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We derive a simple expression for the photon helicity and polarization-flip probabilities in arbitrary
background fields, in the low-energy regime. Taking the background to model a focused laser beam, we
study the impact of pulse shape and collision geometry on the probabilities and on ellipticity signals of
vacuum birefringence. We find that models which do not account for pulse duration can overestimate all
signals in near head-on collisions by up to an order of magnitude. Taking pulse duration into account, the
flip probability becomes relatively insensitive to both angular incidence and the fine details of the pulse
structure.
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I. INTRODUCTION

It has been known since the early days of quantum
electrodynamics (QED) that the appearance of virtual pairs
leads to nonlinearities, due to the possibility of light-by-
light scattering [1–3]. These nonlinearities can manifest as
effects akin to those in nonlinear optics [4]: for example, a
macroscopic, classical light source of sufficiently high
intensity can alter the polarization state of probe photons,
leading to ‘vacuum’ birefringence [5]. (Note: ‘vacuum’
here highlights only the absence of matter.)
In [6] a proposal was made to demonstrate these non-

linearities. Because the birefringence effect increases with
(target) field strength and probe frequency, it was suggested
to use an intense, high-power laser as a target (implying a
gain in field strength of many orders of magnitude
compared to experiments using magnets [7,8]) and an
x-ray free electron laser (XFEL) as a probe. This scenario
will be realized with the HIBEF facility employing the
European XFEL at DESY [9]. Even higher intensities and
probe energies will be achieved after the completion of
the Extreme Light Infrastructure nuclear physics pillar
(ELI-NP) [10]. The search for vacuum birefringence at
HIBEF has been selected as its flagship experiment. It thus
seems timely to extend the results of [6] by considering
more realistic background field distributions modelling
focused, pulsed lasers. This will also provide some theo-
retical underpinning for a detailed experimental feasibility
study that is currently under way [11].
To further motivate our investigation, recall that a beam

of light, wavelength λ0, probing a birefringent medium
acquires an ellipticity δ in its polarization. In optics, δ can

be expressed in terms of the refractive indices fn⊥; n∥g of
the medium, and the distance d travelled in the medium by
the probe as δ ¼ πdðn⊥ − n∥Þ=λ0. This expression also
holds for vacuum birefringence, under the assumptions that
(1) this is induced by a homogenous, constant field, and
(2) the probe is a plane wave. However, the targets and
probes in upcoming experiments are lasers, and all fields
will be focused, pulsed, and varying in space and time.
Because the ellipticity is small and will be challenging to
measure, a comprehensive discussion of potential experi-
ments requires more careful modelling of the target and
probe (as well as an analysis of background noise, losses in
polarizers and lenses, and so on [11]). As a step toward this
goal, the first purpose of this paper is to provide some
simple but accurate formulas describing the impact of pulse
shape and duration.
As stated above, and emphasized in [12], vacuum

birefringence is a manifestation of photon-photon scatter-
ing. Hence, a measurement of the former would represent
the first observation of the latter in a set-up with all photons
involved being real (unlike, say, in Delbrück scattering
[13,14]). For real photon-photon scattering there are
currently only upper bounds on the cross section [15].
The QED scattering processes underlying vacuum bire-
fringence are therefore of interest [16,17], and it is natural
to take an S-matrix approach to this topic. This was the
approach taken in [12], in which we showed that the most
relevant process is that in which probe photons flip between
orthogonal helicity or polarization states when passing
through the target field. For the analytically solvable case of
plane wave targets and probes, we obtained the helicity flip
probability and the resulting probe ellipticity for arbitrary
energies and intensities. The second purpose of this paper is
to extend those results to cover backgrounds describing
focused laser pulses in the relevant parameter regime; we
study here the flip probability for photons probing intense,
focused laser fields.
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The paper is organized as follows. In Sec. II we derive
the flip probability from the QED Smatrix; it takes the form
of a simple integral over the worldline of a massless
particle. In Secs. III and IV we investigate the impact of
field and collision geometries on the flip probability,
and describe the implications for detecting ellipticity
signals of vacuum birefringence. We conclude in Sec. V.

