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We show that self sustained mechanical vibrations in a model magnetic shuttle device can be driven

by both the charge and the spin accumulated on the movable central island of the device. Different

scenarios for how spin- and charge-induced shuttle instabilities may develop are discussed and

shown to depend on whether there is a Coulomb blockade of tunneling or not. The crucial role of

electronic spin flips in a magnetically driven shuttle is established and shown to cause giant

magnetoresistance and dynamic magnetostriction effects. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4897412]

1. Introduction

An electric weak link, such as a point contact between

two bulk conductors,1 dominates the electrical resistance of

any device into which it is incorporated. A bias voltage

applied across the device therefore creates an electric field

that is strongest near the weak link, where the electrons can

be greatly accelerated and gain considerable excess energy

(“hot” electrons).2 Energy is pumped into the electronic sub-

system only in a small volume with a linear dimension of the

order of the length of the weak link, which can easily be

much shorter than the characteristic length for energy trans-

fer from the electrons to other degrees of freedom. In this

case few excitations caused by electron energy relaxation

are created in the vicinity of the weak link since most of the

“hot” electrons have escaped well into the bulk conduc-

tors—and their density has decreased greatly—before they

loose their excess energy. This means that the electrons can

gain a large amount of extra energy, which can be fully con-

trolled by the bias voltage applied, without any significant

Joule heating of the device—a situation which has been

widely exploited for point-contact spectroscopy.3 If, how-

ever, a certain type of elementary excitation is trapped

within the weak link the situation can be drastically differ-

ent. This is because even for a small excitation rate a signifi-

cant amount of energy may then accumulate in the

corresponding degree of freedom near the weak link and

considerable “heating” of the subsystem corresponding to

such a selected degree of freedom becomes possible.

Elementary excitations of lattice vibrations (phonons)

are one of the most common results of inelastic relaxation of

hot electrons in a weak link.4 If the excited phonons are free

to propagate away form the vicinity of the link there is not

much heating, provided the weak link is shorter than the

phonon energy relaxation length. In this case electron-

phonon scattering gives rise to a small correction to the re-

sistance of the device, which can be harvested by point-

contact spectroscopy to provide information about the pho-

non spectrum and the electron-phonon coupling strength in

the material.3

A different situation occurs if localized vibrations of a

mechanical resonator (“vibrons”) can be excited. An exam-

ple of such a resonator is the movable conducting “dot” of a

nanomechanical shuttle device, suspended between bulk

source and drain electrodes,5 which in effect serves as a
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weak electric link between the electrodes due to electron

tunneling between dot and electrodes. Since the rate of elec-

tron tunneling is sensitive to the location of the dot the elec-

tronic and mechanical degrees of freedom are coupled and

energy can be supplied to the latter if an electrical current is

injected into the device. Rather than heating, the result of

such an energy supply can—under the right circumstances,

i.e., if the work done by the electrostatic force on the charged

dot is positive over one vibration period—be an accumula-

tion of coherent vibrons corresponding to self-excitation

of centre-of-mass dot vibrations5 (for reviews see, e.g.,

Refs. 6 and 7).

The spin degree of freedom of the electrons affects the

energy transfer to the vibronic subsystem in two ways if the

source and/or drain electrodes of the shuttle device are made

of magnetic material. First, and rather trivially, the tunneling

rates will be spin-dependent if the electron densities of states

in the electrodes are different for different spin projections.8

Secondly, and perhaps more interestingly, in addition to the

electrostatic force that acts on the charged dot/shuttle it will

be subject to a magnetic exchange force due to the coupling

of the net spin of the dot to the magnetizations of the leads.

Due to the interplay between the electrostatic Coulomb force

and the spin-dependent exchange force a rich variety of

electro-spintromechanical phenomena govern the operation

of such a magnetic shuttle device. In this work we will study

this interplay systematically in the limit when the source and

drain electrodes are 100% spin polarized close to the Fermi

level (i.e., we assume that they are ideal so-called “half-

metals”8).

2. Formulation of the problem

Our model device, shown in Fig. 1, represents a standard

shuttle device with a single spin nondegenerate electron

energy level on the central island (to be referred to as the

“quantum dot” or simply the “dot” in what follows) and elec-

trons that are fully spin polarized along the magnetization in

the magnetic source- and drain electrodes. The magnetiza-

tion in the drain is assumed to be antiparallel to the one in

the source, which leads to a spin-blockade of tunneling and a

vanishing current in the zero temperature limit. Electron

transport through the device is possible only if the spin of

electrons on the quantum dot can be flipped by, e.g., an

external magnetic field oriented perpendicularly to the

magnetization of the leads. Accumulation of charge as well

as spin on the dot are governed by the strength of the

Coulomb- and spin-blockade phenomena making it possible

for the nanomechanics of the device to be driven both by the

electric field, which couples to the charge, and the magnetic

exchange field, which couples to the spin. The Hamiltonian

Ĥ ¼ Ĥl þ Ĥd þ Ĥv þ Ĥt; (1)

