iron-Manganese-Silica Combined Oxides (Paper II and III) .......... 17 

3.3. Operation with Iron-Manganese-Silica Combined Oxides (Paper II and III) ................. 20 

3.4. Operation with Manganese-Silica Combined Oxides (Paper IV) ................................... 23 

4. Discussion ............................................................................................................................... 27 

5. Conclusions ............................................................................................................................. 29 

References ...................................................................................................................................... 31 

 

 



viii 

 

  



1 

 

1. Introduction 

 

The increasing emission of greenhouse gases is one of the largest challenges facing humankind 

today. The accumulation of these gases in the atmosphere will cause climate changes associated 

with an increased average global temperature. [1] The changes in the climate will inevitably harm 

ecosystems as well as living conditions for humans in many parts of the world. [2] The largest 

average increase in greenhouse gas emissions ever was observed in the decade 2000-2010 when 

the emissions rose with 2.2%/year in average. A substantial part of the emissions originates from 

the production of electricity and heat which gives rise to 25% of the total emissions of 

greenhouse gases. The production of electricity and heat is mainly fuelled by fossil fuels. [3] 

Renewable energy sources like solar and wind power are often viewed as the solution to the 

energy supply problem. However, even though the implementation of these technologies has 

developed very fast, it will take a rather long time for them to substitute fossil fuels completely. 

Carbon capture and storage (CCS) has been proposed as a bridging technology between today’s 

energy production and a renewable energy system. CCS includes the capture of carbon dioxide 

from point sources such as power plants, compression, transportation and finally deposition at a 

storage site. CCS could also make it possible to achieve negative greenhouse gas emissions, if it 

is used for a process fuelled by biomass. 

The capture of carbon dioxide will most certainly be the most costly part of the CCS chain. A 

number of technologies for carbon dioxide capture have been developed and they can be 

classified in three categories: pre-combustion, post-combustion and oxy-fuel combustion. In pre-

combustion capture the fuel is reformed to carbon monoxide and hydrogen. The carbon 

monoxide is then reacted with steam to form carbon dioxide and more hydrogen. A gas 

separation unit is necessary to separate the carbon dioxide from the hydrogen, which can be used 

as a carbon free fuel. In post-combustion capture the carbon dioxide is separated from the flue 

gases after combustion in a gas separation unit. In oxy-fuel combustion the fuel is burnt in 

oxygen and recycled flue gases. An air separation unit is needed to produce pure oxygen from air. 

[4] 

All these technologies would require gas-gas separation which is costly and very energy 

intensive. Another capture technology proposed called chemical-looping combustion avoids this 

separation and may therefore capture carbon dioxide at a much lower cost. [5] 

1.1. Chemical-Looping Combustion 

The technology of chemical-looping combustion is based on the cyclic oxidation and reduction of 

a metal oxide. The combustion is carried out in two steps in two separate reactor vessels. The first 

one is commonly called the air reactor (AR) and here the metal oxide is oxidised by a stream of 

air. The second reactor is called the fuel reactor (FR) and here the metal oxide is reduced and the 
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fuel is oxidised as these react. The metal oxide is therefore referred to as an oxygen carrier. The 

combustion scheme is illustrated in Figure 1. 

 

Figure 1. Basic principle of the combustion scheme chemical-looping combustion. 

The heat of combustion will be identical to normal combustion in air. This can be shown by 

adding up the two reaction steps shown below: 

𝑀𝑒𝑥𝑂𝑦−1 +
1

2
𝑂2 → 𝑀𝑒𝑥𝑂𝑦         (1) 

(2𝑛 + 𝑚)𝑀𝑒𝑥𝑂𝑦 + 𝐶𝑛𝐻2𝑚 → (2𝑛 + 𝑚)𝑀𝑒𝑥𝑂𝑦−1 + 𝑚𝐻2𝑂 + 𝑛𝐶𝑂2   (2) 

As is seen in the overall reactions above, the metal oxide is often not reduced fully to the metal 

state, although this is a possibility and depends on the system used. The fuel combustion in 

chemical-looping combustion will differ depending on if it is a gaseous fuel or a solid fuel which 

is being burnt. In combustion of gaseous fuels the fuel can react directly with the oxygen carrier 

in a gas-solid reaction. In combustion of a solid fuel, the volatiles will first be released in gaseous 

form and they can react directly with the oxygen carrier. The remaining char needs to be gasified 

first to produce a gas which may react with the oxygen carrier in a gas-solid reaction. The direct 

solid-solid reaction between the char and the oxygen carrier would be a very slow and inefficient 

reaction route. 

Char gasification is a rather slow reaction compared to the other reactions in the combustion 

scheme and would therefore be the rate limiting factor for the char conversion. The selection of 

oxygen-carrier material offers a way to get around this problem. Some metal oxides are capable 

of releasing oxygen in gas phase at the temperatures which are relevant for fuel combustion 

according to: 

𝑀𝑒𝑥𝑂𝑦 → 𝑀𝑒𝑥𝑂𝑦−1 +
1

2
𝑂2         (3) 
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Some or all of the char can then react directly with the released gaseous oxygen and will not need 

to be gasified. This combustion scheme is referred to as chemical-looping with oxygen 

uncoupling (CLOU). [6] Chemical-looping with oxygen uncoupling can also be advantageous in 

combustion of gaseous fuels as it would enable a gas-gas reaction between oxygen and fuel 

instead of a gas-solid reaction which would be much slower. This implies that CLOU can 

facilitate complete combustion even though the mixing between oxygen carrier and fuel is not 

sufficient. 

