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Technology, Göteborg, Sweden

(Received Month Day Year)

A number of driver models were fitted to a large data set of human truck driving, from a
simulated near-crash, low-friction scenario, yielding two main insights: Steering to avoid a
collision was best described as an open-loop manoeuvre of predetermined duration, but with
situation-adapted amplitude, and subsequent vehicle stabilization could to a large extent be
accounted for by a simple yaw rate nulling control law. These two phenomena, which could
be hypothesized to generalize to passenger car driving, were found to determine the ability
of four driver models adopted from literature to fit the human data. Based on the obtained
results, it is argued that the concept of internal vehicle models may be less valuable when
modelling driver behaviour in non-routine situations such as near-crashes, where behaviour
may be better described as direct responses to salient perceptual cues. Some methodological
issues in comparing and validating driver models are also discussed.
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electronic stability control
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1. Introduction

It is well established that driver behaviour plays a prominent role in the causation
of traffic accidents [1, 2], and considerable research effort has been spent on un-
derstanding and describing driver behaviour in near-crash situations. This is not
an easy object of study, but as a result of accident reconstructions, large-scale
naturalistic data collection projects, and experiments on test tracks and in driving
simulators, there is a growing body of knowledge on the various reasons why drivers
end up in critical situations, such as inattention [3] or incorrect expectations [4, 5],
and on how drivers typically control the vehicle if and when they try to avoid an
imminent crash [6–9].
An important application of such knowledge is the construction of quantitative

models of driver control behaviour in near-crash situations. When put to use in
computer simulations, such models permit cost-efficient safety performance opti-
mization of, for example, infrastructure designs [10], vehicle designs [11], or active
support systems that provide warnings or control interventions [12–14].
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There is a wealth of existing driver behaviour models that could be useful in such
simulation-based research efforts, reviewed in [15–19]. However, a recent review, fo-
cusing specifically on models that have been applied in simulation of near-collision
situations [20], noted two clear limitations in the literature: (a) With just a few
exceptions [21–23], new models have been proposed without comparing their be-
haviour to that of existing, alternative models, making it difficult to know which
models to prefer for a given application. (b) Validation of model behaviour against
human behaviour data from real or reasonably realistic near-crash situations has
been virtually non-existent. Many models of steering control were found to have
been validated against human behaviour in predefined test-track manoeuvres, for
example a double lane change [24]. However, such tests seem rather unlike real-life,
unexpected near-crash situations, and could potentially elicit qualitatively different
behaviours from drivers [25–27].
This paper addresses both of the two above-mentioned limitations, in the specific

context of collision avoidance and subsequent vehicle stabilization, on a low friction
road surface. One use for models validated in this type of context is simulation-
based evaluation of vehicle stability support systems such as electronic stability
control (ESC) [28–31]. In [32], it was shown that one existing driver model could
reproduce the stabilization steering behaviour observed after unexpected and ex-
pected near-collisions in a driving simulator study, previously described in [33].
Here, the analysis of this dataset, fitting models separately to each human driver,
will be extended to include also the collision avoidance phase of the studied sce-
nario, and to include a comparison of a number of existing and novel models of
steering.
The next section will describe the data collection simulator study and the driver

models, as well as the method for fitting the models to the human steering data.
Then, model-fitting results will be provided, including some analysis of the obtained
model parameters. The subsequent discussion will highlight differences between the
models and their respective strengths and weaknesses in the studied scenario, as
well as some challenges involved in model comparison and validation.

2. Method

2.1. Data collection

The human driving data used here were collected in the moving-base driving sim-
ulator VTI Simulator II in Linköping, Sweden. Full details on the simulator and
the experimental procedures adopted in this study can be found in [33]. In sum-
mary, 48 drivers, driving a three-axle rigid simulated truck (6.2 m from first to last
axle) at 80 km/h, experienced an unexpected lead vehicle deceleration scenario on
a low-friction (µ = 0.25) road surface. Half of the subject drivers subsequently also
experienced the same scenario an additional twelve times each, in a novel paradigm
for repeated collision avoidance, and it is this 24-driver repeated-scenario data set
which is used here. Half of the 24 drivers were novices, who had just obtained,
or were just about to obtain, their heavy truck driving license, and half were ex-
perienced drivers, with at least six years of professional experience in commercial
operations. In half of all measurements, the simulated truck had an active ESC sys-
tem, a software-in-the-loop implementation of the actual Volvo Trucks on-market
ESC, and in the other half of measurements drivers were aided only by the anti-
lock braking system (ABS). The critical scenario, requiring a steering manoeuvre
for successful collision avoidance, is illustrated in Fig. 1, together with an overview
of the observed vehicle trajectories.
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Figure 1. The studied critical scenario. (a) A screenshot from the experiment video log, showing the two-
lane winter road on which the maneuvering took place, the braking lead vehicle, and a subject engaged
in steering collision avoidance. (b) The totality of observed vehicle trajectories, in the unexpected (top
panel) and repeated (bottom panel) scenarios. Horizontal gray lines show lane boundaries, and each black
line shows the movement of the front center of the truck in one recorded event. Longitudinal position zero
corresponds to the point where the front of the truck reached the rear of the lead vehicle. The unexpected
scenario data are not used in the model-fitting analyses presented in this paper, but are shown here to
illustrate that the two scenarios generated roughly similar human behaviour; see further [32] and [34].

It has been demonstrated elsewhere that the unexpected and repeated scenarios
generated similar initial steering avoidance situations [33, 34], and elicited similar
driving steering behaviour, both during collision avoidance [34] and stabilization
[32].

2.2. Tested models

The set of driver models to test was defined so as to include both some well-
known path-following models of steering, often available in off-the-shelf software
for e.g. simulating predefined manoeuvres (the MacAdam and Sharp et al. models),
as well as models of routine lane-keeping which may be less familiar but which
take different, and in our view promising, modelling approaches (the Salvucci &
Gray and Gordon & Magnuski models). Furthermore, based on the results from
parameter-fitting these existing models to the behaviour of the human drivers, two
very simple additional models of steering were developed, one targeting collision
avoidance only, and the other targeting only vehicle stabilization. Below, all tested
models will be briefly described, along with specific implementation details when
needed. For ease of reading, consistent notation is used for quantities that are
shared across models, in some cases departing from the symbols used by the original
authors.

