
A correctness analysis for the algorithm presented in “Symbolic
Computation of Boundary Unsafe States in Complex Resource

Allocation Systems Using Partitioning Techniques” by Z. Fei, K.
Akesson and S. Reveliotis, IEEE CASE 2015 (submitted)

Zhennan Fei, Knut Åkesson and Spyros Reveliotis

To prove the correctness of the considered algorithm, we need to show that (i) the algorithm terminates
in a finite number of steps, (ii) the returned set χFB contains all the feasible boundary unsafe states, and
furthermore, (iii) χFB does not contain any feasible safe state. We start by addressing item (i).

Theorem 0.1. The considered algorithm terminates in a finite number of steps.

Proof: To establish Theorem 0.1, we make the following remarks: From the formal statement of the
considered algorithm, it is clear that it will terminate if and only if (iff ) the condition of Line 29 is
met at some iteration. But since the underlying state space is finite, and every non-terminating iteration
increases χU by at least one state, to establish the eventual satisfaction of the condition of Line 29, it
suffices to establish that the set χUnew generated at each iteration is non-overlapping with the set χU
produced by the previous iterations. This is attained by stating and proving the following lemma.

Lemma 0.1. In the iterations of the considered algorithm encoded by Lines 13-29, χU ∧ χUnew = 0
until the execution of Line 28.

Proof: Lemma 0.1 can be proved by noticing that since (i) each characteristic function ∆σi encodes
the transitions of a single event (type) σi, and (ii) the FSA corresponding to the RAS-modeling EFA Φ is
deterministic, the STD corresponding to each ∆σi is a set of “in-trees” (i.e., each state appearing in this
STD has possibly more than one incoming transitions but only one emanating transition). Because of
this structure, each state appearing in some ∆σi can be reached during the backtracing of the transitions
of ∆σi from a single path only, and therefore, only once.

Next, consider a deadlock-free unsafe state u, with emanating transitions corresponding to events
σk, k ∈ K ⊆ {1, . . . , µ}. As long as there is a set ∆σk for which state u does not belong in χσkLU (i.e.,
u has not been reached yet through the backtracing steps in ∆σk ), u will be still in χσkNU , and therefore,
it cannot be recognized as unsafe yet. Assuming that at some iteration u has been reached, through
backtracing, in all ∆σk , k ∈ K, then, u will enter χUnew at that iteration, through the execution of Lines
21-25, and eventually it will also enter χU , through the execution of Line 28. But due to the “in-tree”
structure of the transition sets ∆σi , u will not be encountered again in the subsequent backtracing of
these sets. This last remark settles the validity of, both, Lemma 0.1 and Theorem 0.1. �

Next, we proceed to establish the soundness of the considered algorithm, i.e., items (ii) and (iii) in the
requirements list that was provided in the opening paragraph of this document. We shall develop the
sought results by establishing a series of lemmas.

1



Lemma 0.2. The characteristic function χFD that is obtained from the symbolic operations performed
in Lines 1-10 of the considered algorithm identifies correctly the feasible deadlock states w.r.t. the
process-advancing events σ1, . . . , σµ from the transition sets ∆σ1 , . . . ,∆σµ .

The validity of the above statement should be evident from the description of this part of the algorithm
that is provided in the main text, and its formal proof is omitted for the sake of brevity. On the other
hand, the next lemmas establish that the considered algorithm observes state feasibility.

Lemma 0.3. For every transition (s, s′) of the EFA ∆E, feasibility of the target state s′ implies also the
feasibility of the source state s.

Proof: We prove the contrapositive of the above statement, i.e., every transition (s, s′) of the EFA ∆E

with an infeasible source state s has also an infeasible target state s′. Infeasibility of state s implies that
there exists some resource Ri with

vRi +
n∑
j=1

l(j)−1∑
k=1

Ajk[i] ∗ vjk = d 6= Ci,

for the values of the variables vRi and vjk, j = 1, . . . , n, k = 1, . . . , l(j)− 1 that define state s. But it
can be easily checked that every forward-advancing transition from state s preserves the invariant

vRi +
n∑
j=1

l(j)−1∑
k=1

Ajk[i] ∗ vjk = d,

and therefore, it cannot restore feasibility w.r.t. to the implied allocation of resource Ri. �

Lemma 0.4. All states entering the sets U and χFB during the execution of Algorithm 2 are feasible.

Proof: This lemma is an immediate implication of Lemmas 0.2 and 0.3, and of the fact that all the
elements of the sets U and χFB are obtained by starting from some feasible deadlock state in χFD and
backtracing upon some transitions in ∆E. �

Having established the feasibility of the states that are generated by the considered algorithm, the next
two lemmas address the additional properties of these states that define the algorithm correctness.