A common way to realise chemical-looping combustion is by using two interconnected fluidised 

bed reactors. The oxygen carrier has then the form of small particles of a suitable size range. By 

using this method, knowledge and experience of combustion in circulating fluidised bed boilers 

can be used. The air reactor is a circulating fluidised bed with high gas velocities, which is 

needed in order to transport the particles from the bed to the fuel reactor. The fuel reactor can 

either be a bubbling bed with lower gas velocities or a circulating fluidised bed with an internal 

circulation loop. The latter is usually regarded to be more advantageous for solid fuels. Most 

chemical-looping pilot units in operation today uses interconnected fluidised beds as combustion 

method. 

Chemical-looping combustion was first introduced as a technology to produce carbon dioxide in 

a patent application in 1954. [7] Later, the idea of using the process to capture carbon dioxide 

from combustion of fossil fuels was formed. [8] The proof of concept came in 2004, when 

Lyngfelt and Thunman [9] constructed and operated a 10 kW chemical-looping combustor for 

more than 100 h. The development has progressed very fast since the first studies. Today more 

than 700 oxygen-carrier materials have been examined worldwide and the total continuous 

operation now amounts to more than 4000 h in chemical-looping units ranging from 300 W to 

140 kW; see recent review articles by Lyngfelt [10] and Adanez et.al. [11] for an overview. 

1.2. Oxygen Carriers 

The development of oxygen carrier materials is crucial for the progress of chemical-looping 

combustion. There are a large number of requirements for materials to be suitable as oxygen 

carriers. The metal oxide should be oxidised and reduced at sufficient rate at relevant 

temperatures and not break down due to the chemical stress. The rate of oxidation and reduction 

will decide the amount of material needed in each reactor vessel. The mass fraction of oxygen 

that the oxygen carrier is able to transfer per cycle, i.e. the oxygen transfer capacity, is another 

important parameter. The material should be inert towards fuel impurities such as sulphur. If the 

combustion is carried out in fluidised beds, the mechanical integrity is a decisive property as the 

gas velocities in such reactors are high and the material will follow the gas flow through 

cyclones. When chemical-looping is scaled up to commercial scale, large quantities of the oxygen 

carrier material will need to be handled. Therefore it is preferable if the material is rather cheap 

and neither toxic nor environmentally harmful. If the oxygen carrier will be used in chemical-

looping with oxygen uncoupling, the rate of oxygen release will be a central parameter. 
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Oxygen-carrier materials suitable for chemical-looping combustion were identified in a 

thermodynamic analysis. [12] The oxides of nickel, copper, iron, manganese and cobalt were 

found to be feasible for chemical-looping conditions. For a long time nickel was the most used 

oxygen carrier and regarded as state of the art. [13, 14] However, nickel is both expensive and 

toxic and has a thermodynamic constraint of 99-99.5% fuel conversion, depending on 

temperature and pressure. The thermodynamic constraint is even worse for cobalt, where the 

maximum fuel conversion is 93% at relevant combustion temperatures. [15] Therefore there are 

very few studies with cobalt oxygen carriers. Iron oxides have been more frequently been studied 

as oxygen carriers for chemical-looping combustion. The reactivity is usually tolerable and the 

mechanical stability is regarded as good. [16] 

The interest in copper oxide oxygen carriers has increased lately due to the oxygen release 

properties of this material. [17] Copper is reactive and gives good conversion of the fuel, but has 

the disadvantage of being rather expensive. The mechanical stability of copper materials is also 

uncertain. [18] Manganese oxide has oxygen release properties as well, but the relevant 

equilibrium concentrations occurs below 800°C and the reoxidation of the material is very slow 

at lower temperatures. [6] However, the thermodynamic properties of manganese oxides can be 

altered by combining the manganese with other metals. [19] 

Manganese oxides have been combined with iron, silicon, calcium, nickel, magnesium and 

copper. [19] Combined oxides of manganese-iron, manganese-nickel and manganese-silica were 

operated in a batch fluidized reactor. [20] Later research has focused more on combined oxides of 

iron and manganese, silicon and manganese and also combined oxides of iron, manganese and 

silicon. These systems have the ability to release oxygen and have all shown promising results. 

All these materials have been examined in laboratory batch reactors. [21-23] Two materials 

consisting of manganese and iron have been operated continuously in a 300 W reactor system. 

[24] In order to examine these kinds of materials further, five combined oxides of iron, 

manganese and silica, Paper II and Paper III, and two combined oxides of manganese and silica, 

Paper IV, have been examined in continuous operation in this work. 

The combined oxides of manganese and calcium can form perovskite structures which are very 

interesting for chemical-looping with oxygen uncoupling. The unit cell of perovskite crystal 

structures has the general formula ABO3-δ in which A represents a larger cation and B a smaller 

cation. There can be more than one type of A atom or B atom as long as the radii of the atoms are 

very similar. The δ in the formula expresses the degree of oxygen deficiency in the structure and 

is zero for an ideal perovskite. The oxygen content of the structure can be increased or reduced 

by altering factors in the surroundings such as temperature, pressure or oxygen partial pressure. 

The surroundings in a chemical-looping air reactor are oxidising, while they are reducing in the 

fuel reactor. Therefore δar will be smaller and δfr will be larger. The amount of oxygen available 

for oxidation of fuel via oxygen release can be written as (δfr - δar): 

CaMnO3-δar ↔ CaMnO3-δfr + ½(δfr-δar) O2       (4) 
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The equilibrium oxygen content of calcium manganite perovskite has previously been examined 

outside the chemical-looping research area. [25] Perovskite oxygen carriers based on calcium 

manganite have been examined in a batch reactor [26, 27] as well as in continuous operation [28, 

29] with promising results. This type of materials has also been studied in this work, Paper I, and 

is the first study of this sort of material in continuous operation at relevant industrial conditions. 

