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Abstract— An important part of any advanced driver assis-
tance system is road geometry estimation. In this paper, we
develop a Bayesian estimation algorithm using lane marking
measurements received from a camera and measurements of the
leading vehicles received from a radar-camera fusion system, to
estimate the road up to 200 meters ahead in highway scenarios.
The filtering algorithm uses a segmented clothoid-based road
model. In order to use the heading of leading vehicles we need to
detect if each vehicle is keeping lane or changing lane. Hence,
we propose to jointly detect the motion state of the leading
vehicles and estimate the road geometry using a multiple model
filter. Finally the proposed algorithm is compared to an existing
method using real data collected from highways. The results
indicate that it provides a more accurate road estimation in
some scenarios.

I. INTRODUCTION

Nowadays, active safety and autonomous driving systems
provide vehicles with advanced functionalities to warn or as-
sist the driver in dangerous situations. Many of the functions
within these systems can benefit from accurate road geometry
information. Since map data is either not accurate enough or
not available for some roads, this information needs to be
extracted from noisy observations provided by the on-board
sensors. Two useful sources of information are measurements
of the lane markings and the moving vehicles.

Road geometry estimation is a well studied subject, ex-
amples of which can be found in [1], [2] and [3]. Most of
these papers focus on near range road geometry estimation
which is enough for some applications. However, in highway
scenarios where the host vehicle has a high speed, accurate
long distance information can be crucial.

Using the lane marking measurements to estimate the road
has been reported in several papers including [4] and [5].
In [1], [6] and [7] the authors use the measurements of
moving vehicles to update the road state. The measurements
of leading vehicles can be misleading when the vehicle
is changing lane/taking an exit. Therefore, in order to use
these measurements correctly, one alternative is to design a
mechanism that can help us distinguish between keeping lane
and changing lane scenarios.

Measurements of the leading vehicles are used to jointly
improve the estimation of the road geometry and host vehi-
cle’s state in [1], where the algorithm only assumes that these
vehicles follow their lane. Not accounting for lane changes
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could explain why according to the authors, their algorithm
performs best when driving alone. In [6] the authors use the
lateral movement of the vehicles to update the road state
and they propose using a detection algorithm to distinguish
between vehicles which are keeping lane and those which
are not. However, according to the authors the detection
algorithm suffers from a high false alarm rate. In [7], the
heading of the leading vehicles is used and to avoid updating
with vehicles that are changing lane/taking an exit, gating
[8] is applied. In situations where we are uncertain about
the road at far distances, making a hard decision about the
motion state of the vehicles can lead to more sensitivity
towards outliers.

In this paper we present a Bayesian inference algorithm
based on a segmented clothoid-based road model that can
estimate the road ahead of the host vehicle up to 200 meters.
We use the shape of the lane markings and the heading of
the leading vehicles to update the road state. To distinguish
between keeping lane/changing lane vehicles, a multiple-
model filter has been used. By following this approach we
get a more robust description of our uncertainties and avoid
the disadvantage of having to deal with false detections
while making efficient use of the available information. Two
commonly used multiple-model filters are the interacting
multiple model (IMM) filter [9] [10] and the generalized
pseudo-Bayesian (GPB) filter [9]. Due to computational
complexity and storage considerations of the fusion system
we are currently working with, GPB1 algorithm is the one
that suits our purpose best. Our algorithm is evaluated on
real data collected from highways across Europe. The road
estimation root mean-squared error (RMSE) is used as the
measure of performance.

The paper is organized as follows. We lay out the road
estimation problem in Section II. The proposed road model,
its resultant state parametrization and process model are
explained in Section III. Section IV includes the measure-
ment models. We explain our implementation in Section V.
The evaluation of our algorithm is presented in Section VI
followed by concluding remarks in Section VII.

II. PROBLEM FORMULATION AND SYSTEM DESCRIPTION

We are interested in estimating the road geometry up to
200 meters ahead of the host vehicle in highway scenarios.
The road geometry is defined as the shape of the middle of
the host vehicle’s lane. The road state, denoted rk, contains
a parametrization of the road geometry at time k. We assume



that given rk, there exits a mapping1 that can describe
the road geometry in the local Cartesian coordinate system
(xl

k, y
l
k) attached to the host vehicle. We assume that the

position of the host vehicle (xh
k, y

h
k) and its orientation ψh

k is
known in a fixed global Cartesian coordinate system (xg, yg).
In this work we consider having only one road, i.e., exits
and forks are not accounted for in the designed model.
Furthermore, we are working within an asynchronous fusion
framework similar to the one described in [11]. This implies
that the sensors are asynchronous and upon receiving the
measurement of each one we align the time index of the state
vector with that sensor and update with the measurement.

