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On the Trade-off Between Accuracy and Delay in
Cooperative UWB Localization:

Performance Bounds and Scaling Laws
Gabriel E. Garcia, Student Member, IEEE, L. Srikar Muppirisetty, Elad M. Schiller, Member, IEEE

and Henk Wymeersch, Member, IEEE

Abstract—Ultra-wide bandwidth (UWB) systems allow for
accurate positioning in environments where global navigation
satellite systems may fail, especially when complemented with
cooperative processing. While cooperative UWB has led to
centimeter-level accuracies, the communication overhead is often
neglected. We quantify how accuracy and delay trade off in
a wide variety of operation conditions. We also derive the
asymptotic scaling of accuracy and delay, indicating that in some
conditions, standard cooperation offers the worst possible trade-
off. Both avenues lead to the same conclusion: indiscriminately
targeting increased accuracy incurs a significant delay penalty.
Simple countermeasures can be taken to reduce this penalty and
obtain a meaningful accuracy/delay trade-off.

Index Terms—Ultra-wideband positioning, S-TDMA, MAC
delay, navigation, positioning

I. INTRODUCTION

POSITION information is a necessary part of today’s
location-aware applications [3], including inventory track-

ing in warehouses [4], habitat [5] and health monitoring [6].
Even though Global Navigation Satellite Systems (GNSSs)
can help to provide position information in many situations,
they may not be viable in weak signal environments such as
urban canyons, or indoors [7]. In consequence, there exists
an ongoing need for accurate positioning in scenarios where
GNSS-only implementations are not feasible.

Ultra-wide bandwidth (UWB) ranging and communication
has been shown to be a promising technology to tackle the
positioning problem in GPS-challenged scenarios. This pulse-
based technology [8] offers a range of characteristics to avail
of, both in terms of communication and localization. UWB
communication advantages include robustness against inter-
ference and mitigation of small-scale fading [9]. Moreover,
considering a two-way time of-arrival (TW-TOA) ranging pro-
cedure, UWB enables accurate and reliable ranging, making
it convenient for localization and navigation purposes [10],
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[11]. Improving positioning accuracy has gathered a significant
amount of attention in the research community. The general
conclusion is that traditional methods, such as enhanced rang-
ing [7], the use of more anchors, higher transmission powers
[12], and cooperation among nodes [13]–[17], all improve the
positioning accuracy.

In practice, performance gains in terms of accuracy come
at a cost in delay, due to the channel access required in the
medium access control (MAC) layer. This cost, which was
neglected in [7], [12]–[17], has been analyzed in [18], [19],
for cooperative positioning and target tracking, respectively,
though based solely on computer simulations. Moreover, the
IEEE 802.11.b MAC considered in [18] leads to excessively
pessimistic delays. Dedicated MAC protocols were discussed
in [20]–[24]: a decentralized self-stabilizing MAC protocol
suitable for cooperative UWB navigation in multi-hop net-
works was proposed in [20], while in [21] and [22], a dis-
tributed and decentralized scheduling for cooperative localiza-
tion was explored. A MAC design for cooperative localization
networks was investigated in [23], focusing exclusively on
the analysis and design of the MAC protocol. Finally, [24]
proposed enhancements to the IEEE 802.15.4a standard using
a time division multiple access (TDMA) scheme for networks
with complete communication graphs.

In this paper, we tackle the trade-off between accuracy and
delay through performance bounds. First, we derive lower
bounds on UWB positioning accuracy in terms of the position
error bound (PEB) [12] and on the required MAC delay.
We also evaluate two methods to reduce the delay: selective
ranging [25] and eavesdropping [15]. Finally, we derive scaling
laws for the PEB and MAC delay for several scenarios. Our
specific contributions are as follows:
• A derivation of the PEB and minimum MAC delay

for noncooperative and cooperative networks with selec-
tive ranging and eavesdropping, assuming spatial reuse
TDMA (STDMA) and two-way ranging as an extension
to [1], [2], where eavesdropping was only considered for
noncooperative networks;

• Scaling laws on the positioning accuracy and minimum
MAC delay for dense networks, for several distinct op-
erating conditions; and

• The introduction of a delay/accuracy trade-off parameter,
which can uniquely quantify the trade-off between PEB
and MAC delay as a function of the agent and anchor
density.
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Figure 1. Two-dimensional graphic representation of the TW-TOA ranging
transaction between nodes i and j, while node k performs an eavesdropping
measurement.

The remainder of the paper is structured as follows. Section
II presents the measurement and network models for UWB
positioning. In Section III, we review the derivation of the
lower bound on positioning accuracy and minimum MAC
delay. Then, in Section IV we derive the scaling laws for the
positioning accuracy and the MAC delay. Finally, numerical
results are given in Section V, followed by the conclusions in
Section VI.

II. SYSTEM MODEL

A. UWB Positioning

We consider a wireless network consisting of M anchor
nodes (collected in the set Sanchors) with known positions and
N agent nodes (collected in the set Sagents) with unknown
time-varying positions. The agents move in discrete time slots
of duration T , and we focus on a specific time slot, at which
the position of node i is denoted by xi = [xi yi]

T, with
an a priori distribution p(xi). Before moving on to the next
time slot, the agent corrects its distribution to an a posteriori
distribution p(xi|zi), where zi represents the available mea-
surements. The time slot duration T is lower bounded by the
measurement time Tmeas, required by the agents to gather all
the UWB measurements. We aim to quantify how traditional
methods to improve accuracy, such as adding more anchors
or agents, increasing the transmission power by means of
the communication range, and the employment of cooperation
among the agents affect the position accuracy (see Section
III) and Tmeas (see Section III.C). Note that T also comprises
other components, such as a computation time and possibly a
data exchange time. Since these operations may be performed
with an alternative radio technology, these times are not
strictly UWB-related, and are thus not included in our study.
Moreover, dedicated methods to reduce the delay can also be
derived for those operations [26], [27].

B. Measurement Models

We consider two types of UWB measurements: two-
way time-of-arrival (TW-TOA) and eavesdropping, shown in
Fig. 1. In a TW-TOA transaction, agent i sends a request to
node j, which responds back with an acknowledgment. The
set of neighbors of node i is denoted by Ni = {j 6= i : i and
j can communicate}. When j ∈ Sagents ∪ Sanchors, we say
that the network is cooperative, while when j is constrained to

belong to Sanchors, we say that the network is noncooperative.
In either case, both nodes i and j estimate the TOA for the
request and acknowledgment, respectively. Agent i employs
the round trip delay between itself and node j to estimate
their distance. The TW-TOA measurement between agent i
and node j is given by [15]:

zij = dij +
cTproc

2︸ ︷︷ ︸
=µij

+
nij
2

+
nji
2
, (1)

where dij = ‖xi − xj‖, nij is the TOA error of the request
from node i to node j and nji is the TOA error from the
acknowledgment from node j to node i, c is the speed of
light, and Tproc is a known processing time. The TOA er-
rors are modeled as independent zero-mean Gaussian random
variables: nij ∼ N (0, σ2

ij) and nji ∼ N (0, σ2
ji). For the

eavesdropping measurements, any node k ∈ Ni ∩ Nj is
able to measure the TOA of the signals exchanged between
nodes i and j. We obtain the eavesdropping measurement by
subtracting those two TW-TOA measurements [15]:

zkij = dij + djk − dik + cTproc︸ ︷︷ ︸
=µk

ij

+nij + njk − nik. (2)

It is important to note that there exists a common noise term
between (1) and (2), since one of the TOA measurements
collected by node k depends on the TOA measurement of
node j.

