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Abstract
Salient object/region detection aims at finding interesting regions in images
and videos, since such regions contain important information and easily
attract human attention. The detected regions can be further used for
more complicated computer vision applications such as object detection
and recognition, image compression, content-based image editing, and im-
age retrieval. One of the fundamental challenge in salient object detection
is to uniformly emphasize desired objects and meanwhile suppress irrelevant
background. Existing heuristic color contrast-based methods tend to obtain
false detection in complex scenarios and attenuate the inner part of large
salient objects. In order to achieve uniform object enhancement and back-
ground suppression, several new techniques including color feature integra-
tion, graph-based geodesic saliency propagation, hierarchical segmentation
based on graph spectrum decomposition are developed in this thesis to assist
saliency computation. Paper 1 proposes a superpixel-based salient object
detection method which takes advantages of color contrast and distribu-
tion. It develops complementary abilities among hypotheses and generates
high quality saliency maps. Paper 2 proposes a novel geodesic propaga-
tion method for salient region enhancement. It leverages an initial coarse
saliency map that highlight potential salient regions, and then conducts
geodesic propagation. Local connectivity of objects is retained after the
proposed propagation. Papers 3 and 4 use graph-based spectral decom-
position for hierarchical segmentation, which enhances saliency detection.
As most previous work on salient region detection is done for still images,
paper 5 extends graph-based saliency detection methods to video process-
ing. It combines static appearance and motion cues to construct graph.
A spatial-temporal smoothing operation is proposed on a structured graph
derived from consecutive frames to maintain visual coherence in both inter-
and intra- frames. All these proposed methods are validated on benchmark
datasets and achieve comparable/better performance to the state-of-the-art
methods.

Keywords: salient region, visual attention, color contrast and distribution,
geodesic distance, propagation, graph spectral decomposition, figure-ground
segmentation, video processing.
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Part I

Introductory chapters





Chapter 1

Introduction

1.1 Background

Images appearing on websites, mobile devices, as well as TVs and computer
screens enrich our daily life. However, processing such large amount of vi-
sual information in images in short time is a difficult task. Information in
images differs in importance. Some are crucial while others are negligible.
An automatic and selective mechanism that answers which information is
necessary to pick up from an image for further analysis can be useful. A
feasible way is by the selective mechanism of human visual attention: ac-
cording to studies of neurobiology and cognitive psychology [1, 2], human
brains are capable of selecting a certain subset of visual information for fur-
ther processing. Modeling human visual attention on images is referred to
as saliency detection, which aims at detecting salient image parts that can
easily attract human attention. Although attention processes of human rely
on bottom-up influences and top-down influences [3], saliency detection fo-
cused in this thesis only considers bottom-up factors (usually the influences
from low-level features). This type of saliency detection is stimulus-driven
as well as widely studied in the past decade. Saliency detection results indi-
cating potential regions of interest (ROI) provide some guidance to further
analysis. This has been used in many applications, e.g. object detection and
recognition [4, 5], image compression [6], video summarization [7], content-
based image editing [8–11] and image retrieval [12]. In the last decade,
saliency detection has become a research field in computer vision attracting
much attention.

Saliency detection methods can be categorized into either eye fixation
modeling or salient region detection. Most early saliency models belong to
the former, aiming at predicting where human look in the scene. Their basis
dates back to the “Feature Integration Theory” [1] stating what kinds of
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visual features are important and how they are combined to direct human
attention. Koch and Ullman [2] first proposed a feed-forward model to
combine these features and introduced the concept of a saliency map, i.e.
a topographic map that represents conspicuousness of scene locations [3].
A winner-take-all neural network was introduced in [2] to select the most
salient locations and employs an inhibition of return mechanism to simulate
eye shift. The first complete implementation of [2] was proposed by Itti
et al [13]. As one of the earliest pioneer work, Itti et al [13] proposed a
“center-surround” operation as local feature contrast in the color, intensity,
and orientation on a pyramid of an image. Such center-surround operation
characterizes the stimuli to visual neural cells and is realized using DOG
(Difference of Gaussians). Although eye fixation prediction is the origin
of saliency detection and has gained a lot of progress since then, these
methods have a typical drawback which impacts their performance in real
applications. This drawback is that they tend to generate selectively sparse
saliency maps. When using them to detect big salient objects, such models
highlight only edges, corners of objects and attenuate their inner parts, due
to their favors of high frequency components in the image.

To benefit complex computer vision tasks, such as content-based image
editing which prefer enhancement of entire objects, a new sub-field called
salient region detection has emerged in the light of compensating the draw-
back of previous eye fixation prediction models. The goal of salient region
detection is to detect and segment salient objects in natural scenes. Com-
pared to fixation prediction, salient region detection computes global con-
trast, or center-surround contrast on image regions to prevent enhancement
of only image edges. Hierarchical image segmentation is also considered as
a multi-scale operation (rather than commonly used image pyramid in eye
fixation prediction) to generate edge-aware saliency maps.

This thesis addresses salient region/object detection in images. Despite
many methods on salient object detection have been proposed lately, im-
proving the performance in complex scenarios remains challenging. One of
the fundamental challenges in salient object detection is to emphasize de-
sired objects uniformly and suppress irrelevant background. Existing heuris-
tic color contrast-based methods tend to obtain false detection in complex
scenarios and attenuate the inner part of large salient objects. In this the-
sis, several novel techniques are introduced to remedy these problems and
improve the performance.

1.2 Overview of Previous Salient Region De-
tection Methods

This section reviews several state-of-the-art methods on salient object de-
tection.
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• Heuristic Color Contrast-based Methods

Methods of this category attempt to model saliency using local or global
color statistics. It is based on the assumption that salient objects are unique
in color and present high color contrast to the rest parts of an image. Zhai
et al [14] introduce image histograms which only model luminance channel
to calculate pixel-level saliency. Pixel-level spatial saliency is measured as
the luminance contrast between image pixels. Achanta et al [15] provide
a saliency approximation by subtracting the average color from low-pass
filtered result of an image. This operation of [15] is equivalent to combining
center-surround differences of all bandwidth to detect objects of different
sizes. Goferman et al [11] combine local and global features to estimate the
patch saliency in multi-scales. To consider both local and global factors,
they compute saliency of a certain patch as its contrast to the K near-
est patches in the image. Under this framework, inner parts of an object
are often attenuated due to the edge preference. Cheng et al [16] extend
the method in [14] and incorporate color histograms. A regional contrast
saliency measure is also proposed in [16] as the contrast to other regions.
Perazzi et al [17] propose saliency filter, which formulates complete contrast
and saliency estimation using high dimensional Gaussian filters. Margolin
et al [18] define patch distinctness as L1-norm in PCA coordinates and com-
bine patch distinctness with regional color distinctness. Shi et al [19] com-
pute pixel-wise image saliency by aggregating complementary appearance
contrast measures with spatial priors. Most of the above contrast-based
methods are straightforward and simple to compute. Their performances
are less satisfactory on images with complex background.

