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Comprehensive understanding of the structure and reactions of light nuclei
poses theoretical and computational challenges. Still, a number of ab initio

approaches have been developed to calculate the properties of atomic nuclei
using fundamental interactions among nucleons. Among them, we work with
the ab initio no core full configuration (NCFC) method and ab initio no core

Gamow Shell Model (GSM). We first review these approaches and present some
recent results.

Keywords: nuclear structure; ab initio approach.

1. Introduction

Nuclei are complicated quantum many-body systems and offer a solid

testing ground for our knowledge of the strong interaction in the non-

perturbative regime. It is a formidable task to get a firm grasp of how stable

(and unstable) nuclei emerge from protons and neutrons whose interactions

are dominated by the strong interaction. With the rapid growth of available

high performance supercomputers, several ab initio approaches have been

developed to study nuclear structures and reactions based on fundamen-

tal nuclear interactions. Robust and reliable results from ab initio methods

may provide a clue to the role of fundamental degrees of freedom such as

quarks in nuclei.
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In this work, we study the properties of 6Li using the ab initio no core

full configuration (NCFC)1 and no core Gamow Shell Model (GSM)2 ap-

proaches with two different nucleon-nucleon (NN) interactions; the inverse-

scattering interaction JISP16 and the new NNLOopt potential
3 from chiral

effective field theory (chEFT). We first review these approaches and present

some of our recent results.4

2. Ab initio no core full configuration approach

We start with the configuration interaction (CI) method on which the ab

initio no core full configuration (NCFC) method is based. In short, the CI

method is one of the post Hartree-Fock methods for solving the Schrödinger

equation using a matrix formulation. The A-body Schrödinger equation is

ĤΨ(r1, r2, . . . , rA) = EΨ(r1, r2, . . . , rA) , (1)

where the Hamiltonian Ĥ contains kinetic energy and interaction terms. In

contrast to the Hartree-Fock method, where the A-body wave function is

approximated by a single Slater determinant, the A-body wave function in

the CI method is given by a linear combination of Slater determinants Φi:

Ψ(r1, r2, . . . , rA) =
k∑

i=0

ciΦi(r1, r2, . . . , rA) . (2)

To obtain the exact A-body wave function one has to consider infinite

number of configurations, k = ∞, in practice, however, the sum must be

limited to a finite number of configurations. The Slater determinant is the

antisymmetrized product of single particle wave functions ϕα(r), where α

denotes the quantum numbers of single particle states. A traditional choice

for the single particle basis is that of harmonic oscillator. Now, the matrix

elements of the Hamiltonian is given by Hij = ⟨Φi|Ĥ|Φj⟩. For large and

sparse matrices, the Lanczos method5 has been widely used to find the

extreme eigenvalues. This method is implemented in MFDn,6–8 a hybrid

MPI/OpenMP CI code for ab initio nuclear structure calculations.

Now we move on to the NCFC approach. This method is a version of the

ab initio no core shell model (NCSM) with a few important characteristics

that will be outlined below. The NCSM treats all nucleons in a nucleus as

active and dynamical degrees of freedom. There is no postulated closed,

inert core of nucleons in the nucleus. In the ab initio NCSM we start with

the intrinsic Hamiltonian of A nucleons

HA =
1

A

∑
i<j

(pi − pj)
2

2m
+
∑
i<j

VNN,ij +
∑

i<j<k

VNNN,ijk (3)
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and add the harmonic oscillator (HO) center of mass Hamiltonian. Here,

m is the nucleon mass, and VNN (VNNN) is a two-nucleon (three-nucleon)

interaction. In the NCSM, the HO basis is employed. Due to the strong

short-range correlations of nucleons in a nucleus, a large model space is

required to achieve convergence. This infinite (or very large) model space

problem might be overcome by the use of effective interactions rather than

bare ones. For more on the NCSM, we refer to a recent review article.9

Features of the NCFC approach are; (1) the use of interactions defined

for an infinite Hilbert space, (2) extrapolating to the continuum limit (in-

finite matrix limit), and (3) uncertainty estimation for the extrapolation.