Most of the operation with oxygen carriers has been carried out with synthetic materials. The 

production of the oxygen carrier increases the cost of the material, compared to the price of the 

raw materials. This may not be an issue for operation with gaseous fuels as these are quite pure 

and do not produce any ashes. This may however be a problem during operation with solid fuel 

where the oxygen carrier probably will have a lower operational lifetime. [30] This issue has 

caused a search for natural materials with good oxygen carrier properties. The state of art in this 

category is ilmenite and has been so for a couple of years. Ilmenite is an ore consisting of iron-

titanium oxide and it has been operated with solid fuel in many pilot units. [31-33] Also iron and 

manganese ores and have more recently been examined as oxygen carriers. [34-36] 

1.3. Objective of Study 

In the last few years there have been some efforts on finding suitable manganese combined 

oxides for use in chemical-looping. However, almost all work has been conducted in small 

laboratory units with a very limited number of red-ox cycles. This work is the first major effort to 

investigate interesting manganese combined oxides in continuous operation. Hence, the objective 

of this research is to evaluate a number of manganese combined oxides as oxygen carriers in 

continuous operation, and thus more relevant conditions. The oxygen release, reactivity with fuel 

and mechanical stability were the key performance indicators which were assessed. The long-

term aim is to find viable oxygen carrier materials for large-scale operation. A portfolio of 

different materials will be needed as the desired characteristics of the oxygen carrier will depend 

on the fuel used and in which scale the operation will run. Paper I is aimed at evaluating a 

material for operation with gaseous fuels and Papers II, III and IV are aimed at finding materials 

for operation with solid fuels. 
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2. Experimental 

 

The oxygen-carrier materials produced were evaluated during fluidisation in inert atmosphere as 

well as during operation with fuel, both natural gas and syngas (50% CO and 50% H2). The 

operation with syngas is used to estimate the material’s performance with solid fuels without 

using solid fuel in the experiment, as syngas is the intermediate formed during char gasification. 

The oxygen release behaviour of the material can be studied during fluidisation in inert 

atmosphere. Temperature, air flow and fuel flow have been varied during the experiments to 

evaluate their effect on the performance of the oxygen carriers. All experiments have been 

conducted during continuous operation for several hours. Two fluidised bed systems have been 

used, one designed for a fuel flow of 300 W and one designed for a fuel flow of 10 kW. 

2.1. Oxygen-Carrier Materials 

The oxygen carrier materials have been produced by spray drying at VITO in Belgium. The raw 

materials, most often metal oxides, are mixed with water and some organic additives and then 

sprayed in fine droplets into a hot chamber whereby the liquid evaporates and the raw materials 

form small particles. The material is then sintered at a high temperature for four hours. During 

this time the raw materials react to form the combined oxide structure and the material hardens. 

Usually a higher sintering temperature and a longer sintering time will give particles with higher 

mechanical stability, but with lower reactivity. The oxygen-carrier materials, the sintering 

temperature and particle properties are summarised in Table 1. These materials have all been 

examined in a laboratory batch reactor previously and have been chosen for continuous operation 

in larger reactor units due to their good characteristics. The oxygen carrier names reported in the 

table are identical with those used in the papers. 
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Table 1. Oxygen-carrier materials, sintering temperature and particle properties. 

 Paper I Paper II Paper III Paper IV 

Name CaMn0.9Mg0.1O3-δ Fe0.66Mn1.33SiO3 FeMnSiO3 F22M44-

S33 

F22M55-

S22 

F22M66-

S11 

MnSi MnSiTi 

Sintering 

temp. 

(°C) 

1300 1100 1100 1200 1200 1200 1150 1140 

Raw 

materials 

(wt%) 

46.8% Mn3O4 

50.5% Ca(OH)2 

2.7% MgO 

47.3% Mn3O4 

27.9% SiO2 

24.8% Fe2O3 

35.3% 

Mn3O4 

27.8% 

SiO2 

36.9% 

Fe2O3 

47.3% 

Mn3O4 

27.9% 

SiO2 

24.8% 

Fe2O3 

57.7% 

Mn3O4 

18.1% 

SiO2 

24.2% 

Fe2O3 

67.5% 

Mn3O4 

8.9% 

SiO2 

23.6% 

Fe2O3 

75% 

Mn3O4 

25% 

SiO2 

66.7% 

Mn3O4 

22.2% 

SiO2 

11.0% 

TiO2 

Mean 

size 

(μm) 

137 153 147 153 145 139 136 126 

Bulk 

density 

(kg/m
3
) 

1920 1026 1240 1030 1000 1470 1000 1688 

Attrition 

index 

(wt%/h) 

0.6 32.3 1.2 19.3 16.3 4.6 17.4 0.5 

 

The bulk density reported was measured as the mass poured into a known volume. The attrition 

index reported was calculated from measurements using a customized jet cup; see the article by 

Rydén et. al. for a description of the jet cup and testing methodology. [37] The results from these 

tests with fresh material are used here as a comparison to the experimental attrition behaviour in 

the hot unit. 

2.2. Experimental Setups 

Two continuous chemical-looping reactor systems have been used in the study. They are 

described in the sections below. 

2.2.1. 300 W Unit 

The smaller unit is a circulating fluidised bed reactor designed for a thermal power of 300 W. 