2.2.1. The MacAdam model

At a given time t, the model proposed by MacAdam [35], illustrated in Fig. 3(a),
applies the steering wheel angle δ(t) that minimizes the predicted lateral deviation
from a desired path, by minimizing the following functional:

J(t) =

∫ t−TR+TP

t−TR

(f(η)− y(η))2 dη (1)
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Figure 2. The desired path used for the MacAdam [35] and Sharp et al. [36] models, with ∆X1, X2,
X3, X4, and Y as driver-specific model parameters. The two lane changes are cubic splines with lateral
speed zero at beginning and end. Before and after the manoeuvre, desired lateral position is set to the
middle of the right driving lane. Longitudinal position zero corresponds to the point where the front of
the truck reached the rear of the lead vehicle, and XS is the longitudinal position at which the human
driver’s collision avoidance steering reached half of its maximum value, in a specific recorded instance of
the critical scenario.

In Eq. (1), y(t) and f(t) are the predicted and desired lateral positions, and TR
and TP are model parameters corresponding to a reaction time and a preview time,
respectively. Here, the desired path f(t) of the vehicle was defined as shown in
Fig. 2, using model parameters ∆X1, X2, X3, X4, and Y . In order to allow for
intra-driver variability in the exact point of collision avoidance initiation, the lane
change to the left was set to start at a longitudinal position XS − ∆X1, where
XS was the longitudinal position at which the steering wheel reached half of its
maximum leftward deflection (i.e.XS had a unique value for every recorded instance
of the critical scenario).
The MacAdam model’s prediction y(t) of lateral position relies on a linear in-

ternal vehicle model. Here, the same classical type of one-track model as used by
MacAdam [35] was adopted, but with three axles instead of two:

ẋ = Fx+ gδ =

[
−Cαf+Cαm+Cαr

mvx

−aCαf+bCαm+cCαr

mvx
− vx

−aCαf+bCαm+cCαr

Izvx
−a2Cαf+b2Cαm+c2Cαr

Izvx

]
x+

[
GCαf

m
GafCαf

Iz

]
δ (2)

where x = [vy ψ̇]
T , vx and vy are longitudinal and lateral speeds in the vehicle’s

reference frame, and ψ is the yaw angle of the vehicle. The three Cα � parameters
and a, b, c are tire cornering stiffnesses and longitudinal distances to the vehicle’s
mass centre, for the front, middle, and rear axles, respectively. The parameters m
and Iz are vehicle mass and moment of inertia, and G is the steering gear ratio.
Since the linear vehicle model cannot account well for skidding, it was parameter-

fitted only to recordings with maximum body slip angle β < 1◦ (3 % of the total
data set). This can be understood as assuming that drivers had acquired an under-
standing of vehicle dynamics from normal, high-friction driving, and applied this
understanding also during yaw instability1. Only the three cornering stiffnesses
were fitted to the data; the other parameters were taken from the non-linear model
used in the simulator study. Fig. 4 illustrates the resulting model performance at
various magnitudes of yaw instability.

2.2.2. The Sharp et al. model

The model proposed by Sharp et al. [36] also makes use of the desired path con-
struct, but, as illustrated schematically in Fig. 3(b), instead calculates its steering
wheel input as a weighted sum of current and previewed path deviations ei along a
forward optical lever, extending a preview time TP ahead, and the current deviation

1Various approaches were explored for fitting the linear model also to recordings with more severe yaw
instability, but were not found to improve the fit of the resulting driver model.
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Figure 3. Schematic illustrations of the models adopted from literature.
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Figure 4. The top row of panels show observed steering wheel movements in three recordings of the
repeated scenario, with maximum attained body slip angles β increasing from left to right. The bottom
two rows of panels show, for the same recordings, the observed vehicle dynamics from the full non-linear
vehicle dynamics model used in the data collection experiment, compared with the vehicle dynamics
predicted by the linear model used with the MacAdam driver model in this paper.

eψ between vehicle and path heading:

δ = Kψeψ +K1e1 +Kp

n∑
i=2

Kiei (3)

Here, Kψ, K1, and Kp were treated as free model parameters, whereas the number
n of preview points, their spacing along the optical lever, and the exponentially
decreasing profile for the preview gains Ki (with 2 ≤ i ≤ n) were adopted from
[36]. Additionally, to allow for a fair comparison with the other models, a reaction
time delay parameter TR was added to Eq. (3). The saturation functions included
by Sharp et al. with the purpose of “preventing the steer angle from exceeding a
reasonable range”[36, p. 312], were not included.
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2.2.3. The Salvucci and Gray model

The model by Salvucci & Gray [37] is mathematically rather similar to the Sharp
et al. model. However, instead of being derived from linear optimal control theory,
it builds on experiments and modelling in psychology, motivating: (a) the use of
the rate of change δ̇ of steering as an input variable rather than δ [39], and (b)
the separation of controlled quantities (the input to the driver) into one near point
and one far point [40] on a target lateral position, as illustrated in Fig. 3(c). It is
assumed that the driver aims to keep the the sight angles θn and θf to these points
stationary, while at the same time attempting to reduce the near point angle to
zero:

δ̇ = knPθ̇n + kf θ̇f + knIθn (4)

In addition to the gain parameters in Eq. (4), free parameters were also included for
the longitudinal distances Dn and Df to the near and far points, respectively1, as
well as a reaction time TR. Analogously to the desired path of the models described
above, the target lateral position was initially set to the middle of the right lane,
then set to a position Y when the truck reached longitudinal position XS +∆XI,
and then back to the middle of the right lane at longitudinal position X3. To
test the sensitivity of the model to the preview distance parameters, an additional
version of the model was tested, where these parameters were fixed, for all drivers,
at the median values Dn = 16 m and Df = 123 m, observed in the optimizations
where these parameters were left free.