of our system has four terms. The first term, Ĥl, describes

noninteracting spin polarized electrons in the leads. The sec-

ond term is the quantum dot Hamiltonian, Ĥd, which reads9

Ĥd ¼ e0 a†
"a" þ a†

#a#
� �

� eEx a†
"a" þ a†

#a#
� �

� JS xð Þ
2

a†
"a" � a†

#a#
� �

� JD xð Þ
2

a†
#a# � a†

"a"
� �

� glH

2
a†
"a# þ a†

#a"
� �

� Ua†
"a

†
#a"a#: (2)

Here the operator a†
rðarÞ creates (annihilates) an electron on

the dot with energy e0 and spin r ¼ (",#), x is the quantum

dot displacement operator. The second term in Eq. (2)

describes the coupling of the electron states in the dot with

the electric field (E), the third and fourth terms describe their

coupling to the spin-polarized leads (Jj (x) > 0 is the strength

of the ferromagnetic exchange coupling), the fifth term

describes the coupling to the external magnetic field H (l is

the Bohr magneton, g is the gyromagnetic ratio) and in the

sixth term the intradot electron correlations are characterized

by the Coulomb energy U.
Vibrations of the dot are described by the harmonic os-

cillator Hamiltonian

Ĥv ¼
p2

2m
þ mx2x2

2
; (3)

where m is the mass and x is the vibration frequency of the

dot, x is its coordinate and p its canonical conjugated mo-

mentum; [x, p] ¼ i�h.

The last term in our Hamiltonian (1) represents spin-

conserving tunneling of electrons between dot and leads,

Ĥt ¼
X

k

ðTSðxÞa†
k;Sa" þ TDðxÞa†

k;da#Þ þ h:c: (4)

Here a†
k;j(ak,j) is the electron creation (annihilation) operator

for electrons with wave vector k and spin up (down) for

j ¼ S(D) (the spin index is suppressed), while Tj(x) ¼ Tj

exp(jx/k) is the position-dependent tunneling amplitude, k
being the tunneling length and j ¼ (S, D) ¼ (�1, þ1). The

electrons in each lead are held at a constant electrochemical

potential lS,D ¼ 7 eV/2 (relative to the Fermi level), where

V > 0 is the bias voltage. The electron density of states �j

¼ � in the leads is assumed to be independent of energy.

One needs to know the evolution of a reduced density

matrix operator q, which describes the vibrational degree of

freedom coupled to the electronic degrees of freedom of the

single-level dot. The four possible electronic states are: j0i,
j "i ¼ a†

"j0i, j #i ¼ a†
#j0i, and j2i ¼ a†

#a
†
"j0i.

It is convenient to introduce dimensionless variables

for time, tx! t, dot displacement, x/x0! x (where x0 ¼ffiffiffiffiffiffiffiffiffiffiffiffi
�h=mx

p
is the zero-point oscillation amplitude), tunneling

FIG. 1. Sketch of the nanomagnetic device discussed in the text: a movable

quantum dot, modelled as a single spin nondegenerate electron level, is

coupled to two leads with antiparallel magnetization and vibrates in the

external harmonic potential. The potential difference lS�lD¼jejV between

the leads is due to a bias voltage V. An external magnetic field H induces

flips between the spin-up and spin-down states on the dot.

908 Low Temp. Phys. 40 (10), October 2014 Kulinich et al.



length, k=x0 ! k, momentum, px0=�h! p, and various char-

acteristic energies, �hx! 1, eEx0=�hx! d, glH=�hx! h,

JðxÞ=�hx! JðxÞ, CjðxÞ=x! CjðxÞ(�hCjðxÞ ¼ 2p�jTjðxÞj2
are partial level widths).

Following Ref. 10 one gets equations of motion for the

reduced density matrix operators q0 � h0jqj0i, q" � h" jqj "i,
q# � h# jqj #i, q"# � h" jqj #i, and q2 � h2jqj2i:

@q0

@t
¼ �i Ĥv; q0

� �
� 1

2
CS xð Þ; q0

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
CD xð Þ

p
q#

ffiffiffiffiffiffiffiffiffiffiffiffi
CD xð Þ

p
;

(5)

@q"
@t
¼� i Ĥv � xd; q"

h i
þ i

2
J xð Þ; q"
� �

� ih

2
q"# � q†

"#

� �

þ
ffiffiffiffiffiffiffiffiffiffiffiffi
CS xð Þ

p
q0

ffiffiffiffiffiffiffiffiffiffiffiffi
CS xð Þ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
CD xð Þ

p
q2

ffiffiffiffiffiffiffiffiffiffiffiffi
CD xð Þ

p
; (6)