The reactor consists of three compartments: the air reactor, the fuel reactor and the downcomer, 

which is also functioning as a loop seal. The reactor is depicted to the left in Figure 2 with the air 

reactor coloured blue, the fuel reactor coloured red and the upper loop seal coloured green. The 

lower loop seal cannot be seen in the figure and is located in the bottom of the system between 

the wind box of the air reactor and the wind box of the fuel reactor. To the right in Figure 2 the 

reactor is shown from a side view with the particle separation box at the gas outlet included. 



9 

 

 

Figure 2. Schematic illustration of the smaller fluidised bed reactor: open front view to the left 

and side view including the particle separation box to the right. 

The air reactor is divided into two parts with a lower bed section in which the cross section (40 x 

25 mm) is larger than in the riser section above the bed (25 x 25 mm). The precondition for 

achieving solids circulation is a gas velocity in the air reactor high enough to carry the particles 

up from the bed surface. When the gas with the suspended particles exits the air reactor it enters a 

separation box where the gas velocity decreases due to an increased cross sectional area. This 

low-velocity section results in a separation of gas and particles, and the latter will fall down 

towards the air reactor. However, a certain fraction of particles enter the downcomer between the 

air and fuel reactor. The downcomer works as a J-type loop seal (25 x 25 mm) with an overflow 

exit into the fuel reactor. After fluidising in the fuel reactor the particles eventually return to the 

air reactor through the lower loop seal. 

The air reactor is fluidised with air and the fuel reactor is fluidised with natural gas or syngas 

during fuel operation and with carbon dioxide during oxygen release experiments. Porous quartz 

plates are used as gas distributors in both the air reactor and the fuel reactor. The downcomer and 

the lower loop seal are fluidized with argon which is added through small holes in the pipes 

which can be seen in Figure 2. Since the reactor system has a high area to volume ratio, much 
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heat will be lost. Therefore the reactor system is enclosed in an electric furnace in order to keep 

the desired temperature. 

The temperature is measured with one thermocouple in the air reactor and one in the fuel reactor. 

The thermocouples are located approximately 1 cm above the distributer plate in each reactor. 

The pressure drops in the reactor system are measured by pressure transducers in the air reactor, 

fuel reactor and in the downcomer. The pressure drops are measured in order to be able to assess 

the fluidization behaviour and the solids inventory in the different parts of the reactor system. 

The outlet of the fuel reactor is connected to a water seal with a 1-2 cm column of water giving a 

slightly higher pressure in the fuel reactor than in the air reactor. A part of each outlet stream is 

led through a particle filter and a gas conditioning unit before entering the gas analysers.  

2.2.2. 10 kW Unit 

The larger unit is a 10 kWth chemical-looping pilot plant for gaseous fuels. The reactor system 

consists of two interconnected fluidized beds, the air reactor and the fuel reactor. A schematic 

picture of the experimental setup can be seen in Figure 3. 

The air reactor has an inner diameter of 150 mm. A riser is connected to the air reactor and it is 

the gas velocity through the air reactor and the riser which creates the driving force for the 

circulation. The separation of gas and particles is managed by a cyclone after the riser. The 

particles are brought from the cyclone to the fuel reactor through a downcomer and a loop seal. 

The latter assures that no gas will leak into or out of the fuel reactor. The fuel reactor consists of a 

bubbling fluidized bed which is fluidised by the gaseous fuel. The lower part of the fuel reactor 

has an inner diameter of 150 mm and the higher part has an inner diameter of 260 mm. Particles 

leave the fuel reactor via an overflow exit, and fall down into a second loop seal leading back into 

the air reactor. There is a vertical plate attached inside the fuel reactor which prevents particles 

entering the bed to by-pass the bed to the overflow exit. Thus, the solids flow will first go 

downwards on one side of this plate, turn and go upwards on the other side. The height from the 

bottom of the air reactor to the top of the riser is 2230 mm. 
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Figure 3. A schematic picture of the larger experimental setup. 

The air reactor is fluidised by air preheated to 1000°C added through nozzles in the bottom plate 

and both loop seals are fluidized by nitrogen added through porous quartz plates. The nitrogen 

used to fluidise the particle seals escapes through both the air reactor and the fuel reactor and thus 

dilutes both exhaust gas streams. To avoid the nitrogen dilution, the particle seals can be fluidized 

by steam instead. This option was not utilised during these experiments. 

The stream of exhaust gas leaving the cyclone is first led through finned pipes for passive 

cooling, then a part of the stream is led on to the gas conditioning system and the gas analysers, 

and the remaining gas is led through a bag filter. The exhaust gas stream from the fuel reactor is 

also led through finned pipes before a part of the stream is led to the gas conditioning system and 

the gas analysers, and the remaining gas passes a water seal, where the steam condensate is 

collected and elutriated particles are captured. 

The temperature is measured with thermocouples at eight points in the reactor system, three in 

the air reactor, one in the riser, one in the cyclone, one in the higher loop seal and two in the fuel 

reactor. Pressure drops in the reactor systems are measured by 20 pressure transducers. The 
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pressure drops are measured in order to be able to assess the fluidisation behaviour and the 

particle inventory in different parts of the reactor system.  

A supervision system is used to be able to operate the system during nights. If temperature or gas 

concentrations are not kept within certain accepted intervals, the supervision system will shut off 

the fuel flow to the fuel reactor and replace it with nitrogen. 

One important difference between the 10 kW reactor and the 300 W reactor is the fluidisation 

velocities. In the 10 kW unit, the particles are exposed to velocities around 3 m/s in the riser and 

much higher velocities in the cyclone and around the nozzles of the bottom plate in the air 

reactor. These are velocities more similar to those found in commercial circulating fluidised bed 

boilers. To illustrate the conditions for the particles it can be noted that in previous operation the 

high velocities have created holes in both the bottom plate of the air reactor and in the cyclone. 