2.2.4. The Gordon and Magnuski model

Since the models described above all aim at reducing the deviation from a desired
path or lateral position to zero, they could be referred to as optimizing models. In
contrast, the model by Gordon & Magnuski [38], illustrated in Fig. 3(d), operates
in what can be called a satisficing [41] manner: It assumes that the driver is content
with staying inside a delimited region, modelled using boundary points. Specifically,
the model compares the current yaw rate to the yaw rates needed to steer clear of
each boundary point, identifies the point with the greatest mismatch, and applies
a rate of steering aimed at reaching, within a time τs, the required yaw rate ψ̇req

for this point, assuming a simple vehicle model with wheel base L:

δ̇ = − L

Gτsvx
(ψ̇ − ψ̇req) (5)

Before computing ψ̇req, the model also applies a vehicle state prediction to coun-
teract its own reaction time delay TR.
The original publication [38] considered only lane keeping, but Chang [42] ap-

plied the same model to avoidance of static obstacles, with a safety margin ρC. In
the present work, seemingly the first time the model is applied to obstacles and
lane boundaries simultaneously, conflicts with lead vehicle boundary points were
given priority over lane boundary conflicts, and a separate safety margin ρL for
lane boundaries was added, with allowed negative values in the optimization, to
account for the apparent acceptance of moderate lane excursions in some of the

1Following [40], Salvucci & Gray [37] specified preview in terms of angles down from the horizon, which
in practice amounts to the same as using a preview distance. Here, it was also attempted to make the
preview speed-dependent, as in the MacAdam and Sharp et al. models, e.g. Dn = Tnvx, but if anything
this reduced the model’s ability of fitting the human data.
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Figure 5. Open loop avoidance steering. (a) The observed correlation between maximum leftward steering
wheel angle before reaching the lead vehicle, and maximum leftward steering wheel angle rate during the
same period. The Pearson correlation coefficients r are provided, as well as the slope k of least-squares fit
lines with zero intercept. The unexpected scenario data are not used in the model-fitting analyses presented
in this paper, but are shown here to illustrate that the two scenarios generated roughly similar human
behaviour; see further [32] and [34]. (b) The steering wheel input generated by the open loop avoidance
model in this paper, here parameterized to illustrate the width of such a steering wheel pulse (0.84 s) that
would yield the k observed for the repeated scenario in panel (a).

human drivers. Furthermore, extending the model to handle the non-static lead ve-
hicle, lead vehicle state prediction was included, as also illustrated schematically in
Fig. 3(d). In three different versions of the model, this prediction was done assum-
ing a constant lead vehicle acceleration (2nd order), speed (1st order), and position
(0th order), respectively. To implement the scenario studied here, the lead vehicle
boundary points were included only from longitudinal position XS+∆XI, and the
lane change back to the right lane was achieved by placing the left-side boundary
points beyond longitudinal position X4 to between the two driving lanes; again,
see Fig. 3(d).

2.2.5. Open loop avoidance models

An additional model of collision avoidance steering was tested, motivated by a
linear correlation previously reported by Breuer [25], and replicated here: As shown
in Fig. 5(a), higher-amplitude avoidance manoeuvres were carried out with faster
steering movements. This finding suggests (a) that avoidance manoeuvre duration
was roughly constant between scenario recordings, and (b) that each manoeuvre’s
amplitude was determined before its initiation.
Therefore, in contrast to the closed-loop models described above, which calculate

a new control input at each time step in a simulation, an open-loop model was
posited, applying a pulse of steering wheel rotation represented as a Gaussian cut
off at ±2 standard deviations; see Fig. 5(b). The pulse duration TD = 2TH was
included as a free parameter, and pulse amplitude was determined as a function
of the collision situation a reaction time TR before manoeuvre initiation. To allow
for the above-mentioned intra-driver variation in collision avoidance timing, the
peak of the pulse was placed at time TS + TA, where TS was the time at which the
truck’s longitudinal position was XS (see above), and TA was another free model
parameter.
Five different versions of the model were tested, all using a model parameter K

to determine the steering pulse amplitude as (a) a constant, situation-independent
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amplitude K, (b) K times the optical expansion, or looming, of the lead vehicle
on the driver’s retina [43], or (c-e) K times the steering required to avoid the lead
vehicle with a safety margin ρC , given the steady state yaw rate response of the
linear vehicle model described in 2.2.1, and a lead vehicle state prediction of orders
zero through two (cf. Sec. 2.2.4).
While this model is neutral on whether the driver is controlling steering wheel

angle δ or its rate of change δ̇, the choice of target signal has an impact on model
parameter-fitting (further discussed in Sect. 4.3). Therefore, this model was fitted
separately both as controlling δ and δ̇.
The model’s sensitivity to the TR parameter was also tested, by parameter-fitting

an additional version of the δ-controlling, 2nd order yaw rate requirement model,
with TR fixed at 0.2 s for all drivers.

2.2.6. Yaw angle/rate nulling stabilization models

As has been reported elsewhere [32], the Salvucci & Gray model is reasonably
successful at fitting the stabilization steering data studied here. Additional explo-
ration indicated that much of the variance explained by the model was accounted
for by its far point control (the second term in Eq. 4), shown in [32] to approximate
a yaw rate nulling steering behaviour: δ̇ = −Kψ̇, where K is a model parameter.
Here, such a model was tested directly, as well as a time-integrated yaw angle
nulling version δ = −Kψ, both with a reaction time delay TR.

2.3. Division into avoidance and stabilization steering phases

Preliminary experimentation indicated that the steering models were differentially
successful at fitting steering during collision avoidance and vehicle stabilization.
Therefore, the data set was split accordingly, and model parameter-fitting was
carried out separately on the two sets.
The collision avoidance phase of a recorded scenario was defined to begin when

the lead vehicle started decelerating, and to end when the driver began applying
considerable rightward steering wheel rotation, interpretable as a transition from
leftward collision avoidance, to lane alignment and vehicle stabilization. This onset
of rightward steering wheel rotation was generally clearly visible in the data, and
was found to be suitably defined as the last point of leftward steering (δ > 0)
where δ̇ > −50◦/s. The example recordings in Fig. 6 (further explained in Sect. 3)
illustrate where this transition typically occurred.
The stabilization phase was defined to begin at the same transition point, and

to end at whichever occurred first of (a) the truck having travelled 250 m after
passing the lead vehicle, (b) the truck’s longitudinal speed falling below 10 km/h,
or (c) the driving simulator’s safety shutdown system having aborted the scenario
due to road departure, or a deviation of truck heading from the road’s forward
direction of 90◦ or more.