II. A WORLDLINE INTEGRAL FOR HELICITY
AND POLARIZATION FLIP

We begin with the probability for a photon, momentum
lμ, to flip helicity state ϵμ → ϵ0μ when passing through a
given background field fμν. For the particular case of a
plane wave background depending on nx with n2 ¼ 0,
a direct QED calculation of the amplitude, to one-loop
order and exact in all other parameters, was given in [12]. In
the low-energy regime relevant to laser-based experiments,
the scattering amplitude reduces to

T ¼ α

30π

1

E2
S

Z
dðnxÞ
nl

ðlfðxÞϵ̄0ÞðlfðxÞϵÞ: ð1Þ

Our first task is to generalize this to arbitrary fμν. To do so,
recall first that a massless particle, momentum lμ, follows
a null geodesic in spacetime. In Minkowski space, any
“lightfront time” nx provides a suitable affine parametriza-
tion of the geodesic [18], the explicit form of which is

xμl ðnxÞ ¼ xμð0Þ þ lμ

nl
nx ⇒ dxμl ¼

lμ

nl
dðnxÞ: ð2Þ

Using this measure in (1) (extracting a factor of lμ from the
integrand turns the measure into dxμl more explicitly) and
taking fμν to be arbitrary and evaluated on the path (2),
gives us a candidate expression for the flip amplitude in
arbitrary backgrounds. Remarkably, this worldline integral
is the correct expression, as we confirm below. Here we
describe the physics it contains, beginning by writing it in a
more revealing form.
The integral (1) also gives the amplitude for a photon to

flip between any two orthogonal polarization states with
ϵ0ϵ ¼ 0 (and ϵ2 ¼ ϵ02 ¼ −1) not only helicity states [12].
We are interested in linearly polarized probes for birefrin-
gence, so we take fϵ; ϵ0g to be real; T is then real. Recall
that it is possible to choose polarization vectors which are
orthogonal to both lμ and a second lightlike nμ [19,20], and
so the vectors in play form a tetrad,

gμν ¼
nμlν þ lμnν

nl
− ϵμϵν − ϵ0μϵ0ν: ð3Þ

Using this and the background energy-momentum tensor
Θμν ¼ f2μν − gμν 1

4
trf2, we can rewrite (1) as

T ¼ α

60π

1

E2
S

Z
dðnxÞ
nl

½lΘðxlÞl − ðlfðxlÞ~ϵÞ2�; ð4Þ

with ~ϵ ≔ ϵ − ϵ0. The first term in the integrand of (4) is the
null projection of the energy-momentum tensor, as seen
locally by the probe. Its appearance is to be expected [21]
and maximizing it maximizes the probability (since the
amplitude is now real). The second term in (4) is negative,
and therefore reduces the amplitude, but can be made to
vanish for appropriate choices of collision and polarization
geometries. The combination lfϵ which appears is typical
of polarization transport [22].
As it should be, (4) is reparametrization invariant (most

easily seen by extracting a factor of lμ and writing the
measure as dxμl ) and gauge invariant (shifting the polari-
zation vectors by lμ does not affect the amplitude). The
integral is taken not over time, or position, but over the
worldline of a massless particle, and so is fully relativistic.
The form of (4) is similar to that of the eikonal found in
high-energy scattering at small momentum transfer, which
is also given by an integral over a classical particle
trajectory, see [[23],§ 9.1.1] or [[24],§ 9.6]. Here the
presence of a worldline (rather than spacetime) integral
encodes the possibility that T vanishes when the photon
misses a compactly supported background. The photon
momentum lμ is on-shell, underlining that we have aban-
doned the effective approach in favor of a “microscopic”
approach, and constant, because only the forward-
scattering flip amplitude is relevant in the considered
regime. This will be explained below, when we derive
(4) from the S matrix. The reader primarily interested in
phenomenology may proceed directly to Sec. III, where we
evaluate the worldline integral.

A. Derivation from low-energy scattering in QED

To derive (1) from QED, we would first write down the
one-loop S-matrix element for helicity flip in a background
field, and integrate out the fermions (giving the polarization
tensor, see e.g. [25–29] and references therein). Though
this cannot be done analytically for arbitrary backgrounds
and arbitrary probe frequencies, we note that (1) is a
low-energy approximation, of the same order as if we had
treated the background perturbatively [2,3,30], and that
there are no derivatives on the field. Therefore, given the
approximations involved, it is simplest to begin with
the low-energy Heisenberg-Euler effective action [2,3],
see also [[31],§ 5.1],