@q#
@t
¼ �i Hv � xd; q#

� �
� i

2
J xð Þ; q#
� �

þ ih

2
q"# � q†

"#

� �
� 1

2
Cþ xð Þ; q#
� �

; (7)

@q2

@t
¼ �i Ĥv � 2xd; q2

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
CS xð Þ

p
q#

ffiffiffiffiffiffiffiffiffiffiffiffi
CS xð Þ

p

� 1

2
CD xð Þ; q2

� �
; (8)

@q"#
@t
¼ �i Ĥv � xd; q"#

h i
þ i

2
J xð Þ; q"#
� �

þ ih

2
q# � q"ð Þ �

1

2
q"# Cþ xð Þ½ �: (9)

In Eqs. (5)–(9) we have used the simplified notation

CjðxÞ ¼ Cj expðj2x=kÞ, CþðxÞ ¼ CSðxÞ þ CDðxÞ, and J(x)

¼ JS(x) � JD(x). In what follows we assume a linear x-

dependence of J(x): J(x) ¼ J0 � ax þ…, J0 ¼ JS(0) � JD(0),

a > 0.

Our operator equations contain terms that describe two

mechanisms for the interaction between the vibrational and

electronic subsystems, one electrical and one magnetic. In

contrast to the electrical mechanism, the magnetic one—

which is due to the magnetic exchange force—is strongly

connected to the spin dynamics. The result is a completely

different dependence of the shuttle behavior on magnetic

field.

We are interested in the classical motion of the dot and

therefore use Eqs. (5)–(9) to derive the classical equations of

motion for its coordinate and momentum. The result is

@xc

@t
¼ Tr

@

@t
xqð Þ

	 

¼ pc; (10)

@pc

@t
¼ Tr

@

@t
pqð Þ

	 


¼ �xc � dTr q0 � q2f g � a Tr q" � q#f g: (11)

Therefore one needs to know the equations of motion for the

zeroth moments, Ri ¼ Trqi.

The dynamics of the zeroth moments is coupled to the

dynamics of the first moments. We will decouple at the level

of the first moments by using the rule, Trxqi, ! xc Trqi.

In addition to restricting our study to the vibrational dynam-

ics near the ground state we assume that the parameters

{d, a, k�1} are small and linearize the problem with respect

to the displacement xc.

It is convenient to introduce linear combinations of Ri,
so that

R1;2 ¼ Trfq06q2g; R3 ¼ Trfq" � q#g;
R4 ¼ �iTrfq"# � q#"g; R5 ¼ Trfq"# � q#"g: (12)

Within these approximations the equations of motion for the

zeroth moments are ðC6 ¼ CS6CDÞ

@R2

@t
¼ �Cþ

2
R2 �

C�
2

1� R3ð Þ þ x

k
C�R2 þ Cþ 1� R3ð Þ½ �;

(13)

@R3

@t
¼ C�

2
R2 þ

Cþ
2

1� R3ð Þ � hR4

x

k
CþR2 þ C� 1� R3ð Þ½ �;

(14)

@R4

@t
¼ þhR3

Cþ
2

R4 þ J0R5 �
x

k
C�R2 � axR5; (15)

@R5

@t
¼ �J0R4 �

1

2
CþR5 þ

x

k
C�R5 þ axR4: (16)

(Note that the equation for R1 is decoupled from the other

equations and therefore not relevant in what follows.)

3. Spintro- and electromechanics

In this section we are interested in how the electrical and

magnetic interaction mechanisms introduced above may

induce a shuttle instability (or not) in two different regimes:

with and without a Coulomb blockade of tunneling.

3.1. Shuttle dynamics in the absence of a Coulomb blockade

For small vibration amplitudes an analytical solution to

the problem at hand can be found by perturbation theory in

terms of the small parameters e ¼ {d, a, k�1}. We solve the

relevant equations by perturbation expansions,

RiðtÞ ¼ R
ð0Þ
i þ R

ð1Þ
i ðtÞ þ � � � ; (17)

where R
ðnÞ
i is of nth order in e. It is evident from Eqs.

(13)–(16) that the functions R
ð0Þ
i do not depend on time.