Thus the oxygen carrier particles are exposed to conditions more similar to those in an industrial 

unit. The velocities in the 300 W unit are considerably smaller, in the order of 0.7 m/s and there 

are no cyclones or nozzles creating harsh conditions for the particles. Another advantage with 

using the larger unit is that the overall mass balance of the particles and the attrition behaviour 

evaluation are more reliable. However, considerably more particles are needed to operate the 10 

kW unit, around 10-20 kg, and thus experiments are only possible materials of which large 

amounts of particles are available. 

2.3. Data Analysis 

Both experimental reactor units are connected to identical gas conditioning systems and gas 

analysers. The gas analysers measure the concentration of carbon dioxide, carbon monoxide, 

methane and oxygen from the fuel reactor and the concentrations of oxygen and carbon dioxide 

from the air reactor. Methane, carbon monoxide and carbon dioxide are measured with IR-

sensors while oxygen is measured with a paramagnetic sensor. Gas concentrations, temperatures 

and pressure drops are logged every ten seconds. 

From the measurements the CO2 yield was calculated to evaluate the combustion performance. 

The CO2 yield is defined as the amount of carbon dioxide formed divided by the total amount of 

carbon species in the outlet flow according to: 

𝛾𝐶𝑂2
=

𝑥𝐶𝑂2

𝑥𝐶𝑂2+𝑥𝐶𝑂+𝑥𝐶𝐻4

         (5) 

During the experiments in the smaller unit, the outlet from the fuel reactor is also analysed with a 

gas chromatograph which measures hydrogen and nitrogen, as well as the previously mentioned 

gases. The hydrogen measurements give additional information of the fuel conversion and are 

especially interesting for the conversion of syngas. The nitrogen measurements are used to 

measure the amount of air leakage from the air reactor to the fuel reactor. During some of the 

experiments the leakage was high enough to be accounted for in the data evaluation. The leakage 

occurred both ways and was detected by measuring carbon dioxide in the air reactor and nitrogen 
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in the fuel reactor. The carbon dioxide fraction in the air reactor does not interfere much with the 

data analysis. However, the air leakage to the fuel reactor affects the results both for oxygen 

release and combustion performance. The gas leakage has been located to the top of the reactor 

by injecting tracer gas in the pressure measurement taps. It was therefore assumed that the air 

which leaked into the fuel reactor had the same concentrations of oxygen and nitrogen as the 

outlet air from the air reactor. The fraction of oxygen leaking from the air reactor is quantified by 

the nitrogen concentration out of the fuel reactor and the oxygen concentration out of the air 

reactor: 

𝑥𝑂2,𝑙𝑒𝑎𝑘𝑎𝑔𝑒 = 𝑥𝑁2,𝐹𝑅
𝑥𝑂2,𝐴𝑅,𝑜𝑢𝑡

𝑥𝑁2,𝐴𝑅,𝑜𝑢𝑡
        (6) 

In the same way the oxygen fraction related to the release of oxygen from the oxygen carrier 

particles is calculated as: 

𝑥𝑂2,𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑 = 𝑥𝑂2,𝐹𝑅 − 𝑥𝑁2,𝐹𝑅
𝑥𝑂2,𝐴𝑅,𝑜𝑢𝑡

𝑥𝑁2,𝐴𝑅,𝑜𝑢𝑡
      (7) 

The circulation rate in the larger unit has been assessed to evaluate the operating conditions in the 

system. The following expression, previously used by Linderholm et. al. [38] for this unit, has 

been used to calculate the net solid flux: 

𝐺𝑠 = 𝜌𝑒𝑥𝑖𝑡(𝑢 − 𝑢𝑡) = −
1

𝑔

𝑑𝑝

𝑑ℎ
(𝑢 − 𝑢𝑡)       (8) 

The net solids flux calculated by this expression overestimates the actual circulation, but it is still 

a useful measure for comparing particle circulations. The net solid flux multiplied with the cross 

sectional area of the riser is referred to as circulation index (CI) and is expressed in kg/min. 
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3. Results 

 

3.1. Operation with Calcium Manganite Perovskite (Paper I) 

CaMn0.9Mg0.1O3-δ was operated with natural gas in a chemical-looping unit designed for a fuel 

flow of 10 kWth. During the last part of the heat up of the unit, the fuel reactor was fluidised with 

nitrogen and the oxygen release could be studied. The oxygen concentration in the exhaust gas 

from the fuel reactor during three heat-up periods with different air flows is shown in Figure 4. A 

higher air flow will give higher oxygen concentration in the air reactor and a higher circulation 

rate of oxygen-carrier particles. However, the air flow did not seem to influence the oxygen 

release significantly. The oxygen release increased with temperature and appears to level out at 

around 900°C. 

Figure 4. Oxygen concentration in the fuel reactor as a function of fuel reactor temperature 

during fluidisation with nitrogen in the fuel reactor. 

The gas concentrations in the exhaust gas from the fuel reactor during fuel operation are shown in 

Figure 5. The air flow was kept constant and the temperature was kept within a rather small 

interval during this period. The fuel flow was varied and the effect is seen in the gas 

concentrations. The fuel was completely converted and excess oxygen released from the oxygen 

carrier was present during the periods with a fuel flow of 9 LN/min. When the fuel flow was 

increased, the excess oxygen was consumed and the fuel conversion was no longer complete. 