LHE ¼ 1

4
trF2 þ 2α2

45m4

�
7

4
trF4 −

5

8
ðtrF2Þ2

�
: ð5Þ

We have written, for example, trF2 ¼ Fμ
νFν

μ ¼ −FμνFμν

and we have used the formula [16]
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ðtrF ~FÞ2 ¼ 4trF4 − 2ðtrF2Þ2 ð6Þ
to remove the dual tensor. The background f is introduced
by replacing eF → eF þ ef, and retaining only terms
which are quadratic in both F and f (other terms do not
contribute here).
We will calculate the probability for an incoming photon

to scatter, momentum pμ → l0μ, and flip polarization, ϵ → ϵ0
with ϵ0ϵ ¼ 0. The relevant S-matrix element is obtained as
usual from LSZ reduction of the correlation functions
generated using the Lagrangian (5). It takes the form
typical of scattering from an external, classical potential,
in this case f2μν,

hl0; ϵ0jSjp; ϵi ¼
Z

d4xeiðl0−pÞx⟦FinFoutf2ðxÞ⟧; ð7Þ

in which x is the vertex position, Fμν
in ¼ p½μϵν�, Fμν

out ¼
l0½μϵ0ν� and ⟦FinFoutf2⟧ is shorthand for the (several) trace
terms in L½Fin þ Fout þ f� which are quadratic in f and
linear in Fin and Fout.
The states in (7) are, as normal, localized in momentum

space. However, real probes are localized in both momen-
tum and position. Probes can be narrower than background
beams, and entirely miss them if not properly aligned.
Neither of these situations can be described if the probe is
taken to be a momentum eigenstate. Hence, localization in
position space becomes relevant, and we require a wave
packet for the probe. The full scattering amplitude to
calculate is then

Sfi ≔
Z

dpψðpÞhl0; ϵ0jSjp; ϵi; ð8Þ

in which dp is the Lorentz-invariant measure over the
positive energy mass shell and the wave packet ψ obeys

ψðpÞ ¼ ΛðpÞeipx0 with
Z

dpjΛðpÞj2 ¼ 1: ð9Þ

Here x0 is the initial position about which the wave packet
is centred and ΛðpÞ is sharply peaked (to be made precise
below) around momentum pμ ¼ lμ. The measure depends
on three momentum coordinates, which can be ordinary
vector momentum, but since we are dealing with photons it
seems natural to take p ¼ fnp; p⊥g defined with respect to
some lightlike direction nμ. This corresponds to a foliation
of spacetime into a time nx and three spatial directions x;
this will be of use below.
We first Fourier transform the background,

fμνðxÞ ¼
Z

d4ke−ikxfμνðkÞ; ð10Þ

and perform the three x integrals in (8), giving three
delta-functions. Because the external momenta are on-shell

(three degrees of freedom), this is enough to determine a
relation between the incoming and outgoing momenta;
writing κ ¼ kþ k0, the sum of momenta coming from the
two factors of fμν, we find

p ¼ l0 − κ −
ðl0 − κÞ2
2nðl0 − κÞ n: ð11Þ

For the HIBEF experiment, the typical background
momentum (jkj, optical) is much lower than the electron
rest mass, and also much smaller than the typical probe
momentum (jlj, x ray), so jkj ≪ jlj. We want to evaluate
Sfi under these assumptions. We therefore make a low-
energy approximation typical when considering e.g. infra-
red effects [32,33]. In the exponent, we neglect quadratic
(and higher) powers of the background momenta [34].
Outside the exponent, we also expand to linear order in
these momenta. Dropping fk; k0g in the trace terms of (7)
corresponds to neglecting derivative terms which have in
any case been neglected in deriving (5); the result is that
Fin
μν → l0½μϵν� and F

out
μν → l0½μϵ

0
ν�. With this, the traces simplify

considerably and we recover the structure in (1). Finally, to
be able to neglect fk; k0g in the wave packet Λ we have to
assume that

jðp − l0Þ∂l0Λðl0Þj ≪ jΛðl0Þj: ð12Þ

Since p − l0 ¼ OðkÞ, (12) implies that the wave packet
cannot be too sharply peaked; its momentum space widthΔ
should be larger than the typical background momentum,
Δ ≫ jkj. What this means physically is that, in position
space, the probe is localized at scales on which the
background varies. This is seen explicitly by noting that,
in the low-energy approximation, (11) becomes

p ¼ l0 − κ þ l0κ
nl0

n; ð13Þ

so that when we undo the Fourier transformations (10),
both fμν and the scattering amplitude become supported on
a classical photon trajectory xμl0 as in (2):

