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Abstract

Recent years have seen decreasing emission limits for passenger cars put in place to battle
climate change. There is a need for car manufacturers to apply state-of-the-art techniques
in order to be able to further reduce emissions and meet these new limits. Improving the
aerodynamic shape of a vehicle still holds a large potential for cuts in emissions.

A fast method for vehicle shape optimization have been developed using recent years'
advancements in neural networks and evolutionary optimization. It requires the construc-
tion of morphing boxes as the only manual work, with everything else being automated.
The proposed method enables a study of several design parameters to be carried out in
a short period of time. This is great improvement over a classical approach of changing
one parameter at a time.

The optimization method is a type of two-level optimization. This means that the op-
timization is performed on a solver approximation instead of the real solver. This con-
siderably reduces computation time. First a database is generated from simulations on
a number of vehicle shape con�gurations. The con�gurations are chosen using a latin
hypercube sampling where the minimum distance between any two points is maximized.
The database is used to train a neural network to act as an approximation to the sim-
ulations. Finally an optimal vehicle shape is determined from the neural network using
particle swarm optimization. The method can handle multiple objectives.

The method was incorporated in an optimization tool compatible with Volvo Car Group's
CAE process. The optimization tool was used on a simpli�ed low-drag car model in a
study of realistic changes of �ve design parameters. An improved shape with a 12.6%
lower drag coe�cient (CD) was achieved. The prediction error of CD was 0.3%.
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1 | Introduction

The concentration of greenhouse gases in the atmosphere is the highest it has been in the
last 800,000 years (IPCC, 2013). This has already increased the global temperature and
the future e�ects are potentially very harmful. To battle climate change the European
Union issued a climate policy called the "20-20-20" targets in 2009. The main objective
of this policy is to reduce the emissions of greenhouse gases by 20% in 2020 compared to
1990 levels (European Commission, 2014b).

Data from 2010 shows that the transport sector accounts for 31.7% of the entire energy
consumption in the European Union (European Environment Agency, 2012). Part of the
EU policy is a limit of CO2 emissions for passenger cars. The limit for 2020 is set to 95
g/km with heavy penalties for excess emissions (European Commission, 2014a).

Improving the aerodynamic shape of a vehicle is an important factor in reaching the above
limits for car manufacturers. At highway speed aerodynamic drag makes up more than
50% of the total driving resistance (Barnard, 2009, p.54). Wood (2004) estimates that the
energy used to overcome aerodynamic drag makes up 25% of the total energy consumed
in the United States. Hence, reducing the drag can make signi�cant improvements in fuel
economy and emissions.

Computer aided engineering (CAE) is today a vital part of car design. Normally the drag
of a model is improved by manually analysing �ow simulations and manually updating
the model. This is a costly, time-consuming and labour-intensive process. Automated
optimization of a model can help make the CAE-process both quicker and cheaper.
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2 | Aim

The main aim of this master's thesis is to deliver tools for the aerodynamic optimization
of a vehicle's shape. The optimization process should be automated and need to be
compatible with Volvo's computer aided engineering (CAE) process. A secondary aim is
to provide an improved vehicle shape using the optimization tools. In summary the aim
is to:

� develop tools for aerodynamic optimization of vehicle shape,

� automate optimization and

� provide an improved vehicle shape.

2.1 Limitations

The optimization is focused on minimizing the drag coe�cient CD. Consideration is
taken to the projected area, to make sure the drag force (FD ∼ CD ·A) does not increase
even if the drag coe�cient is lowered. The lift coe�cient CL is also taken into account,
but other aspects of the aerodynamic shape such as noise, vibration etc. are not taken
into account.
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3 | Theory

This chapter aims to give a short introduction to some of the concepts used in this thesis.

3.1 Aerodynamic forces and coe�cients

A car driven on a road will experience aerodynamic forces acting on it, just as any blu�
body moving through a �uid. There will be a drag force acting against the direction
of travel and a lift force acting perpendicular to the road. For passenger cars this is
generally a positive lift force acting to lift the car o� the road. Due to side winds there
will also be a force acting on the side of the car. The side force is neglected in this thesis.
The drag and lift forces are computed by integrating the surface pressure ps as

FD =

∫
psdAx and (3.1)

FL =

∫
psdAz, (3.2)

where x is the direction of travel and z is perpendicular to the ground. These equations
can be rewritten using dimensionless drag and lift coe�cients as

FD =
CDAρv

2

2
and (3.3)

FL =
CLAρv

2

2
. (3.4)

CD is the drag coe�cient, CL is the lift coe�cient, A is the projected frontal area, ρ
is the density of air and v is the velocity. At subsonic speeds the density of air can be
considered constant. For constant driving speed the relevant factors that in�uence the
drag force are CD and A. A larger frontal area will mean a larger drag force. Objects
with the same frontal area can however experience di�erent drag forces, which is why CD
can be used as a measure of how aerodynamic a certain blu� body is.
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CHAPTER 3. THEORY 3.2. DESIGN OF EXPERIMENTS

3.2 Design of experiments

With n design parameters there is an n-dimensional room of possible con�gurations. The
amount of tested con�gurations should be kept to a minimum to avoid costly computa-
tions. A design of experiments method is a statistically reliable method to sample these
con�gurations. A simple method is the full-factorial design where each parameter domain
is divided into a number of intervals and each interval is sampled once. For i intervals
and n parameters this results in in designs.

3.2.1 Latin Hypercube Sampling (LHS)

Latin hypercube sampling is possible for any number of dimensions but for simplicity the
theory of a 2D LHS is presented here. In a 2D LHS, the sample space is divided into
a number of rows and columns. Data is sampled exactly once from each row and each
column. LHS has a smaller variance than a random sampling (Fang et al., 2006) and
allows for a smaller number of samples than the full-factorial design. A simple LHS with
four samples can be seen in Figure 3.1. The �gure visualises the main concept of a LHS,
where each row and each column has exactly one node.

Figure 3.1: A latin hypercube sampling with four samples.

Maximin distance LHS

One of the drawbacks of LHS is that is does not reach a minimal variance (Fang et al.,
2006). An improved model is the maximin distance LHS which aims to �nd an LHS where
the minimum distance between points is maximized, i.e. where the points are as spread
out as possible. This is done by adding a Monte-Carlo simulation to the LHS creation.
A large number of LHS designs are generated and the minimum distance between any
two points is computed for each design. The design with the largest distance is chosen
as the �nal design. (Alam et al., 2004)

CHALMERS, Applied Mechanics, Master's Thesis 6



CHAPTER 3. THEORY 3.3. ARTIFICIAL NEURAL NETWORK

3.3 Arti�cial neural network

An arti�cial neural network is a computational model that mimics the behaviour of an
organic nervous system made up of neurons and can among other things be used to
approximate non-linear functions. The organic neurons are replaced with computational
nodes. A common network is the multi-layer feedforward network. This network is
generally made up of several layers of nodes; one input layer, one or more hidden layers
and one output layer. Signals are transferred from the input layer to the output layer.
Another possibility is a recurrent network where there is also feedback from the output
to the input. Figure 3.2 shows a multi-layer feedforward network with one hidden layer.
(Haykin, 2009)

Figure 3.2: Schematic of an arti�cial neural network.