2.4. Model parameter-fitting

The repeated scenario generated 12 measurements for each of the 24 subject drivers
except three, where, due to technical shortcomings, or subject failure to comply
with experimental instructions, one or two scenario instances could not be recorded
or used. Before parameter-fitting of models, all recorded signals were down-sampled
to 5 Hz. The main motivation for down-sampling was the increase in optimization
speed, but it could also be argued that at high sample rates, adjacent data points
would anyway be highly correlated, and the input quantities to the tested models,
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all constrained by the dynamics of the truck on the road, would also not be expected
to contain much valuable information frequencies above 5 Hz.
At each included data point i, a model undergoing parameter-fitting was fed its

required input data from the appropriate recorded signals, with delays if applicable,
and the goal of the parameter-fitting, implemented using a genetic algorithm (GA),
was to achieve a model output x̂i as close as possible to the observed human control
xi at the same point in time, with xi equal to either δi or δ̇i, depending on the
model1. For further information on GA optimization in general, see [44], and see
Appendix A for full details on the specific GA used here.
To quantify model fit, the coefficient of determination R2, interpretable as the

fraction of steering variance being explained by the model [45], was calculated for
each scenario S as:

R2 = 1− SSR
SST

= 1−
∑

i∈S(x̂i − xi)
2∑

i∈S(xi − x̄S)2
(6)

where x̄S is the average of xi, for i ∈ S. In other words, R2 can be negative, if a
model provides a worse model fit than simply guessing that x̂i = x̄S for all i ∈ S.
Holdout validation [44] was adopted: For each subject driver, the set of available

recorded scenarios was divided into one training set and one validation set, of equal
size2. The GA was set up to maximize the average of R2 across the scenarios in the
training set, but, in order to prevent over-fitting, the final model parameterization
was selected as the parameterization with highest average R2 across the validation
set. The allocation of recorded scenarios to the two sets was designed to balance the
amount of occurring vehicle instability between them: For each driver, the recorded
scenarios were ordered by increasing maximum body slip angle, this ordered list
was separated into pairs, and finally one randomly selected scenario in each pair
was assigned to the training set, and the other to the validation set.
Thus, for each of the 24 drivers and each of the two steering phases, one opti-

mization was carried out of each tested driver model. The total number of training
and validation data points xi used for one optimization ranged from 200 (avoid-
ance steering for a subject with only ten recorded scenarios) to 900 (stabilization
steering for a subject with twelve recorded scenarios).

3. Results

Table 1 summarizes the model-fitting results, per model and steering phase, as the
average validation R2 across the 24 drivers. Also listed are the numbers of effective
free model parameters (Neff), based on whether parameters were considered to have
an effect on steering in the two phases; see Appendix A for full details. Note that
the open loop avoidance model appears in the table both as a δ and δ̇ controlling
model (see Sect. 2.2.5).
Figs. 6 and 7 show, in their leftmost columns, distributions of per-driver vali-

dation R2 for some of the best-fitting model variants. It can be observed that the

1Alternatively, one could have rerun the studied scenario in closed-loop simulation from initial conditions,
fitting parameters to achieve a match between resulting driver steering histories or vehicle trajectories. Such
an approach was not adopted here, both due to it being several orders of magnitude more computation-
intensive, and since the inherent instability of the low-friction scenario would presumably have rendered
fitting very difficult; a small error in driver model or initial conditions can lead to large deviations in
scenario outcome.
2Except for one single subject driver where the number of available instances was odd, for which one more
instance was allocated to the training set.
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Table 1. Effective number of model parameters (Neff ) and average goodness-of-fit (R2) on validation data, across

all drivers, for all tested models in the avoidance and stabilization steering phases. Note that some models were

tested in only one of the two phases.

Target signal Model Variant
Avoidance Stabilization

Neff Av. R2 Neff Av. R2

Steering wheel MacAdam 6 0.49 5 0.50
angle Sharp et al. 9 0.46 8 0.60

Open loop avoidance constant 3 -1.20
looming 4 0.71
0th order 5 0.54
1st order 5 0.66
2nd order 5 0.76
2nd order, TR fixed 4 0.75

Yaw angle nulling 2 0.35

Steering wheel Salvucci & Gray preview free 8 0.20 8 0.68
angle rate preview fixed 6 0.68

Gordon & Magnuski 0th order 5 0.25 4 0.49
1st order 5 -0.02 4 0.50
2nd order 5 0.17 4 0.50

Open loop avoidance constant 3 0.41
looming 4 0.46
0th order 5 0.47
1st order 5 0.40
2nd order 5 0.47

Yaw rate nulling 2 0.54

spread across drivers was rather similar between models. Further divisions into
subgroups based on driver experience and ESC state indicated limited or no im-
pact of these factors on model fit; one example of such a division can be seen in
Fig. 9(a). Based on these observations, the discussion in the next section will com-
pare models mainly in terms of the average validation R2 values in Table 1. As a
complement to this perspective, and to provide a more thorough grasp of actual
model behaviour, Figs. 6 and 7 also show five example scenario recordings each,
along with model predictions. These examples were selected to include driving both
with and without ESC for both low and high experience drivers, to illustrate some
specific strengths and weaknesses of the different models, while at the same time
aiming for an average R2 across the examples close to the average validation R2

for each model. The discussion in the next section will provide suggestions on how
to interpret the various examples.
Fig. 8 shows distributions of obtained parameters for the parameter-reduced

variants of the open loop avoidance and Salvucci & Gray models, as well as for
the yaw rate nulling model. The correlation between the safety margin ρC and the
steering gain K in panel (a) is statistically significant1 (r = −0.76; p < 0.0001),
but the difference in the steering pulse duration TH between experience groups in
panel (b) is not (t(22) = 0.654; p = 0.51). The correlation between the steering
gains kf and knP in panel (c) is statistically significant (r = −0.71; p = 0.0001), and
so is the difference in reaction time TR between experience groups for the Salvucci
& Gray model (panel (d); t(22) = −2.19; p = 0.039); however not for the yaw rate
nulling model (panel (e); mean TR 0.29 s and 0.34 s for experienced and novice
drivers; t(22) = 1.82; p = 0.083). The correlation between TR and K in panel (e)
is statistically significant (r = −0.58; p = 0.003).