We aim at estimating the road geometry accurately using
the measurements provided by the on-board sensors. Besides
inertial measurement sensors and wheel speed sensors, our
vehicle is equipped with a camera and a radar. The camera
detects the left and right lane markings and describes each
side by a third degree polynomial. These polynomials are
given in the local coordinate system (xl

k, y
l
k) as
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T for the right. These
coefficients are accompanied by two confidence values, one
for each side telling us how much we can trust the coeffi-
cients and up to what distance the polynomial is accurate.
We use these confidence values to decide if the lane marking
measurements are accurate enough to be used.

The radar detects and tracks moving objects on the road.
For each observed vehicle i a measurement zik is reported
by the sensor given as,

zik = [xik, y
i
k, φ

i
k, v

i
k]

T (3)

where (xik, y
i
k) is the position in the local coordinate frame

and φik is the heading angle relative to the heading of the
host and vik is the speed in that direction. It should be noted
that these values are filtered by the sensor supplier and they
are not raw measurements.

The sequence of measurements up to and including time k
are presented by Z1:k, the aim is to recursively calculate the
posterior density of the road state rk given these observations
p(rk|Z1:k).

III. ROAD MODEL

Road constructors usually follow a set of guidelines that
are placed to ensure a smooth ride for the users. Among other
things, this indicates that the curvature of the road can not
change abruptly [12]. Based on this notion we have designed
our road model. In this section we describe the clothoid-
based road model, the resulting state parametrization and the
process model which are illustrated in Fig. 1.

1The details of this mapping are explained in Section III-A.

A. State Parametrization

Our proposed road model consists of n connected seg-
ments. Each segment is described by a clothoid, i.e., a
parametric curve that has a linearly changing curvature
κr(s). Therefore the curvature of segment i is described by

κir(s) = κi0 + κi1s (4)

where s is the arc length, κi0 is the initial curvature and κi1
is the curvature change rate. The segments are connected to
each other in a manner that ensures G2-continuity, i.e., the
position, heading and curvature of two segments are equal
at their joints. Moreover, at the beginning, all the segment
lengths are equal to the default segment length which is ls =
lr/n where lr denotes the road length and n is the number
of segments.

In order to describe the geometry of the road relative to
the host vehicle, we need the curvature at the host vehicle’s
position denoted by κ0,k and the curvature change rate
of each segment κ11, . . . , κ

n
1 . Furthermore, to complete our

description we need the distance between the host vehicle
(offset) and the starting point of the road and the heading of
the road at that point denoted by yoff

k and ϕk, respectively.
Note that the road parameters are expressed in the local
coordinate system. Finally we can put all of these together
to form the road state, which is described as

rk = [yoff
k , ϕk, κ0,k, κ

1
1,k, . . . , κ

n
1,k]

T . (5)

The curvature change rates, κ1
1,k, . . . , κ

n
1,k, are related to a

fixed part of the road and yoff
k , ϕk and κ0,k are related to the

current position of the host vehicle.
A description of each segment of the road given by rk in

local Cartesian coordinates is

xir(s) = xi0 +

ˆ s

0

cos(ϕi
r(s))ds (6)

yir(s) = yi0 +

ˆ s

0

sin(ϕi
r(s))ds (7)

where s denotes the arc length into segment i and

ϕi
r(s) = ϕi

0 + κi0s+
κi1
2
s2 (8)

is the heading of segment i at that arc length. Note that
xi0, yi0, ϕi

0 and κi0 are the position, heading and curvature
of the starting point of segment i. Due to G2-continuity,
these values are the same as the last point of the previous
segment. The integrals in (6) and (7) do not have a closed
form solution and we solve them by calculating the Taylor
series expansion of the integrand over ls/2.

B. Process Model

The parameters of the state vector describe the road
ahead at each time step and as we drive along the road
these parameters will change accordingly. The process model
describes these changes and consists of two parts. The first
part compensates for the host vehicle movement and the
second part describes the evolution of the road.



The first three elements of our state vector namely yoff
k ,

ϕk and κ0,k describe the road at the current position of the
host vehicle. So in order to calculate their time evolution we
need to compensate for the movement of the host vehicle.
Knowing how much we have moved along the road, we can
locate the new starting point of the road and derive its offset,
heading and curvature.