• Learning-based Methods

This category of methods estimates object saliency through machine
learning. In this case, training samples are needed. The fundamental is
to learn the weight of features during saliency computation. Jiang et al
[20] perform pre-segmentation for an input image and extract a bunch of
discriminative features from each segmented region. Then a random forest
regressor is adopted to map multiple features to a region saliency score.
Liu et al [21] segment salient objects by aggregating pixel saliency cues in
a Conditional Random Field. Their saliency cues include center-surround
histogram contrast, saliency maps from the spectral residual method [22],
and color spatial distribution. The linear weight for those cues are learned
under the Maximized Likelihood (ML) criteria by tree-reweighted belief
propagation. Learning-based methods can achieve good performance in
complex scenarios attributed to the learning. However, high computation
is needed for this type of methods due to feature extraction and learning,
as comparing to the color contrast-based methods.
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• Hierarchical/Multi-scale Segmentation for Saliency Detec-
tion

The basics of this kind of methods is to generate good segmentation,
usually in hierarchy or multi-scale to facilitate saliency computation. Lu
et al [23] exploit the concavity context in a scene. They observed salient
objects are surrounded by concave edges, so their method boils down to de-
tecting concave arcs from multi-scale segmentation. The detected arcs then
contribute to a figure-ground segregation phase. Finally, one of the two
segregated regions is selected as salient according to their surroundness.
Yan et al [24] propose a hierarchical saliency detection method that merges
regions according to user-defined scales (e.g., 3 size scales in their case)
to eliminate small-size distracters. In a certain hierarchy, a region would
be absorbed by its neighbor region if it is smaller than the defined size.
Each region is evaluated using local contrast and location prior. Cheng et
al [25] measure saliency by hierarchical soft abstraction. They form a 4-layer
hierarchical structure (respectively are pixel layer, histogram layer, GMM
layer and clustering layer) with an index table to associate cross-layer re-
lations efficiently. Saliency estimation using color contrast and distribution
are conducted on the coarse layers and then propagated to the pixel layer.
Jiang et al [26] find potential salient regions by maximizing a submodular
objective function. The problem is solved efficiently by finding a closed-
form harmonic solution on the constructed graph for an input image. The
saliency of a selected region is modeled in terms of appearance and spatial
location. In summary, these methods, benefiting from some optimized seg-
mentation phase, can easily make object emphasized uniformly and boost
final performance.

• Graph-based Methods

The basics of these methods is to represent images using graphs, where
natures of salient objects, like high color contrast, compact color distribution
are modeled. Gopalakrishnan et al [27] perform random walks on graphs
to find salient object. The global pop-out and compactness properties of
salient objects are modeled in random walks by the equilibrium access time
performed on a complete and k-regular graph. Wei et al [28] propose to
treat boundary parts of an image as the background. The patch saliency is
defined as the shortest geodesic distance for a graph to image boundaries. As
a salient object is often isolated from the background, the geodesic distance
between image boundaries and object parts is relatively large, leading to
an object being popped out. Yang et al [29] utilize similar boundary priors
as [28] but propagate saliency via graph-based manifold ranking from four
image borders separately. Four saliency maps generated are then multiplied
to achieve the final one. Their method is shown better than state-of-the-
art methods (including [29]) for salient object detection. Both [28] and
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[29] measure the connectivity of image parts to image boundaries. Salient
objects are detected as regions disconnected from the image boundaries.
In [30], saliency detection is formulated by using absorbing Markov chain
on an image graph model. The virtual boundary nodes are chosen as the
absorbing nodes in a Markov chain. The absorbed time is used as a metric
for measuring saliency. Generally, graph-based methods may achieve high
performance among state-of-the-art salient region detection methods.

• Other Methods

Other notable work includes: Shen et al [31] solve saliency detection issue
as a low rank matrix recovery problem, where salient objects are represented
by a sparse matrix (noise) while background are indicated by a low rank
matrix. However, this sparse and low rank assumption may not be satisfied
in complex scenes, leading to unsatisfactory results. A Bayesian framework
is adopted in [32]. First, saliency points are applied to get a coarse location
of the saliency region. Based on the rough region, a prior map is computed
for the Bayesian model to achieve the final saliency map. Mai et al [33]
propose a data-driven approach for aggregating saliency maps generated by
other saliency detection methods using Conditional Random Field (CRF).
The weight for aggregation is learned in a data-driven way from k nearest
neighbors of the input image retrieved using the Gist feature from a pre-
defined training dataset.

1.3 Addressed Problems in this Thesis

This thesis focuses on salient region/object detection in natural images. The
aim is to generate high quality saliency maps that enhance holistic salient
objects uniformly meanwhile suppress irrelevant background. Several new
methods including color feature integration, graph-based geodesic saliency
propagation, hierarchical segmentation through graph spectral decomposi-
tion are proposed for saliency detection. Salient object detection in videos
is also addressed in this thesis, which is under-explored in its field compared
to salient object detection in still images.

1.4 Motivations

Recall that our goal is to enhance salient objects uniformly meanwhile sup-
press irrelevant background. To achieve this goal, our main motivations for
saliency detection include:

• Use multiple hypotheses
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There exists several hypotheses for detecting salient objects. However,
individual hypothesis can not work well in all cases. To make the per-
formance robust, multi-hypothesis fusion is deserved. It may help pop
up salient objects in challenging background. Discovering complemen-
tary performances between different hypotheses is also useful.

• Generate good segmentation

When performing region-level saliency estimation, detection results
may highly depend on segmentation. Imagine each salient object is
segmented into a single region. It could be analyzed in a holistic way
and more accurate object saliency could be achieved. Although this
assumption is quite ideal, attempts of generating good segmentation
still worth a try.