Consider the �rst input node in Figure 3.2. Data from this node is multiplied with a
weight W1 and transferred to the �rst node in the hidden layer. It is also multiplied
with a di�erent weight W2 and transferred to the second node in the hidden layer and
similarly for the hidden nodes three and four. Data is transferred in this manner between
all nodes in the input layer and the hidden layer. At the �rst hidden node the weighted
data from all input nodes is summed and to this sum is added a bias B1. The same
process is repeated for all hidden nodes. Data is transferred between the hidden layer
and the output layer in the same manner as between the input layer and the hidden layer.
(Van den Braembussche, 2008)

CHALMERS, Applied Mechanics, Master's Thesis 7



CHAPTER 3. THEORY 3.3. ARTIFICIAL NEURAL NETWORK

3.3.1 Initialising the network

The neural network is initialised by adjusting the weight and bias coe�cients. This is
known as 'training' and a common method is the back-propagation method (Van den
Braembussche, 2008). A database of input values and corresponding output values are
used to train the network. This database is generated from the original function or
measured from the original system. The back-propagation method consists of two phases:
a forward phase and a backward phase. In the forward phase weights and biases are kept
�xed while a signal is transferred from the input layer and the output layer. In this
way a set of responses are computed from the database input values. These responses
are compared to the database output values. In the backward phase the resulting error
signal is propagated backward through the network and weights and biases are adjusted.
(Haykin, 2009)

3.3.2 Overtraining

When a neural network is trained with too large a database it may end up closely re�ecting
features of the training data (noise etc.) and lose its generalization ability. This is
called overtraining. There are two main strategies for avoiding this; early stopping and
regularization.

Early stopping

Using early stopping a sample of inputs and corresponding outputs are divided into two
sets, a training set and a validation set. The neural network is trained repeatedly with
the training set and the output error is computed. This error will decrease continuously.
Periodically the training is stopped and the network is tested with the validation set.
The output error is computed also for this set. The validation error will decrease at �rst
when the generalization of the network is improved. After a while the network will start
to become overtrained and the validation error will increase. By stopping the training at
the point where the validation error is minimized overtraining is avoided. (Haykin, 2009)

Regularization

Regularization is based on the assumption that the approximated function is smooth, i.e.
that there are no discontinuities in the physical response of the system. This assumption
is valid for a subsonic �uid �ow. A smooth response from the neural network is achieved
by keeping the weights small. The goal when training a neural network is to minimize
the output error ET . Regularization aims to minimize the network weights EW . This
minimization problem can be stated as: (Foresee and Hagan, 1997)

E = αET + βEW . (3.5)

CHALMERS, Applied Mechanics, Master's Thesis 8



CHAPTER 3. THEORY 3.4. EVOLUTIONARY OPTIMIZATION

The main problem with this is to �nd correct values for α and β. Foresee and Ha-
gan (1997) presented a method of solving this optimization problem that provides good
generalization. This method has been implemented in the MATLAB function trainbr.

3.4 Evolutionary optimization

Stochastic optimization algorithms that are inspired by natural evolution are generally
called evolutionary algorithms. Methods inspired by the social behaviour of species, such
as particle swarm optimization, are also included in this general term (Elbeltagi et al.,
2005).

The origin of evolutionary algorithms is the genetic algorithm which mimics the natural
evolution of species (Elbeltagi et al., 2005). The solution to a problem is encoded in a
string of numbers. Each element in the string is the equivalent of a 'gene'. A number of
initial solutions, or 'individuals', are created randomly to make up the �rst generation.
New generations are created by combining the genes of the �ttest individuals. Elements in
some individuals are changed at random to simulate mutations. Generation by generation
the solutions will become better and better and eventually reach a global optimum.
(Goldberg, 1989)

3.4.1 Particle Swarm Optimization (PSO)

Kennedy and Eberhart (1995) suggested a method called particle swarm optimization
that combines the global search of evolutionary algorithms with a local search. The
method mimics the behaviour of a �ock of birds searching for food. Initially the birds
are spread out over an area. Each bird searches for food but also communicates with the
other birds in the �ock, moving towards the bird in the best position. In optimization
terms this means a combination of a global search and a local search. Each particle, or
bird, performs a local search. The particles are moving in the direction of the overall best
solution, i.e. a global search.

3.4.2 Multiple objectives

Coello et al. (2004) proposed an extension to the algorithm by Kennedy and Eberhart
(1995) that can handle multiple objectives. Instead of searching for a global optimum
the algorithm searches for the Pareto front. They also incorporated a mutation step to
improve the multi-objective search.

Pareto front

If the optimization problem has more than one objective there is generally not one single
global optimum but a collection of optimal points called a Pareto front. A point is said

CHALMERS, Applied Mechanics, Master's Thesis 9



CHAPTER 3. THEORY 3.5. MESH MORPHING

to be Pareto optimal if there is no way to improve the solution in one objective without
making it worse in another. Mathematically this can be expressed as follows (Coello
et al., 2004):

A tensor u is said to dominate v (u,v ∈ Rk) if

u 6= v and ui ≤ vi ∀i (3.6)

A point x ∈ Rk with an objective function f(x) is nondominated if

@x′ ∈ Rk such that f(x′) dominates f(x) (3.7)

A point is called Pareto optimal if it is nondominated in the search space.

3.5 Mesh morphing

Mesh morphing is a method in which the mesh of a model can be updated, without
having to change the original CAD model. In ANSA this is done by de�ning a number
of morphing boxes which map to the surface of the model. When a morphing box is
changed this will also change the mesh. An illustration of the morphing concept can be
seen in Figure 3.3.

(a) Original box. (b) Morphed box.

Figure 3.3: Illustration of morphing concept. The outer green lines represent the mor-
phing box. When the upper right corner of the morphing box is moved downwards the
shape of the mesh is changed.

CHALMERS, Applied Mechanics, Master's Thesis 10



CHAPTER 3. THEORY 3.6. TURBULENCE MODEL

3.6 Turbulence model

Turbulence is the chaotic and irregular motion of �uid particles in a �ow, for example
in the �ow around a car. The physical framework for describing �uid motion are the
Navier-Stokes equations coupled with the continuity equation. It is possible to directly
solve these equations using numerical methods, but for turbulent �ows this requires a
very high resolution (in both time and space) in order to resolve the smallest turbulent
scales. For the �ow around a car this is not a realistic approach at present day due
to the high computational cost. Instead the turbulence is modelled to allow a lower
resolution. A common approach is to use the Boussinesq assumption. Such turbulence
models are called eddy viscosity models. When neglecting gravity and assuming steady-
state incompressible �ow the modelled continuity and Navier-Stokes equations can be
written as (Davidson, 2013):

∂ui
∂xi

= 0 and (3.8)

ρ
∂uiuj
∂xj

= − ∂p

∂xi
+

∂

∂xj

[
(µ+ µt)

(
∂ui
∂xj

+
∂uj
∂xi

)]
, (3.9)

where µt is the turbulent viscosity de�ned in the Boussinesq assumption. µt is unknown
and is computed using a turbulence model.