Hence,

R 0ð Þ
2 ¼ �

4h2CþC�
D

; R 0ð Þ
3 ¼ �

C2
þ þ 4J2

0

� �
C2
þ � C2

�

� �
D

;

R 0ð Þ
4 ¼

2hC C2
þ � C2

�

� �
D

; R 0ð Þ
5 ¼

4hJ0 C2
þ � C2

�

� �
D

;

(18)

where

D ¼ ðC2
þ þ 4J2

0ÞðC2
þ � C2

�Þ4h2C2
þ:

It is convenient to define the vector-function jRi ¼
ðRð1Þ2 ;R

ð1Þ
3 ;R

ð1Þ
4 ;R

ð1Þ
5 Þ

T
. Then to first order in perturbation

theory one has

@jRi
@t
¼ �ÂjRi þ xc tð Þ k�1je1i þ aje2i

� �
; (19)
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where

Â ¼ 1

2

Cþ �C� 0 0

�C� Cþ 2h 0

0 �2h Cþ �2J0

0 0 2J0 Cþ

0
BBB@

1
CCCA; (20)

and the vectors jeii are defined as

je1i ¼
2 C2

þ � C2
�

� �
D

�2h2Cþ; 0; hCþC�;�2hJ0C�
� �T

;

je2i ¼
2h C2

þ � C2
�

� �
D

0; 0; 2J0;Cþð ÞT : (21)

Consequently, the eigenfrequencies of the shuttle vibra-

tions can be found from the equation

@2xc tð Þ
@t2

þ xc tð Þ

¼ �
ðt

�1

dt0xc t0ð Þhe0je�Â t�t0ð Þ k�1je1i þ aje2i
� �

; (22)

where je0i ¼ ðd; a; 0; 0ÞT :
At first, we consider the case when interaction between

the electronic and mechanical degrees of freedom is only

due to electrostatics (a, J0¼ 0; d 6¼ 0). We assume that the

tunneling coupling is symmetric (C�¼ 0, Cþ¼ 2C0). The

dispersion equation for the shuttle eigenfrequencies X is10

X2 � 1 ¼ d

k
¼ 2C0h2

h2 þ C2
0

� �
C0 þ iXð Þ

: (23)

We are interested in the sign of the imaginary part of the

correction ~x to the shuttle eigenfrequency, X ¼ 1 þ ~x,

which appears due to coupling with the leads. It follows

from Eq. (23) that the imaginary part of eigenfrequency is

always negative (and hence the amplitude increases with

time), and therefore there is shuttle instability for any non-

zero value of the external magnetic field.

In the opposite case, when the interaction between the

electronic and vibrational degrees of freedom is only due to

the magnetic exchange interaction between the leads and the

dot (d ¼ 0; J0, a 6¼ 0), the dispersion equation for the shuttle

vibration frequency takes the form

X2 � 1 ¼ 32ah2

D

C2
þ � C2

�
D Xð Þ

Cþ þ iXð Þ j� 2iXaJ0ð Þ; (24)

where j ¼ (2k�1)J2
0C� � aCþJ0, and

DðXÞ¼ðCþþ2iXÞ4þð4h2þ4J2
0�C2

�ÞðCþþ2iXÞ2�4J2
0C

2
�:

(25)

In the limit of small tunneling asymmetry, C� ! 0, Eq. (24)

is simplified. The sign of the imaginary part of ~x is deter-

mined by the sign of J�, sgn ImX ¼ sgn J�. Therefore, if

J�< 0 a shuttle instability occurs while if J�> 0 the station-

ary state of the dot is stable.

3.2. Shuttle dynamics in the presence of a Coulomb blockade

The equations of motion (5)–(9) for the reduced density

matrix do not have any signature of Coulomb correlations.

This is because they were obtained in the limit of high bias

voltage, eV/2 � U. Now we will consider the case eV/2

< U, for which the Coulomb blockade is relevant. As shown

in Ref. 10, the correct equations for the density matrix in the

Coulomb blockade regime are obtained from Eqs. (5)–(9) by

putting q2 ¼ 0 and by replacing Cþ (x) by CD (x).

By performing the same calculations as in Sec. 3.1 we

can investigate the electro- and spintromechanical shuttle

instability in the Coulomb blockade regime.11 In the absence

of an exchange coupling with the leads (a, J0 ¼ 0; d 6¼ 0) we

obtain the dispersion equation for a symmetric geometry

(C� ¼ 0, Cþ ¼ 2C0) as

X2 � 1 ¼ � d

k
2h2C0

C2
0 þ 3h2

X2 � h2 � iC0X
~D

; (26)

where

~D ¼ C0

2
C2

0 þ 3h2 � 5X2
� �

þ iX h2 þ 2C2
0 � X2

� �
:

From Eq. (26) it follows that:

Im ~x / �fðh2 � 1þ C2
0=2Þ2 þ C2

0ð1� 9C2
0=16Þg:

Therefore, for any magnetic field there is a shuttle instability

if C0< 4/3. In the opposite case, C0> 4/3, there is a range of

magnetic fields where a shuttle instability does not occur.