• Exploit graph representation

Graph representation, due to its good modeling ability and mature
theories, has been used in many fields. Hence, it would be interesting
to exploit and use graph representation for salient object detection.
In this sense, many graph theories could be considered.

• Apply salient region detection to videos

While salient object detection in still images has gained much atten-
tion, its application to videos remains under-explored.

1.5 Outline of this Thesis

The thesis is divided into two parts. The first part briefly describes the
background and the proposed work. The second part includes publications
resulted from this thesis work. The first part of the thesis is organized as
follows: Chapter 2 gives an overview of related state-of-the-arts. Chapter 3
reviews the hypotheses and theories that are highly related to the proposed
work. Chapter 4 summarizes the proposed methods, followed by Chapter 5
on the conclusion.



Chapter 2

Review of Related Work

This chapter briefly reviews the methods on saliency detection that are
closely related to this thesis, together with fundamentals that are employed
to address the detection problem. Section 2.1 and 2.2 introduce two previous
ideas on color contrast [16] and color distribution [21], upon which we build
our methods. Section 2.3 introduces basics related to graphs, and consists
of 3 subsections that respectively involve geodesic distance [34], normalized
graph cut [35, 36], and conditional random field [37].

2.1 Global Regional Contrast

[16] is one of the earliest literature which proposes basics on saliency compu-
tation of image regions. An input image is segmented into regions aligned
with intensity edges first and then a regional saliency map is computed.
Since saliency can be defined as uniqueness, which may be characterized by
high feature contrast to the rest parts of the image, saliency is measured by
the global contrast between the target region with respect to all other re-
gions in the image. Suppose an input image is pre-segmented into N regions
{ri}Ni=1. The global regional contrast saliency is computed as:

S(ri) =
N∑
j=1

wijDr(ri, rj) (2.1)

Dr(ri, rj) is related to the appearance contrast between two regions, e.g.
χ2 distance between color histograms of ri and rj . wij is the weight defined
as:

wij = exp(−Ds(ri, rj)/σ
2
s)|rj | (2.2)
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where Ds(ri, rj) is the spatial distance between region ri and rj , and σs

controls the strength of spatial weighting. Large values of σs reduce the
effect of spatial weighting, so that contrast to farther regions would con-
tribute more to the saliency of the current region. By letting σs → ∞,
equal weight for all regions is resulted. |rj | is the size of region rj . Noting
that since saliency values are measurements within an image showing rela-
tive importance, finally they are linearly normalized to the interval [0,1] to
obtain a saliency map. The above idea on regional color contrast motivates
the proposed superpixel-based color contrast calculation in this thesis work.

2.2 Spatial Distribution of Colors

Besides characterizing the uniqueness using contrast, color spatial distribu-
tion is another saliency indicator. The more widely a color is distributed
in an image, the less possible it belongs to a salient object. This is because
objects are usually compact regions surrounded by the background. The
extent of how widely a color distributes could be measured by color spatial
variance. [21] proposes to compute color spatial variances using Gaussian
Mixture Models (GMMs). First, all colors in the image are represented
by Gaussian Mixture Models (GMMs) {wc, μc,

∑
c}Cc=1 by using EM (Ex-

pectation Maximization) algorithm, where {wc, μc,
∑

c} is the weight, the
mean color, and the covariance matrix of the cth component. Each pixel is
assigned to a color component with the probability:

p(c|Ix) = wcN (Ix|μc,
∑

c)∑
c wcN (Ix|μc,

∑
c)

(2.3)

Suppose xh is the x-coordinate (horizontal coordinate) of the pixel x. The
spatial variance for x-dimension of color component c is computed as:

σ2
h(c) =

1

|P |c
∑
x

p(c|Ix) · |xh −Mh(c)|2 (2.4)

whereMh(c) =
1

|P |c
∑

x p(c|Ix)·xh, and |P |c =
∑

x p(c|Ix) is a normalization

factor. The vertical variance σ2
v(c) is defined similarly. The spatial variance

of a component c is combined as: σ2(c) = σ2
h(c)+σ2

v(c). σ
2(c) is normalized

by:

σ2(c) ← σ2(c)−minc σ
2(c)

maxc σ2(c)−minc σ2(c)
(2.5)

Finally, the saliency S(Ix) of a specific pixel Ix regarding to color spatial
distribution is defined as the weighted sum:

S(Ix) =
∑
c

p(c|Ix) · (1− σ2(c)) (2.6)
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Equation (2.6) implies that pixels with small color distribution variances
have high saliency values. The above idea motivates the use of superpixel-
based color distribution in this thesis work.

2.3 Graph Theories for Salient Region Detec-
tion

2.3.1 Geodesic Distance on 2D images

Geodesic distance is defined as the shortest path between any pair of points
on a nonlinear surface/space. Here geodesic distance and its definition on
2D images [34] is reviewed since it is more relevant to the thesis work. For
2D images, geodesic distance can be used to describe connectivity of two
image locations. It has been shown useful for segmentation, edge-preserving
filtering, denoising, stitching, and colorization [34]. Let I(x) be an image:
Ψ → R

d (d = 3 for a color image), whose support Ψ ∈ R
2 is assumed to

be continuous. Given two points a, b ∈ R
2, the geodesic distance between

them is defined as:

dgeo(a, b) = inf
Γ∈Pa,b

∫ l(Γ)

0

√
1 + γ2(∇I(s) · Γ′(s))2ds (2.7)

where Pa,b is the set of all possible differentiable paths between a and b.
The spatial derivative Γ′(s) = ∂Γ(s)/∂(s) is the unit vector tangent to the
direction of the path with arc length s, and ∇I(s) is the corresponding
gradient vector. The dot-product ∇I(s) ·Γ′(s) measures the image gradient
along the tangent. The geodesic factor γ weighs the contribution between
the gradient and the spatial distance. When γ = 0, dgeo(a, b) degenerates
to Euclidean distance.