3.6.1 k-epsilon model

In the k− ε turbulence model two additional equations are solved apart from the Navier-
Stokes and continuity equations. These are the modelled transport equations for the
kinetic energy k and its dissipation ε. They are used to compute the turbulent viscosity
µt. The modelled transport equations for k and ε can be written as (Davidson, 2011)

∂ρujk

∂xj
=

∂

∂xj

[(
µ+

µt
σk

)
∂k

∂xj

]
+ Pk − ρε and (3.10)

∂ρujε

∂xj
=

∂

∂xj

[(
µ+

µt
σε

)
∂ε

∂xj

]
+
ε

k
(cε1Pk − cε2ρε), (3.11)

where

Pk = µt

(
∂ui
∂xj

+
∂uj
∂xi

)
∂ui
∂xj

. (3.12)

The turbulent viscosity is computed as

CHALMERS, Applied Mechanics, Master's Thesis 11



CHAPTER 3. THEORY 3.7. STATISTICAL CONCEPTS

µt = cµρ
k2

ε
, (3.13)

where cµ is a constant. There are in total �ve constants in the k − ε model (σk, σε, cε1,
cε2 and cµ) which have been determined from experiments.

Realizable k-epsilon model

There are some problems with the standard k− ε model, mainly to do with the modelled
ε equation and the formulation of µt. Shih et al. (1995) proposed the realizable k − ε
model as an improvement over the standard formulation. This model includes a new
formulation of the modelled ε equation and a new formulation of the turbulent viscosity
µt based on the realizability constraints. The realizability constraints assure that the
�ow is physically realizable, something that is not always the case for the standard k− ε
model. The realizability constraints are stated as (Davidson, 2013):

u′2α ≥ 0 ∀α ∈ {1,2,3} and (3.14)

|u′αu′β|(
u′2α u′2β

)1/2 ≤ 1 ∀α,β ∈ {1,2,3}. (3.15)

3.7 Statistical concepts

Variance is a measure of the variation in a group of data points. The variance of a variable
is the average of the squared deviation of the variable from its mean (Rice, 2007):

V ar(X) = E[(X − µX)2]. (3.16)

E denotes the expectation value and µX is the mean of X. Standard deviation is a more
commonly used concept than variance. Standard deviation (σ) is de�ned as the square
root of the variance:

σX =
√
V ar(X). (3.17)

Standard deviation can be used to express a con�dence interval. For a normal distribution
the 95% con�dence interval is ±2σ, i.e. a data point in X is with 95% certainty located
in the range µx ± 2σX (Rice, 2007).

Covariance is a measure of how two variables are associated. It is de�ned as (Rice, 2007)

Cov(X,Y ) = E[(X − µX)(Y − µY )]. (3.18)

CHALMERS, Applied Mechanics, Master's Thesis 12



CHAPTER 3. THEORY 3.7. STATISTICAL CONCEPTS

X−µX and Y−µY are the deviation ofX and Y from their mean values and the covariance
is the average value of this product. If X and Y are independent the covariance will be
zero, i.e. there is no association between the variables. But if for example X is larger
than its mean when Y is also larger than its mean this will give a positive covariance. A
similar measure is the correlation coe�cient (Rice, 2007)

ρ =
Cov(X,Y )

σXσY
,−1 ≤ ρ ≤ 1. (3.19)

The correlation coe�cient is a dimensionless value between -1 and 1 that measures the
quality of a linear relation between X and Y . A value of 1 means a perfectly linear
positive relation. A value of -1 means a perfectly linear negative relation.

CHALMERS, Applied Mechanics, Master's Thesis 13





4 | Method

This chapter presents the method used in this thesis.

4.1 CAE process

The optimization tool was designed to be compatible with Volvo's computer aided en-
gineering (CAE) process. This process involves four steps with di�erent software, see
Figure 4.1, where the optimization is included as a �fth step.

Figure 4.1: Schematic of CAE process.

4.1.1 Pre-processing

Any geometry cleaning and mesh adjustments are applied manually in ANSA before
generating a surface mesh. Mesh morphing is executed and the mesh is exported. The
cell size of the surface mesh is not very relevant since a new mesh is generated in Harpoon.

4.1.2 Volume meshing

A volume mesh is generated automatically in Harpoon from the ANSA mesh �le. The
cell sizes vary according to a number of re�nement boxes, see Figures 4.2 and 4.3. The
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cell sizes in each re�nement box are given in Table 4.1. Cell sizes outside and between
re�nement boxes are expanded continuously.

Figure 4.2: Top view of re�nement boxes.

Figure 4.3: Side view of re�nement boxes.

Table 4.1: Cell sizes in volume mesh. Default value of base level is 40 mm.

Area Cell size
1. Around car (Base level)
2. Wake (Base level)/2
3. Wake (Base level)/4
4. Under car (Base level)/4

The cell sizes are controlled through a base level parameter. The default value is 40 mm
but this can be adjusted.

4.1.3 Solver

The �ow is solved with a steady-state pressure-based Navier-Stokes solver in Fluent. A
realizable k − ε turbulence model is used together with a second-order discretization
scheme for pressure and momentum and a �rst-order discretization scheme for k and
ε. The solver is �rst run 1000 iterations with Fluent's default under-relaxation factors,
before the factors for pressure and momentum are lowered to 0.3 and further iterations
are run. The air velocity is set to 100 km/h, simulating a car driving at highway speeds.
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Comparison of turbulence models

The two-equation eddy viscosity models are not as accurate as more advanced models such
as RSM or LES but they are a good trade-o� between accuracy and speed and therefore
the most commonly used models in the automotive industry. The standard k − ε is a
common and well-documented approach, but it behaves poorly in regions where there is
an adverse pressure gradient or a low Reynolds number (Davidson, 2011). Singh et al.
(2005) compared the performance of four turbulence models (Spalart-Allmaras, k − ε,
RNG k − ε and realizable k − ε) for the �ow around a truck and found that realizable
k − ε best matched the experimental results.

Solver accuracy

In this thesis CD and CL are reported with 3 decimals and even higher accuracy is used
for computations. This accuracy concerns the convergence of the solver. It does not entail
that the accuracy of the simulation itself, as compared to the real physical problem, is
this high. The simulation accuracy is probably much lower. However, since a neural
network will be used to approximate the solver it is important that the simulations are
converged and that the relative changes between simulations are accurate.

4.1.4 Post-processing

Post-processing is performed in EnSight where a number of di�erent plots are generated.

4.2 Aerodynamic Concept Car (ACC)

The Aerodynamic Concept Car is a concept model developed at Volvo. It is a simpli�ed
model but still captures the main aspects of a real car. The ACC can be seen in Figures
4.4 and 4.5.

Figure 4.4: Aerodynamic Concept Car (ACC).
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(a) Front view. (b) Side view.

Figure 4.5: Front and side view of ACC.

It is designed to be a low-drag model with realistic proportions and is therefore a good
test object for an optimization study. If the optimization tool is able to lower the drag
of this model which has been developed to have an optimal aerodynamic shape, it should
be able to do so also for a model which has not.

4.3 General optimization method

There are a number of di�erent methods for optimizing the aerodynamic shape of a
vehicle but they all share some common aspects. The schematics of a general method for
optimizing the aerodynamic shape of an object can be seen in Figure 4.6.

Figure 4.6: Schematics of general method for car shape optimization.