Under line-of-sight conditions, the ranging error variance
between two nodes at a distance d apart can be modeled as in
[13]:

σ2(d) =


σ2 d ≤ Rhw

σ2f(d) Rhw < d ≤ Rmax

+∞ d > Rmax,

(3)

where Rhw is the range for which the variance is dominated by
the hardware (e.g., ADC, filters), Rmax is the maximum com-
munication range, and f(d) is a non-decreasing function with
f(Rhw) = 1, capturing the degradation of the signal-to-noise
ratio or the ranging information intensity [12]. Based on our
off-the-shelf UWB hardware [28] and previous experiments
[13], Rhw can be around 30 meters, which is sufficient for
many indoor environments. In this paper, we limit ourselves
to this range, i.e., d ∈ (0, Rhw].

C. Network Model

We assume that nodes i and j can communicate with
probability Pij = exp

(
− ‖ xi − xj ‖2 /(2R2)

)
, where R is

the nominal communication range in meters, as in [29]. Node
i can perform UWB measurements with any node in Ni. For
increased flexibility, we introduce the set Si ⊆ Ni, which
consists of selected neighbors with which node i performs
TW-TOA ranging.

When two TW-TOA transactions are performed simulta-
neously, they can interfere if a node in one transaction can
receive a packet from a node in the other transaction. As
802.15.4a radios use a common preamble, similar to our off-
the-shelf radios, we do not rely on time hopping to deal
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with interference. Traditional protocols such as ALOHA or
slotted ALOHA [30] have poor efficiency in terms of the
successful number of transactions. Hence, similar to [24], [31],
we consider an STDMA approach in which one TDMA slot
is needed for a TW-TOA transaction, but two transactions
can occur simultaneously if they do not interfere. The total
STDMA delay within one time slot1 depends only on the
network topology in the current time slot. In contrast to [24]
and [31], we do not consider ranging packet aggregation or
other enhancements, as they are hard to justify with real
hardware due to the tight synchronization constraints.

III. LOWER BOUND ON POSITIONING ACCURACY AND
MAC DELAY

In this section, we will derive a generic expression for the
PEB for both TW-TOA and eavesdropping measurements, for
both cooperative and noncooperative networks. We first review
the concepts of Fisher information matrix (FIM), equivalent
Fisher information matrix (EFIM), and PEB. We end with a
short discussion on bounds on the minimum MAC delay.

A. PEB: Basic Concepts

Let x =
[
xT
1 xT

2 · · ·xT
N

]T
be the vector containing the posi-

tions of all agents and x̂ its estimate, based on the observation
z. The FIM is defined as J = −Ex,z

{
∇x∇T

x log p(z,x)
}

for random x, and as J(x) = −Ez

{
∇x∇T

x log p(z|x)
}

for
nonrandom x [32], where ∇x denotes the derivative with
respect to x. We will drop the argument x in the FIM as it
will be clear from the context whether the variable is random
or not. The EFIM of the first agent is defined as follows. Let

J =

[
A B
BT C

]
, (4)

where A ∈ R2×2, B ∈ R2×2(N−1), and C ∈
R2(N−1)×2(N−1), then the EFIM for agent 1 is given by
JE
1 = A−BC−1BT [12] . Using the Schur complement it is

easy to verify that
[
JE
1

]−1
is the top-left 2×2 block diagonal

element of J−1. The EFIM for any agent i can be computed
through a reordering of the agents. A similar definition of the
EFIM holds for random x. Finally, the PEB of the network
is defined as P =

√
tr {J−1} /N, while the PEB of agent i

is defined as Pi =

√
tr
{[

JE
i

]−1}
. From the theory of the

Crámer-Rao lower bound (CRLB) [32], it is well known that,
under suitable technical conditions, P2 ≤ E

{
‖x− x̂‖2

}
, and

P2
i ≤ E

{
‖xi − x̂i‖2

}
, where the expectation should be taken

of the relevant random variables.
Note that the PEB is expressed in meters and that P and

Pi are related through P =
√∑

i P2
i /N .

B. PEB: Derivation

We again collect the positions of all agents in a vector
x and determine the FIM. For mathematical convenience

1Note that we make a distinction of time slots of duration T , which capture
the slow time scale of mobility, and much shorter TDMA slots, in which
multiple ranging transactions are scheduled.

and since we are focusing on a single time slot, we as-
sume that every agent has an a priori distribution p(xi),
modeled as a symmetric Gaussian distribution with mean
mprior,i and variance σ2

prior,i per dimension. Recalling the
definition of the set Si ⊆ Ni, we construct a measurement
vector z for both the noncooperative and cooperative cases
as z = [zij |i ∈ Sagents, j ∈ Si], where zij contains the TW-
TOA estimate between agent i and node j, as well as all
the corresponding eavesdropping measurements at node k,
zij =

[
zij ,

{
zkij
∣∣ k ∈ Ni ∩Nj}].

Due to (1) and (2), z conditioned on x is a Gaussian
random variable with mean µ, constructed from (1) and
(2) in the same way as z, and covariance matrix Σ. As a
result of the independence of the TW-TOA measurements, the
covariance matrix Σ is a block diagonal matrix, with the block
corresponding to zij given by

Cij = E
{
(zij − µij)(zij − µij)

T
}
, (5)

where the entries are given by E
{
(zij − µij)2

}
=(σ2

ij+σ
2
ji)/4,

E
{
(zij − µij)(zkij − µkij)

}
= σ2

ij/2, and

E
{
(zlij − µlij)(zkij − µkij)

}
=

{
σ2
ij + σ2

jk + σ2
ik k = l

σ2
ij k 6= l.

(6)
Note that when there are only TW-TOA measurements, Cij

reverts to the scalar (σ2
ij + σ2

ji)/4. The FIM is now given by
[33]

J = −Ex

{
∇xµ

TΣ−1∇T
xµ
}
+ Jprior, (7)

where Jprior = diag
[
σ2
prior,1, σ

2
prior,1, . . . , σ

2
prior,N , σ

2
prior,N

]−1
.

The entries in the matrix ∇xµ
T can be easily computed since

they are all zero, except for ∂µij/∂xi = [cos(φij) sin(φij)]
T,

∂µkij/∂xi = [cos(φij) − cos(φik) sin(φij) − sin(φik)]
T,

∂µkij/∂xk = [cos(φkj) − cos(φki) sin(φkj) − sin(φki)]
T,

and ∂µkij/∂xj = [cos(φji) + cos(φjk) sin(φji) + sin(φjk)]
T,

where φij represents the angle between node i and node j
with respect to to the horizontal axis (see Fig. 1). The entries
in Σ−1 are also readily computed since Σ is block-diagonal
so Σ−1 is block-diagonal as well (see Appendix A for
additional details). Thus ∇xµ

TΣ−1∇T
xµ in (7) can be

determined efficiently, even for large networks. Finally, the
expectation over x in (7) can be performed through Monte
Carlo integration.

Once the FIM is computed, the EFIM, and the PEB for
individual nodes as well as for the entire network can be
determined numerically.

C. Bounds on Minimum MAC Delay
Each TW-TOA transaction must be scheduled such that

both nodes involved in the transaction are free from primary
and secondary interference. Primary interference refers to a
node not being able to transmit and receive at the same time,
while secondary interference refers to a node not being able
to receive multiple transmissions at the same time. This can
be cast as a coloring problem on a suitable communication
graph [34]. In [1], we have constructed tight lower and
upper bounds on the minimum MAC delay, based on graph-
theoretic arguments, in a complexity that is at most quadratic
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in the number of nodes. Due to space limitations, a detailed
description is omitted here, and the reader is instead referred
to [1], [2].