We receive the position and orientation of the host vehicle
in a fixed global coordinate system from the fusion system.
These parameters, at previous and current time stamp, are de-
noted by (xh

k−1
, yh

k−1
, ψh

k−1
) and (xh

k, y
h
k, ψ

h
k), respectively.

We denote the starting position of the road at the previous
time stamp by (xg,rk−1

, yg,rk−1
) and the current time stamp by

(xg,rk , yg,rk ). These coordinates are illustrated in Fig. 1. The
traveled distance along the road is expressed as

dk =
√

(xg,rk − xg,rk−1
)2 + (yg,rk − yg,rk−1

)2. (9)

Note that (xg,rk , yg,rk ) is the intersection of two lines one
originating from (xg,rk−1

, yg,rk−1
) in the direction of ϕk−1 and

the other originating from (xh
k, y

h
k) in the direction of ψh

k +
π/2. Additionally, the process models of yoff

k , ϕk and κ0,k
are calculated by

yoff
k+1 =

[

−sin(ψh
k) cos(ψh

k)
]

[

xg,rk − xh
k

yg,rk − yh
k

]

+ νyk
ϕk+1 = ϕr(dk)− (ψh

k − ψh
k−1) + νϕk

κ0,k+1 = κr(dk) + νκk (10)

where κr(·) and ϕr(·) are described by (4) and (8), respec-
tively. Moreover, νκk , νyk and νϕk are Gaussian process noise
terms which account for the uncertainties that exist in the
calculations of the host vehicle’s movement.

As stated previously, the road model consists of n seg-
ments. When the host vehicle is driving within a segment,
dk is subtracted from the first segment and added to the last,
additionally, the curvature change rates of all the segments
remain the same.

κi1,k+1 = κi1,k ∀i = 1 . . . n (11)

When the host vehicle reaches the end of the first segment,
this segment is removed and a new segment is added at the
end. The segment lengths are adjusted such that the road has
the same total length. As the first segment is removed, the
curvature rates of the remaining segments shift to the left

κi1,k+1 = κi+1

1,k ∀i = 1 . . . n− 1. (12)

The curvature change rate of the new segment is calculated
according to

κn1,k = νκ1

k (13)

where the uncertainty is modeled by νκ1

k ∼ N (0, σ2
κ1
).

IV. MEASUREMENT MODELS

We use two sets of measurements to estimate the road
geometry, namely the lane marking measurements and mea-
surements of the moving vehicles. Although we receive
filtered tracks from the sensors, since we are not given any
information about their covariances we treat them as raw
measurements. In this section we describe the corresponding
measurement models.

A. Lane Markings

The information about the lane markings are provided by
the camera as coefficients of a third-degree polynomial. To
more conveniently relate this information to the road state,
we sample each polynomial by four equally spaced points
up to the length where the sensor states that it is accurate.
These points which completely describe the third degree
polynomials, are collected in a vector called pk.

The measurement model describes the relationship be-
tween the sampled points and the state vector. The geometry
of the left and right lane markings is described by translating
the road half a lane width to the left and to the right. The
translation is carried out by calculating the parallel clothoid
of each segment similar to [5]. The following constraints
are used to make sure that the translated clothoid of each
segment (to either right or left), is parallel to the segment

ϕ̃0 = ϕ0

s̃i = si − ωL
k

2
∆ϕi

κ̃i0 =
1

1

κi
0

+
ωL

k

2

∆ϕi = ∆ϕ̃i (14)

where ∆ϕi = κi0s
i+

κi
1

2
(si)2 is the difference of the heading

between the start and the end of segment i. The lane width
at time k is denoted by ωL

k the calculation of which is
explained in Section V-A. ϕ̃0 and ϕ0 denote the heading at
the beginning of the segment of the translated and original
clothoid, respectively. Furthermore, s̃i, κ̃i0 and κ̃i1 denote
the segment length, the curvature at the current position of
the host vehicle and the curvature change rate of segment
i, respectively, of the translated clothoid. Accordingly, the
measurement model is described by

pk = g(rk, sk, ω
L
k ) +wl

k(sk) (15)

where g(·) is a nonlinear function performing the sampling
and the translation described by (14). Furthermore, sk is a
vector which contains the sampling distances in arc length
and wl

k ∼ N (0,Rl) describes the uncertainty around mea-
surement points.