Given a binary mask M(x) ∈ {0, 1} associated to a “seed” region Ω :
Ω = {x,M(x) = 1}. The geodesic distance transform D assigned to each
pixel at x is its minimum geodesic distance from Ω:

D(x;M,∇I) = min
{x′|M(x′)=1}

dgeo(x, x
′) (2.8)

In (2.7), 2D position s is assumed to be continuous. From (2.7), the
discrete approximation over image lattice can be derived:

dgeo(a, b) = min
Γ∈Pa,b

∑
pk∈Γ

√
1 + γ2(∇I(pk, pk+1))2Ds(pk, pk+1) (2.9)

where pk is the kth point on the discrete path Γ. ∇I(pk, pk+1) is the gradient
magnitude between pk, pk+1. Ds(pk, pk+1) is the spatial distance between
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pk, pk+1. When considering only connectivity and ignoring spatial distance,
the following variation can be obtained:

dgeo(a, b) = min
Γ∈Pa,b

∑
pk∈Γ

∇I(pk, pk+1)Ds(pk, pk+1) (2.10)

The geodesic distance in (2.10) can be computed over a graph, where
each point pk of the lattice is a vertex and ∇I(pk, pk+1)Ds(pk, pk+1) be-
tween two adjacent lattice points is treated as an edge. Calculating (2.10)
is equivalent to finding the shortest path over graph and Floyd’s/Dijkstra’s
algorithms can be applied. Since objects usually present connectivity prop-
erties, i.e. connected regions are likely to be perceived as one object, in this
thesis, superpixel-based geodesic distance is used and a geodesic propaga-
tion method for salient region enhancement is proposed.

2.3.2 Normalized Graph Cut (Ncut)

Graph cut is a method to find a partition of a graph such that edges between
different groups have very low weight and edges within a group have high
weight. This is similar to the aim of clustering: points within a same cluster
are similar to each other while points in different clusters are dissimilar from
each other. Since the Ncut and spectral clustering are tightly related, below
the Ncut is first reviewed and its relation to spectral clustering is further
described.

From the partition purpose, a simplest example to start with is the
mincut example. Given a similarity graph (a graph whose edges measure
similarity between vertices), let W be its adjacency matrix, D be its degree
matrix (a diagonal matrix with diagonal entry di =

∑
j wij), and L =

D − W be its Laplacian matrix. The cut cost is defined: cut(A,B) :=∑
i∈A,j∈B wij , and let Ā be the complement of A. For a given number

k of subsets, the mincut approach chooses a partition A1, ...., Ak which
minimizes:

cut(A1, ..., Ak) =

k∑
i=1

cut(Ai, Āi) (2.11)

In particular for k = 2, mincut is a relatively easy problem and can be
solved efficiently. However, in practice the mincut often does not lead to
satisfactory partitions, because the solution of mincut often separates one
individual vertex from the rest of the graph. Obviously this is not satisfying
to achieve in clustering because clusters should be reasonably large groups
of points. A common objective function to encode this is by normalizing
the cut values using cluster sizes, leading to the normalized cut (Ncut) that
minimizes:
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Ncut(A1, ..., Ak) =

k∑
i=1

cut(Ai, Āi)

assoc(Ai, V )
(2.12)

where assoc(Ai, V ) :=
∑

i∈A,j∈V wij is a measure of set size, i.e. the larger
|Ai| is, the higher assoc(Ai, V ) will be. The normalized cut is utilized in this
thesis to assist saliency computation. By defining a hard indicating vector
for each Ai and relaxing the hard constraints (for details please refer to [36]),
the continuous indicating vectors for multi-cluster Ncut can be derived from
the first k eigenvectors of D−1L, or the first k generalized eigenvectors of:

(D−W)y = λDy. (2.13)

The solution of 2-way Ncut (k = 2) is given by its second smallest eigen-
vector.

Since the continuous indicating vectors for multi-cluster Ncut are de-
rived from the first k generalized eigenvectors of system (D−W)y = λDy,
k-means clustering can be applied to these eigenvectors to obtain labels cor-
responding to clusters, leading to the spectral clustering (Algorithm 1). In
this thesis, we propose to use Ncut/spectral decomposition to partition an
image into different visual concepts (i.e. clusters). Details can be found in
Papers 3 and 4.

Algorithm 1 Spectral Clustering

Require: Constructed similarity graph described by W, number k of clus-
ters;

Ensure: Clusters A1, ..., Ak with Ai = {j|yj ∈ Ci};
1: Compute the degree matrix D and graph Laplacian L = D−W;
2: Compute the first k generalized eigenvectors u1,u2, ...,uk of the gener-

alized eigenproblem Lu = λDu.
3: Let U ∈ Rn×k be the matrix containing the vectors u1, ...,uk as

columns.
4: For i = 1, 2, ..., n, let (yi ∈ Rk) be the vector corresponding to the i-th

row of U.
5: Cluster the points (yi)i=1,...,n in Rk with the k-means algorithm into

clusters C1, ..., Ck and output clusters A1, ..., Ak with Ai = {j|yj ∈ Ci}.

2.3.3 Conditional Random Field (CRF)

Conditional random fields offer advantages over Markov random fields on
relaxing strong dependencies on the observation sequence. It has been pro-
posed to segment and label data sequences [37]. Below its application to
image segmentation is described, since it is relevant to the thesis work. The
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definition for CRF is given according to [37]: suppose X is a set of ran-
dom variables over data sequences to be labeled, and Y is a set of random
variables over corresponding label sequences. G = (V,E) define a graph
constructed from the data sequences such that Y = (Yv)v∈V is indexed by
the vertices of G. (X,Y ) formulates a conditional random field in case,
when conditioned on X, each Yv obeys the Markov property with respect to
the graph: p(Yv|X,Yw, w �= v) = p(Yv|X,Yw, w ∼ v), where w ∼ v means
w and v are neighbors in G. This equation infers that probability of Yv is
conditioned on both data sequence X and labels of neighboring vertices Yw.

In the case of foreground-background segmentation, suppose X is an
observation image, and Y corresponds to pixel labels to be estimated. When
giving a prior map P to constrain the result of Y , the conditional probability
of Y can be written as:

p(Y |P,X) = p(Y1, Y2, ..., Yn|P,X) =
1

Z
exp(−E(Y |P,X)). (2.14)

where Z is the partition function used for normalization. The energy func-
tion E(Y |P,X) can be defined as a data term (or called unary term) and a
pair-wise smoothness term:

E(Y |P,X) =
∑
v

|Yv − Pv|m︸ ︷︷ ︸
data term

+λs

∑
v,w|w∼v

|Yv − Yw|mAvw

︸ ︷︷ ︸
pair-wise term

. (2.15)

where λs is the weight for smoothing. v and w indicate neighbor pixels in
X. Maximize (2.14) equals to minimize the energy function (2.15). Avw

captures the affinity between Yv, Yw. A common requirement is that ad-
jacent pixels with the same color tend to have the same label. Hence the
Avw can be constructed according to color similarity of image pixels, e.g.
Avw = exp{−β||Xv−Xw||2} [21]. In this thesis, we use CRF to enhance ob-
ject saliency as well as conduct spatial-temporal smoothing in video saliency
detection. We choose m = 2 as it has a relaxed form (soft Yv ∈ [0, 1]) with
a closed-form solution for efficient computation. Noting that soft Yv ∈ [0, 1]
is intrinsically applicable to saliency maps.