Z
d4kfðkÞ exp−ik

�
x0 þ

l0

nl0
nðx − x0Þ

�
¼ fðxl0 Þ: ð14Þ

A trivial reparametrization trades x0 for xð0Þ. Our assump-
tions have lead to each of the modes in the wave packet
being scattered forward [35]. The amplitude becomes
Sfi ¼ Λðl0ÞTðxl0 Þ, which is the worldline integral (1), with
path xμl0 . The total probability of scattering with a polari-
zation flip is then

Pflip ¼
Z

dl0jSfij2 ¼
Z

dl0jΛðl0Þj2jTðxl0 Þj2: ð15Þ
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If we further assume, as normal, that the width of the wave
packet is small compared to the typical probe momentum
(Δ ≪ jlj) then we can as usual drop the wave packet and
integral from (15) and replace l0μ → lμ, upon which the
probability becomes

Pflip ¼ Pforwardþflip ¼ jTðxlÞj2: ð16Þ

B. QUANTUM REFLECTION

To arrive at (16) we assumed a separation of scales,
namely that the characteristic frequency of the background
is much smaller than that of the probe. It is interesting to
ask what happens when this is not the case, and to compare
with the quantum reflection calculation in [36]. Let the
background now depend on a single spatial coordinate
x1 ≡ x. Three of the integrals in (7) can then be performed,
giving a delta function supported on vector p¼f�l01;l

0
2;l

0
3g,

describing forward (þ) or back (−) scattering. Assuming
the background polarization is x independent, the proba-
bilities for forward scattering and reflection become,
schematically,

Pfor ∝
����
Z

dxf2ðxÞ
����2; Pref ∝

����
Z

dxe2il1xf2ðxÞ
����2;
ð17Þ

where the (different) proportionality constants depend on
the probe momentum and polarization, and the vector
structure of the background. The reflection probability
has the same structure as the reflection coefficient in [36],
and will be much smaller than the forward scattering
probability unless the background has support for momen-
tum on the order of the probe momentum. Hence, for
proposed “opticalþ x-ray” laser experiments we expect
photon reflection to be a small effect compared to birefrin-
gence. However, for other setups, as described in detail in
[36], it would be easier to look for the reflection signal,
which has the advantage of beingmore easily separated from
experimental noise.

III. EXAMPLES IN GAUSSIAN BEAMS
AND PULSES

In the following sections we evaluate the flip amplitude
for photons in various collision geometries with back-
grounds modelling intense laser fields. (For reviews of
classical and quantum physics in intense lasers see [37,38].)
In the context of vacuum birefringence, the amplitude T is
equal to the birefringence-induced ellipticity δ, for probes
which are sufficiently narrow compared to targets, see
Sec. III D.
To evaluate the integral (1) or (4) in a given fμν, pick a

momentum lμ, and path xμl for the photon. Parametrize the
path with nx, such that n2 ¼ 0 and nl ≠ 0. The two
orthogonal photon polarization vectors can be taken in

any gauge. The line integral can then be calculated.
To proceed, we need a pulse model.
The most common description of focused laser fields is a

Gaussian beam in the paraxial approximation. Following
[39,40], the paraxial beam can be defined by a wavelength
λ and focal waist w0. These give the Rayleigh range
z0 ¼ πw2

0=λ, and the beam divergence θ0 which we express
as s ≔ tan θ0 ¼ w0=z0. Defining ζ∶ ¼ 1=ð1þ iz=z0Þ, the
only nonzero field components are By ¼ Ex, where

Ex
parax ¼ ReE0e−iωðt−zÞζe

−ζ r2
w2
0 ; ð18Þ

and E0 is the peak field strength, related to the cycle-
averaged power by P ¼ π

4
E2
0w

2
0. The beam solves

Maxwell’s equations up to terms of OðsÞ, as is made more
explicit by measuring transverse position in units of w0,
writing ρ ≔ r=w0, and both longitudinal position and time
in units of z0, writing z ¼ z0ẑ, t ¼ z0t̂. Then