Next, we discuss the interactions adopted in the current work. In the

present study, we are using the JISP16 phenomenological and NNLOopt

chiral NN potentials. JISP (J-matrix Inverse Scattering Potential) type in-

teractions10–12 are constructed in the framework of the J-matrix version

of inverse scattering theory. The matrix elements of the NN potential are

calculated in the oscillator basis for each partial wave to reproduce experi-

mental NN scattering data and deuteron properties without three-nucleon

interactions. The JISP16 potential is obtained to fit the experimental data

for light nuclei up to A = 16. A promising approach to construct and un-

derstand the nuclear force from first principles is chEFT.13 An important

and up-to-date optimization of the chiral Next-to-Next-to-Leading Order

(NNLO) potential was performed using POUNDERS (Practical Optimiza-

tion Using No Derivatives for Squares), to obtain the potential we label as

NNLOopt.
3 The new chiral NNLOopt yields χ2 ≈ 1 per degree of freedom

for laboratory energies roughly less than 125 MeV. It is also observed that

the effects of three-nucleon interactions on the properties of light nuclei

with A = 3, 4 are smaller than previously available parameterizations of

chiral nuclear forces.

We now address the extrapolation to infinite matrix limit. We work with

the Nmax truncation scheme, where Nmax is the basis truncation parameter.

In this scheme, we consider all possible configurations withNmax excitations

above the unperturbed ground state:
∑

Ni ≤ N0 +Nmax. Here, N0 is the

total number of HO quanta for the ground state configuration and Ni is the

number of quanta for each state. To take the infinite matrix limit, several

extrapolation methods have been developed.1,14–17

Finally, we show a few results from our NCFC study.4 In Fig. 1, we show

the convergence of the ground state energy of 6Li with the extrapolation A,1

while excitation energies are presented in Fig. 2. The results are obtained

from computations in model spaces up to Nmax = 16 (matrix dimension
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8 × 108). For a previous study on the 6Li in the ab initio NCFC method,

we refer to the work by Cockrell, et al,18 where lithium isotopes, 6Li, 7Li,

and 8Li, are studied with the JISP16 interaction.
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Fig. 1. Ground state energy of 6Li calculated with NNLOopt as a function of the size
of HO basis Nmax and the result with the extrapolation A. The shaded area around the

extrapolation A result indicates our estimated uncertainty of 170 keV.

3. The ab initio Gamow Shell Model

As one approaches the particle emission thresholds, it becomes increasingly

important to describe correctly the coupling to the continuum of decays

and scattering channels. The recently developed complex-energy Gamow

Shell Model (GSM)19 has proven to be a reliable tool in the description

of nuclei, where continuum effects cannot be neglected. In the GSM, the

many-body basis is constructed from a single-particle Berggren ensemble20

which includes bound, resonant and complex-continuum states. For practi-

cal calculations, the set of continuum states is discretized. As in any Shell

Model calculation the dimension of the Hamiltonian matrix grows rapidly

with the number of single-particle states and the number of nucleons. In ad-

dition, the Hamiltonian matrix in our rigged Hilbert space is non-Hermitian

(complex symmetric). Hence, advanced numerical methods that can handle

large non-Hermitian matrices must be used. In the context of the GSM, it

has been shown that the Density Matrix Renormalization Group (DMRG)
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Fig. 2. Excitation energies of 6Li calculated with NNLOopt and experimental data. The
low-lying positive parity states are shown as a function of Nmax truncation (indicated

in parenthesis below each column). The ground state eigenvalue (in MeV) is also listed
for each Nmax.

is an efficient way to compute the low-lying spectrum of the Hamiltonian

at a low computational cost.21

Let us consider the application of the J-scheme DMRG in the context of

the GSM (GSM+DMRG). The objective is to calculate an eigenstate |Jπ⟩
of the GSM Hamiltonian Ĥ with angular momentum J and parity π. As

|Jπ⟩ is a many-body pole of the scattering matrix of Ĥ, the contribution

from non-resonant scattering shells along the continuum contour L+ to the

many-body wave function is usually smaller than the contribution from

the resonant orbits.19 Based on this observation, the following separation

is usually performed:21 the many-body states constructed from the single-

particle poles form a subspace A (the so-called ‘reference subspace’), and

the remaining states containing contributions from non-resonant shells form

a complement subspace B.