Chapter 3

Summary of Thesis Work

This chapter gives a summary of this thesis work on salient object detection.
Papers 1-4 aim at detecting and enhancing salient regions in still images.
Paper 5 aims at salient region detection for videos.

3.1 Paper 1: Saliency Detection by using Color
Contrast and Distribution

Basic Ideas: Previous work [16] only considers color contrast for salient
region detection, and the performance is rather limited. This proposed
method aims at enhancing the detection performance by incorporating color
contrast with color distribution (motivated by [21]). The basic idea is that
color contrast and color distribution are computed independently and in-
tegrated through a small number of spatially compact superpixels. This
enables efficient and effective computation of these two kinds of features. A
superpixel is rendered with high saliency if it satisfies the following obser-
vations:

• has strong color contrast to its surroundings. (contrast)

• is located near the image center as theme objects tend to be placed
near the image center by photographers. (distribution)

• has compact color spatial distribution. (distribution)

Assuming each salient object satisfies the above three conditions simulta-
neously, resulting measurements are combined by multiplication to obtain
the final saliency.
Main contributions: Color contrast and color distribution are computed
according to three observations on superpixels, and combined to achieve
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complementary performance. Contrast-based saliency of a superpixel is
computed by its color contrast to all superpixels in an image. The resulting
contrast-based saliency is then weighted by a 2D distribution prior with
center bias, and globally smoothed so that superpixels with similar colors
yield similar saliency. The motivation is to enhance objects uniformly and
resolve ambiguity of saliency maps. Distribution-based saliency of a super-
pixel is inversely proportional to its color spatial distribution variance. The
variance of a superpixel Ri (i is the index) is determined by the variance of
spatial position of superpixels that share similar colors with Ri in an image.
This is different from GMM-based computation in [21].

Superpixel 
pre-segmentation

Contrast
saliency map 

 Distribution
saliency map 

Combination by 
multiplication

Refinement
(final map)Input image

Figure 3.1: The block diagram of the proposed method.

Big picture: The proposed method is shown in the block diagram of Figure
3.1. After superpixel pre-segmentation, color contrast and color distribu-
tion maps are computed separately on superpixels, and are then combined
in superpixel-wise multiplication. Refinement is implemented by coarse seg-
mentation, and the average saliency in each segmented region is computed
to obtain the final saliency map.

Results: Tests and comparisons are performed on a public dataset MSRA-
1000 (1000 images) [15] and compared with 8 existing methods. Some results
are shown in Figure 3.2 and Figure 3.3. In Figure 3.2 visual comparisons, the
proposed method is shown to perform better on background suppressing and
uniform object enhancement. The previous color contrast-based method [16]
(HC, RC) is less satisfactory on these images. Performance evaluation in
Figure 3.3 shows that our method consistently achieves higher precision
under the same recall.
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Original IT SR CA FT LC HC RC Ours GTSF

Figure 3.2: Visual comparisons of the proposed method with other
existing methods (shown in columns). Images are from
public dataset MSRA-1000 [15].

3.2 Paper 2: Salient Object Enhancement us-
ing Geodesic Propagation

Basic Ideas: Under the global color contrast hypothesis (e.g. [16] and pa-
per 1), similar colors are supposed to obtain similar saliency after detection.
However, this is not always true. Suppose an image (Figure 3.4) “a white
sheep stands on green grass under white sky”, where the white sheep is the
only salient object. The basic idea of this paper is to use geodesic distance-
based propagation to maintain the local connectivity of objects. Since there
is large geodesic distance between “sky” and “sheep”, it is possible to de-
velop geodesic distance-based propagation to uniformly enhance the salient
object (e.g. the “sheep” regardless of the “sky”). The aim of this paper is to
develop a geodesic saliency propagation method to enhance salient objects
from a set of coarse saliency maps.

Main contributions: We propose to first leverage an initial coarse saliency
map that highlights potential salient regions, based on the observation that
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Figure 3.3: Performance evaluation and comparisons. Up: compar-
isons of precision-recall curves on dataset MSRA-1000.
Down: The impact of individual phase on precision-recall
curves on MSRA-1000.

salient objects are popped out from both background and clutter, and then
propagate energy based on geodesic distance. The extent of propagation
between two superpixels is controlled by using an exponential function that
is monotonically decreasing in term of geodesic distance. The energy of a
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Figure 3.4: An illustrative example of object connectivity.

superpixel after propagation is the summation over all superpixels according
to the geodesic distance. Superpixels lie in the same homogenous region
would obtain the same saliency value after the propagation. The proposed
method is hence capable of rendering a uniform object saliency map while
suppressing the background.

Original Superpixels

Global contrast

Harris convex hull

Coarse 
saliency

Geodesic 
propagation

Merging

Figure 3.5: The block diagram for the proposed saliency propagation.
Noting that background clutter in the color contrast map
is suppressed and a missing object part outside the convex
hull is recovered after the propagation.