IV. SCALING LAWS

While the numerical PEB and minimum MAC delay are
useful to analyze particular networks, further insight can be
gleaned from their asymptotic behavior, as the number of
agents and anchors increases. The resulting scaling laws give
fundamental understanding into the benefit and drawbacks of
cooperation in UWB positioning, and simultaneously allow us
to analyze methods to reduce the impact of the MAC delay,
such as eavesdropping.

For reasons of tractability, we focus on dense networks
[14], where every node can range with any other node, and
wherein the area remains fixed and the node density increases
by adding more nodes into the network. Moreover, we assume
the ranging error variance to be constant for all transactions,
as motivated in Section II.B. A general expression for the
FIM under these assumptions is provided in Appendix B,
where for notational and mathematical convenience we assume
that anchors can also initiate TW-TOA procedures with other
nodes. Scaling laws are derived from the EFIM in Appendices
C–H. We recall that the PEB is expressed in meters, while the
minimum MAC delay has a unit of seconds.

A. Operating Conditions

We analyze the scaling behavior of the PEB and minimum
MAC delay for six distinct operating conditions: (i) noncoop-
erative (No), where agents perform TW-TOA with all anchors
in communication range (i.e., Si = Ni∩Sanchors); (ii) cooper-
ative (Co), where agents perform TW-TOA with all nodes in
communication range (i.e., Si = Ni); (iii) noncooperative with
anchors eavesdropping (No-Ea), where agents perform TW-
TOA with all anchors while other anchors are able to perform
eavesdropping measurements; (iv) noncooperative with all
nodes eavesdropping (No-E), where agents perform TW-TOA
with all anchors and all neighboring nodes are allowed to
eavesdrop; (v) cooperative with anchors eavesdropping (Co-
Ea), where agents perform TW-TOA with all nodes in com-
munication range and anchors are able to eavesdrop; and (vi)
cooperative with eavesdropping (Co-E), where agents perform
TW-TOA with all nodes in communication range and all nodes
are able to eavesdrop.

Theorem 1. For a dense network, where measurements are
given by (1)–(2), with a constant TOA variance, the PEB (P),
and the MAC delay (M) for the six operating conditions scale
as listed in Table I.

Proof: See Appendices C–H.
Remarks: As was already noted in [14], in terms of the

asymptotic PEB, agents play the same roles as anchors in
the Co case. This causes the PEB to go down rapidly with
the total number of nodes. However, we see that the MAC
delay scaling also treats anchors as agents, thus causing a
quadratic scaling in terms of the number of agents. This is
the main reason why indiscriminate cooperation is prohibitive

Scenario P ∈ M ∈

No O
(
M−1/2

)
O(MN)

Co O
(
(M +N)−1/2

)
O(MN +N2)

No-Ea O(M−1) O(MN)

No-E O
((

3M2 +MN
)−1/2

)
O(MN +M2)

Co-Ea O
(
(M2 +MN)−1/2

)
O(NM +N2)

Co-E O((M +N)−1) O
(
(M +N)2

)
Table I

SCALING LAWS OF PEB AND MAC DELAY FOR THE 6 OPERATING
CONDITIONS.

in terms of delay. The noncooperative case with only anchors
eavesdropping (No-Ea) shows how the PEB is improved
further, just by letting neighboring anchors listen to the TW-
TOA ranging procedures. The MAC delay scaling is the same
as in the noncooperative scenario, as no additional TDMA
slots are required to enable eavesdropping. Letting not only the
anchors but also the agents eavesdrop (No-E) results in further
enhancements in terms of PEB reduction. There is, however,
an additional penalty in terms of delay, as anchors are allowed
to range with each other, while agents eavesdrop. We clearly
see the asymmetric role of agents and anchors in this scenario.
The Co-Ea case, compared to standard cooperation, yields
additional gains in terms of PEB. Note that in terms of the
MAC delay, since there are no anchor-to-anchor transactions,
but agent-to-agent transactions, the term M2 present in the
No-E case is replaced by N2 in the Co-Ea case. In the last
scenario (Co-E), an order of magnitude reduction in PEB can
be achieved by an order of magnitude increase in the number
of nodes (agent or anchors), and two orders of magnitude
increase in terms of the MAC delay. The role of agents and
anchors is again symmetric.

B. Trade-off Analysis

The scaling laws above depend on the rate at which the
number of agents N increases with respect to the number
of anchors M . To provide a unified view of the trade-off of
the above scenarios, we will model N = κMρ to capture
the growth of the number of agents relative to the number of
anchors, and introduce the notion of the delay/accuracy trade-
off parameter δ(ρ) ∈ R, where ρ is called the relative agent
growth rate and κ > 0 . A similar tradeoff analysis concept
can be found in [35] for a different context.

Definition 2 (Delay/accuracy trade-off parameter). Let N =
κMρ , so that the PEB scales as P ∈ O(fP(M,ρ)), while the
MAC delay scales asM∈ O(fM(M,ρ)). The delay/accuracy
trade-off is determined by

δ(ρ) = − lim
M→+∞

log fP(M,ρ)

log fM(M,ρ)
. (8)

The trade-off parameter can be interpreted as the slope
of the accuracy versus delay line in a log-log scale. Hence,
operating conditions with a larger δ(ρ) will lead to a faster
reduction in PEB as the delay increases than operating condi-
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Figure 2. Delay/accuracy trade-off parameter δ as a function of the agent
growth rate ρ (i.e., N ∝Mρ) for the different operating conditions.

tions with a smaller δ(ρ). In Fig. 2, we visualize the trade-off
parameters for the six operating conditions as a function of
the agent growth rate (note that the value of κ is irrelevant).
Additionally, for the sake of completeness and comparison
purposes, the trade-off analysis for a time-difference-of-arrival
(TDOA) scenario with N agents and M synchronized anchors
is included. For this specific case the MAC delay scales as
MTDOA ∈ O(N) and the PEB as PTDOA ∈ O(1/

√
M),

which can be easily derived from [36, Equation (21)].
We observe that when ρ < 1, so when anchors are added

faster than agents, the best trade-off is achieved for TDOA
followed by the Co-Ea and No-Ea cases. Interestingly, cooper-
ation does not affect the trade-off (for example, No has exactly
the same trade-off as Co), as the gain in PEB is canceled
out by the increase in delay. For ρ > 1, when agents are
added faster than anchors, the situation changes: cooperative
methods exhibit a better trade-off than their non-cooperative
counterparts including TDOA. For very large growth rates,
TDOA, No, and No-Ea, have a δ that tends to zero, meaning
that there is almost no gain in terms of PEB when adding a few
anchors and many agents. Similarly, Co and Co-Ea converge to
δ = 1/4 for large values of ρ, since the few additional anchors
that eavesdrop do not significantly affect the PEB or delay. The
value of δ = 1/4 should be interpreted asM≈ 1/P4, so that
a 50% reduction in PEB leads to a 16-fold increase in MAC
delay. For ρ > 1, the best trade-off is offered by the No-E and
Co-E cases. Interestingly, standard cooperation never offers
the best trade-off.

V. NUMERICAL RESULTS AND DISCUSSION

In this section, we go back to a non-asymptotic regime and
evaluate the PEB and the upper and lower bounds on the MAC
delay for four of the five operating conditions from Section IV.
We analyze the impact of the number of anchors, the number
of agents, the communication range, and cooperation among
nodes. For each of the operating conditions, we also consider
a selective variant where Si can be a strict subset of Ni.