One begins by constructing states |k⟩A forming the reference subspace

A. All possible matrix elements of suboperators of the GSM Hamiltonian

Ĥ acting in A, expressed in the second quantization form, are then calcu-

lated and stored and the GSM Hamiltonian is diagonalized in the reference

space to provide the zeroth-order approximation |ΨJ⟩(0) to |Jπ⟩. This vec-
tor, called ‘reference state’, plays an important role in the GSM+DMRG
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truncation algorithm. The scattering shells (lj), belonging to the discretized

contour L+, are then gradually added to the reference subspace to create

the subspace B. This first stage of the GSM+DMRG procedure is referred

to as the warm-up phase. For each new shell that is added, all possible

many-body states denoted as |i⟩B are constructed and matrix elements of

suboperators of the GSM Hamiltonian acting on |i⟩B are computed. By

coupling states in A with the states |i⟩B , one constructs the set of states of
a given Jπ. This ensemble serves as a basis in which the GSM Hamiltonian

is diagonalized. The target state |ΨJ ⟩ is selected among the eigenstates of

Ĥ as the one having the largest overlap with the reference vector |ΨJ⟩(0).
Then, the desired truncation is performed in B by introducing the reduced

density matrix, constructed by summing over the reference subspace A. The

GSM density matrix being complex-symmetric, the truncation is done by

keeping the eigenstates αB (the ‘optimized’ states) with the largest nonzero

moduli of eigenvalue wα.
21

The warm-up phase is followed by the so-called sweeping phase, in

which, starting from the last scattering shell (lj)last, the procedure con-

tinues in the reverse direction (the ‘sweep-down’ phase) until the first scat-

tering shell is reached. The procedure is then reversed and a sweep in the

upward direction (the ‘sweep up’ phase) begins. The sweeping sequences

continue until convergence for target eigenvalue is achieved.

A no core GSM+DMRG approach was recently developed2 to be used

for ab initio studies of light nuclei using realistic interactions. Here we show

an application of the DMRG method for the Jπ = 1+ ground state in 6Li.

Since this state is well bound, the effects of the coupling to the continuum

states are negligible. Nevertheless, for the purpose of illustration, we show

results using the DMRG technique in a model space containing only HO

shells. The model space includes proton and neutron shells with energy

up to 10 ~ω that is, we include s-shells up to the 5s1/2, p-shells up to

4p1/2;3/2 and d-shells up to 4d3/2;5/2. For this calculation which serves as

an illustration of the method, we are not including shells with higher l-

values. In Fig. 3 we show results obtained by keeping the eigenstates of the

density matrix such that ϵ = 1 −
∑

α wα ≤ 5 × 10−6. Results are shown

starting from the middle of the warm-up phase until the end of the second

sweep. The relatively small difference between the lowest and highest energy

during the second sweep (∼ 360 keV) could be further decreased by keeping

more states.21 The dimension of the total model space in the J-scheme is

141,762,900 whereas the largest DMRG matrix to be diagonalized has a

dimension equal to 68,386.
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Fig. 3. Iterative process of the DMRG approach for ϵ = 5 × 10−6 and including only
waves up to l = 2 (s,p,d). Results are shown starting from the middle of the warm-up
phase, and the two vertical dashed lines show respectively the beginning of the first and
second sweeping phase.

4. Summary

We briefly introduced the ab initio NCSM, NCFC method, and ab initio

GSM approach. To study the properties of 6Li, we employed the JISP16

realistic nucleon-nucleon potential and chiral NNLOopt interaction. We

showed some of our recent results in Figs. 1, 2, 3. From Figs. 1, 2, we

conclude that sufficient convergence is achieved in our study.
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