Big picture: Figure 3.5 shows the diagram of the proposed method. An
input image is pre-segmented into superpixels. Two cues, i.e. simple global
contrast and Harris convex hull are computed. A coarse saliency map is
obtained by merging these two cues by pruning saliency values of superpix-
els outside the convex hull to zero meanwhile maintaining saliency values
of superpixels inside the hull. In the geodesic saliency propagation stage,
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energy from a certain image region is transmitted to its connected regions
(e.g. from the body to the missing “feet” of the jumping boy in Figure 3.5
to guarantee them being highlighted). Background clutter inside the hull
would be eliminated after propagation.
Results: Tests and comparisons are performed on a public dataset MSRA-
1000 (1000 images) [15] and compared with 9 existing methods. Some results
are shown in Figure 3.6. Our experiments show that the proposed method
achieves comparable results with the 9 existing methods, where noticeable
improvement is observed.
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Figure 3.6: Performance evaluation and comparisons. Above the dash
line: quantitative comparisons on precision-recall curves
with 9 existing methods. Below the dash line: three more
examples of propagation.
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3.3 Paper 3: Coarse-to-fine Hierarchical Seg-
mentation for Saliency Detection using 2-
way Ncut

Basic Ideas: Over-segmenting images into non-overlapping regions to as-
sist saliency computation is one of recent trends, e.g. as the region con-
trast proposed in [16]. Clustering-based or merging-based segmentation
like Meanshift [38] and graph-based segmentation [39] are mostly employed.
However, these segmentation methods may generate fragile regions, i.e. an
object breaks up into small regions which ignore the object holism, making
it difficult to enhance the entire object even though with the assistance of
certain energy propagation to smooth the result. Besides, these segmen-
tation methods involve tricky parameter tuning so as to achieve an ideal
segmentation that trades off between over- and under-segmenting desired
objects. To improve this situation, this paper suggests the use of Normalized
cut (Ncut) [35], whose aim is to partition a graph into two discriminative
parts, as a tool for segmentation. The basic idea is that the global energy
minimization of Ncut guarantees strong discriminative ability to separate
object-level contents, generating coarse segmentation that directly benefits
saliency detection. Besides, less parameter tuning is required as it parti-
tions a graph in a discriminative way rather than a clustering-based way.
The aim in this paper is to generate coarse regions using Ncut and estimate
regional saliency from them.

Main contributions: The proposed method uses Ncut to generate hier-
archical segmentation, whose application is new to salient object detection.
An undirected graph is first constructed from superpixels and is then it-
eratively partitioned using the 2-way Ncut by solving the second smallest
eigenvector of system (D−W)u = λDu. To separate different visual con-
cepts (i.e. clusters) in an image, in each iteration the region that requires
the lowest Ncut energy is bi-partitioned. The entire partition process leads
to a binary tree structure. The effectiveness of the proposed method is ex-
perimentally validated. Combination of results from tree hierarchies yields
more robust performance than using single hierarchy.

Big picture: An input image is pre-segmented into superpixels. An undi-
rected graph G = (V,E) is constructed by regarding superpixels as vertices
and color similarity between them as graph edges. The graph is iteratively
partitioned using the 2-way Ncut by solving the second smallest eigenvector
of system (D−W)u = λDu. To separate different visual concepts (i.e.)
clusters in an image, in each iteration the region that requires the low-
est Ncut energy is bi-partitioned. During each iteration, regions have the
following properties are rendered high saliency:

• segments with closed boundaries (surroundedness).
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• segments highly differentiating from the background, i.e. boundary
superpixel set (figure-ground contrast).

• segments near the image center (center bias).

Finally, saliency maps from all iterations are combined and refined using
CRF. The partitioning process using 2-way Ncut as well as intermediate
saliency maps are shown in Figure 3.7.
Results: Tests and comparisons of the proposed method (named “SS” for
short) are performed on three datasets including MSRA-1000 [15], SOD [40]
and SED [41] with 13 existing methods. Some results are shown in Figure
3.8 and Figure 3.9. In Figure 3.8 visual comparisons, results generated
by SS are close to the ground truth and also more consistent with human
perceptions. With the assistance of N-cut, SS could handle images that
make the state-of-the-art methods less satisfactory, such as the 4th, 7th
and 8th row in Figure 3.8. Quantitative results on MSRA-1000 and SOD
are shown in Figure 3.9. SS achieves the best precision and F-measure on
MSRA-1000 under adaptive threshold, and competitive results on SOD. The
mean absolute error (MAE) of SS is also comparable, i.e. second best on
both MSRA-1000 and SOD.

Original

Iter. 1# 2# 3# 4# 5# 6# 7# 8# 9#

Combined

Final

Combined

Final

Original

Figure 3.7: Partitioning process and intermediate saliency maps gen-
erated by our method. Different colors indicate different
segments. The last column shows the integrated and re-
fined final saliency maps.

3.4 Paper 4: Adaptive Region Merging En-
hanced by Spectral Decomposition for Saliency
Detection

Basic Ideas: To generate coarse segmentation for salient object detection,
we consider from image edge viewpoint, since a salient object often presents
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Input CA FT LC HC RC SF LR GS HS PCA DRFI GC MR SS (Ours) GT

Figure 3.8: Visual comparisons of the proposed method with 13 exist-
ing methods (shown in columns). Images are from public
dataset MSRA-1000 [15].
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Figure 3.9: Quantitative comparisons of the proposed method with 13
existing methods on precision-recall curves, F-measure un-
der adaptive threshold, and mean absolute error. From
top to bottom are results on MSRA-1000 [15] and SOD
dataset [40].

strong contours. Graph-based merging technique [39] could be used for
this task but it might yield fragile segmentation (as discussed in Paper
3). Small fragile regions could bring noise and drastically affect the perfor-
mance. To remedy this problem, this paper proposes to include global cues
which provide concept-level contour information derived from Ncut. The
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basic idea is the continuous solutions (smallest eigenvectors) to the Ncut
problem are soft indication vectors that distinguish between different clus-
ters. Hence the derivation of eigenvectors results in edge information that
may be used to enhance object-level contours. The aim of this paper is
to develop a graph-based merging scheme further enhanced by graph-based
spectral decomposition. It generates fine-to-coarse hierarchical segmenta-
tion in a merging-based manner.
Main contributions: An adaptive multi-level merging scheme for salient
object detection from the “contour” point of view is proposed. An undi-
rected graph is first constructed from superpixels, from which the merging
starts. At each level of adaptive merging, two regions are fused if their
shared contour strength, measured as the average graph edges connecting
these two regions, is smaller than a threshold that is increasing w.r.t. the
level. The graph edges are constructed by integrating the edge informa-
tion in the first k smallest eigenvectors of the system (D−W)u = λDu.
This globalization procedure for enhancing salient contours is new to salient
region detection.
Big picture: Figure 3.10 shows the block diagram of the proposed method.
An input image is pre-segmented into superpixels. A preliminary graph
affinity matrix W is first computed from color similarity of adjacent su-
perpixels. An undirected graph G = (V,E) is constructed by connect-
ing adjacent superpixels and computing the graph edges by integrating
the edge information from the first k smallest eigenvectors of the system
(D−W)u = λDu. Let Rl = {Rl