B. Moving Vehicles

We use the heading of the moving vehicles to update
the road state using the assumption that if the vehicle is
following its lane, its heading and the heading of the road
at the position of the vehicle should be approximately the
same. Since this assumption is not always valid, e.g., when
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Fig. 1. Illustration of the road model, state parametrization and process model.

the vehicle changes lane or takes an exit, we propose two
measurement models each describing these two scenarios.
Assuming that vehicle i keeps its lane, its heading denoted
by φik at position [xik, y

i
k]

T is approximately equal to the
heading of the road at that distance. This is expressed as

φik = ϕr(s(x
i
k, y

i
k)) + ηi,0k (16)

where s(·) denotes the arc length associated with the position
of vehicle i and ηi,0k ∼ N (0, σ2

η0).
For the case where the vehicle is changing lane/taking an

exit, we propose to use the same model structure but with a
higher noise level. This is described by

φik = ϕr(s(x
i
k, y

i
k)) + ηi,1k (17)

where ηi,1k ∼ N (0, σ2
η1) and since the vehicle is not parallel

to the road anymore, σ2
η1 has a large value . Based on these

two noise models, we have two modes for each vehicle. One
mode states that the vehicle follows its lane while the other
states that it is changing lane/taking an exit. We denote the
modes of a single vehicle at time k by mk ∈ {0, 1} where
mk = 0 states that the vehicle is following its lane.

Finally, to model how a vehicle transitions between these
two modes, we use a transition probability matrix where each
element represents a probability of the form Pr{mk|mk−1}.
The transitional probabilities which have been calculated by
the method mentioned in [13] are

Π =

(

0.982 0.018
0.008 0.992

)

At time k we get observations on nk leading vehicles. As
each of these vehicles can have two modes, we can form
N = 2nk mode hypotheses. We denote the qth hypothesis at
time k by

m
q
k =

[

mq,1
k , mq,2

k , ..., mq,nk

k

]

The resulting nk-dimensional measurement model for a
given hypothesis is expressed as

φk = h(rk) +wo
k(m

q
k) (18)

where φk ∈ R
nk is a vector that includes the heading

measurements of all the vehicles at time k, h(rk) is a
linear function described according to (16) and (17) for
each vehicle and wo

k(m
q
k) ∼ N (0,Rq). Since we assume

the measurements to be independent, the measurement noise

covariance is a diagonal matrix denoted by Rq ∈ R
nk×nk

where each entry of the diagonal is equal to either σ2
η0 or

σ2
η1 depending on m

q
k.

V. IMPLEMENTATION

We follow a Bayesian approach to form the posterior
density of the state vector rk given measurements of the lane
markings and the moving objects. This approach consists
of two steps, prediction and measurement update. As the
process model is nonlinear, we use a square root cubature
Kalman filter (sqCKF) [14] to approximate the predicted
density using the process model described in Section III-
B. In this section we explain how we have implemented the
measurement update step to form the posterior density. The
pseudo-code of the complete filtering algorithm is presented
in Algorithm 1.

if The filter has been initialized then

Prediction (see Section III-B);
if Lane marking measurements received then

Update with the lane marking measurements
(see Section IV-A);

end

if Other vehicles measurements received then

Update with other vehicles (see Section IV-B);
end

else

Initialize the filter (see Section VI);
end
Algorithm 1: Pseudo-code of the filtering algorithm.

A. Lane Markings

We use (15) to do the measurement update and since
this model is nonlinear we use the sqCKF. The square root
implementation is chosen due to its robustness. The lane
width at time k in (15) is calculated as

ωL
k =

k
∑

j=k−L

l0j − r0j
L

(19)

where l0k and r0k are the zero order coefficients of the lane
marking polynomials on the left and right, respectively and
L is the window size over which we perform the averaging.



If a lane change is detected, before performing the update
we translate the predicted road state accordingly (to the left
or right) using (15). We detect a lane change by monitoring
the offset measurements (l0k,r0k) where a jump comparable to
a lane width indicates a lane change.