The method starts with a single initial model. A CFD simulation is performed for this
model. The result is analysed using some optimization algorithm. Some design parame-
ters of the model are updated and a new CFD simulation is performed on the updated
model. This iterative process continues until some stop condition is reached. This method
is adopted in Helgason and Hafsteinsson (2009), Kim et al. (2009) and Dumas (2008).
The method is successfully implemented in all of the three reports. It is however very
computationally demanding and they have all limited their studies to simpli�ed models
or coarse meshes. The large computational cost associated with this method limits the
real-world applications for the automotive industry at present day.
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4.4 Two-level optimization

A way to reduce the computational cost is to perform the optimization using an ap-
proximation of the solver. This approach is sometimes called two-level optimization.
Van den Braembussche (2008) reports that the use of such an optimization can consid-
erably decrease the computation time. A schematic of the method described by Van den
Braembussche (2008) can be seen in Figure 4.7.

Figure 4.7: Schematics of two-level car shape optimization.

Instead of performing a new CFD simulation every time the model is updated, initial
simulations are performed for a sample of the con�guration space. The samples are
chosen using a design of experiments method. The results from these initial simulations
are used to create an approximative model of the aerodynamic behaviour. Optimization
is performed on this faster approximative model. This approach is used successfully in
Lietz (2011) and Song et al. (2012). There are a number of method choices involved in
these processes; the choice of a solver approximation method, a design of experiments
method and an optimization algorithm.

4.4.1 Solver approximation method

In the two-level optimization a number of CFD-simulations with di�erent con�gurations
of design parameters are performed. The results of these simulations are used to create
an approximate relationship between the aerodynamic behaviour and the design parame-
ters. This approximation can be done with a number of methods. Two common methods
are response surfaces and arti�cial neural networks. Arti�cial neural networks can better
capture non-linear e�ects than response surfaces (Song et al., 2012). Due to the complex
nature of the optimization problem at hand non-linear e�ects are a possibility and there-
fore an arti�cial neural network was adopted as the solver approximation method in this
thesis.
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Layers and nodes

Song et al. (2012) used a neural network for a shape optimization study of a car with six
parameters and found that the best accuracy was achieved for one layer of hidden nodes
with 1.5 to 2 times more hidden nodes than parameters. A single layer with two times
more hidden nodes than parameters was used in this thesis.

Sample size

Which sample size is required for a reliable approximation using neural networks is hard
to know beforehand. Song et al. (2012) used 64 samples to train their neural networks and
was able to accurately predict CD. In this thesis a sample size N was chosen according
to Song et al. (2012) as:

N = 2m, (4.1)

where m is the number of parameters.

Training

The neural networks were trained with the commonly used Levenberg-Marquardt back-
propagation method. The mean square of the output errors was used to measure the
training error. Regularization was used to avoid overtraining since this allows use of all
samples for training. For small databases regularization yields better generalization than
early stopping (Beale et al., 2014).

4.4.2 Design of experiments

Van den Braembussche (2008) found that the accuracy of a neural network is increased
for a �xed number of samples when the samples are chosen using a design of experiments
method instead of being random. Alam et al. (2004) investigated a number of di�erent
design of experiments methods used in conjunction with an arti�cial neural network.
The study included a full factorial sampling, a random sampling, a central composite
sampling and a latin hypercube sampling. They found that the latin hypercube sampling
performed best of the tested methods. Latin hypercube sampling was adopted in this
thesis.

4.4.3 Optimization algorithm

Finally an optimal con�guration of design parameters is determined using an optimization
algorithm. There are many di�erent ways to �nd an optimal solution, ranging from
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traditional gradient-based algorithms to more modern evolutionary algorithms. Gradient-
based algorithms are in general faster than evolutionary methods but do not as reliable
�nd a global optimum. They risk being trapped at local optima (Giannakoglou and
Papadimitriou, 2008). Evolutionary methods are on the other hand robust but they are
time-consuming and do not have as �ne a convergence as gradient-based methods (Muyl
et al., 2004).

There are many di�erent methods suggested to improve the accuracy of genetic algorithms
by combining them with a local search, for example the particle swarm optimization
suggested by Kennedy and Eberhart (1995). Elbeltagi et al. (2005) compared the success
rate and solution quality of �ve di�erent evolutionary methods: genetic, memetic, particle
swarm, ant-colony and shu�ed frog leaping algorithms. They found that particle swarm
optimization performed best.

Coello et al. (2004) extended the particle swarm optimization (PSO) algorithm to al-
low for multiple objective search. This multi-objective particle swarm optimization
(MOPSO) was compared with three evolutionary algorithms known to perform well in
multi-objective optimization problems (NSGA-II, PAES and microGA). The MOPSO
algorithm was found to perform well and to be computationally cheap.

The PSO algorithm used in this thesis was adapted from Elbeltagi et al. (2005) and
Coello et al. (2004). A summary of the algorithm is presented below.

Summary of PSO algorithm

1. Create a population of particles with random positions in domain

2. For each generation:

(a) Use neural network to compute CD of each particle

(b) Choose best particle as leader

(c) Move other particles towards leader

(d) Mutate position of some particles

3. Return best particle in last generation as solution

The MOPSO algorithm used in this thesis was adapted from Coello et al. (2004). A
summary of the algorithm is presented below.

Summary of MOPSO algorithm

1. Create a population of particles with random positions in domain

2. For each generation:

(a) Use neural network to compute CD of each particle

(b) Find Pareto front
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(c) Choose leaders from Pareto front (each particle may have a di�erent leader)

(d) Move particles towards their respective leaders

(e) Mutate position of some particles

3. Return Pareto front in last generation as solution

4.4.4 Implementation

The optimization tool is divided into two separate parts: database generation and opti-
mization.

Database generation

The database generation is executed through a custom Python script called generate-

Database. The �rst part of the code is a design of experiment, i.e. generation of all
design con�gurations. This is done using a maximin distance latin hypercube sampling
(LHS). For each con�guration a mesh is created by morphing the original mesh in ANSA.
Then the CAE process described in section 4.1 is executed, meaning that the morphed
mesh is exported from ANSA and a volume mesh is generated by Harpoon. A simulation
is run in Fluent to determine CD and CL. Finally all con�gurations and corresponding
CD and CL values are stored in a database �le.

Summary of generateDatabase

1. Generate con�gurations

(a) Create large number of LHS designs

(b) Compute minimum distance between any two points in each LHS

(c) Pick LHS design with largest minimum distance

2. For each con�guration:

(a) Morph mesh

(b) Generate volume mesh

(c) Run Fluent simulation

(d) Compute CD and CL

3. Write database �le with con�gurations, CD and CL
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Optimization

The optimization is executed through a custom Python script called runOptimization.
First the database created by generateDatabase is loaded. An arti�cial neural network
is created and trained with this database. This is done in Matlab using the Neural

Network Toolbox. The purpose of the neural network is to predict CD or CL for new
unknown con�gurations, i.e. to act as an approximation for a simulation in Fluent.
When the network is trained an optimal con�guration is determined using particle swarm
optimization. A parameter study is carried out in order �nd the e�ect of each parameter.
Finally a simulation is run in Fluent for the optimal con�guration.