1A p < 0.05 criterion for statistical significance is adopted here.
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Figure 8. Obtained parameter values for the parameter-reduced variants of the open loop avoidance
(panels (a) and (b)) and Salvucci & Gray (panels (c) and (d)) models, as well as for the yaw rate nulling
model (panel (e)), for the 24 drivers in the data collection. In panels (a), (c), and (e), black symbols denote
experienced drivers, and light red symbols denote novice drivers. Large and small symbols denote drivers
for which average model R2 was above and below the median value among the drivers, respectively. In
panel (c), each driver is represented by a pair of one circle and one square, joined by a vertical line. The
white symbols show parameterizations suggested for passenger car driving by Salvucci & Gray [37]; all of
these are kf = 20, but have been slightly displaced for clarity. In panels (b) and (d), distributions of model
parameters TH (the half-length of the open loop avoidance steering pulse) and TR (the reaction time of
the Salvucci & Gray model) are shown, separately for experienced and novice drivers.



August 10, 2014 21:47 Vehicle System Dynamics MarkkulaEtAlVSD

14 G. Markkula et al.

4. Discussion

In general, the very simple open loop avoidance and yaw rate nulling models turned
out to work rather well, and the performance of the more advanced models can
to some extent be understood as being dependent on an ability to generate the
behaviour of the simpler models. These aspects will be discussed below, separately
for avoidance and stabilization. Before concluding, some remarks will also be made
regarding the challenges involved in comparing and validating driver behaviour
models.

4.1. Collision avoidance

4.1.1. Open loop avoidance steering

The open loop avoidance model provided the best fits of the human avoidance
steering, both when comparing among models targeting δ and those targeting δ̇.
Although there were cases where the human avoidance steering was more gradual
(Example #1 in Fig. 6) or oscillatory (Example #5), in a majority of cases most
of the total steering angle change was applied in a short period of time (Examples
#2–#4), such as suggested by the correlation in Fig. 5(a). This type of open-loop
account of collision avoidance steering is not new, and similar models have been
used not the least in accident reconstruction work and what-if simulations [46–48].
The difference in fit between the constant and variable amplitude variants of

the model (especially notable for the δ-controlling model; R2 = −1.20 versus R2

between 0.54 and 0.76) implies that drivers adapted their avoidance steering to
the specific situation. The highest observed R2 values (0.76 and 0.47, for the δ
and δ̇ controlling variants, respectively) were obtained with the assumption that
drivers selected their avoidance amplitude based on a 2nd order steering require-
ment prediction. This suggests that drivers may have been able to take the non-zero
deceleration of the lead vehicle into account. On the other hand, the model variants
based on looming, which does not include any acceleration information, reached
almost as high R2 values (0.71 and 0.46), so the results are far from conclusive in
this respect.
When TR was a free parameter in the optimizations, it varied throughout the

entire permitted optimization interval of [0, 2] seconds, something which could be
interpreted as this parameter not being highly important for achieving a good fit,
and this is confirmed by the very minor decrease in validation R2 (from 0.76 to
0.75) when fixing TR at 0.2 s. It is this parameter-reduced variant of the model
which is the basis of Figs. 8(a) and (b). In (a), the correlation between ρC and K
is clearly due to two clusters of parameterizations. These are interpretable, respec-
tively, as (1) steering roughly as deemed necessary given the linear, low-friction
vehicle model (K close to 1) to achieve what seems like an unrealistically large
safety margin of about 1.5 – 3 m, and (2) steering aiming for a small safety margin
of about 0 – 0.5 m, but applying a steering about three times larger than what the
linear vehicle model predicts would be needed for this purpose. A possible inter-
pretation of these fits is that the drivers adapted to the low friction circumstances,
responding to vehicle understeering by applying larger steering angles than they
would normally [23, 49]. Indeed, a separate, cursory analysis of the avoidance steer-
ing in the first, unexpected scenario suggests that while steering was predominantly
pulse-like already at this point in the experiment (as implied also by Fig. 5(a)),
the steering pulse amplitudes were generally smaller than predicted by the models
fitted to the repeated-scenario data. To further clarify exactly how drivers select
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their avoidance steering amplitude, more data would be needed, from more varied
kinematic situations.
With regards to the duration of avoidance steering (parameter TH), Fig. 8(b)

shows considerable variation between individuals, between 0.2 s and 1 s. The steer-
ing rate plots in the bottom three rows of Fig. 6 suggest that this is due to variations
in the number of smaller steering corrections needed to achieve satisfactory colli-
sion avoidance (cf. [50]). It can also be noted that the average of 0.56 s shown in
Fig. 8(b) is not far from the 0.42 s predicted by the slope of the correlation in
Fig. 5. That these values are not exactly identical despite being estimated from
the same data set is not surprising, if one considers the major differences between
the two methods of estimation.

4.1.2. The other models of avoidance steering

In the cases where most of the steering wheel change occurred in a brief period
of time (especially clear in Examples #2 and #3 in Fig. 6), the closed loop δ̇-
controlling models by Salvucci & Gray and Gordon & Magnuski were less able
than the δ̇-controlling open loop model at reproducing the resulting overall pulse
of steering change. The closed loop models controlling δ (MacAdam and Sharp et
al.) did produce the corresponding step-like δ outputs, but reached lower average
validation R2 than the δ-controlling open loop model, despite having a higher
number of free parameters.
Besides lower R2 values, another possible objection to the MacAdam and Sharp

et al. models is related to their use of the desired path construct, which in the
context of collision avoidance could be seen as problematic in at least two ways:
(1) With a moving lead vehicle, the desired path will, during a first period of time,
typically pass through the lead vehicle, which makes this construct less attractive
than it may seem in scenarios where a path can be charted between stationary
obstacles or lane boundaries. (2) There is a parameter redundancy by which an
entire single lane change path (such as in this collision avoidance scenario) can
be shifted longitudinally without affecting the steering behaviour, as long as one
or both of the preview and reaction time parameters are appropriately modified
at the same time. Besides these specific issues, it can also be noted that recent
neurobiological models of basic sensorimotor control seem to be moving away from
desired trajectory constructs, instead placing emphasis on goal states [51, 52], ar-
guably more similar to the target lateral position of the Salvucci & Gray model or
the Gordon & Magnuski model’s goal of avoiding obstacles and lane boundaries.