For C0� 1, this interval is jhj < C0=
ffiffiffi
2
p

, which implies that

the shuttle regime of electron transport can not be realized in

weak magnetic fields.

The conditions under which a shuttle instability occurs

due to magnetic exchange forces only (d ¼ 0; J0, a 6¼ 0) are

determined by the equation

X2 � 1 ¼ a
k

h2C2
0

C2
0 þ 3h2

iXþ C0

~D
; (27)

from which one finds that Im ~x / ðh2 � 3C2
0 � 3Þ. It follows

that the shuttle regime of transport corresponds to magnetic

fields weaker than a certain critical value, jhj < hc

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðC2 þ 1Þ

q
.

It is clear from the results of this section that the condi-

tions under which a shuttle instability and self sustained

shuttle oscillations occur are quite complex. A physical

interpretation of the results obtained must take the specific

properties of the electrical- and magnetic-driven shuttle

device into account together with the nature of the Coulomb

correlations of electrons in the movable quantum dot. This

will be the task of the next section.

4. Spin-flip driven electromechanics

In this section we will focus on a qualitative understand-

ing of the basic physics that underlies the transduction of

electrical energy from the battery, which maintains a voltage

bias across the shuttle device, into mechanical energy stored

in the shuttle vibrations. Whether energy is added to the me-

chanical vibrations or taken out of them depends on whether

910 Low Temp. Phys. 40 (10), October 2014 Kulinich et al.



the mechanical work done by the total force that acts on the

vibrating dot is positive or negative when averaged over one

vibration period. The two contributions to this force consid-

ered here are the Coulomb force that couples to the net

charge of the dot and the magnetic exchange force that cou-

ples to its total spin. Charge and spin on the dot vary as elec-

trons tunnel between the dot and the leads, while the

accumulated spin can also be changed without any change of

charge if the spin of an electron can be flipped, e.g., by an

external magnetic field.

We assume that the voltage bias is so large that the only

contribution to the current is due to electrons tunneling first

from the source electrode to the dot and then from the dot to

the drain electrode (tunneling in the reverse direction from

the dot to the source is blocked by the Pauli principle).

Furthermore, we assume that the source and drain electrodes

are 100% spin polarized with antiparallel magnetizations.

The latter condition implies that electron transport through

the device is blocked (in the low-temperature limit) in the

absence of an external magnetic field that can flip the spin of

electrons on the dot. To see this, note that electrons tunnel-

ing from the source to the drain are spin polarized (spin up,

say) while there are only spin-down electron states available

in the drain. Hence no current can flow through the device

without spin flips on the dot.

In this situation (H ¼ 0), let us assume that the dot

vibrates without damping while carrying one spin-up elec-

tron as illustrated in Fig. 2(a). The charge as well as the spin

are constants of motion since tunneling is blocked as

described above. As a result the work done on the dot by the

conservative Coulomb- and exchange forces averages to

zero over one oscillation period and there is no energy trans-

fer between the electronic and mechanical subsystems.

Only by switching on an external magnetic field, with a

finite component H perpendicular to the magnetization direc-

tions in the leads, can the spin be flipped from up to down so

that tunneling from the dot to the drain becomes possible

and a nonzero current can flow. It follows that the charge

and spin population of the dot will vary with time and hence

change both the Coulomb force and the exchange force act-

ing on the dot. These changes will make the total work done

by the force on the dot during one period of vibrational

motion finite, corresponding to a finite energy transfer

between the electronic and mechanical subsystems.

Depending on whether the work done is positive or negative

the dot will be accelerated or decelerated over an oscillation

period. In the former case the initial equilibrium position of

the dot will be unstable with respect to any mechanical dis-

placement (“shuttle” instability) and self-sustained mechani-

cal vibrations will develop, while in the latter case any

spontaneous oscillation will be damped out.

The conditions under which a shuttle instability occurs

crucially depend on whether the electronic tunneling events

from the source to the dot on the one hand and from the dot

to the drain on the other are correlated or not. If we are in

the Coulomb blockade regime such correlations occur

because double occupation of the dot (which is assumed to

have a single spin-degenerate energy level) is prohibited.12

This means that a spin-up electron can tunnel from the

source to the dot only after the one injected earlier has had

its spin flipped and tunneled to the drain. The sequence of

tunneling- and spin-flip events, which repeats itself to build

up an electron current from the source to the drain, is illus-

trated for the case of weak magnetic field H and large elec-

tron tunneling rates CS(D) in Fig. 2(b).