Ex
parax ¼ ReE0e

−i 2
s2
ðt̂−ẑÞζe−ζρ2 : ð19Þ

The first exponential is rapidly oscillating since s ≪ 1.
The second exponential is independent of s and is slowly
varying in comparison. The terms neglected in the paraxial
approximation are OðsÞ.
Though the paraxial beam is easily understood, it is an

unsatisfactory model. First, because it cannot describe a
pulse: at any given point in space the field oscillates in time
forever, without losing amplitude. Second, the energy in the
beam is infinite [41]. The periodicity may not appear to be
an issue, because our probe travels at c and quickly passes
into spatial volumes where the field is damped. However, as
we will show explicitly, it is in fact essential to account for
pulse duration. The simplest way to do so is to add to (18) a
Gaussian envelope in t − z (it is not enough to add an
envelope in t) as follows,

Ex
pulse ¼ ReE0e−

Δω2
4
ðt−zÞ2e−iωðt−zÞζe

−ζ r2
w2
0 ; ð20Þ

in which Δω is a frequency spread related to the FWHM
duration of the pulse, τL, by τL ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

8 log 2
p

=Δω. We require
Δω2=ω2 ≪ 1 for the field to be an approximate solution of
Maxwell’s equations. The first advantage of this ‘paraxial
pulse’ over the paraxial beam (18) is that it is genuinely
pulsed; the field is damped in all spacetime directions. The
second advantage is that the pulse energy E,

E ¼ 1

2

Z
d3xðE2 þ B2Þ; ð21Þ

is finite. Plugging (20) into this expression and integrating
out r leaves, changing variable ẑ → u ¼ ðẑ − t̂Þ=s2,
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E ¼ πE2
0w

2
0

2ω

Z
due−2

Δω2

ω2
u2
�
1þ Cþ ðs2uþ t̂ÞS

1þ ðs2uþ t̂Þ2
�
; ð22Þ

in which C ¼ cos 4u and S ¼ sin 4u. The trig terms will be
rapidly oscillating compared to the Gaussian (i.e. the
envelope will belong to the slowly varying part of the
field) since the spectral width obeys Δω2=ω2 ≪ 1. We can
then apply a slowly varying phase (SVP) approximation to
the integral (22), killing the trig functions and with them the
time-dependent terms, leaving

E ≃ π3=2ffiffiffi
8

p E2
0w

2
0

Δω
: ð23Þ

This is (within our approximation) constant, as the energy
should be in a solution of Maxwell’s equations. The limit
Δω → 0 (τL → ∞) recovers the infinite energy of the
paraxial beam. (The same result could be obtained starting
with the energy density in (21) and applying the SVP to a
cycle-average over time t before computing the integrals.
While averaging is somewhat natural in periodic fields, the
SVP can be applied more generally.)
The paraxial pulse (20) can, unlike the beam (18),

consistently account for the parameters of the proposed
HIBEF vacuum birefringence experiment (see Table I
[9,11]). Expressing the energy in terms of power P as
E ¼ τLP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π= log 16

p
, and taking power, frequency and

waist from Table I identifies E0 ≃ 2.99 × 10−4ES. Given
that the total energy is 30J, we then find the FWHM pulse
duration to be τL ¼ 28.18 fs, essentially the expected
value. These parameters are used in the following calcu-
lations. Note that Δω=ω≃ 0.04, justifying the use of the
SVP. The intensity distributions of the paraxial pulse and
beam are shown in Fig. 1.
The model (20) is not an exact solution to Maxwell’s

equations. We show though in Sec. IV that all our results
hold for more sophisticated models which are exact
solutions. Thus the fine details of the model (e.g. higher
orders in s) do not impact on our results. We therefore use
here the simple model (20), both for intuition and in order
to provide some analytic results.
We will now consider the effect on the amplitude of

transverse impact parameter, incidence angle, timing jitter
and probe beam shape. For an analysis of the role these
variables play in elastic and inelastic photon-photon scat-
tering in the collision of two intense pulses, see [42].

(We emphasize that it is meaningful to talk about the
amplitude here because, due to our polarization choices, T
is real and related to the flip probability P via T ¼ ffiffiffiffi

P
p

.)