A. Simulation Setup

We consider a 20 m × 20 m square area: anchors are
placed according to a scaled network topology from [13,
Fig. 13] while agents are uniformly distributed in the fixed
area. Based on our experimental results with the P400 UWB
radios [28], we consider a ranging standard deviation2 of 2
cm (irrespective of distance under line-of-sight propagation,
as argued in Section II.B) and TDMA time slot duration of
20 ms. The a priori distributions of the agents’ positions are
Gaussian with unit variance. In addition to the scenarios No,
Co, No-E, Co-E, we also introduce selective ranging, leading
to additional operation conditions: Noncooperative Selective
(No-S) and Noncooperative Eavesdropping Selective (No-E-
S) (where Si ⊆ Ni ∩ Sanchors, such that |Si| ≤ 4), and
Cooperative Selective (Co-S) and Cooperative Eavesdropping
Selective (Co-E-S) (where Si ⊆ Ni, such that |Si| ≤ 4). The
selection of the nodes in Si is implemented using a distributed
greedy algorithm to minimize the local PEB, described in [2].

B. Impact of Number of Anchors

The impact on the localization accuracy and MAC delay for
a complete network graph with 10 agents and an increasing
number of anchors (from 2 to 10) is illustrated in Fig. 3.
The upper and lower bounds for the MAC delay for a clique
network are the same, thus Fig. 3 only depicts the lower
bounds. Each curve in the figure contains 9 markers, each
marker corresponds to the increasing number of anchors M
(2 to 10) from left to right. All scenarios show a decrease in
the PEB when increasing the number of anchors as validated in
previous works. However, the improvement in accuracy comes
with a cost in delay, which is linear in M . From the figure, it is
also clear that cooperation (Co) exhibits a poor delay/accuracy
tradeoff. For example, consider a network with 5 anchors, for
the No case the PEB is ≈ 1.3 cm, while for Co the PEB is
≈ 0.7 cm. However, the accuracy comes with a cost in delay
to the amount of ≈ 1 s for No and ≈ 3.3 s for Co.

For the eavesdropping cases (No-E and Co-E), we observe
an improvement with respect to the non-eavesdropping cases
(No and Co) without incurring any extra delay since the
eavesdropping measurements do not require any scheduling.
Hence all corresponding curves shift downward. We can
observe that the results are in accordance with the scaling
laws, where the reduction of the PEB and the increase in MAC
delay are dependent on the number of anchors, with more PEB
reduction for the eavesdropping cases while maintaining the
same MAC delay similarly to the non-eavesdropping cases.

When selective ranging is employed, we see that for No-
S the PEB no longer improves for M ≥ 4 and the MAC
delay stays constant just below 1 s. Thus, Fig. 3 only shows
3 distinct markers for No-S. The Co-S case corresponds to
closely placed markers in Fig. 3, since the agents can always
find enough neighbors (agents or anchors) to cooperate with.
The No-E-S and Co-E-S cases result in a reduction of the PEB
without any additional MAC delay. The advantage of adding
anchors is clearer for Co-E-S than for Co-S.

2The results we will present can be adapted to any other ranging standard
deviation through proper scaling of the PEB.
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Minimum MAC delay [s]

P
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B
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Figure 3. MAC delay and PEB lower bounds for a clique network with 10
agents and increasing number of anchors (2 to 10). Each curve consists of 9
markers, each marker representing the increase in the number of anchors M
from left to right, except for the selective cases.

C. Impact of Number of Agents

Fig. 4 depicts the impact on the localization accuracy and
the MAC delay for a complete network graph with 3 anchors
and an increasing number of agents (from 1 to 20). Each curve
in the figure consists of 20 markers, each one corresponding to
the increasing number of agents N (1 to 20) from left to right.
Note that the No, No-S, and Co-S cases coincide and therefore
are grouped into one single label: Group 1. Similarly, the No-
E, No-E-S, and Co-E-S are grouped into the label: Group 2.
Once again, the lower and upper bounds on the MAC delay
are the same, and only the lower bound is presented in Fig. 4.

The addition of agents to the network has no impact in the
PEB for Group 1, but increases the MAC delay since more
agent-to-anchor TW-TOA procedures need to be scheduled.
For Group 2, adding agents to the network translates to a
rapid decrease in the PEB, since for this particular group
adding agents means more information, as agents are able to
eavesdrop TW-TOA ranging transactions between agents and
anchors. For the Co case, adding more agents decreases the
PEB as compared with Group 1, since more agent-to-agent
TW-TOA information is available in the network. However,
cooperation comes with a cost in delay which grows quadratic
in N . The Co PEB can be reduced without any additional
MAC delay by eavesdropping, leading to the Co-E curve.

We conclude that full cooperation with many agents is not
feasible when there are tight delay constraints, for example
in the case of highly dynamic agents. Hence, theoretical
cooperative gains cannot be exploited. We can observe the
importance of the number of agents especially for the coop-
erative cases, with the corresponding cost in delay and PEB
reduction consistent with the scaling laws.

D. Impact of Communication Range

For the analysis of the communication range variable we
consider a network consisting of 20 agents and 13 anchors, and
an increasing communication range R from 1 m to 30 m. Each

Minimum MAC delay [s]

P
E
B

[m
]

Group 1

Co

Group 2

Co-E

0 0.2 0.4 0.6 0.8

0 1 2 3 4 5 6 7 8 9 10

10−2

10−3

10−2

10−1

Figure 4. MAC delay and PEB lower bounds for a clique network with 3
anchors and increasing number of agents (1 to 20). Each curve consists of 20
markers, each marker representing the increase in the number of agents N
from left to right. Group 1 consists the scenarios: No, No-S, and Co-S. Group
2 contains the cases: No-E, No-E-S, and Co-E-S.

marker in the curves represents the nominal communication
range R used in the communication model (see Section II.C)
increasing from left to right, i.e., the leftmost and rightmost
markers of each curve represent R = 1 m, and R = 30 m,
respectively. Figs. 5 and 6 show the influence in the PEB
and MAC delay trade-off for the noncooperative cases (No,
No-S, No-E, No-E-S) and the cooperative cases (Co, Co-S,
Co-E, and Co-E-S), respectively. For low values of R, the
lower and upper bounds on the minimum MAC delay do not
coincide, though the bounds are relatively tight for all R under
consideration.

In Fig. 5, as expected, increasing the communication range
decreases the PEB since more agent-to-anchor transactions are
injected into the network, though once again with a cost in
delay. For the No-S case, the curve remains constant in both
accuracy and delay once agents are able to communicate with
at least four anchors (this happens when R is around 6 m). In
contrast, even though No-E-S remains constant once agents can
communicate with at least four nodes, increasing range allows
for more nodes in the network to perform eavesdropping,
hence the PEB improvement for this specific case results in
vertical drop on PEB. This clearly shows that using high-power
anchors is only meaningful with a selective ranging strategy.
The No-E scenario outperforms No, once again with a cost in
delay.

In Fig. 6 we observe that cooperative selective cases show
a similar behavior as the noncooperative counterpart, though
with more extreme values in terms of PEB and minimum MAC
delay. The PEB decreases with increasing R while the MAC
delay grows fast reaching up to N ×M × 20ms ≈ 5 s, and
N×(M+(N−1))×20ms ≈ 13 s for No and Co, respectively.
Evidently, the latter shows that increasing R for a marginal
gain in terms of accuracy can lead to large delays, especially
when cooperation is implemented indiscriminately.
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Minimum MAC delay [s]
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E
B
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Figure 5. MAC delay and PEB lower bounds for a partially noncooperative
connected network with 20 anchors and 13 agents. Each curve consists of 30
markers, each marker representing the increase in the nominal communication
range R from left to right (1 to 30 m).