In the absence of a Coulomb blockade the situation is

completely different since tunneling events from the source

and to the drain are then uncorrelated. The dot can be

unpopulated or be populated by one spin-up electron, one

spin-down electron or two electrons, one with spin up and

one with spin down. Tunneling events will change the spin

and charge on the dot, which will fluctuate randomly

between the allowed configurations. The only remaining cor-

relation in this case comes from the constraint that the time

averaged current to and from the dot must be the same,

which allows for finite time averaged spin and charge popu-

lations on the dot. Therefore the physics of the spintro-elec-

tro-mechanics should be discussed in terms of the

probabilities for the various spin and charge configurations

on the dot to occur.

At this point we note that both the tunneling of spin-up

electrons from the source electrode to the dot and the tunnel-

ing of spin-down electrons from the dot to the drain increase

the net spin (up) on the dot and can therefore be thought of

as a source of spin-up electrons. This differs from the case of

charge, where an electron that tunnels from the source to the

dot increases the (negative) charge on the dot, while its

charge is decreased when an electron tunnels from the dot to

the drain. It turns out that this difference makes the spintro-

mechanics of our device qualitatively different from its

electro-mechanics, which relies entirely on the action of

Coulomb forces. Below we will discuss this difference sepa-

rately for the limits of strong Coulomb blockade and no

Coulomb blockade.

FIG. 2. (a) In the absence of an external magnetic field the current through

the device is zero because spin-up electrons that enter the dot from the

source electrode can not tunnel into the drain, where no empty spin-up states

are available (spin blockade of tunneling). (b) An external magnetic field

may flip the spin of the electron on the dot, which (i) opens up the possibility

for this electron to tunnel to a spin-down state in the drain and hence for a

current to flow and, independently, (ii) for a second (spin up) electron to

enter the dot from the source (if Coulomb blockade effects can be

neglected).
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4.1. Spintro- and electro-mechanical shuttling in the Coulomb
blockade regime

It is convenient to begin our analysis by neglecting the

Coulomb force and focus on the role of the magnetic

exchange force case. A particularly transparent picture of

how the exchange force affects the shuttle vibrations

emerges in the limit of weak magnetic field H and large elec-

tron tunneling rates CS(D). In this limit, where CS�x�
(lH/�h)2/CD and x=2p is the natural vibration frequency of

the dot, we note that transport in the Coulomb blockade re-

gime is determined by the sequence of electron tunneling-

and spin-flip events shown in Fig. 2(b). Flipping the spin of

a spin-up electron on the dot is a prerequisite for its ability to

tunnel to the drain electrode, an event which in its turn

changes the net charge and spin on the dot and allows

another spin-up electron to tunnel to the dot from the source.

To proceed, let us first elaborate somewhat our arguments

why no total work is done by the exchange force F as the dot

vibrates under the influence of an elastic force only. In the ab-

sence of an external magnetic field13 the dot is in this case

occupied by a spin-up electron emanating from the source

electrode. This spin is a constant of motion and hence no

electrical current through the device is possible since only

spin-down states are available in the drain electrode. During

the oscillatory motion of the dot the exchange force is there-

fore always directed towards the source electrode while its

magnitude only depends on the position of the dot, F¼F0(x).

As a result, no net work is done by the exchange force on the

dot. This is because contributions are positive or negative

depending on the direction of the dot’s motion and cancel

when summed over one oscillation period. A finite amount of

work can only be done if the exchange force deviates from

F0(x) as a result of spin-flip processes induced by the external

magnetic field. Such a deviation can be viewed as an addi-

tional random force FH that acts in the opposite direction to

F0(x). In the limit of large tunneling rate, CSðDÞ � lH=�h, and

small vibration amplitude a spin flip occurs with a probability

/ ðlH=�hÞ2=ðxCDÞ during one oscillation period and is

instantly14 accompanied by the tunneling of the dot electron

into the drain electrode, thereby triggering the force FH. The

duration of this force is determined by the time dt �
1=CSðxðtÞÞ it takes for the spin of the dot to be “restored” by

another electron tunneling from the source electrode.

The spin-flip induced random force FH¼�F0(x) is

always directed towards the drain electrode. Hence, its effect

depends on the dot’s direction of motion: as the dot moves

away from the source electrode it will be accelerated, while

as it moves towards the source it will be decelerated. Since a

spin flip may occur at any point on the trajectory one needs

to average over different spin-flip positions in order to calcu-

late the net work done on the dot. The result, which depends

on the competition between the effect of spin flips that occur

at the same position but with the dot moving in opposite

directions, is nonzero because dt is different in the two cases.

As the dot moves away from the source electrode the tunnel-

ing rate to this electrode will decrease while as the dot

moves towards the source it will increase. This means that

the duration of spin-flip induced acceleration will prevail

over the one for deceleration. As a result, in weak magnetic

fields, the dot will accelerate with time and one can expect a

spintro-mechanical shuttle instability in this limit.