A. Transverse impact parameter

In a birefringence experiment, probe and target beams
would ideally be aligned so that their focal spots overlap.
Here we illustrate the effect of impact parameters by
considering a probe photon which reaches the focal plane
of the Gaussian, z ¼ 0, at the instant of peak field strength,
t ¼ 0, but misses the focal spot (centred at the origin) by a
transverse distance; this is the impact parameter r. Given
the intensity distribution of our fields, we might expect that
T will fall as a Gaussian exp−2ðr=w0Þ2.
We let the photon travel down the z-axis, so that

lμ ¼ ω0ð1; 0; 0;−1Þ. From here on, ω0 ¼ 12.4 keV assum-
ing a hard x-ray photon [9,11]. We parametrize with
ϕ ¼ nx, nμ ¼ ð1; 0; 0; 1Þ. The path is (with φ the angle
in the transverse plane),

xμðϕÞ ¼ fϕ=2; r cosφ; r sinφ;−ϕ=2g: ð24Þ

Taking a 45° angle between the background and probe
polarizations kills the second term in (4) [6]. The resulting
line integral is easily performed numerically and the results
are plotted in Fig. 2. Some analytic expressions are
available to aid interpretation. We begin with the paraxial
beam. Applying the SVP at to the worldline integral gives
the following accurate approximation for the scattering
amplitude T,

TðρÞ ≃parax α

15

E2
0

E2
S

1

s2
ω0

ω
e−ρ

2

I0ðρ2Þ; ð25Þ

with ρ ≔ r=w0 and I0 the standard modified Bessel
function. The resulting curve is indistinguishable from
the numerically exact dashed curve in Fig. 2 at the scale
shown. The amplitude falls off if the impact factor is greater
than the beam waist, r > w0. This is natural given the
spatial limits of the intensity distribution, see Fig. 1, but the

TABLE I. Optical laser parameters proposed for the HIBEF
vacuum birefringence experiment [11].

Wavelength λ 800 nm Frequency ω 1.55 eV

Waist w0 1.75 μm Total energy 30J
Rayleigh z0 12 μm Power 1 PW
s ¼ w0=z0 0.15 FWHM duration τL 30 fs

FIG. 1 (color online). Intensity distributions at t ¼ 0, normal-
ized to peak intensity. Left: the paraxial pulse (20). Right: the
paraxial beam (18), for which the intensity is periodic in time.
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falloff is much slower than might be expected; the Bessel
function precisely cancels the exponential decrease leaving
only a power law tail ∼1=ρ,

TðρÞ →
ρ≫1 α

15

E2
0

E2
S

1

s2
ω0

ω

1ffiffiffiffiffiffi
2π

p
ρ
: ð26Þ

This would be a positive result, as such peripheral con-
tributions could enhance e.g. birefringence signals.
Unfortunately, it is unphysical, as we now show.
Assuming ν20 ≔ ðs2ω=4ΔωÞ2 ≪ 1 (as holds for the

HIBEF parameters where ν20 ≃ 0.02) the scattering ampli-
tude TðρÞ in a pulse is approximately given by

TðρÞ ≃pulse α

15

1

E2
S

Eω0

π2w2
0

e−2ρ
2

: ð27Þ

To see what formula (27) implies, consider Fig. 2. We see
that, for the same parameters aside from pulse duration, the
paraxial beam overestimates the amplitude by almost an
order of magnitude, for near head-on collisions. The reason
is that, at fixed power, the paraxial beam is the “long pulse
limit” of the pulse, τL → ∞ (Δω → 0) only under the
assumption that the pulse energy is allowed to increase to
infinity. This is unphysical, but is what is implicitly
assumed when using paraxial beams.
Even if one tries to compensate by artificially reducing

the field strength, we see directly from Fig. 2 that the
behaviors of the amplitudes are still very different; (27), in
contrast to (26), does have an exponential tail, with the
same Gaussian fall-off as the intensity distribution. If we
rewrite (27) in terms of peak field strength,

TðρÞ ≃pulse α

15

E2
0

E2
S

1ffiffiffiffiffiffi
8π

p ω0

Δω
e−2ρ

2

; ð28Þ

then it is easy to compare the large impact parameter
behavior of TðρÞ in the paraxial beam and pulse.
Asymptotically one finds

Tpulse

Tparax
→
ρ≫1

2ν0ρ expð−2ρ2Þ: ð29Þ

At large impact parameter ρ, the amplitude in a pulse is
exponentially suppressed compared to that in a paraxial
beam, and the ‘enhanced signal’ seen above is lost.
More physically one can imagine, at fixed energy,

compressing/stretching the pulse to increase/reduce the
peak amplitude. Provided the pulse remains short, and
(27) applies, such variations give a minimal effect, since we
see from (27) that TðρÞ ∼ E, fixed. In such a situation, and
as predicted in [12], it is the total energy of the pulse which
is relevant to helicity flip and birefringence.