4.2. Stabilization

4.2.1. Yaw rate nulling stabilization steering

When it comes to stabilization steering, it has been previously shown that models
fitted to the repeated scenario data could successfully predict also unexpected sce-
nario behaviour [32]. Here, the most important new result is the good fits obtained
for the yaw rate nulling model. Given that the highest average validation R2 across
all stabilization models was 0.68, for the Salvucci & Gray model with six or eight
free parameters (preview distances fixed or free), the R2 of 0.54 yaw rate nulling
model, with only two free parameters, seems very good. Qualitatively, the fits (such
as shown in Fig. 7) are also rather convincing. The most natural interpretation of
these observations seems to be that in the studied scenario, stabilization steering
was indeed driven to a large extent by a control law similar to what the yaw rate
nulling model suggests.
Three main types of cases were identified where the yaw rate nulling model did
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Figure 9. A more detailed view of model fits for the yaw rate nulling and MacAdam models, as a function
of (a) experimental conditions, (b) maximum yaw rate attained during each scenario, and (c) scenario
repetition. In panels (b) and (c), each small dot corresponds to one recorded scenario from the model-
fitting validation set (three points with R2 < 0 not shown for the yaw rate nulling model, two for the
MacAdam model), and the r values are the corresponding Pearson correlation coefficients. In (a), the r
values were calculated with the logarithm of the maximum yaw rates (such as shown here). Without the
logarithms, r = 0.40 (top) and r = 0.05 (bottom). In (b), the rings are averages per repetition.

not work well: (1) Cases where the driver seemingly gave up steering in the face
of imminent control loss (Example #6 in Fig. 7), possibly accounting to some ex-
tent for the left tails of the non-ESC distributions in Fig. 9(a), since control losses
were more common without ESC [33]. (2) Cases with less vehicle instability and
less critical steering (Example #8 in Fig. 7). Fig. 9(b) illustrates this phenomenon
in more detail, by showing increasing model fits for increasing maximum vehicle
yaw rates. (3) One or two novice drivers (including driver 6, see Example #10
of Fig. 7), who seem to have been using steering strategies of a qualitatively dif-
ferent kind, possibly accounting for the low-experience distributions in Fig. 9(a)
being marginally farther to the left (combined average R2 = 0.52) than the high-
experience distributions (combined average R2 = 0.56).
The pattern of lower steering gains K in drivers with longer reaction times TR,

shown in Fig. 8(e), can be interpreted as an adaptation of steering aggressivity to
one’s own response speed, to ensure vehicle stability. Such adaptation could have
occurred as a learning effect during the experiment, but the lack of any clear effect
of scenario repetition on model fit (Fig. 9(c)) rather suggests that drivers came to
the experiment with this adaptation already in place.

4.2.2. The other models of stabilization steering

However, the yaw rate nulling model can hardly provide a full account of steering
in the studied scenario; it can stabilize a vehicle directionally, but it has no means
to make it stay on a road or close to some path. In contrast, all of the other tested
models have such means, and all of them can also be made, more or less naturally,
to exhibit some degree of yaw rate nulling.
The yaw angle nulling model will, by definition, have a steering rate of the

yaw rate nulling form. Nevertheless, it provides rather poor fits of the human
steering angle data (average validation R2 = 0.35). This could possibly be due
to the model’s lack of a desired path or similar construct, making it unable to
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exhibit the rightward lane change during stabilization1. To keep the corresponding
low-frequency component error down (e.g. in the second halves of Examples #8
and #9 in Fig. 7), the optimization may have favoured lower steering gains, in
turn making the model unable to generate high-frequency steering of sufficient
magnitudes during vehicle instability.
If so, the better fits of the Sharp et al. model (average validation R2 = 0.60)

could be due to its yaw angle nulling (the term in eψ) being relative to a desired
path, but the lateral position error terms in the model may of course also have
contributed. A main source of reduced R2 values for this model seems to have been
cases where the driver deviated from his or her own typical path in the scenario,
such that the model’s fitted desired path was not appropriate (Example #8).
The MacAdam model also has a desired path, but no direct means of applying

yaw angle or yaw rate nulling. The fits obtained here had long preview times TP
(average 3.6 s, compared to 2.6 s for the Sharp et al.model). This makes the optimal
control prioritize following the general direction of the road over correcting for
local lateral position errors, in essence reducing it to the yaw angle nulling model,
a similarity which is clear from Fig. 7. The resulting validation R2 average of 0.50
was slightly lower than for the yaw rate nulling model, despite the larger number
of free parameters, and there was no increase in model fit with increasing yaw
instability (Fig. 9(b)).
The Gordon & Magnuski model, by Eq. (5), applies yaw rate nulling as long as

|ψ̇req| ≪ |ψ̇|. However, when close to a lane exceedence (Example #6 in Fig. 7)
the model prioritizes lane keeping higher than the human drivers did. Overall, the
model is also less aggressive in its yaw rate nulling behaviour than the humans (see
the other examples in Fig. 7); possible reasons for this include the steering gains
being kept down (the τs being kept high) to minimize error when yaw rates are low,
and the model’s satisficing approach of aiming for non-zero yaw rate remainders
where the humans seemingly did not.
As shown mathematically in [32] and illustrated in Fig. 10, on a straight road

far point rotation approximates negative yaw rate, such that the far point control
of the Salvucci & Gray model can be understood as yaw rate nulling1. This insight
helps explain the success of the Salvucci & Gray model in fitting the stabilization
steering data, and also provides a candidate for a perceptual cue supporting yaw
rate nulling behavior. However, the fact that the far point was parameter-fitted,
here, to Df = 123 m ahead of the truck, whereas the 3◦ down from the horizon
suggested by previous authors [37, 40] correspond to Df ≈ 50 m for the truck in
the experiment, could be taken to suggest that also other cues, such as vestibular
cues [23] or large-field visual motion [55] may have been at play.
With regards to the other parameters of the Salvucci & Gray model, it is in-

teresting to note the statistically significant faster response times for experienced
drivers (Fig. 8(d)), in line with what has been suggested by several other authors;
see e.g. [23] and [20, pp. 1132–1133]. The correlation between kf and knP (Fig. 8(c))
could be understood as a parameter redundancy; one which is not surprising given
the strong correlation between near and far point rates visible in Fig. 10. It is clear
that with Dn = 16 m, also the near point angle rate was a very close approximation
of negative yaw rate, especially at low lateral speeds relative to the road. The exact
values obtained here for kf and knP should therefore not be attributed too much
importance; they could simply be a more or less arbitrary division of the yaw rate
nulling model’s single gain parameter K.