The situation is qualitatively different in the opposite

limit of strong magnetic fields, where CSðDÞ � lH=�h and the

spin rotation frequency therefore greatly exceeds the tunnel-

ing rates. In this case the quick precession of the electron

spin in the dot averages the exchange force to zero if one

neglects the small effects of electron tunneling to and from

the dot. If one takes corrections due to tunnelling into

account (having in mind that the source electrode only sup-

plies spin-up electrons) one comes to the conclusion that the

average spin on the dot will be directed upwards. This results

in a net spintro-mechanical force in the direction opposite to

that of the net force occurring in a weak magnetic field limit.

As a result, in strong magnetic fields one expects on the av-

erage a deceleration of the dot. Therefore, there will be no

shuttle instability for such magnetic fields.

As we have discussed above spin-flip assisted electron

tunneling from source to dot to drain in our device results in

a magnetic exchange force that attracts the dot to the source

electrode. It is interesting to note that this is contrary to the

effect of the Coulomb force in the same device. Indeed,

since the Coulomb force depends on the electric charge of

the dot it repels the dot from the source electrode. Hence,

while the dot is empty as the result of a spin-flip assisted tun-

neling event from dot to drain, an “extra” attractive

Coulomb force FQ is active. An analysis fully analogous

with our previous analysis of the “extra” repulsive magnetic

exchange force FH leads to the conclusion that the effect of

the Coulomb force will be just the opposite to that of the

exchange force. If the exchange force is sufficiently weak,

this means that in the Coulomb blockade regime there is no

shuttle instability in the limit of weak magnetic field, while

in strong magnetic fields electron shuttling occurs. Our full

analysis in Sec. 3.2 confirms the predictions here made for

some limiting cases using only qualitative arguments.

4.2. Spintro- and electro-mechanical shuttling in the absence of a
Coulomb blockade

Here we will begin our analysis of the magnetic shuttle

device by neglecting the magnetic exchange force and only

take the Coulomb force on the dot into account. This implies

that the only effect of the electron spin on the electro-

mechanics of our device is to block the tunneling of spin-up

electrons to the drain electrode. The Coulomb force couples

to the charge of the dot, which (measured in units of the

electron charge) is a monotonically decreasing function of

the distance between the dot and the source electrode as

shown in Fig. 3(a). The bold line in the figure corresponds to

the limit of an adiabatically slow motion of the dot so that

for each position of the dot there is ample time to for the

charge on the dot to adjust to the value that makes the cur-

rent from the source equal to the current to the drain. In this

case the charge on the dot depends on its position but not on

the direction of motion of the vibrating dot. The positive

work done by the Coulomb force on the dot as it moves in

one direction will therefore be exactly cancelled by the nega-

tive work it does when the dot is moving in the opposite

direction.

A finite amount of work can only come from nonadia-

batic corrections to this picture. These arise when the charge

of the dot at a certain position does not have time to fully

adjust to the “adiabatic” value at that point but remains at a
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value that it would have had at an earlier time if the motion

had been adiabatic. This “retardation effect” gives a dot

charge that depends on the direction of motion—larger than

the adiabatic value when motion is in the direction of the

drain, smaller when the dot moves in the direction of the

source as illustrated by the dashed and dotted curves in Fig.

3(a). Since a larger (smaller) amount of charge on the dot

increases (decreases) the repulsive Coulomb force between

the dot and the source electrode, it is clear from Fig. 3 that

the vibrational motion of the dot will be accelerated by the

Coulomb force. In other words, positive work will be done

on the dot with the result that its kinetic energy will increase

monotonically as will its oscillation amplitude and we have

an electromechanical shuttle instability.

We conclude that without a Coulomb blockade the

Coulomb force leads to a shuttle instability for any value of

the magnetic field strength if more energy is pumped into the

shuttle motion than is lost to the environment by dissipation.

Now let us consider the opposite limit of “spintro-

mechanics,” where we neglect the Coulomb force and only

consider the effect of the magnetic exchange force. In this

case the total spin accumulated on the dot determines the

force responsible for the transfer of energy between the elec-

tronic and mechanical subsystems. The controlling factors

turn out to be the transfer rates of spin-up electrons from the

source and spin-down electrons to the drain. From the point

of view of spin (but not charge) it is convenient to consider

the latter process as a transfer of spin-up electrons from the

drain to the dot. In this view both the source electrode and

the drain electrode act as sources of spin-up electrons. Since

the tunneling rate increases as the dot approaches either elec-

trode, one expects the total spin accumulated on the dot in

the adiabatic limit to be a nonmonotonic function of the

dot’s position with a minimum when the dot is at the centre

of the device (see the solid curve in Fig. 3(b)). As the accu-

mulated spin will not depend on the direction of the dot’s

motion we can again argue that the net work done by the

exchange force will average to zero over one oscillation pe-

riod in this case.