Summary of runOptimization

1. Load database

2. Create neural network

� single layer of hidden nodes

� twice the number of hidden nodes as parameters

3. Train neural network (using trainbr in Matlab)

� Levenberg-Marquardt back-propagation

� Bayesian regularization

4. Find best con�guration(s) using PSO or MOPSO

� If MOPSO, choose one or more desired con�gurations from Pareto front

5. Run parameter study

6. Run simulation for optimal con�guration(s)

(a) Morph mesh

(b) Generate volume mesh

(c) Run Fluent simulation

4.5 Method validation

Before commencing the full model optimization study a smaller study was executed to
validate the optimization tool and to evaluate the performance of the custom code imple-
mentation (generateDatabase and runOptimization, see section 4.4.4). The performance
of runOptimization was compared to that of the commercial software modeFrontier. This
study aimed to lower CD and consisted of four samples and the baseline con�guration.
Two parameters were studied; roof drop and boat tailing. For further details regarding
the parameters, see sections 4.7.1 and 4.7.4. The roof drop varied between -20 mm to
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+60 mm from the baseline and the boat tailing between +0 mm to +50 mm from the
baseline. A simulation with 2000 iterations was performed for each sample to determine
CD. Since the focus was validation of the optimization no greater consideration was put
into solver details at this stage and the default settings in the CAE process was used, see
section 4.1.

The con�gurations and corresponding simulation results were used to create a database
for the optimization. In modeFrontier the size of the neural network was determined au-
tomatically. runOptimization used one layer with four nodes for the neural network. In
both cases all samples were utilised for training the network. Both cases also used 50 par-
ticles and 100 generations for the particle swarm optimization. Con�rmation simulations
were run for the predicted optimal solutions.

4.6 Convergence study

A study was performed on the baseline case to determine the number of iterations required
for convergence and to evaluate the solver settings. The study was focused on testing
iteration and grid independence. The default settings in the CAE process was used
for most parameters (see section 4.1) but the number of iterations, the cell size and the
under-relaxation factors of pressure and momentum were varied. The study covered 10000
iterations for a grid of 12.9 million cells (base level 40 mm) where a number of di�erent
under-relaxation factors were evaluated. Finally a simulation on a �ner grid of 24.1
million cells (base level 30 mm) was performed using the best choice of under-relaxation
factors. This simulation covered 5000 iterations.

4.7 Model optimization study

A large study of �ve design parameters was executed with the aim of lowering CD of the
ACC model described in section 4.2. The study consisted of 33 con�gurations (including
the baseline con�guration). The number of con�gurations was chosen as 2m, where m
is the number of parameters. The optimization was performed using the two scripts
generateDatabase and runOptimization described in section 4.4.4.

The con�gurations were generated using a latin hypercube sampling. The minimum dis-
tance between any two points was maximized by generating 10000 di�erent LHS designs
and choosing the design with the largest minimum distance.

The default settings in the CAE process was used for most parameters, see section 4.1,
but the under-relaxation factors of pressure and momentum were set to the optimal value
0.3 determined in the convergence study. 4000 iterations were run with a grid of 12.9
million cells. CD was computed as the average of the last 2000 iterations.

A neural network with a single layer of ten hidden nodes was used to approximate CD in
the optimization step. The optimal con�guration was determined using a particle swarm
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optimization with 50 particles and 100 generations.

The �ve studied design parameters were roof drop, underbody lift, di�user lift, boat
tailing and front wheel cover. These parameters varied between the baseline (minimum)
values and the fully morphed (maximum) values de�ned in Table 4.2. The limits were
chosen as the maximum changes that would still produce a realistic car.

Table 4.2: Design parameter limits.

Parameter Baseline [mm] Maximum [mm]
Roof drop 0 100
Underbody lift 0 107
Di�user lift 0 100
Boat tailing 0 50
Front wheel cover 0 60

The mesh changes were implemented with mesh morphing in ANSA using a system of
morph boxes depicted in Figure 4.8.

Figure 4.8: Half car model with morph boxes.

The mesh morphing changed the projected frontal area for some con�gurations but this
change was always a decrease in area. This is important so that a decrease in the drag
coe�cient always corresponds to a decrease in drag force (FD ∝ CD · A).
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4.7.1 Roof drop

A roof drop was achieved by compressing a portion of the roof from the highest point to
the rear end. The compression had a linear variation with full compression at the rear
end and no compression at the highest point of the roof. A comparison of the baseline
and the maximum roof drop of 100 mm can be seen in Figure 4.9.

Figure 4.9: Comparison of baseline and fully morphed roof. Baseline coloured red in
background and fully morphed coloured blue in foreground. Maximum roof drop is 100
mm.

4.7.2 Underbody lift

The baseline underbody has a curvature along the car. The underbody was lifted to
achieve a �atter pro�le. The maximum underbody lift was 107 mm, at which point the
underbody was �at.

Figure 4.10: Comparison of baseline and fully morphed underbody contours. Baseline
is the lower line coloured in red and fully morphed is the upper line coloured in blue.
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Figure 4.11: Comparison of baseline and fully morphed underbody as seen from the
front. Baseline coloured red in background and fully morphed coloured blue in foreground.
Maximum underbody lift is 107 mm.

4.7.3 Di�user lift

The di�user was changed by moving the rear edge upwards by a maximum distance of
100 mm.

Figure 4.12: Comparison of baseline and fully morphed di�user. Baseline coloured red
in background and fully morphed coloured blue in foreground. Maximum di�user lift is
100 mm.

4.7.4 Boat tailing

The rear end was slimmed by moving the rear side edge of the car inwards. This is known
as boat tailing. A comparison of the baseline and the maximum boat tailing of 50 mm
can be seen in Figure 4.13.
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(a) Baseline. (b) Fully morphed.

Figure 4.13: Comparison of baseline and fully morphed rear. In the fully morphed case
a boat tailing is applied, i.e. the rear is slimmed by moving the rear edge inwards. The
maximum boat tailing is 50 mm.

4.7.5 Front wheel cover

An increased front wheel cover was achieved by extending the front wheel cover both
outwards and downwards. The outwards change was �xed as 1/6 of the downwards
change. The maximum extension was 60 mm downwards and 10 mm to the side.

(a) Baseline. (b) Fully morphed.

Figure 4.14: Comparison of baseline and fully morphed front wheel cover. Maximum
wheel cover is extended 10 mm to the side and 60 mm downwards.

4.8 Considering lift

The model optimization study described above was focused on lowering the CD of the
ACC model. This study was extended with a second optimization study with the aim of
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lowering both CD and CL, i.e. a multi-objective optimization. The database from the
�rst study was also used in the second study.

Two similar neural networks, each with a single layer of ten hidden nodes, was used to
approximate CD and CL. The Pareto front of con�gurations was determined using a
multi-objective particle swarm optimization with 100 particles and 200 generations.

4.9 Database size

Four di�erent sizes of the database were tested (4, 8, 16 and 32 elements) in order to
determine how sensitive the prediction of the neural network is to database size. For each
test a new database was constructed by random selection from the original database. This
database was used to train the neural network. CD and CL were predicted for �ve control
points and the error for each point computed. Ten tests were performed for each of the
database sizes and the average error over these tests was computed.

4.10 Summary

An optimization tool fully compatible with Volvo's CAE process was developed. The
optimization is a type of two-level optimization, meaning that a solver approximation is
�rst created and then the optimization is performed using that approximation. A small
study was performed to validate the optimization tool. A convergence study was also
performed to �nd the optimal settings for the CAE process.

In short the optimization tool works by �rst generating a number of vehicle shape con�g-
urations using latin hypercube sampling. A new mesh is created for each con�guration by
morphing the original mesh. A �ow simulation is run on each mesh in order to determine
the drag and lift coe�cients. When all simulations are �nished the con�gurations and
the resulting CD and CL are stored in a database. The database is used to train a neural
network as an approximation to the simulations. A particle swarm optimization is used
on the neural network to �nd the minimal drag and lift coe�cients. Finally a simulation
is performed on this optimal con�guration to con�rm the drag and lift prediction.