VI. CONCLUSIONS

We have investigated the interplay between UWB position-
ing accuracy and MAC delay. We presented lower bounds on
the position accuracy and the MAC delay considering spatial
time division multiple access for arbitrary finite networks.
We have characterized the behavior for dense-location aware
networks for the noncooperative and cooperative cases by
means of the relevant scaling laws. We found that traditional
methods to improve accuracy, such as increasing the number
of anchors or the communication range, or the implementation
of cooperation among nodes comes at a cost in terms of
MAC delay. The latter has a direct impact in the update rate
when dealing with dynamic networks with respect to mobility.
Selective ranging and eavesdropping have been evaluated as
possible methods to reduce the MAC delay with reasonable
position accuracy. Noncooperative eavesdropping shows to
outperform cooperative networks in terms of accuracy with
reasonable delays. Finally, in terms of scaling, we found
that, under certain conditions, standard cooperative positioning
exhibits the worst possible trade-off among the considered
strategies.

Possible avenues of future research include the extension
of the scaling laws to non-complete networks, to different
MAC protocols and measurement aggregation techniques, dif-
ferences in measurement variance dependent on distance, and
to network problems outside of positioning.

APPENDIX A
STRUCTURE OF THE INVERSE COVARIANCE MATRIX

We consider a network with agents and anchors and focus
on a particular agent i with a neighbor j and a collection of
U−1 eavesdroppers k ∈ Ni∩Nj . The resulting measurement
is zij , as defined in Section II.B. The corresponding covariance

Minimum MAC delay [s]

P
E
B
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Figure 6. MAC delay and PEB lower bounds for a partially cooperative
connected network with 20 anchors and 13 agents. Each curve consists of 30
markers, each marker representing the increase in the nominal communication
range R from left to right (1 to 30 m).

matrix Cij for constant ranging error variance is given by

Cij = σ2


1/2 1/2 1/2 · · · 1/2
1/2 3 1 · · · 1
1/2 1 3 · · · 1

...
...

...
. . .

...
1/2 1 1 · · · 3

 . (9)

It is readily verified that the inverse is given by

C−1ij =
1

σ2


α γ γ · · · γ
γ β γ · · · γ
γ γ β · · · γ
...

...
...

. . .
...

γ γ γ · · · β

 , (10)

where

α = 2

(
1 +

U − 1

U + 3

)
(11)

β =
U + 2

2(U + 3)
; γ =

−2
(U + 3)

(12)

η =
−1

2(U + 3)
. (13)

In the particular case where all anchors (except anchor j)
eavesdrop, U =M , and in the particular case where all nodes
(except node j) eavesdrop, U =M+N−1. In the special case
when there are no eavesdroppers, C−1ij reverts to the scalar
value 2 (i.e., β = γ = η = 0, and α = 2).

APPENDIX B
GENERAL FORM OF THE CLASSICAL FIM

In this section we introduce the most generalized form of
the classical FIM, denoted here by J (not to be confused with
the Bayesian FIM in (7)). For convenience of the notation, we
will assume that anchors can also initiate TW-TOA procedures
with other nodes. We also omit the ranging variance σ2, with
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the understanding that the FIM is to be multiplied by 1/σ2.
Let SR be the set of all nodes with which agents can range
and SE the set of nodes that perform eavesdropping. We
introduce [γ∗, β∗, η∗], which are set to zero when only anchors
eavesdrop, and set to [γ, β, η] when both anchors and agents
eavesdrop. When no-one eavesdrops, [γ∗, β∗, η∗] = [γ, β, η] =
[0, 0, 0]. The diagonal block-elements of the FIM are given by
[J]kk

= 2α
∑

j∈SR\{k}

[(
∂µkj
∂xk

)(
∂µkj
∂xk

)T
]

(14a)

+ 4γ
∑

j∈SR\{k}

∑
n∈SE\{j,k}

[(
∂µkj
∂xk

)(
∂µnkj
∂xk

)T
]

(14b)

+ 2η
∑

j∈SR\{k}

∑
n∈SE\{j,k}

∑
m∈SE\{j,k,n}

[(
∂µmkj
∂xk

)(
∂µnkj
∂xk

)T
]

(14c)

+ 2β∗
∑

j∈SR\{k}

∑
m∈SR\{j,k}

(∂µkmj
∂xk

)(
∂µkmj
∂xk

)T
 (14d)

+ 2β
∑

j∈SR\{k}

∑
n∈SE\{j,k}

[(
∂µnkj
∂xk

)(
∂µnkj
∂xk

)T
]
. (14e)

Each term has a corresponding interpretation: for example
(14b) corresponds to the information regarding the position of
agent k, due to correlation between the TW-TOA measurement
from the ranging transaction initiated by agent k to node j,
and the eavesdropping measurement by node n with respect
to that same ranging transaction.

For k 6= l, we have even more combinations:
[J]kl

= 2α

(
∂µkl
∂xk

)(
∂µkl
∂xl

)T

(15a)

+ 2γ
∑
n∈SE

(
∂µkl
∂xk

)(
∂µnkl
∂xl

)T

+

(
∂µnkl
∂xk

)(
∂µkl
∂xl

)T

(15b)

+ γ∗
∑
n∈SR

(
∂µkn
∂xk

)(
∂µlkn
∂xl

)T

+

(
∂µkln
∂xk

)(
∂µln
∂xl

)T

(15c)

+ β
∑
m∈SE

(
∂µmkl
∂xk

)(
∂µmkl
∂xl

)T

+

(
∂µmlk
∂xk

)(
∂µmlk
∂xl

)T

(15d)

+ β∗
∑
n∈SR

(
∂µlkn
∂xk

)(
∂µlkn
∂xl

)T

+

(
∂µkln
∂xk

)(
∂µkln
∂xl

)T

(15e)

+ β∗
∑
n∈SR

(
∂µlnk
∂xk

)(
∂µlnk
∂xl

)T

+

(
∂µknl
∂xk

)(
∂µknl
∂xl

)T

(15f)

+ η
∑
m∈SE

∑
n∈SE

(
∂µnkl
∂xk

)(
∂µmkl
∂xl

)T

+

(
∂µnlk
∂xk

)(
∂µmlk
∂xl

)T

(15g)

Term Scaling

(14a) in [J]kk 2αNRI2

(14b) in [J]kk 2γNENRI2

(14c) in [J]kk ηNRN
2
EI2

(14d) in [J]kk 2β∗N2
RI2

(14e) in [J]kk 2βNRNEI2

(15a) in [J]kl −2αA(φkl)

(15b) in [J]kl −4γNEA(φkl)

(15c), (15h), (15i), (15j) in [J]kl 0

(15d) in [J]kl −2βNEA(φkl)

(15d) in [J]kl −2β∗NRA(φkl)

(15f) in [J]kl −2β∗NRA(φkl)

(15g) in [J]kl −2ηN2
EA(φkl)

Table II
SCALING OF THE DIFFERENT TERMS IN [J]kk AND [J]kl .

+ η∗
∑
m∈SE

∑
n∈SR

(
∂µmkn
∂xk

)(
∂µlkn
∂xl

)T

+

(
∂µmnk
∂xk

)(
∂µlnk
∂xl

)T

(15h)

+ η∗
∑
m∈SE

∑
n∈SR

(
∂µkln
∂xk

)(
∂µmln
∂xl

)T

+

(
∂µknl
∂xk

)(
∂µmnl
∂xl

)T

(15i)

+ η∗
∑
n∈SR

∑
m∈SR

(
∂µknm
∂xk

)(
∂µlnm
∂xl

)T

. (15j)

Denoting the cardinality of SR (resp. SE) by NR
(resp. NE), and assuming the nodes are dropped uniformly
around agents k and l, we can use the expression for the partial
derivatives from Section III.B to determine the scaling of each
term in (14) and (15). The scaling of each term is show in
Table II, where I2 stands for the 2 × 2 identity matrix, and
where

A(φkl) =

[
cos2 φkl cosφkl sinφkl

sinφkl cosφkl sin2 φkl

]
. (16)

We recall that α, γ, η, β∗, β take on values that depend on NE
and NR, depending on the specific scenario.