1, R
l
2, ...} be a partition of V in the lth

level and Rl
k ∈ Rl corresponds to its kth part (namely region). At level

l of adaptive merging, two components Rl
i, R

l
j are fused if the difference

between them Dl
ij ≤ Th, where threshold Th is to control the bandwidth of

Dl
ij and is increased by a step in the next level. The criterion for measuring

the pairwise difference, namely shared contour strength, of two regions Rl
i,

Rl
j is defined as:

Dl
ij = D(Rl

i, R
l
j) = meanvk∈Rl

i,vm∈Rl
j ,ekm∈E{ekm} (3.1)

where “mean” is averaging operation over graph edges connecting Rl
i and

Rl
j . In each level, the merged regions are evaluated under simple saliency

measures to generate an intermediate saliency map. Cross-scale integration
is finally implemented to form the ultimate saliency map.
Results: Tests and comparisons of the proposed method are performed
on three datasets including MSRA-1000 [15] (1000 images), SOD [40] (300
images) and SED [41] (SED1: one object set and SED2: two objects set,
each containing 100 images) with 13 existing methods. Some results are
shown in Figure 3.11 and Figure 3.12. In Figure 3.11 visual comparisons,
our method effectively suppresses the background clutter and uniformly
emphasizes the foreground objects, attributed mainly to the hierarchical
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Superpixel 
segmentation

Global contour 
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Graph 
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Graph-based 
multi-level 
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Intermediate saliency 
computation and 

across-level integration

Saliency map

+ + +

Input

Figure 3.10: The block diagram of the proposed method.

region merging strategy. Further globalization helps pop out holistic salient
contours. In Figure 3.12 quantitative comparisons, the performance of our
method is comparable to the most recent state-of-the-art techniques, e.g.
outperforms HS on MSRA-1000 and SED1 and achieves similar results on
the rest. In the adaptive threshold experiment, our method achieves both
the highest precision and F-measure on MSRA-1000, 3rd and 2nd F-measure
on SOD and SED1. Besides, our method produces the lowest error on
MSRA-1000, and consistently 2nd on the rest.

3.5 Paper 5: Graph-based Saliency Detection
in Videos

Basic Ideas: While salient object detection in still images has gained a
lot of attention, its video version still remains under-explored. This paper
addresses salient object detection in videos. Since graph construction is a
crucial issue for many salient region detection methods, the basic idea in
this paper is to integrate both static appearance and motion cues for graph
construction. Besides computing a saliency map intuitively for each video
frame, object saliency in consecutive frames should be coherent. We pro-
pose to achieve this by using an energy propagation approach on a spatial-
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Figure 3.11: Visual comparisons on three benchmark datasets with 13
state-of-the-art methods. N.A. means neither results nor
code are publicly available for a certain method.

temporal graph constructed from consecutive frames.

Main contributions: 1) A unified way for extending graph-based meth-
ods to video processing is proposed. Motion feature called mean histogram
of optical flows (MHOF) is extracted from each superpixel. For situations
where difference between superpixels is required as edge, the graph edge
is constructed by weighted sum of the normalized color and motion differ-
ence. For cases where affinity between superpixels is required as edge, the
graph edge could be computed from the aforementioned difference using an
exponential function. The constructed graph could be leveraged by pre-
vious graph-based saliency detection methods to generate a saliency map
in a single frame. 2) A method for spatial-temporal saliency smoothing is
proposed. A two-frame graph is constructed by connecting superpixels in
consecutive frames. The smoothing is conducted by employing Conditional
Random Field (CRF) on the constructed two-frame graph, and the relaxed
solution is achieved in a closed-form way.

Big picture: Figure 3.13 shows the block diagram of the proposed method.
An input video frame is pre-segmented into superpixels. In each frame, an
undirected graph G = (V,E) is defined where vertices V are superpixels,
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Figure 3.12: Quantitative evaluations on precision-recall curves, adap-
tive threshold and mean absolute error (MAE) on three
benchmark datasets: from top to bottom are MSRA-
1000, SOD, SED1, and SED2.

and E are graph edges. A superpixel only connects to its spatial neighbors
in the graph. For situations where difference between superpixels is required
as edge, E is computed as the weighted sum of the normalized color and
motion difference:
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Figure 3.13: The block diagram of the proposed method. Noting that
after spatial-temporal saliency smoothing, we get both
smoothed maps for t and t − 1. But as t is the current
frame, we only leverage the smoothed map of t.

d̂ij = (1− α)
||ci − cj ||2

maxRp�Rq ||cp − cq||2 + α
||hi − hj ||2

maxRp�Rq ||hp − hq||2 (3.2)

where ci, cj are mean colors of superpixels, while hi, hj are mean histogram
of optical flows (MHOF). “Ri 
 Rj” means superpixel adjacency. For
situations where affinity between superpixels is required as edge, E is defined
as the kernel function with respect to d̂ij , e.g. an exponential function. After
the graph is constructed, previous graph-based methods can be employed
to generate a saliency map in a single frame. To achieve spatial-temporal
saliency smoothing in Figure 3.13, a two-frame graph is constructed by
connecting superpixels in consecutive frames t and t − 1. Saliency maps
generated from t and t− 1 are processed by CRF on the two-frame graph.
Finally the smoothed saliency map for frame t is obtained.
Results: Tests and comparisons of the proposed method are performed on
7 videos from two video datasets: SegTrack dataset and GaTech video seg-
mentation dataset. The constructed graph in each single frame is processed
by a manifold ranking-based salient object detection method [29]. Results
are shown in Figure 3.14 and Figure 3.15. In Figure 3.14, one can observe
that results of the proposed graph construction (“appearance + motion”)
are consistently better than the original method [29] (“appearance”). The
proposed spatial-temporal saliency smoothing (“appearance + motion +
smoothing”) has been shown useful for improving performance in a notice-
able margin, especially in “Birdfall,“Girl” and “Skater” videos. In Figure
3.15 visual comparisons, results are gradually improved from left to right.
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Figure 3.14: Quantitative evaluation on seven videos.
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Figure 3.15: Visual comparisons on seven videos. Columns left to
right: original frames, “appearance”, “appearance +
motion”, “appearance + motion + smoothing”, ground
truth.