1For studies of a yaw angle nulling model with a desired path, see [53] or [54].
1On a circular road, far point rotation nulling corresponds to nulling of yaw rate error.
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Figure 10. An illustration of the input quantities used by the Salvucci & Gray [37] model, in one example
recording. The top panel shows the vehicle trajectory, including arrows showing momentary heading of the
truck’s front. The bottom panel shows the model input quantities, for Dn = 16 m and Df = 123 m, as
well as negative vehicle yaw rate. The discontinuity in the near point angle plot corresponds to the truck
reaching longitudinal position X3, where the model switches its target lane to the right. In both panels,
longitudinal position zero corresponds to the point where the truck’s front reached the rear of the lead
vehicle, and the vertical dashed lines show the beginning and end of the stabilization phase as defined in
Sec. 2.3.

4.3. Comparing models of driver control behaviour

One limitation in the comparisons presented here arises from some of the models
predicting steering wheel angle δ, and others its time derivative δ̇. The differenti-
ation from δ to δ̇ attenuates steering variations at low frequencies and amplifies
those at high frequencies, which means that model-fitting to these two signals will
put emphasis on different aspects of steering. For example, the δ and δ̇-controlling
variants of the open loop avoidance model are logically equivalent, but the lim-
itations of assuming a single burst of steering are more obvious in the δ̇ signal
than in the δ signal, and this results in lower R2 values for the δ̇ model variants.
Indeed, none of the tested δ̇-controlling models include any input signals or mecha-
nisms which could have allowed them to fully reproduce the type of high-frequency
variations in δ̇ visible in Figs. 6 and 7.
Another limitation, here, is the informal treatment of model parameter count.

In theory, additional model parameters cannot reduce model fit, only increase it,
and will at the same time increase the risk of obtaining parameter values which
overfit to regularities that are unique to the specific data set at hand (e.g. due to
only considering one single driving scenario, such as here), thus potentially reducing
generality of the parameter-fitted model. There are statistical methods for properly
managing this trade-off between model complexity and model fit [56], but these
are devised for probabilistic models, as opposed to the completely deterministic
models considered here.
Because of the limitations outlined above, the results presented here do not

provide grounds for a conclusive recommendation on what model or models to
prefer for e.g. simulated evaluation of ESC. Leaving between-model R2 comparisons
to the side, an advantage of the Sharp et al. model is that it performed reasonably
well both in avoidance and stabilization, implying that one could use a single model
for an entire scenario. On the other hand, it could be argued that the Salvucci
and Gray model seems more psychologically plausible, due to its input quantities
being readily available to a human driver, and since it does not need to assume
an internally planned desired path. Psychological plausibility may not be a major
priority in some applied contexts, but could provide the benefit of a model that
generalizes better beyond the specific data to which it has been parameter-fitted.
It should also be acknowledged, however, that while parameter-fitting of models
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Table 2. A summary of advantages and disadvantages of the various tested models, in the studied low-friction

collision avoidance scenario.

Model Advantages in the studied scenario Disadvantages in the studied sce-
nario

MacAdam Vehicle-independent parameters.
Reasonable fit of avoidance steering.

Relies on desired path construct to
achieve fit of avoidance steering.
Rather poor fit of stabilization steer-
ing.

Sharp et al. Reasonable fits of both avoidance
and stabilization steering.

Relies on desired path construct.
Many parameters.

Salvucci & Gray Best fit of stabilization steering.
Psychologically plausible input
quantities.

Poor fit of avoidance steering.
Rather many parameters.

Gordon & Magnuski Psychological plausibility of satisfic-
ing approach.

Poor fit of avoidance steering and
rather poor fit of stabilization steer-
ing.

Open loop avoidance Best fit of avoidance steering. Not applicable to stabilization steer-
ing.

Yaw angle nulling Few parameters. Not applicable to avoidance steering.
Poor fit of stabilization steering. Not
useful as a closed-loop model.

Yaw rate nulling Reasonable fit of stabilization steer-
ing with few parameters, thus po-
tentially indicative of a relevant be-
havioural phenomenon.

Not applicable to avoidance steering.
Not useful as a closed-loop model.

such as performed here may be useful for understanding differences between models,
and for pruning out models which do not work at all, it is not necessarily a suitable
method for elucidating psychological mechanisms [57]. Here, the good fits of the
yaw rate nulling model seem rather compelling, since this model has so few free
parameters, but due to the parameter count effects discussed above, the higher R2

values for the six-parameter Salvucci & Gray model should not be taken as proof
of that model’s underlying assumptions, e.g. that drivers are using near and far
points to guide their steering. To study underlying mechanisms, a better approach
is to instead identify situations where competing models diverge in their predictions
about human behaviour, and then test these predictions in experiment [57].
In future model comparisons, to avoid the δ-δ̇ type of difficulty, one could con-

sider fitting all models to the same control signal (e.g. δ̇). A study of closed-loop
behaviour of the parameter-fitted models is also a natural next step, but has been
beyond the scope here.