B. Moving Vehicles

In this part, we only use mature tracks, i.e. we wait a bit
before we start using the leading vehicles observations to
update our road estimates. The posterior density that results
from such measurements, more specifically the heading of
other vehicles on the road, is expressed as

p(rk|Z1:k) =
N
∑

q=1

Pr{mq
k|Z1:k}p(rk|mq

k,Z1:k) (20)

As can be seen, we need to calculate a multiple-model
posterior density for which there exists different approxi-
mations e.g. the IMM filters [9] [10] and the GPB filters
[9]. We are working within a real-time asynchronous fusion
system which imposes some constraints on the choice of the
multiple-model algorithm. More specifically, in order to use
the IMM filters or the GPB filters with depth more than one,
we need to propagate the means and covariances of all the
models throughout the whole system. Therefore, to avoid the
resulting storage and computational complexity demand, we
choose the GPB1 algorithm where we can approximate the
posterior density with a single Gaussian. Since we have used
the sqCKF for lane marking measurement update, we have
implemented the square root GPB1. This implementation
increases the robustness of our filter.

We can see in (20) that calculating the multiple-model
posterior density boils down to calculating the posterior den-
sity resulting from each hypothesis p(rk|mq

k,Z1:k) together
with its weight Pr{mq

k|Z1:k}. Given the hypothesis and the
heading measurements, the posterior density is described by

p(rk|mq
k,Z1:k) ∝ p(rk|Z1:k−1)p(φk|mq

k, rk) (21)

where the prediction density is calculated using the process
model described in Section III-B and the likelihood function
is explained in (18). The probability of each hypothesis is
expressed as

Pr{mq
k|Z1:k} ∝ p(φk|mq

k,Z1:k−1)

× Pr{mq
k|Z1:k−1} (22)

where the first term is the distribution of the innovation

p(φk|mq
k,Z1:k−1) = N (φk; φ̂k|k−1,Sq) (23)

and the second term is the predicted weight. These weights
are calculated as

Pr{mq
k|Z1:k−1} =

nk
∏

j=1

1
∑

m
j

k−1
=0

(

Pr{mq,j
k |mj

k−1
}

× Pr{mj
k−1

|Z1:k−1}
)

(24)

where the first term comes from the transition probability
matrix Π which is explained in Section IV-B. To make the
picture complete we need to calculate the following

Pr{mj
k−1

= 0|Z1:k−1} =
∑

q∈H

Pr{mq
k−1

|Z1:k−1}

Pr{mj
k−1

= 1|Z1:k−1} = 1− Pr{mj
k−1

= 0|Z1:k−1}
where H is the set of all hypotheses in which we assume
that the j th vehicle follows its lane.

As stated before, we approximate the multi-modal poste-
rior in (20) as a single Gaussian. The first two moments of
this approximated density are the estimated road state and
its covariance. Note that we are working with the square
root covariance rather than the covariance itself. We use the
following notations to present the derivation of the estimated
road state and its square root covariance

p(rk|mq
k,Z1:k) = N (rk; r̂

q

k|k, P̂
q

k|k)

Pr{mq
k|Z1:k} = ωq

where P̂
q

k|k ∈ R
n×n and n is the dimension of the state

vector. The estimated road state is expressed as

r̂k|k =

N
∑

q=1

ωqr̂
q

k|k.

We derive the square root covariance of the estimate by using
techniques similar to the one presented in [15]. The estimated
covariance of the Gaussian mixture of (20) is expressed as

P̂k|k =
∑

q

ωqP̂
q

k|k

+
∑

q

ωq(r̂
q

k|k − r̂k|k)(r̂
q

k|k − r̂k|k)
T (25)

By factoring P̂
q

k|k = A
q

k|kA
qT

k|k, where T denotes matrix
transpose, the square root covariance is found by performing
two QR decompositions. The first decomposition gives us the
square root matrix resulting from the first term in (25)

Mk = qr{[√ω1A
1

k|k ...
√
ωNAN

k|k]
T }

where Mk ∈ R
n×n and qr{·} denotes performing the QR

decomposition and extracting the first n rows and columns of
the transpose of the resulting R matrix. Following the same
notation the square root of the covariance matrix is

Ak|k = qr{
[ [ √

ω1∆r̂1
k|k ...

√
ωN∆r̂N

k|k

]

Mk

]

}

where ∆r̂i
k|k = (r̂i

k|k − r̂k|k). Since we approximated the
posterior density in (20) by a single Gaussian distribution,
it is completely described by its mean r̂k|k and square root
covariance Ak|k .

VI. EVALUATION

In this section we evaluate the performance of our filter on
real data collected from highways. We are mainly interested
in calculating the road estimation error, i.e., we compare the
true road sampled every 20 meters up to 200 meters to the
estimated road sampled at the same distances. We use the



road estimation RMSE as the measure of performance. The
true road is calculated from the host vehicle’s path in the
global coordinate system and the lane marking coefficients
l0k and r0k . We calculate the host path by the dead-reckoning
method, i.e., using the internal sensor measurements. The
precision of this method and the assumptions upon which
we find this method reasonable are discussed in detail in
[7].