Lemma 0.5. The set U that is computed by the considered algorithm contains all the feasible unsafe
states in ∆E .

Proof: By Lemma 0.2 and Line 11 of the considered algorithm, U contains all the feasible deadlocks.
Next we will show that U also contains all the feasible deadlock-free unsafe states of the considered
RAS.

Let us consider any such feasible deadlock-free unsafe state û. The finite and acyclic nature of the
paths that define the execution logic of the various process types in the considered RAS class, implies
that the subspace that is reached from state û following only transitions in ∆σ1 ∨ . . .∨∆σµ has a finite,
acyclic structure. This remark, when combined with the presumed unsafety of state û, further imply
that every path in ∆σ1 ∨ . . .∨∆σµ that emanates from state û is an acyclic path that terminates at some
feasible deadlock state. Let ζ denote the longest length of these paths, where the length of a path is
defined by the number of the involved transitions. Next, we will show, by induction on ζ, that state û
will enter the state set U that is maintained by the considered algorithm before the termination of the

2



iteration in Lines 13-29. Also, in the following, we denote by uk the respective states resulting from
state û by executing its process-advancing events σk, where k ∈ K ⊆ {1, . . . , µ}.

First, we consider the base case of ζ = 1. Then, each state uk that is reached from û is contained in
χFD as a deadlock state; therefore, each transition (û, uk) will be contained in the corresponding ∆σk

U .
Hence, after the operations performed in Lines 16-18, û will be contained in χσkSU and χσkLU , for each
k ∈ K. Also, we notice that û cannot be in any χσiNU , for all i = 1, . . . , µ. Therefore, state û will be
correctly identified as an unsafe state in Lines 21-25, and eventually it will be included in the set χU .

Next, let us suppose that all the feasible unsafe states with a maximal path of length ζ − 1 from
the feasible deadlock states of χFD are correctly identified and included in set U by the considered
algorithm. Since the target state of each process-advancing transition (û, uk) that emanates from state
û has a maximal path leading to χFD of length less than or equal to ζ − 1, by the working hypothesis,
each uk eventually will be identified by the algorithm. Let us consider, in particular, the iteration where
the last of these states, say ul where l ∈ K, enters U . In the next iteration, the transition (û, ul) will be
in ∆σl

U and û will be in χσlSU (and thus, it is not in χσlNU ). Note that also state û is not in χσkNU , for any
k ∈ K \ {l}, since û has been added in χσkLU at earlier iterations. Hence, û will be included in χUnew
and eventually into χU . �

Lemma 0.6. The set U that is computed by the considered algorithm contains no feasible safe state of
∆E .

Proof: We prove this lemma by induction on the number of iterations performed by the algorithm.
The base case of zero iterations is covered by Lemma 0.2. Next, suppose that the statement of Lemma
0.6 is true for the set U constructed during the first n iterations. Then, as discussed in the algorithm
description that is provided in the main text, at iteration n + 1, every state entering χUnew has all
its emanating transitions leading into previously identified unsafe states, and therefore, it is correctly
classified as a new unsafe state. �

Now we are ready to state and prove the main result regarding the soundness of the considered algo-
rithm.

Theorem 0.2. The set χFB returned by the considered algorithm possesses the following properties: (i)
It contains only feasible states. (ii) It contains all the feasible boundary unsafe states in the underlying
RAS state-space. (iii) It contains no feasible non-boundary unsafe state. (iv) It contains no safe state.

Proof: Property (i) was established in Lemma 0.4.

Lemma 0.5, when combined with the logic of Lines 19 and 27 in the considered algorithm, imply that
the states in χFBA, which are the target states of ∆σi

Upre
, ∀i = 1, . . . , µ, constitute all the boundary unsafe

states that are reached by safe states through the processing-advancing events σ1, . . . , σµ. Similarly,
Lemma 0.5 and Lines 30-31 imply that the states in χFBL are all the boundary unsafe states that are
reached by safe states through the loading events. Hence, Property (ii) holds.

Property (iii) can be established by noticing that (a) all states in χFBL are boundary unsafe since they
are reached by some feasible safe states, and (b), by construction, the source states of ∆σi

Upre
,∀i =

1, . . . , µ, are safe states while the target states are unsafe.

Finally, Property (iv) results from Lemma 0.6 and the fact that all transitions in ∆LU and ∆σi
Upre

, ∀i =
1, . . . , µ, have target states in U . �

3