APPENDIX C
PROOF OF THE NO CASE

A. PEB

Consider adding M anchors and N agents uniformly dis-
tributed over a fixed two-dimensional area. Moreover, no prior
information is available for the agents’ positions. We will de-
termine the scaling of the equivalent Fisher information matrix
(EFIM) JE

No for agent k. Since the TW-TOA transactions are
mutually independent, the FIM is a block diagonal matrix
of the form JNo = diag[JNo,k,JNo,2, . . . ,JNo,N ]. Given the
definition of the EFIM from Section III.A, for this specific case
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we have that JE
No,k = JNo,k. From the generalized expression

in (14), we can construct JE
No by considering only the term

(14a) , with SR = Sanchors, NR =M . Therefore, from Table
II the EFIM scales as JE

No,k = JNo,k → 2αNRI2 = 4MI2,
where the notation A → B depicts the scaling of expression
A in the asymptotic regime (large number of nodes) deriving
in expression B . Finally, following the definition of the
PEB, we find that for large M , PNo →

√
1/(4M). Hence,

PNo ∈ O
(
1/
√
M
)
.

B. Minimum MAC Delay

For a clique network with N agents, each agent must range
with M anchors. Each transaction requires a separate TDMA
time slot. Thus, all agent-to-anchor links need to be scheduled
within the network, therefore the minimum MAC delay is
exactly MNo ∈ O(MN).

APPENDIX D
PROOF OF THE CO CASE

A. PEB

When the N agents cooperate, the FIM JCo comprises
2 × 2 block matrices. From the generalized expressions in
equations (14) and (15), the diagonal blocks (k = l) [JCo]kk
are computed by considering only the term (14a) while the
non-diagonal blocks (k 6= l) consist of the term (15a) with
SR = Sanchors ∪ Sagents, with α = 2. Hence, following Table
II, since NR =M +N − 1 and α = 2,

[JCo]kl →

{
4(M +N)I2 k = l

−4A(φkl) k 6= l.
(17)

The EFIM itself is hard to compute, so we will follow the
procedure from [14] and determine matrices JL

Co and JU
Co that

satisfy JL
Co � JCo � JU

Co, based on which we can determine
an EFIM in closed form. Without loss of generality, we focus
on agent k = 1 and analyze the corresponding EFIM lower
and upper bounds.

EFIM Lower Bound: We construct JL
Co from JCo by

removing all cooperation information except where agent 1 is
involved in a ranging transaction, so that the diagonal elements
of the FIM are given by

[
JL
Co

]
11

= 4(M + N)I2 and, for
k 6= 1,

[
JL
Co

]
kk

= 4(M +1)I2. The off-diagonal elements are

[
JL
Co

]
kl

=


−4A(φkl) k = 1, l > 1

−4A(φkl) l = 1, k > 1

0 k 6= l, k, l > 1.

(18)

Since information is removed, it follows immediately that
JL
Co � JCo. Using Schur’s complement, the lower bound on

the EFIM of agent 1 is now given by

JL,E
Co,1 =

[
JL
Co

]
11
−

∑
k∈Sagents\{1}

[
JL
Co

]
1k

[
JL
Co

]−1
kk

[
JL
Co

]T
1k
.

(19)
The second term scales as∑

k∈Sagents\{1}

[
JL
Co

]
1k

[
JL
Co

]−1
kk

[
JL
Co

]T
1k
→ N

M
I2. (20)

Hence, for sufficiently large M and N , JL,E
Co,1 → 4(M+N)I2.

EFIM Upper Bound: The EFIM upper bound JU
Co is con-

structed from JCo by setting the non-diagonal block elements
equal to zero, i.e.,

[
JL
Co

]
kl

= 0 for k 6= l. The EFIM for agent
1 is now JU,E

Co,1 = [JCo]11 = 4(M +N)I2.
Final Scaling: Since the EFIM scales at least as fast as

4(M+N)I2 and at most as fast as 4(M+N)I2, we conclude
that JE

Co,1 → 4(M +N)I2. According to the definition of the
PEB, we finally find that PCo → 1/

√
4(M +N), and thus

PCo ∈ O
(
1/
√
M +N

)
.

B. Minimum MAC Delay
For a cooperative clique network each of the N agents per-

forms a TW-TOA transaction with every one of the remaining
N+M−1 nodes. Each transaction requires a different TDMA
slot, so the total MAC delay scales asMCo ∈ O(NM+N2).

APPENDIX E
PROOF OF THE NO-EA CASE

A. PEB
Consider the addition of M anchors and N agents uni-

formly distributed over a fixed two-dimensional area. The FIM
JNo−Ea in the case where nodes range only with anchors
and only anchors eavesdrop is a block-diagonal matrix of
the form JNo−Ea = diag[JNo−Ea,1, . . . ,JNo−Ea,N ]. Given
the definition of the EFIM from Section III.A, for this case
we have that JE

No−Ea,k = JNo−Ea,k. From the generalized
expression (14) we can construct JE

No−Ea,k by considering the
summation of the terms (14a), (14b), (14c), and (14e), with
U =M . Moreover, SR = SE = Sanchors, so NR = NE =M .
Substituting the appropriate values of α, β, γ, and η from
(11)–(13), we easily find that the dominant term in JNo−Ea,k

scales as JNo−Ea,k → M2/2I2. From the definition of the
PEB it follows thatPNo−Ea →

√
2/M2, and thus PNo−Ea ∈

O (1/M).
B. Minimum MAC Delay

Since the eavesdropping measurements require no additional
TDMA slots, the MAC delay scales exactly as MNo−Ea ∈
O(MN).

APPENDIX F
PROOF OF THE NO-E CASE

A. PEB
Consider M anchors and N agents uniformly distributed

over a fixed two-dimensional area where nodes range only
with anchors, but all nodes can eavesdrop. The FIM JNo−E
consists of 2 × 2 block matrices, with [JNo−E]kk given by
all terms in (14) and [JNo−E]kl given by (15c), (15d), (15f),
and (15h)–(15j) from (15). Now, SR = Sanchors and SE =
Sanchors ∪ Sagents, so we use U = M +N − 1 to determine
the constants in (11)–(13). Hence

[JNo−E]kl →

{
3
2M

2I2 +
1
2MNI2 k = l

−2MA(φkl) k 6= l.
(21)

Similarly to Appendix D, exact computation of the EFIM is
difficult, so we will construct upper and lower bounds on the
FIM JL

No−E � JNo−E � JU
No−E. Without loss of generality,

we focus on agent k = 1 to analyze the corresponding EFIM
lower and upper bounds.
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EFIM Lower Bound: The FIM lower bound JL
No−E can be

constructed from JNo−E by only allowing eavesdropping on
ranging transactions involving agent 1 and only letting agent
1 eavesdrop. Inspection of the terms in (14)–(15) leads to a
FIM of the form

[
JL
No−E

]
kl
→



3
2M

2I2 +
1
2MNI2 k = l = 1

M2I2 k = l > 1

−2MA(φkl) k = 1, l > 1

−2MA(φkl) l = 1, k > 1

0 k 6= l, k, l > 1.

(22)

The EFIM then becomes

JL,E
No−E,1 (23)

= [JL
No−E]11 −

∑
k∈Sagents\{1}

[JL
No−E]1k[J

L
No−E]

−1
kk [J

L
No−E]

T
1k.

The second term is given by
4
∑
k∈Sagents\{1} A(φk1)A

T(φk1) → 2NI2. Retaining

only the dominant terms, JL,E
No−E,1 → 3/2M2I2 +1/2MNI2.