As in the case of the Coulomb force, which we discussed

in the first part of this subsection, the exchange force will

only do finite work on the dot if nonadiabatic corrections to

the spin accumulation are considered. Using the same argu-

ments as before one finds that these qualitatively correspond

to the dashed (dot moving away from the source) and dotted

(dot moving towards the source) curves in Fig. 3(b). The

results is that a finite amount of work may be done (see

below) on the dot during one oscillation period.

In order to determine the value and sign of the work

done by the exchange force one has to take into account the

strength of the exchange interaction between the dot and the

two electrodes, which always have opposite signs. It is

straightforward to see that if the magnetization of the source

and drain electrodes have equal magnitude (but opposite

directions), symmetry considerations will lead to a net work

that is zero even in the nonadiabatic case (see Fig. 3(b)). The

interesting conclusion is that in contrast to the electrically

driven symmetric shuttle a spin-flip driven symmetric mag-

netic shuttle does not have a shuttle instability.

If the magnitude of the antiparallel magnetizations of

the source- and drain electrodes are different, however,

energy can be pumped into or out of the mechanical subsys-

tem depending on which electrode has the largest magnetiza-

tion. Using similar arguments as above one finds that if the

magnetic coupling to the source electrode dominates then

negative work is done on the vibrating dot and there is no

shuttle instability. If, on the other hand, coupling to the drain

electrode dominates then energy is pumped into the mechan-

ical vibrations resulting in a shuttle instability.

The qualitative picture presented here for the electrically

and magnetically driven shuttles in the limits of strong and

weak Coulomb blockade fully correspond to the results

obtained by the rigorous analysis described in Secs. 2 and 3.

5. Conclusions

In this work we have explored the possibility for the

electronic spin to contribute to the electromechanics of a

magnetic shuttle device. A number of new functionalities

can be achieved by exploiting the magnetic exchange force

on the movable dot at the center of the device in addition to

the electrostatic Coulomb force. The exchange force is deter-

mined by the spatial dependence of the interaction of the

electronic spin accumulated on the dot with the magnetized

leads while the Coulomb force is due to the interaction

between the charge on the dot and the electric field caused

by a voltage bias between the source- and drain electrodes.

The possibility to switch the sign of the electric charge

on the movable dot in tact with the change of direction of

the dot’s motion—as electrons are sequentially loaded onto

the dot from the source and off-loaded to the drain—leads to

FIG. 3. (a) Schematic plot of the accumulated charge on the quantum dot as

a function of its position in the limit when the vibrational motion of the dot

is adiabatically slow (solid line). Corrections to this adiabatic result are due

to retardation effects and depend on whether the dot is moving away from

(dashed curve) or towards (dotted curve) the source electrode. (b) Total spin

accumulated on the quantum dot in the adiabatic regime as the function of

the dot displacement (solid line). The dotted and dashed lines indicate the

nonadiabatic corrections to the value of the averaged spin.
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a shuttle instability in the standard (electrically driven) shut-

tle. In contrast, it is necessary to apply an external magnetic

field (perpendicular to the antiparallel magnetizations in the

leads) to switch the sign of the accumulated spin (by magnet-

ically induced spin flips). We have shown that such spin-flip

induced magnetic driving of the mechanical vibrations of the

dot may also result in a shuttle instability.

In an electrically (charge) driven shuttle the nanome-

chanics is controlled by the electric field via the applied bias

voltage. In contrast, the spin-flip induced nanomechanics of

a magnetic shuttle is controlled by the external magnetic

field through a “dynamical magnetostriction” effect, which

also serves as a new “mechanical” mechanism for giant mag-

netoresistance. The crucial sensitivity of this magnetoresist-

ance to the strength of the Coulomb blockade phenomenon

(discussed in Sec. 4) should make it possible to realize a

magnetic shuttle device with electric-gate controlled giant

magnetoresistance.

The relative strength of the Coulomb force and the

exchange force can be controlled by the externally applied

driving voltage and magnetic field. This means that by vary-

ing these fields one can switch a situation where the electri-

cal force is dominating to one where the magnetic force

determines the operation of the device. This is important for

magneto-electric transduction and is based on the compara-

ble strengths of the Coulomb force and the exchange force in

realistic tunnel devices (see Ref. 9).

Another source of electronic spin flips is spin-flip

assisted resonant absorption of microwave radiation. This

phenomenon is somewhat similar to that of microwave

induced electronic intermode transitions in quantum point

contact15,16 in the sense that electronic spin-flip transitions

occur selectively at certain values of the dot displacement.

Typical values of the exchange energy correspond to temper-

atures of a few kelvin and a frequency domain in the

far infrared region which is important for applications.

Microwave properties of magnetic shuttle devices will be the

subject of a separate publication.
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