5. Conclusion

The work presented here has clarified some similarities and differences between a
number of existing and novel models of driver steering. The strengths and weak-
nesses of these models in the specific studied scenario are summarized in Table 2.
While it has been shown that several of the tested models were reasonably capa-
ble of reproducing the observed human steering behaviour, it also remains clear
that, even within a well-defined and constrained context, it is non-trivial to decide
which exact models to prefer over others. Furthermore, the poor fits reported here
for some models do not imply that these models cannot work well in other contexts
or scenarios. Especially regarding the Salvucci & Gray and Gordon & Magnuski
models, it should be acknowledged that they were originally formulated for routine
lane keeping, rather than near-limit manoeuvring.
Overall, model fits were not much affected by whether drivers were novices or

experienced, or whether they were driving with ESC on or off. The drivers included
here were all truck drivers, driving a simulated truck, but the simplicity of the
main observed behavioural phenomena (open loop avoidance and yaw rate nulling
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stabilization) makes it reasonable to hypothesize that these phenomena could occur
also in passenger car driving.
Regarding the general approach to modelling human control behaviour, the vari-

ous models tested here are based on rather different underlying assumptions: From
the MacAdam model that emphasizes an internalized model of vehicle dynamics
and a desired path, to the Salvucci & Gray model that instead emphasizes vi-
sual cues allowing the driver to aim for a target lateral position. The results and
analyses presented here show that these types of accounts can predict equivalent
behaviour in some cases, but could diverge in others:
Collision avoidance steering was best described by the open-loop model, and

the best-fitting version (average validation R2 = 0.76) could be interpreted as
the drivers acquiring an updated internal model of the vehicle’s behaviour on the
low-friction road. However, the version of the same model based instead on opti-
cal expansion of the lead vehicle on the driver’s retina performed almost as well
(average validation R2 = 0.71), with one free parameter less.
Stabilization steering was explained to a large extent (average validation R2 =

0.54), and especially well in recordings with more pronounced yaw instability, by
the two-parameter yaw rate nulling model, according to which drivers apply a
steering rate proportional to the negative of the vehicle’s yaw rate. It is interesting
to note that the Salvucci & Gray model (and to some extent also the Sharp et al.
and Gordon & Magnuski models) clearly does predict a causation from instability
to yaw rate nulling, due to sight point rotation nulling, and the Salvucci & Gray
model also provided the highest average validation R2 of 0.68 for the stabilization
steering data.
The MacAdam model on the other hand, despite having more free parameters

than the yaw rate nulling model, provided slightly worse fits of the stabilization data
(average validation R2 = 0.50, without a trend of better fits for more pronounced
yaw instability). While, again, it is possible that better fits could be obtained by
assuming that drivers acquired a more advanced, non-linear internal vehicle model
[23, 49], compensating for tyre saturation with increased steering, it is presently
not clear whether additional layers of assumed driver insight into vehicle dynamics
would in the end really result in such a simply described, and seemingly non-
optimal, behaviour as yaw rate nulling.
The fact that yaw rate nulling behavior during instability is correctly predicted

by models originally devised for non-critical driving suggests the interesting possi-
bility that drivers may be applying the same sensorimotor control heuristics (e.g.
sight point rotation nulling) in both routine and critical situations (cf. [58]). By such
an account, seemingly optimal, vehicle-dynamics-adapted behaviour from drivers
in routine driving situations can be understood as these sensorimotor heuristics,
although far from optimal in general, being precisely tuned for performance and
efficiency after extended practice in a constrained operating regime. This would im-
ply that modellers can afford themselves the practical advantages of optimal control
theory and internal vehicle dynamics representations, when simulating driving sit-
uations of which the modelled driver has much experience (e.g. normal driving for
normal drivers, race car driving for race car drivers). However, when modelling less
frequent situations, such as traffic near-crashes, one may be better off with a model
that is based on the underlying sensorimotor heuristics.
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Table A1. A listing of all model parameters included in the model-fitting optimizations. For each parameter,

the allowed range in the optimizations is indicated, together with information on what models made use of

the parameter, and on whether the model was considered effective in the collision avoidance and stabilization

steering phases, respectively (i.e. whether or not it was included in the corresponding Neff count in Table 1).

Parameter Allowed range Used by modelsa Collision avoidance Stabilization

∆X1 [−50, 50] m M, S x
X2 [−20, 30] m M, S x
X3 [20, 70] m M, S, S&G x x
X4 [100, 250] m M, S, G&M x
Y [−1.65,−6.5] m M, S, S&G x x
TP [0.1, 5] s M, S x x
TR [0, 2] s M, S, S&G, G&M, OLA (ex-

cept constant amplitude vari-
ant), YAN, YRN

x x

Kψ [0, 100] S x x
K1 [0, 100] S x x
Kp [0, 10] S x x
∆XI [−50, 0] m S&G, G&M x
Dn [0.1, 200] m S&G x x
Df [0.1, 200] m S&G x x
kf [0, 100] S&G x x
knP [0, 50] S&G x x
knI [0, 10] S&G x x
ρC [0, 3] m G&M, OLA (steering require-

ment variants)
x x

ρL [−2.25, 3] m G&M x x
τs [0, 10] s G&M x x
K [0, 20] OLA (constant amplitude vari-

ant)
x N/A

K [0, 200] OLA (other variants) x N/A
TA [−0.5, 0.5] s OLA x N/A
TH [0.1, 1] s OLA x N/A
K [0, 100] YAN, YRN N/A x

aM: MacAdam; S; Sharp et al.; S&G: Salvucci & Gray; G&M: Gordon & Magnuski; OLA: Open loop
avoidance; YAN: Yaw angle nulling; YRN: Yaw rate nulling.

Appendix A. Genetic algorithm implementation

In the GA used for model-fitting (see Sec. 2.4), a candidate model parameterization
was represented by a GA individual with a genome of length N , the number of
free parameters of the model. Each gene was a floating point number in the inter-
val [0, 1], corresponding to a value within the allowed range for the parameter in
question. These ranges are listed in Table A1, also showing which parameters were
considered effective in the collision avoidance and stabilization phases, respectively.
The GA was configured, in the terminology and notation of [44, pp. 48–55], as

follows: population size 100, tournament size 2, tournament selection parameter
ptour = 0.9, crossover probability pc = 1, mutation probability pmut = 1/N . Mu-
tation consisted in either (with probability 0.5) randomly choosing a new value
from a uniform distribution in [0, 1], or otherwise applying real-number creep from
a normal distribution of standard deviation 0.005, after which the new value was
bounded to [0, 1]. The best individual in a given GA generation was always retained
in the next generation (elitism). Initial exploration indicated that model-fitting R2

values were not very sensitive to the exact GA configuration, and the specific GA
parameter settings adopted here were selected based on a criterion of low variability
in R2 estimates across repeated optimizations.
The GA was terminated at completion of generation number 2G, whereG was the

last generation in the optimization with an increase in validation fitness. However,
all optimizations were allowed a minimum of 300 generations.