EFIM Upper Bound: The EFIM upper bound is constructed
from JNo−E by setting the non-block diagonal elements to
zero, i.e.,

[
JU
No−E

]
kl

= 0 for k 6= l. The upper bound of the
EFIM for agent 1 is given by JU,E

No−E,1 →
3
2M

2I2+
1
2MNI2.

Final Scaling: Due to the fact that the lower and upper
bounds on the EFIM have the same scaling, we conclude
that the EFIM itself must have the same scaling. Finally,
following the definition of the PEB find that PNo−E ∈
O
(
1/
√
3M2 +MN

)
.

B. Minimum MAC Delay
In our model, anchors can range with agents and other

anchors, while the agents eavesdrop. The total number of
TDMA slots thus scales as MNo−E ∈ O(MN +M2).

APPENDIX G
PROOF OF THE CO-EA CASE

A. PEB
Consider M anchors and N agents uniformly distributed

over a fixed two-dimensional area, where nodes range with
all nodes but only anchors can eavesdrop. The FIM JCo−Ea

consists of 2×2 block matrices. Starting from the generalized
expressions, the diagonal blocks (k = l) [JCo−Ea]kk are
computed by including terms (14a)–(14c), and (14e) from
(14) and the non-diagonal blocks by summing up terms
(15a), (15b), (15d), and (15g) from (15). Furthermore, SR =
Sanchors ∪ Sagents, SE = Sanchors, and U = M for the
constants in (11)–(13). Hence

[JCo−Ea]kl →

{
1
2M

2I2 +
1
2MNI2 k = l

4A(φkl) k 6= l.
(24)

In this case it is not possible to remove measurements to deter-
mine a lower bound on the FIM. Instead, we note that that (24)
behaves similarly to (17): the off-diagonal blocks do not scale
with M or N , while the diagonal blocks scale at least linear
in M and N . Hence, for large M and N , the diagonal blocks
will determine the scaling, and JE

Co−Ea → 1
2M

2I2+
1
2MNI2,

so that PNo−E ∈ O
(√

1/(M2 +MN)
)

.

B. Minimum MAC Delay

In this case ranging between anchors is not useful, since
agents are not allowed to eavesdrop. Hence, only ranging slots
between anchors and agents, and between agents are required.
This leads to MCo−Ea ∈ O(NM +N2).

APPENDIX H
PROOF OF THE CO-E CASE

Consider M anchors and N agents uniformly distributed
over a fixed two-dimensional area where nodes range with all
nodes, and all other nodes can eavesdrop. The FIM JCo−E
consists of 2 × 2 block matrices positioned in row k and
column k. From the generalized expressions the diagonal
blocks (k = l) [JCo−E]kk are computed by including all
terms in (14) and the non-diagonal blocks by including all
terms in (15). Furthermore, SR = Sanchors ∪ Sagents and
SE = Sanchors∪Sagents, and U =M+N−1 for the constants
in (11)–(13). This leads to

[JCo−E]kl →

{
2(M +N)2I2 k = l

−2(M +N)A(φkl) k 6= l.
(25)

Comparing (25) with (21), we observe that in both cases the
diagonal blocks scale quadratically in M and N , while the off-
diagonal blocks only scale linearly. Hence, JE

Co−E → 2(M +
N)2I2, so that PCo−E ∈ O(1/(M +N)).

A. Minimum MAC Delay

In this case, inter-anchor ranging is useful, since agents can
eavesdrop. Thus, there will be a ranging transaction between
every pair of nodes, leading to MCo−E ∈ O((M +N)2).

REFERENCES

[1] G. E. Garcia, L. S. Muppirisetty, and H. Wymeersch, “On trade-off
between accuracy and delay in cooperative UWB navigation,” IEEE
Wireless Communications and Networking Conference, pp. 1603–1608,
2013.

[2] ——, “On the trade-off between accuracy and delay in UWB naviga-
tion,” IEEE Communications Letters, vol. 17, pp. 39–42, 2012.

[3] K. Pahlavan and X. Li, “Indoor geolocation science and technology,”
IEEE Communications Magazine, vol. 40, pp. 112–118, 2002.

[4] R. Fontana, E. Richley, and J. Barney, “Commercialization of an ultra
wideband precision asset location system,” in IEEE Conference on Ultra
Wideband Systems and Technologies, 2003, pp. 369–373.

[5] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson,
“Wireless sensor networks for habitat monitoring,” Proceedings of the
1st ACM international workshop on Wireless sensor networks and
applications, pp. 88–97, 2002.

[6] T. Budinger, “Biomonitoring with wireless communications,” Annual
Review of Biomedical Engineering, vol. 5, pp. 383–412, 2003.

[7] N. Patwari, J. N. Ash, S. Kyperountas, A. O. Hero III, R. L. Moses, and
N. S. Correal, “Locating the nodes,” IEEE Signal Processing Magazine,
vol. 22, pp. 54–59, 2005.

[8] A. F. Molisch, P. Orlik, Z. Sahinoglu, and J. Zhang, “UWB-based sensor
networks and the IEEE 802.15.4a standard - a tutorial,” International
Conference on Communication and Networking in China, 2006.

[9] W. Hirt, “Ultra-wideband radio technology: overview and future re-
search,” Computer Communications, vol. 26, pp. 46–52, 2003.

[10] S. Gezici, Z. Tian, G. B. Giannakis, H. Kobayashi, A. F. Molisch, V. H.
Poor, and Z. Sahinoglu, “Localization via ultra-wideband radios,” IEEE
Signal Processing Magazine, pp. 70–84, 2005.

[11] D. Dardari, A. Conti, U. Ferner, A. Giorgetti, and M. Z. Win, “Ranging
with ultrawide bandwidth signals in multipath environments,” Proceed-
ings of the IEEE, vol. 97, pp. 404–426, 2009.

[12] Y. Shen and M. Z. Win, “Fundamental limits of wideband localization -
part I: A general framework,” IEEE Transactions on Information Theory,
vol. 56, pp. 4956–4980, 2010.



11

[13] H. Wymeersch, J. Lien, and M. Z. Win, “Cooperative localization in
wireless networks,” Proceedings of the IEEE, vol. 97, pp. 427–450,
2009.

[14] Y. Shen, H. Wymeersch, and M. Z. Win, “Fundamental limits of wide-
band localization - part II: Cooperative networks,” IEEE Transactions
on Information Theory, vol. 56, pp. 4981–5000, 2010.

[15] M. R. Gholami, S. Gezici, and E. G. Ström, “Improved position
estimation using hybrid TW-TOA and TDOA in cooperative networks,”
IEEE Transactions on Signal Processing, vol. 60, pp. 3770–3785, 2012.

[16] Y. Shen, S. Mazuelas, and M. Z. Win, “Network navigation: Theory
and interpretation,” IEEE Journal on Selected Areas in Communications,
vol. 30, pp. 1823–1834, 2012.

[17] M. Z. Win, A. Conti, S. Mazuelas, Y. Shen, W. M. Gifford, D. Dardari,
and M. Chiani, “Network localization and navigation via cooperation,”
IEEE Communications Magazine, vol. 49, pp. 56–62, 2011.

[18] F. Sottile, A. Vesco, R. Scopigno, and M. Spirito, “MAC layer impact on
the performance of real-time cooperative positioning,” in IEEE Wireless
Communications and Networking Conference, 2012, pp. 1858–1863.

[19] C. Lindberg, L. S. Muppirisetty, K.-M. Dahlén, V. Savic, and
H. Wymeersch, “MAC delay in belief concensus for distributed track-
ing,” in 10th Workshop on Positioning, Navigation and Communication,
2013.

[20] P. Leone and E. M. Schiller, “Self-stabilizing TDMA algorithms for
dynamic wireless ad-hoc networks,” International Journal of Distributed
Sensor Networks, vol. 2013, p. 17.