The main part of this thesis was a large study of �ve design parameters with the aim
of lowering CD of the ACC model. The study consisted of 32 con�gurations as well
as the baseline con�guration. The �ve studied parameters were roof drop, underbody
lift, di�user lift, boat tailing and front wheel cover. The study was extended with a
multi-objective optimization with the aim of lowering both CD and CL.

Finally the prediction error of the neural network was computed for di�erent sizes of the
database.
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This chapter presents the results from simulations and studies carried out in this thesis.

5.1 Method validation

A small study of �ve cases was performed to validate the optimization tool. The con-
�gurations and corresponding drag coe�cients are presented in Table 5.1. The baseline
con�guration is presented at the top of the table.

Table 5.1: Con�gurations and results from method validation study. Con�gurations
de�ned as variation from baseline.

Roof drop [mm] Boat tailing [mm] CD
0.0 0.0 0.167
57.3 21.2 0.157
17.6 31.8 0.163
-11.5 45.5 0.173
32.2 1.3 0.161

5.1.1 Optimization with modeFrontier

The predicted best con�guration is a roof drop of 60.0 mm (max) and a boat tailing of 0.0
mm (min) with a corresponding CD of 0.157. A con�rmation simulation was performed
and resulted in a CD of 0.159. The computation time was 199 s (optimization step only).

5.1.2 Optimization with custom code runOptimization

The predicted best con�guration is a roof drop of 60.0 mm (max) and a boat tailing of
17.8 mm with a corresponding CD of 0.156. A con�rmation simulation was performed
and resulted in a CD of 0.156. The computation time was 7 s (creation and training of
ANN as well as optimization).
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5.2 Convergence study

A convergence study was performed on the baseline case to evaluate the solver settings. A
number of di�erent under-relaxation factors for pressure and momentum were evaluated
in simulations with 10000 iterations for a grid of 12.9 million cells. This corresponds to a
base level in Harpoon set to 40 mm. The solution converged after about 2000 iterations
for all cases but with oscillations of di�erent magnitude. The standard deviation of CD
in the converged solution (i.e. iterations 2000-10000) was computed as a measure of these
oscillations, see Figure 5.1.

Figure 5.1: Standard deviation of CD for di�erent under-relaxation factors.

As can be seen in Figure 5.1 the best precision is achieved with the under-relaxation
factors for pressure and momentum set to 0.3. Figure 5.2 show the residuals of k and ε
over 10000 iterations for this case.

(a) Residual of k. (b) Residual of ε.

Figure 5.2: Residuals of k and ε over 10000 iterations for simulation on grid with 12.9
million cells.
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The residuals have decreased by more than three orders of magnitude, almost four, which
indicate convergence. As for k and ε the solution of CD appears converged but there are
some oscillations, see Figure 5.3.

Figure 5.3: Variation of CD over 10000 iterations for simulation on grid with 12.9 million
cells.

The mean value of CD (iterations 2000-10000) is 0.168 with a standard deviation σ of
0.0005. This means that the 95% con�dence interval of CD is

CD = 0.168± 0.001, (5.1)

i.e. the variation of CD from the mean value is less than one thousand. This con�dence
interval concerns the convergence of the solver. It does not entail that the accuracy of
the simulation itself, as compared to the real physical problem, is this high.

A second simulation using the same under-relaxation factors was performed with a �ner
grid of 24.1 million cells. This corresponds to a base level in Harpoon set to 30 mm.
The simulation was run for 5000 iterations. The oscillations are larger with the �ner grid
which shows in the standard deviation. The mean value of CD (iterations 2000-10000) is
0.161 with a standard deviation σ of 0.0015. This means that the 95% con�dence interval
of CD is

CD = 0.161± 0.003. (5.2)
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5.3 Model optimization study

The model optimization study covered �ve design parameters and a database of 33 sim-
ulations. The optimal con�guration lowered CD with 12.6%.

5.3.1 Sampling

The minimum distance between any two points in the latin hypercube sampling is 31.1
mm. If instead a full factorial design with the same number of samples had been used
(i.e. two points spread out evenly for each parameter plus the baseline) the minimum
distance had been less than 25 mm. Since the con�guration space is 5-dimensional it is
hard to visualise but as an example the 2D con�guration space for two planes are shown
in Figure 5.4.

(a) Plane 1: Roof drop and boat tailing. (b) Plane 2: Underbody lift and di�user lift.

Figure 5.4: 2D visualisation of con�guration space plotted on two di�erent planes.

5.3.2 Simulation convergence

The standard deviation of CD was computed for all simulations in order to make sure the
simulations converged. The maximum standard deviation is 6.9 · 10−4 which corresponds
to a 95% con�dence interval with a deviation of 0.0014 from the mean value. However,
the standard deviation is only this large in a couple of cases. The average standard
deviation is 2.0 · 10−4.

5.3.3 Optimization convergence

The minimum CD in each generation of the particle swarm optimization is plotted in
Figure 5.5.
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Figure 5.5: Minimum CD in each generation for particle swarm optimization.

The �gure shows that the optimization is converged after about 25 generations. The
standard deviation of CD for the last 50 generations is less than 10−10. The optimization
was also run with 100 particles and 1000 generations. It was run several times with
both these and the original settings, each time reinitialising the neural network. All
runs yielded the same result. Since the neural network was reinitialised every time, this
indicates that the neural network is also converged.

5.3.4 Optimal con�guration

The simulation of the baseline con�guration resulted in a CD value of 0.167. The optimal
con�guration is predicted to have a CD of 0.145. This con�guration is shown in Table
5.2.

Table 5.2: Predicted optimal con�guration.

Parameter Con�guration [mm]
Roof drop 100.0 (max)
Underbody lift 107.0 (max)
Di�user lift 0.0 (min)
Boat tailing 31.3
Front wheel cover 0.0 (min)

A con�rmation simulation was run for the optimal con�guration. This simulation yielded
a CD value of 0.146, which corresponds to an improvement in CD from the baseline
con�guration of 12.6%. The exact deviation of the predicted CD from the simulation
value is 0.0005, a deviation which is of the same order of magnitude as the simulation
standard deviation. Expressed as a relative quantity the deviation of the predicted CD
from the simulation value is 0.3%. This is the prediction error of the optimization as
compared to the CFD simulation; it says nothing about the error in the CFD simulation
itself.
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Visual comparison of baseline and optimal con�gurations

A 3D comparison of the baseline and optimal model is shown from di�erent angles in
Figures 5.6 to 5.8.

(a) Baseline. (b) Optimal.

Figure 5.6: Comparison of car front between the baseline and optimal con�gurations.
The �gures show the di�erence in underbody between the models.

(a) Baseline. (b) Optimal.

Figure 5.7: Comparison of car rear between the baseline and optimal con�gurations. The
underbody lift and roof drop of the optimal model can be seen, as well as the boat tailing.
The rear area of the optimal model is visibly smaller.

(a) Baseline. (b) Optimal.