Chapter 4

Conclusion

The proposed saliency detection method by color contrast and color dis-
tribution in Paper 1 effectively combines contrast and distribution cues
into a computational superpixel-based framework and renders high qual-
ity saliency maps. The exploited distribution prior and saliency smoothing
procedure are both proved advantageous and achieve improvement. Com-
plementary results of different cues are also validated. The limitation is that
similar to previous global color contrast methods, the proposed method as-
sumes the same color have the same saliency, which may not be true in
complex scenarios.

The proposed geodesic saliency propagation in Paper 2 offers an effective
way for enhancing object saliency. A coarse map is employed through com-
bining global contrast and Harris convex hulls, followed by propagating the
saliency energy to whole image areas through using the geodesic distance
between superpixels. The coarse map is not restricted to certain cues and
any other hypotheses can be employed. Observation is found that relaxing
the assumptions on global contrast and Harris convex hulls to some extent
would not significantly impact the propagated results.

The proposed hierarchical segmentation uses Ncut as a pre-segmentation
technique for salient object detection, which helps effectively discover the
object holism. Paper 3 introduces a coarse-to-fine partition framework ac-
companied by incorporating saliency measurement for segments based on
Gestalt laws and statistical prior. The proposed method achieves better or
comparable results on three widely used datasets with 13 state-of-the-art
solutions. Since Ncut is a kind of balanced cut, assumption is made that de-
sired salient contents can be split out after certain hierarchy. The limitation
is that it is not true for very small objects.

Regarding to the proposed saliency detection scheme based on adap-
tive multi-level region merging in Paper 4, the core is adaptive region
merging and globalization by graph-based spectral decomposition to en-
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hance salient contours. The former combines potential foreground and
background regions and the latter improves contour completions. When
combined together, they greatly improve the accuracy on detecting holistic
objects and effectively suppress the background. Experiments have shown
the proposed method achieves state-of-the-art performance on three com-
monly used benchmark datasets. The limitation is that since in each level
of merging an intermediate saliency map is computed, the computation cost
scales with the level number. Even under a limited level number, the com-
putation cost is still heavy compared to the methods in Papers 1-3.

Finally, graph-based methods are extended to video processing in Paper
5. The proposed graph construction has integrated both static and motion
cues by using a novel feature: mean histogram of optical flows (MHOF)
that effectively captures the statistical motion information in each super-
pixel. The advantage of the proposed method in video processing is shown
by applying the manifold ranking-based method to constructed graphs on
seven videos. The proposed spatial-temporal smoothing operation which
incorporates the spirit of CRF is shown to make saliency output more co-
herent, and to enhance the final performance.

Comparing the methods proposed in Papers 1-4 as they are all designed
for salient region detection in still images, in term of detection performance,
Paper 3 and Paper 4 are better than Paper 1 and Paper 2, since the formers
are the latest and employ Ncut to generate good segmentation. Meanwhile
incorporating new measures such as “surroundness” for removing regions
cropped by image boundaries also improves the performance. To categorize
these methods, methods in Paper 1 and Paper 2 should be divided into
heuristic color contrast-based type whereas the methods in Paper 3 and 4
should belong to multi-scale segmentation type for increasing the detection
reliability. Compared to Paper 3 and Paper 4, Paper 1 and Paper 2 have
advantages on detecting salient objects from relatively simple background
in fast speed, but Paper 3 and Paper 4 show more robustness in complex
scenarios.

Future work could include: applying methods in Paper 3 and Paper
4 to video processing by incorporating the graph construction from the
method in Paper 5. Additionally, the graph affinity in this thesis is based
on average colors from superpixels, which only give approximation of local
color statistics without considering texture. This could degrade detection
performance when colors of objects and the background are similar. This
can be improved by constructing the graph affinity from edge detection that
integrates local brightness, color, and texture cues, so that better delineation
between objects and background can be obtained.



30 Introduction

References

[1] A. Triesman and G. Gelade, “A feature-integration theory of atten-
tion,” Cognitive Psychology, vol. 12, no. 1, pp. 97–136, 1980.

[2] C. Koch and S. Ullman, “Shifts in selective visual attention: towards
the underlying neural circuitry,” Human Neurbiology, vol. 4, pp. 219–
227, 1985.

[3] A. Borji and L. Itti, “State-of-the-art in visual attention modeling,”
IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI), vol. 35, no. 1, pp. 185–207, 2013.

[4] U. Rutishauser, D. Walther, C. Koch, and P. Perona, “Is bottom-up
attention useful for object recognition,” in IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2004.

[5] J. Han, K. Ngan, M. Li, and H. Zhang, “Unsupervised extraction of vi-
sual attention objects in color images,” IEEE Transactions on Circuits
and Systems for Video Technology (CSVT), vol. 16, no. 1, pp. 141–145,
2006.

[6] C. Guo and L. Zhang, “A novel multiresolution spatiotemporal saliency
detection model and its applications in image and video compression,”
IEEE Transactions on Image Processing, vol. 19, no. 1, pp. 185–198,
2010.

[7] Y. Ma, X. Hua, L. Lu, and H. Zhang, “A generic framework of user
attention model and its application in video summarization,” IEEE
Transactions on Multimedia, vol. 7, no. 5, pp. 907–919, 2005.

[8] F. Stentiford, “Attention based auto image cropping,” in Workshop on
Computational Attention and Applications, ICVS, 2007.

[9] L. Marchesotti, C. Cifarelli, and G. Csurka, “A framework for visual
saliency detection with applications to image thumbnailing,” in IEEE
International Conference on Computer Vision (ICCV), 2009.

[10] Y. Ding, X. Jing, and J. Yu, “Importance filtering for image retarget-
ing,” in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2011.

[11] S. Goferman, L. Zelnik-Manor, and A. Tal, “Context-aware saliency de-
tection,” in IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2010.

[12] T. Chen, M. Cheng, P. Tan, A. Shamir, and S. Hu, “Sketch2photo:
Internet image montage,” ACM Transactions Graph, vol. 28, no. 5, pp.
1–10, 2006.



References 31

[13] L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual at-
tention for rapid scene analysis,” IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence (PAMI), vol. 20, no. 11, pp. 1254–1259,
1998.

[14] Y. Zhai and M. Shah, “Visual attention detection in video sequences
using spatiotemporal cues,” ACM Multimedia, pp. 815–824, 2006.

[15] R. Achanta, S. Hemami, F. Estrada, and S. Süsstrunk, “Frequency-
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