Then the fuel flow was slightly decreased and the concentrations of methane and carbon 

monoxide decreased somewhat. When the fuel flow was decreased to 9 LN/min again, full fuel 

conversion and excess oxygen was obtained once again. This showed that it is possible to obtain 

a desired gas outlet composition by only changing the fuel flow. Since a very pure stream of 
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carbon dioxide without oxygen, methane and carbon monoxide present is an advantage for gas 

storage, this result is very desirable. 

 

Figure 5. The gas concentrations at the outlet of the fuel reactor as a function of time with Far = 

200 LN/min, Ffr = 9-12 LN/min (6.6-8.8 kW) and Tfr = 935-955ºC. Note that the concentration of 

CO2 has a separate y-axis. 

As previously mentioned, the air flow will affect the rate of solids circulation. The CO2 yield as a 

function of circulation rate is shown in Figure 6. A rather distinct correlation between the solids 

circulation rate and the fuel conversion was observed. 

 

Figure 6. CO2 yield as a function of circulation index with Far = 170 LN/min and Ffr = 9 LN/min 

at a fuel rector temperature of 930-950°C. 
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The oxygen carrier particles showed good fluidisation properties throughout the experiments and 

there was little evidence of particle attrition. Two samples of 300 g of the elutriated material were 

sieved after each filter emptying, normally after each day of operation, and the particle size 

distribution was noted. The mass fraction of fines, i.e. particles smaller than 45 μm, at each filter 

cleaning can be seen in Figure 7. The material loss during operation with fuel was typically 0.32 

kg/h and the mass fraction of fines was 0-0.4% from the first fuel addition on day 5. The highest 

mass fraction of fines obtained with fuel addition, i.e. 0.4%, would mean a loss of fines of 0.0085 

mass%/h, which corresponds to a lifetime of 12 000 h. It should be noted however that these 

numbers are indicative of a very low attrition, but that the exact numbers are uncertain due to a 

high elutriation rate combined with a low fraction of fines. 

 

Figure 7. The average mass fraction of fines, <45μm, for the two sieved samples of elutriated 

material versus day of operation. 

3.2. Phase Diagrams for Iron-Manganese-Silica Combined Oxides (Paper 

II and III) 

The equilibrium solid phase of the combined oxide is decided by the temperature and the oxygen 

partial pressure. A phase diagram with a constant oxygen partial pressure and a varying 

temperature of combined oxides of manganese, iron and silica can be seen in Figure 8. The phase 

diagram has been calculated with the software FactSage 6.3 using the FToxid database. The 

oxygen partial pressure was set to 0.05 atm which would correspond to an expected outlet 

concentration of oxygen from the air reactor. The molar fraction of silica was set to 33%, which 

is the silica fraction of the examined oxygen carriers FeMnSiO3 and Fe0.66Mn1.33SiO3, which are 

marked in the diagram as solid vertical lines. 
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Figure 8. Phase diagram of MnO-FeO-SiO in an oxygen partial pressure of 0.05 atm. The molar 

fraction of silica is fixed at 33 mol%. Silica is also present as various forms of SiO2, but these are 

not marked in the phase diagram. The vertical lines denote the composition of the oxygen 

carriers examined in this work. 

The phase diagram calculated is consistent with the phase diagram of the manganese-iron 

systems [21, 39]. The dashed lines in the phase diagram represent the main effect of the presence 

of silica as it marks the transition to braunite. Braunite is the mineral name for Mn7SiO12 with 

small impurities of other metals, but is used here for the pure phase. Another silica containing 

phase in this system is rhodonite consisting of MnSiO3 with dilute amounts of FeSiO3. Silica is 

also present as various forms of SiO2, but these are not marked in the phase diagram. Both 

hematite and bixbyite are mixtures of Mn2O3 and Fe2O3, where Mn2O3 is the main component in 

bixbyite and Fe2O3 is the main component in hematite. The spinel marked in the diagram has the 

chemical formula (MnxFe1-x)3O4. 

There are several reactions possible in the above system, of which some can release gas phase 

oxygen. The phase transitions which could be relevant for chemical-looping conditions can be 

seen in Table 2. These reactions could be induced either by a change in temperature or a change 

in oxygen partial pressure. A lower oxygen partial pressure lowers the temperature for the 

transition and a higher partial pressure of oxygen increases the temperature for the transition. 

According to Figure 8, the phase transition between bixbyite and spinel should be complete for 

Fe0.66Mn1.33SiO3 at around 930°C, while for FeMnSiO3 bixbyite is present up to 965°C. 

It is also possible that the transition from braunite to rhodonite could be interesting for chemical-

looping. This reaction would occur at around 980-1000°C and would only be relevant for oxygen 

carriers with a high content of manganese. 

Bi : Bixbyite, (MnxFe1-x)2O3 

Br : Braunite, Mn7SiO12 

H : Hematite, (FexMn1-x)2O3 

R : Rhodonite, MnSiO3 

S : Spinel, (MnxFe1-x)3O4 
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Bi : Bixbyite, (MnxFe1-x)2O3 

Br : Braunite, Mn7SiO12 

H : Hematite, (FexMn1-x)2O3 

R : Rhodonite, MnSiO3 

S : Spinel, (MnxFe1-x)3O4 

T : Tephroite, Mn2SiO3 

Table 2. The relevant phase transitions and the corresponding reaction formula. 