Figure 5.8: Comparison of car side view for the baseline and optimal con�gurations. The
�gures show the roof drop of the optimal model. The underbody lift can not be seen
from this angle.
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5.3.5 Parameter e�ect

The optimal con�guration of parameters lowered CD substantially from the baseline con-
�guration. But the parameters do not necessarily contribute equally, if at all, to that
decrease. One way to measure the e�ect of each parameter is to compute the correlation
coe�cient (see section 3.7) between that parameter and CD. The correlation coe�cient
measures the quality of a linear relation between each parameter and CD. If the general
trend is a decrease in CD for an increased parameter value, this will result in a negative
correlation coe�cient. And vice versa; an increase in CD will give a positive correlation
coe�cient. The parameter domain space was sampled with 10 points in every dimension,
in total 100 000 data points. CD was computed for all of these points using the neural
network after which the correlation coe�cients between the parameters and CD were
computed. Figure 5.9 shows the correlation coe�cient for each parameter.

Parameters
1: Roof drop
2: Underbody lift
3: Di�user lift
4: Boat tailing
5: Front wheel cover

Figure 5.9: The bars show the correlation coe�cient between each parameter and CD.
A positive correlation coe�cient means CD increases when the parameter increases and
a negative correlation coe�cient that CD decreases.

As the �gure illustrates the largest decrease in CD comes from increasing roof drop and
underbody lift. Boat tailing also lowers CD but this e�ect is small compared to the e�ect
of roof drop and underbody lift. Di�user lift has the opposite e�ect with a large increase
in CD. The e�ect of increased front wheel cover is negligible.

It is however possible to have a decrease or increase in CD at some intermediate parameter
value but not at the end values. For such a non-linear relation the correlation coe�cient
is not a good measure. Another way to visualise the e�ect each parameter has on CD is
to plot CD for all data points as a function of one parameter, e.g. roof drop. The average
CD is computed at each value of the roof drop to see if it changes when the roof drop
changes.
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Figure 5.10: CD of all points as a function of roof drop. The vertical blue lines are made
up of CD values for all 100 000 data points. The red line represents the average CD at
every roof drop value. There is a decrease in CD for increasing roof drop.

.

Figure 5.11: CD of all points as a function of underbody lift. The vertical blue lines are
made up of CD values for all 100 000 data points. The red line represents the average CD
at every underbody lift value. There is a decrease in CD for increasing underbody lift.
The decrease is of the same magnitude as the e�ect of roof drop.
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Figure 5.12: CD of all points as a function of di�user lift. The vertical blue lines are
made up of CD values for all 100 000 data points. The red line represents the average
CD at every di�user lift value. There is a large increase in CD for increasing di�user lift.

Figure 5.13: CD of all points as a function of boat tailing. The vertical blue lines are
made up of CD values for all 100 000 data points. The red line represents the average CD
at every boat tailing value. There is a decrease in CD at �rst, followed by an increase, for
increasing boat tailing. The minimum CD is found for a central value of the boat tailing.
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Figure 5.14: CD of all points as a function of front wheel cover. The vertical blue lines
are made up of CD values for all 100 000 data points. The red line represents the average
CD at every front wheel cover value. There is no considerable change in CD for increasing
front wheel cover.

5.3.6 Time consumption

There are two aspects to time consumption; manual preparation time and computation
time. The main part of the manual time is to set up the task in ANSA and prepare the
morph boxes. Apart from that it is basically just running two scripts. How long the
setup takes is very dependent on the complexity of the model and individual skills in
ANSA. The morph boxes used in this study took around two days to build without prior
experience of morphing in ANSA.

The computation time in generating the database is the most time consuming part of
this process since it involves CFD simulations of a large number of cases. For this study
of 34 simulations the computation time was around 20 hours on a computational cluster
with 480 cores. The optimization task took less than 5 seconds on 2 cores.

5.4 Considering lift

The extension of the model optimization study aimed to lower both CD and CL. It used
the same database as the model optimization database.
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5.4.1 Simulation convergence

As for CD in the model optimization study the standard deviation of CL was computed
for all simulations. The maximum standard deviation of CL is 7.8·10−3 which corresponds
to a 95% con�dence interval with a deviation of 0.016 from the mean value. The average
standard deviation is 1.5 · 10−3, which is considerably larger than for CD.

5.4.2 Optimization convergence

Since the multi-objective optimization does not converge to a single optimal point it is
hard to de�ne a convergence measurement similar to the one in Figure 5.5. It is however
possible to check if the Pareto front is particle and generation independent, similar to
the concepts of grid and iteration independence of the �ow solver. Optimizations were
performed for 50 and 100 particles with di�erent number of generations, see Figure 5.15.

(a) 50 particles. (b) 100 particles.

Figure 5.15: Pareto fronts for varying number of generations.

For 50 particles the Pareto front appears to be converged after 500 generations. With
100 particles the Pareto front is almost converged after 100 generations with only a few
particles o� from the main front. 200 generations seems to be enough for convergence.
When comparing the solutions for 50 and 100 particles it can be seen that they have
converged to the same Pareto front.

5.4.3 Convergence of neural network

Five simulations were run with 100 particles and 200 generations using di�erent initiali-
sations of the neural network. The resulting Pareto fronts are shown in Figure 5.16. Four
simulations reached the same Pareto front, with one simulation reaching a separate front.
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Figure 5.16: Five simulations with di�erently initialised neural networks.

5.4.4 Optimal con�gurations

The optimal attainable combinations of CD and CL are shown in Figure 5.17. Each point
corresponds to a unique con�guration of design parameters.

Figure 5.17: Optimal con�gurations of CD and CL.

It can be seen that CD ranges from 0.145 to 0.167 and that CL ranges from 0.00 to
0.13. Con�rmation simulations were run for four points. These points were chosen as the
optimal point for four di�erent constraints on CL; CL < 0.00, CL < 0.04, CL < 0.08 and
CL < 0.12. The predicted points and their con�gurations are shown in Table 5.3.
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Table 5.3: Four points on the predicted Pareto front.

Point 1 2 3 4
Constraint CL < 0.00 CL < 0.04 CL < 0.08 CL < 0.12
CD 0.165 0.153 0.149 0.146
CL -0.002 0.040 0.080 0.120
Roof drop [mm] 0.0 65.7 100.0 100.0
Underbody lift [mm] 1.5 4.6 38.6 88.3
Di�user lift [mm] 13.6 0.0 0.0 0.0
Boat tailing [mm] 50.0 44.2 41.5 37.8
Front wheel cover [mm] 2.2 0.2 0.0 0.0

The predicted CD and CL values for these points are compared with simulation results
in Table 5.4.

Table 5.4: Comparison of predicted and simulation values of CD and CL for four points
on the predicted Pareto front.

CD CL
Predicted Simulation Predicted Simulation

Point 1 0.165 0.174 -0.002 0.017
Point 2 0.153 0.157 0.040 0.045
Point 3 0.149 0.155 0.080 0.092
Point 4 0.146 0.146 0.120 0.141
Average error 0.005 0.014

As seen in the table simulation results di�er from the predicted values. The average error
for the predicted CD is 0.005 and the average error for the predicted CL is 0.014.

5.4.5 Time consumption

The multi-objective optimization took slightly longer time than the optimization of only
CD. The computation time was less than 60 seconds on 2 cores.

5.5 Database size

The prediction error of the neural network was computed for �ve control points. The �ve
control points were the same control points as for the Pareto front with the addition of
the optimal con�guration from the model optimization study. The errors are presented
for di�erent database sizes in Figure 5.18.
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Figure 5.18: Average prediction error of neural network for di�erent sizes of database.
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6 | Discussion

The following chapter contains a discussion of the obtained results.