We evaluate the performance in two different scenarios.
The first, only using lane marking measurements to estimate
the road and the second using measurements of both lane
markings and moving vehicles. By comparing the results
in the two scenarios, we show the benefit of using moving
vehicle measurements. Furthermore, for the case where we
use moving vehicle measurements, we compare the results
of two different measurement update methods. The first is
the sqCKF-GPB1 filter described in Section V-B and the
second is the sqCKF-gating used in [7]. Gating is an outlier
detection method where a measurement is only accepted as
a valid measurement if the Mahanolobis distance between
the measurement and the predicted measurement is below
a threshold. The sqCKF-GPB1 and sqCKF-gating use the
same state parametrization and process model. Their key
difference in the measurement update is how they treat the
measurements of other vehicles.

Both filters are initiated by the first measurements of the
left and right lane markings. The settings for the process and
measurement noise are expressed in terms of their standard
deviations. Both filters use the same setting for the process
noise, i.e., σy

k = 0.4m, σϕ
k = 0.5◦, σκ

k = 10−5m−1,
σκ1

k = 2e10−6m−2, as well as for the measurement noise
of the lane marking samples. The noise of the lane marking
samples are 0.01m and 0.025m + sk/10 for the x and y
coordinates, respectively, where sk is the sampling distance
in arc length. For the leading vehicles, the measurement noise
is set to ση0 = 0.5◦ (keep lane) and ση1 = 3◦ (changing
lane), for the sqCKF-GPB1. These values are increased by
the rate of 1◦/100m based on the longitudinal distance to
the host vehicle. The sqCKF-gating algorithm uses ση0 as the
measurement noise and the gate size is set to three. These
values are set by reasoning and trial and error.

Fig. 2 compares the RMSE error of the three different
cases. For this evaluation we chose a rather windy highway,
the profile of which is depicted in Fig. 3, and where there
were many vehicles present around the host vehicle. As can
be seen, using the heading of the leading vehicles improves
the performance significantly. The improvement happens for
the distances over 50-60 meters and that is exactly the
distances up to which we typically have lane marking mea-
surements. Additionally, the sqCKF-GPB1 performs better
than sqCKF-gating.

In Fig. 4 we have compared the road estimation RMSE
averaged over ten log files which constitute a total of
30 minutes of driving (62.4 km). The data of these log
files contain measurements recorded from different highway
scenarios, i.e., windy, straight, flat and hilly highways. It
should be mentioned that these log files include both busy
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Fig. 4. Comparison of road estimation RMSE averaged over 30 minutes
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Fig. 5. Percentage of the time that the road estimation RMSE is below
one lane width for sqCKF-GPB1 and sqCKF-gating.

and empty highways. More specifically, in some of the log
files there are many leading vehicles present while in others
there are only one or two vehicles besides the host. As such,
the data that has been used for evaluation includes many
different real-world highway situations. The result clearly
indicates that using the heading of other vehicles improves
the performance significantly, additionally, the sqCKF-GPB1
filter performance is only slightly better than the sqCKF-
gating algorithm. We believe the reason for this is that
detecting a lane change at far distances on a rather empty
and windy road is a difficult problem for both algorithms.

Finally, Fig. 5 depicts the percentage of the times that
the road estimation RMSE is lower than one lane width
for sqCKF-GPB1 and sqCKF-gating. This percentage is
calculated from the same data used to generate Fig. 4. We
can see that the RMSE at 200m from the host vehicle is less
than one lane width 76% of the times for both algorithms.

VII. CONCLUSION

In this paper, we develop a Bayesian inference algorithm
to estimate the road ahead of the host vehicle up to 200
meters, using a segmented clothoid-based road model. We
use observations of the shape of the lane markings and the
heading of the leading vehicles to update the road state.
We use the GPB1 algorithm to distinguish between the
vehicles which are keeping their lane and those that do
not. We evaluate our algorithm on real data collected in
highways across Europe. The results show that using the
heading of leading vehicles improves the road estimation
error significantly. Additionally, the sqCKF-GPB1 performs
better than the sqCKF-gating in some scenarios.

Use of other sources of information such as the measure-
ments of the guardrails could improve the performance of
the road geometry estimation. We will address this issue in
our future research.
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