Transition Reaction 

Bixbyite - Spinel 6(𝑀𝑛, 𝐹𝑒)2𝑂3 ↔ 4(𝑀𝑛, 𝐹𝑒)3𝑂4 + 𝑂2 

Braunite - Rhodonite 2
3⁄ 𝑀𝑛7𝑆𝑖𝑂12 + 4𝑆𝑖𝑂2 ↔ 14

3⁄ 𝑀𝑛𝑆𝑖𝑂3 + 𝑂2 

Spinel/Rhodonite -Tephroite 𝑀𝑛3𝑂4 + 3𝑀𝑛𝑆𝑖𝑂3 ↔ 3𝑀𝑛2𝑆𝑖𝑂4 + 1
2⁄ 𝑂2 

 

A similar phase diagram as presented in Figure 8 is shown in Figure 9 for the MnO-FeO-SiO 

system. However, here the oxygen partial pressure is shown as a function of manganese content 

at 900°C. This phase diagram has also been calculated with the software FactSage 6.3 using the 

FToxid database. The molar fraction of iron was set to 22 mol%, which is the iron fraction of 

F22M44S33, F22M55S22 and F22M66S11 materials investigated in this work, see Table 2. 

These compositions are marked in the diagram as solid vertical lines. It should be noted that 

F22M44S33 and Fe0.66Mn1.33SiO3 have identical component composition. For the experimental 

evaluation however, it should be noted that these two materials have different sintering 

temperatures. 

 

Figure 9. Phase diagram of MnO-FeO-SiO at 900°C and atmospheric pressure. The molar 

fraction of iron is fixed at 22%. Silica is also present as various forms of SiO2, but these are not 

marked in the phase diagram. The vertical lines denote the composition of the oxygen carriers. 

At higher temperatures, the phase transitions would occur at higher oxygen partial pressures. This 

implies that the surrounding oxygen concentration would not need to be as low to enable the 

phase transition to tephroite at higher temperatures. As can be seen in the phase diagram, 

F22M66S11 (and possibly also F22M55S22) has the potential to undergo all three phase 

transitions listed in Table 2 when circulating between the air reactor and the fuel reactor. 
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3.3. Operation with Iron-Manganese-Silica Combined Oxides (Paper II 

and III) 

Five materials consisting of combined iron-manganese-silica oxides have been evaluated in the 

300 W unit. The oxygen release for the materials sintered at 1100°C is shown in Figure 10. The 

materials showed very similar behaviour and the released oxygen concentration increased 

significantly above 900°C. 

 

Figure 10. Oxygen release as a function of fuel reactor temperature during operation with 

Fe0.66Mn1.33SiO3 and FeMnSiO3. 

The oxygen release for the materials sintered at 1200°C is shown in Figure 11. In this case the 

oxygen concentration is plotted as a function of time to show that the oxygen release was not 

constant at the highest temperature. A possible explanation for this behaviour could be that the 

residence time in the air reactor was insufficient for full reoxidation in the air reactor at this 

temperature. This is not unexpected since the oxygen equilibrium partial pressure increases with 

temperature which reduces the driving force for oxidation. However, the decrease in oxygen 

release was reversible and the same concentration could be reached again after full oxidation in 

air. These materials released higher concentrations of oxygen than the materials sintered at 

1100°C in the temperature interval investigated. 



21 

 

 

Figure 11. Measured oxygen concentration for each investigated temperature as a function of 

time during operation with F22M44S33, F22M55S22 and F22M66S11. 

The fuel conversion during operation with natural gas for the iron-manganese-silica combined 

oxides is shown in Figure 12 and Figure 13. The figures show the calculated CO2 yield as a 

function of fuel reactor temperature and the fuel reactor solids inventory used during each 

experiment. Fe0.66Mn1.33SiO3 was the only material which fully converted the fuel even though 

this material was operated with one of the lowest solids inventories. In general the materials with 

the higher fractions of manganese performed better during fuel operation. 

 

Figure 12. CO2 yield as a function of fuel reactor temperature during natural gas operation with 

a fuel power of 220 W for Fe0.66Mn1.33SiO3 and FeMnSiO3. 
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Figure 13. CO2 yield as a function of fuel reactor temperature during natural gas operation with 

a fuel power of 220-290 W for F22M44S33, F22M55S22 and F22M66S11. 

The same trend could be seen when the oxygen carrier materials were operated with syngas as 

fuel. During operation with Fe0.66Mn1.33SiO3 and F22M66S11 the CO2 yield was above 99% at 

temperatures above 800°C. The fuel conversion increased with temperature for all the 

investigated materials. 

The operation with each material was continued until the solids circulation failed. This was 

caused by material attrition for all the iron-manganese-silica materials. The operational time with 

fuel addition can be used as a qualitative measure for the mechanical stability of the particles. 

The possible fuel operation time and the measured attrition indices are summarised in Table 3. 

The materials with a lower attrition index could be operated for a longer time with fuel addition. 

Table 3. The possible operational time with fuel addition and the measured attrition index for the 

combined iron-manganese-silica oxygen carries. 

Material Operational time with fuel (h) Attrition index (wt%/h) 

Fe0.66Mn1.33SiO3 8.2 32.3 

FeMnSiO3 16.1 1.2 

F22M44S33 9.9 19.3 

F22M55S22 10.8 16.3 

F22M66S11 14.1 4.6 
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3.4. Operation with Manganese-Silica Combined Oxides (Paper IV) 

The concentration of oxygen released during fluidisation in inert atmosphere with MnSiTi and 

MnSi is shown in Figure 14. In this case there was a larger difference in oxygen release between 

the materials than between the temperature levels in contrast to the iron-manganese-silica 

materials. The oxygen release is shown against time as the concentration continuously decreased 

at the higher temperature levels. This behaviour was most distinct for MnSiTi and this is in this 

case believed to be a result of the high density of this material. The oxygen release experiments 

were carried out with a lower air flow than the fuel operation and this has likely resulted in too 

low circulation for the heavier titania containing material. This was confirmed during later 

operation when the oxygen release was studied during a higher air flow, which gave a more 

constant released oxygen concentration. In general these materials released much lower 

concentrations of oxygen than the iron-manganese-silica materials did. 