6.1 Method validation

With the help of the developed optimization tool an improved solution was determined.
The improved CD was accurately predicted, indicating that the optimization tool per-
forms well. The custom code runOptimization was found to be both more accurate and
considerably faster than the commercial software modeFrontier for this speci�c case.

6.2 Convergence study

The best results were achieved with the under-relaxation factors of pressure and momen-
tum set to 0.3. A study over 10000 iterations on a grid of 12.9 million cells converged
after 2000 iterations with a variation in CD from the mean value of less than one thou-
sand. This precision is deemed good enough that the solution can be considered iteration
independent.

The �ner grid yielded a slightly lower CD than the original grid. In fact the con�dence
intervals are separate, which means that the simulations are not grid independent. This is
not ideal and one would preferably try to reach a grid independent solution. The focus of
this thesis is however not to improve the CAE method but to implement an optimization
tool and therefore the default grid size is left as it is. The chosen CAE method is a good
trade-o� between speed and accuracy as around 2000 iterations is su�cient to reach a
'good enough' solution. Re�ning the mesh will increase solution time. For the current
optimization task where many simulations will be executed this is very time-consuming
and expensive. Grid independence should also be of small importance for the optimization
task since the same grid size is used for all cases and relative changes are the main interest.
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6.3 Model optimization study

The optimization tool was proven to perform well. It was able to deliver a model with
a 12.6% lower CD than the baseline with a prediction error of just 0.3%. This was done
by studying realistic changes of �ve design parameters on a car model that already had
a low CD. The entire process can be completed in three days.

The generated con�gurations have a larger minimum distance between any two con�gura-
tions than a full-factorial sampling would, indicating a good coverage of the con�guration
space. The simulations of these con�gurations all converge well, enabling an accurate
neural network.

It was found that 50 particles and 100 generations was more than enough to achieve
convergence of the particle swarm optimization. The optimization was run several times
with di�erent values of particles and generations, each time for a newly initialised network.
All runs yielded the same results, showing that the optimization method is robust.

The optimal con�guration had a maximal roof drop of 100 mm, a maximal underbody
lift of 107 mm and a boat tailing of 31.7 mm. There was no change in front wheel cover
or di�user lift. The design parameters contributed very di�erently to the change in CD.
Front wheel cover and boat tailing had almost no e�ect on CD. This means that these
can be chosen as any value in the domain without a�ecting the result, which can be of
interest in a design process. The other three design parameters had an almost linear
relation with CD. Increased di�user lift caused a large increase in CD which is why the
optimal con�guration showed no change in di�user lift. Roof drop and underbody lift
caused a linear decline in CD, with the e�ect of roof drop being slightly larger.

It is interesting to note that the three design parameters that caused most of the change in
CD (roof drop, underbody lift and di�user lift) were either at their minimum or maximum
values in the optimal con�guration. This indicates that there is room for even further
improvements by expanding the search domain. Increasing roof drop and underbody lift
beyond their maximum values and moving the di�user lift in the opposite direction will
probably reduce CD even further. However, expanding the domain limits will produce a
less realistic car and might not even be possible. It is recommended that domain limits
are set as the maximum realistic values from the start.

The optimal con�guration lowered CD from 0.167 to 0.146, a di�erence of 0.019 or 12.6%.
This di�erence is computed from simulation results, meaning that it is independent of
any uncertainty in the optimization prediction. The predicted CD di�ers 0.3% from the
simulation value. This one data point can not be taken as an indicative of the uncertainty
in the optimization prediction. A better value is given in Table 5.4, where the average
prediction error for four points on the Pareto front is presented. The average error in CD
is 0.005 for these points. Normalised with the average CD this corresponds to around 3%.
This is a relatively small error and the accuracy of the CD prediction in the optimization
tool is acceptable.

With the developed optimization tool an optimal con�guration for a combination of �ve
design parameters can be obtained in three days, which is a great improvement over
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a classical approach of changing one parameter at a time. The main part of the time
consumption is the creation of morph boxes and the solver computation time.

6.4 Considering lift

Considering both CD and CL in the optimization generates a Pareto front of optimal
con�gurations. The Pareto front shows that optimizing for CD will give an increase in
CL. The choice of a best con�guration depends on the desired limits on CD and CL and
will vary for each application.

Convergence was reached using both 50 and 100 particles, but 50 particles required more
generations. A converged solution is obtained at the lowest cost for 100 particles and 200
generations. Using 100 particles also seems to give a better spread of the Pareto front
than 50 particles.

The simulated results for the four points on the predicted Pareto front show the same
trend as the predicted values, but the absolute values di�er. The values of both CD and
CL are underpredicted by the optimization tool. The average prediction error of CD is
0.005, which is a relatively small error. The prediction error of CL is worse at 0.014.
This di�erence is probably due to the di�erence in convergence of CD and CL. The
average standard deviation of CD in the simulations was almost an order of magnitude
smaller than the average standard deviation of CL. This larger uncertainty in the training
database creates a less accurate neural network and hence a larger uncertainty in the
prediction.

The optimization tool does not reach the same Pareto front for all runs, even if most do.
This means that the convergence of the neural networks is not entirely consistent. This
problem did not occur for the optimization of CD where all runs gave the same result,
indicating that the problem might be located in the neural network for CL, possibly an
e�ect of the higher solver uncertainty of CL.

6.5 Database size

As expected the best accuracy is achieved with the largest database. The prediction
error of CL grows steadily with a decreasing database size. The prediction error of CD
is however quite constant for a database size of 8 to 32 elements, but increases when the
database size is lowered to 4 elements.

Which database size is required depends on the application and the desired accuracy, but
also on the convergence of the underlying solver. Lowering the prediction error can thus
be done in two ways; improving the solver or increasing the database size. Improving the
solver can be done by for example changing the turbulence model. A more accurate solver
is however likely to be more computationally expensive - as always there is a trade-o�
between accuracy and speed. Increasing the database size will also increase computation
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time. Which of these approaches is the most e�cient is unclear and such an investigation
is outside the scope of this thesis.
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7 | Conclusion

A fast method for optimization of a vehicle's shape was developed and an optimization
tool compatible with Volvo's CAE process was delivered. With the help of the opti-
mization tool it is possible to determine the optimal con�gurations of a vehicle's shape.
Drag and lift coe�cients are predicted with an acceptable accuracy. The optimization
tool requires the construction of morphing boxes as the only manual work, the rest is
automated. It enables a study of several design parameters to be carried out in a few
days, which is a great improvement over a classical approach of changing one parameter
at a time.

The optimization tool was used on a simpli�ed low-drag car model in a study of realistic
changes of �ve design parameters. It was able to deliver an improved shape, with a 12.6%
lower CD. The prediction error of CD was 0.3%.

7.1 Future work

The proposed optimization tool performs well, but has only been tested for one solver
and with a limited database. There is a potential for improving the accuracy of the tool
by improving the convergence of the solver and increasing the database. An interesting
extension of the presented work would be a detailed study of how the accuracy depends
on the quality and size of the database. Such a study would aim to �nd the best trade-o�
between speed and accuracy for the optimization tool.

Another area of interest for future work is to reduce the time spent on constructing
morph boxes, which is the most time-consuming manual part of the optimization tool.
Simplifying and automating this process has a potential of greatly reducing the manual
work required.
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