[21] T. Wang, Y. Shen, S. Mazuelas, and M. Z. Win, “Distributed scheduling
for cooperative localization based on information evolution,” IEEE
International Conference on Communications, 2012.

[22] D. Satyam, D. Zachariah, A. De Angelis, and P. Handel, “Cooperative
decentralized localization using scheduled wireless transmissions,” IEEE
Communications Letters, vol. 17, pp. 1240–1243, 2013.

[23] M. Rengasamy, E. Dutkiewicz, and M. Hedley, “MAC design and
analysis for wireless sensor networks with co-operative localisation,”
International Symposium on Communications and Information Tech-
nologies, 2007.

[24] I. Bucaille, A. Tonnere, L. Ouvry, and B. Denis, “MAC layer design for
UWB LDR systems: PULSERS proposal,” 4th Workshop on Positioning,
Navigation and Communication, 2007.

[25] B. Denis, M. Maman, and L. Ouvry, “On the scheduling of ranging
and distributed positioning updates in cooperative IR-UWB networks,”
International Conference on UWB, pp. 370–375, 2009.

[26] K. Das and H. Wymeersch, “Censored cooperative positioning for dense
wireless networks,” in IEEE International Symposium on Personal,
Indoor and Mobile Radio Communications Workshops (PIMRC Work-
shops), 2010, pp. 262–266.

[27] ——, “Censoring for Bayesian cooperative positioning in dense wireless
networks,” IEEE Journal on Selected Areas in Communications (JSAC),
vol. 30, no. 9, pp. 1835–1842, 2012.

[28] “P400 data sheet,” Time Domain Corp., Huntsville, AL, USA.
[29] C. Pedersen, T. Pedersen, and B. H. Fleury, “Exploiting network

topology information to mitigate ambiguities in VMP localization,” 4th
IEEE International Workshop on Computational Advances in Multi-
Sensor Adaptive Processing, pp. 57–60, 2011.

[30] N. Abramson, “The throughput of packet broadcasting channels,” IEEE
Transactions on Communications, vol. com-25, no.1, pp. 117–128, 1977.

[31] D. Macagnano, G. Destino, F. Esposito, and G. Abreu, “MAC perfor-
mances for localization and tracking in wireless sensor networks,” 4th
Workshop on Positioning, Navigation and Communication, 2007.

[32] H. Van Trees, Detection, Estimation and Modulation Theory. Wiley,
1968, vol. 1.

[33] S. M. Kay, Fundamentals of Statistical Signal Processsing: Estimation
Theory. Prentice Hall, 1993, vol. 1.

[34] P. Björklund, P. Värbrand, and D. Yuan, “A column generation method
for spatial TDMA scheduling in adhoc networks,” Ad Hoc Networks,
vol. 2, no. 4, pp. 405–418, 2004.

[35] L. Zheng and D. N. Tse, “Diversity and multiplexing: A fundamental
tradeoff in multiple-antenna channels,” IEEE Transactions on Informa-
tion Theory, vol. 49, pp. 1073–1096, 2003.

[36] J. T. Isaacs, D. J. Klein, and J. P. Hespanha, “Optimal sensor placement
for time difference of arrival localization,” in Proceedings of the 48th
IEEE Conference on Decision and Control held jointly with the 28th
Chinese Control Conference CDC/CCC, 2009, pp. 7878–7884.

Gabriel E. Garcia received his B.Sc. in Electron-
ics and Communication Engineering from ITESM,
Campus Querétaro, Mexico in 2007, his M.Sc. in
Communication Engineering, and Licentiate degree
in Electrical Engineering, both from Chalmers Uni-
versity of Technology, Sweden, in 2010 and 2013,
respectively. Since May 2011, he is pursuing his
Ph.D. at the Department of Signals and Systems,
Chalmers University of Technology, Gothenburg,
Sweden. His research interests include cooperative
networks, robust radio frequency localization and

navigation, UWB, wireless sensor networks, GNSS, statistical inference and
sensor fusion.

Srikar Muppirisetty received his B.Tech degree
in Electronics and Communication Engineering in
2005 from R.V.R & J.C College of Engineering,
India. He received his M.Sc. degree in Communica-
tion Engineering in 2009 from Chalmers University
of Technology, Sweden. He is currently pursuing a
Ph.D. degree at Chalmers University of Technology.
He has over 4 years of industrial experience in
physical layer algorithm development for mobile
terminals. From 2005-2007 he worked as Member
of the Technical Staff at wireless systems division

of Digibee Microsystems Pvt. Ltd., Bangalore. During 2009-2012 he worked
as a Senior System Software Engineer and as Technical Lead in simulation
team at Ericsson (formerly ST-Ericsson) R&D center, Bangalore. His current
research focuses in developing algorithms for resource allocation using
position information in wireless communications.

Elad Schiller received his M.Sc., and B.Sc. in Math-
ematics and Computer Science from Ben-Gurion
University of the Negev, Israel and a Ph.D. in
Computer Science from the same university. His
research excellence has been acknowledged by sev-
eral highly competitive research fellowships from
the Israeli government and the Swedish government.
He is now an associate professor in the Department
of Computer Science and Engineering at Chalmers
University of Technology. Elad has published in
top tier venues (including PODC, DISC, OPODIS,

SPAA, SRDS, IEEE-TMC, IEEE-TPDS and Acta Inf.). He has co-authored
more than 30 peer revised publications. He served on the program committees
for several international conferences, including SSS, PODC, DISC and Al-
goSensors. His research interests include distributed computing, with special
emphasis on self-stabilizing algorithms, and wireless ad hoc networks.

Henk Wymeersch (S’99, M’05) received the Ph.D.
degree in Electrical Engineering/Applied Sciences
in 2005 from Ghent University, Belgium. He is
currently an Associate Professor with the Depart-
ment of Signals and Systems at Chalmers University
of Technology, Sweden. Prior to joining Chalmers,
he was a Postdoctoral Associate with the Labora-
tory for Information and Decision Systems at MIT.
He is a member of the IEEE, served as Asso-
ciate Editor for IEEE COMMUNICATION LETTERS
(2009–2013), IEEE TRANSACTIONS ON WIRELESS

COMMUNICATIONS (2013–present), and the TRANSACTIONS ON EMERGING
TELECOMMUNICATIONS TECHNOLOGIES (2011–present).


	I Introduction
	II System Model
	II.A UWB Positioning
	II.B Measurement Models
	II.C Network Model

	III Lower Bound on Positioning Accuracy and MAC Delay
	III.A PEB: Basic Concepts
	III.B PEB: Derivation
	III.C Bounds on Minimum MAC Delay

	IV Scaling Laws
	IV.A Operating Conditions
	IV.B Trade-off Analysis

	V Numerical Results and Discussion
	V.A Simulation Setup
	V.B Impact of Number of Anchors
	V.C Impact of Number of Agents
	V.D Impact of Communication Range

	VI Conclusions
	Appendix A: Structure of the Inverse Covariance Matrix 
	Appendix B: General Form of the Classical FIM
	Appendix C: Proof of the No Case
	C.A PEB
	C.B Minimum MAC Delay

	Appendix D: Proof of the Co Case
	D.A PEB
	D.B Minimum MAC Delay

	Appendix E: Proof of the No-Ea Case
	E.A PEB
	E.B Minimum MAC Delay

	Appendix F: Proof of the No-E Case
	F.A PEB
	F.B Minimum MAC Delay

	Appendix G: Proof of the Co-Ea Case
	G.A PEB
	G.B Minimum MAC Delay

	Appendix H: Proof of the Co-E Case
	H.A Minimum MAC Delay

	References
	Biographies
	Gabriel E. Garcia
	Srikar Muppirisetty
	Elad Schiller
	Henk Wymeersch