 

Figure 14. Released oxygen concentration for MnSiTi and MnSi during periods with constant 

temperature. 

Even though MnSiTi released much higher concentration of oxygen than MnSi did, MnSi had a 

much higher fuel conversion both during operation with syngas and with natural gas. The CO2 

yield as a function of fuel reactor temperature during syngas combustion is shown in Figure 15. 

Full fuel conversion was reached at 950°C with MnSi even though the solids inventory in the fuel 

reactor was as low as 142 kg/MW. The fuel conversion increased with temperature for both 

materials. 
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Figure 15. CO2 yield as function of fuel reactor temperature during combustion of syngas with 

MnSiTi and MnSi. Each data point represents an average value during a period with constant 

temperature. 

The same behaviour was observed during operation with natural gas as fuel; the fuel conversion 

increased with temperature for both materials and reached 100% with MnSi at 950°C. Figure 16 

shows the CO2 yield as a function of fuel reactor temperature during the operation with natural 

gas. The fuel conversion was much lower for natural gas than for syngas except at high 

temperature with MnSi where the results were comparable to the syngas operation. 

 

Figure 16. CO2 yield as function of fuel reactor temperature during combustion of natural gas 

with MnSiTi and MnSi. Each data point represents an average value during a period with 

constant temperature. 
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The operation with MnSi had to be aborted after only seven hours with fuel addition. The reason 

was a high attrition rate and finally the circulation was disrupted by a too high fraction of very 

fine particles. Most of the particles were elutriated from the system and ended up in the filters, 

but even the material left in the reactor system was not possible to fluidise due to a high fraction 

of fines. 

MnSiTi was operated for 24 h with fuel addition before the circulation was disrupted. It is not 

entirely clear why the operation encountered problems at this time. When the reactor system was 

opened, still almost 90% of the added mass remained in the system and did not contain any 

significant amount of fines. From this observation it is clear that the attrition rate was much lower 

than for MnSi. These observations correspond well with the measured attrition indices of the 

fresh materials. 
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4. Discussion 

 

The materials investigated have shown very promising results and it is motivated to further 

investigate manganese combined oxides as oxygen carriers. Calcium manganite has proven to 

work very well in operation with gaseous fuels, but it is uncertain how this material would 

perform in long-term operation with sulphur containing fuels. Calcium manganites may be 

deactivated by the sulphur present in most solid fuels. [40] The formation and decomposition 

of solid sulphur compounds in conditions varying between oxidising and reducing are 

difficult to predict. Operational experience with solid fuels indicates that sulphur compounds 

are formed but the results are not conclusive. [41] However, it would need to be investigated 

more before calcium manganites are further developed for sulphur containing solid fuels. 

The materials aiming for operation with solids fuels examined in this study, i.e. the materials 

based on manganese combined with iron and silica, show great promise, but need to be 

further improved before being investigated in a larger scale. Especially the combination of 

high reactivity with fuel and good mechanical stability is highly desirable. From the current 

investigation, it is quite clear that the mechanical stability can be improved.  For example, an 

addition of a small amount of titania to an oxygen carrier of manganese and silica showed 

very positive effects on mechanical stability. Also the production process could likely be 

optimised to improve performance. Sintering temperature and time, milling method and raw 

powder particle size are some parameters which could be adjusted. 

Oxygen carriers operated with solid fuels would also need to be rather cheap as it is presumed 

that the lifetime will be shortened due to fuel impurities and losses in separation of ash and 

oxygen carrier. At present it is not clear whether the added cost of manufacturing materials 

will be compensated for by longer lifetime and better performance. Therefore it is also 

relevant to investigate naturally occurring materials such as manganese ores. Iron and silica 

are common constituents of manganese ores, which also means that they may be similar to 

the synthesised oxygen carriers investigated in this study, so the results from this study are 

also relevant for a better understanding of the behaviour of manganese ore in chemical-

looping combustion. 
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5. Conclusions 

 

Manganese combined oxides have been shown to have interesting properties for chemical-

looping with oxygen uncoupling (CLOU).  At the start of this work only a limited number of 

experiments had been performed with these types of materials in continuous operation.  In this 

work, eight oxygen carrier materials consisting of manganese combined oxides have been 

examined as oxygen carriers; seven materials in a 300 W unit and one material in a 10 kW unit. 

All materials investigated have been shown to work and all materials are able to release oxygen, 

although several materials showed poor mechanical stability. The main conclusions to draw from 

these experiments are: 

 The manganese perovskite material works very well in continuous operation with a low 

rate of attrition. The material is able to fully convert the fuel at relevant temperature 

levels. 
 

 Combined oxides of iron, manganese and silica showed good performance in operation. It 

is possible to reach full conversion of the fuel and the investigated materials with the 

highest content of manganese had the highest fuel conversion. However, the mechanical 

stability of the particles needs to be improved. 
 

 Combined oxides of manganese and silica also showed good performance. It is possible to 

reach full fuel conversion and it is possible to produce particles with significantly 

improved mechanical stability by adding titanium to the material. The addition of titania, 

however, lowered the gas conversion. The possibility to get good mechanical stability 

without compromising with the reactivity of the material needs to be further investigated. 
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