B. Angle of incidence

As a second example, consider a collision with an acute
incidence angle θ between the probe and beam axes (where
θ ¼ 0 is head-on). We again take the best case scenario
regarding polarizations, such that the second term in (4)
vanishes. The results are plotted in Fig. 3. We see
immediately that, unlike the case of impact parameter,
the amplitude is much less sensitive to collision angle once
pulse duration is accounted for. In the paraxial beam, the
amplitude drops quickly when the collision angle exceeds
the beam divergence, θ > tan−1 s≃ s, which again is
natural. (As a function of s−1 tan θ ∼ θ=s rather than
r=w0, the curve is almost identical to that for impact
parameter in the beam case, Fig. 2.) In the pulse, though,
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FIG. 2 (color online). The scattering amplitude T as a function
of transverse impact parameter, r=w0 ¼ ρ. Parameters as in
Table I. Note the different scales. The paraxial beam gives an
order-of-magnitude overestimate and an unphysical enhancement
at large r. (The approximations (25) and (27) are indistinguish-
able from the exact results on the scale shown.)
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FIG. 3 (color online). The scattering amplitude T as a function
of incidence angle θ. Parameters as in Table I. Note the different
scales. The paraxial beam model (black/dashed) overestimates
the signal. However, T is much less sensitive to incidence angle in
a pulse (solid/blue) than in the paraxial beam.
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the signal drops much slower, extending all the way to
transverse collision angle θ ¼ π=2; indeed, see [43] for
proposals to measure induced probe ellipticity and polari-
zation rotation based on transverse collisions.
The reason for the reduced sensitivity to angular inci-

dence is as follows. While the paraxial beam is effectively a
time-independent distribution, vanishing outside a spatial
region, the pulse effectively exists only at the origin for a
brief instant, and is otherwise gone. This means that,
provided the probe arrives at the origin at the right instant
in time, the angle of incidence is relatively unimportant
and a small deviation from a head-on collision will not
significantly reduce the amplitude. This insensitivity to
incidence angle is a positive result, as it indicates a certain
robustness of the amplitude. It does though raise the
question of what happens when the pulse arrives early
or late to the focal spot, missing the instant of peak field
strength; this is considered in the next subsection.
The paraxial beam model overestimates the pulse result,

though the degree of overestimation is angle dependent.
This is relevant in the light of experimental proposals based
on transverse collisions, and in the interests of simplifying
calculations. We begin with head-on collisions, in which
the probe sees the longitudinal extent of the beam. We have
used above (27) that ν20 ≪ 1 which implies τL=z0 ≪ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32 log 2

p ≃ 4.7. Hence the pulse duration must be much
less than the Rayleigh range, and it is clear that the paraxial
beam will not give an accurate description of the physics.
If we define ϒðθÞ ¼ TðθÞparax=TðθÞpulse then an analytic
estimate for the degree of overestimation is easily found,

ϒð0Þ≃ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
π log 2

p z0
τL

: ð30Þ

This gives ϒð0Þ≃ 8.6 for HIBEF parameters, an almost
order of magnitude overestimate in agreement with Fig. 3.
For transverse collisions, θ ¼ π=2, we find

ϒðπ=2Þ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ w2

0

τ2L
log 4

s
; ð31Þ

implying that the pulse duration must be greater than the
beam width in order for the paraxial beam model to be
accurate. For Fig. 3, ϒðπ=2Þ≃ 1.0, so that there is almost
no overestimation. However, the actual amplitude at trans-
verse collision is reduced by a factor 8.3 compared to the
head-on scenario.

C. Timing jitter and competing effects

Finally, we can (somewhat roughly) model the impact of
‘timing jitter’ in e.g. triggering laser pulses, by considering
a probe which misses the focal spot in time, as well as in
space. Jitter alone naturally reduces the amplitude, as does
a combination of jitter and nonzero impact parameter;
if at t ¼ 0 the photon is not at z ¼ 0 but z ¼ 2z0τ and
r ¼ w0ρ then

Tðρ; τÞ≃ Tð0; 0Þ
1þ τ2

e−2ρ
2=ð1þτ2Þ: ð32Þ

If multiple sources of signal reduction are known to be
present, though, introducing another can actually improve
the signal. Assume for example that a collision angle of
10° is required experimentally, and that a timing issue
results in the probe arriving late to the focal spot. Under
such conditions, deliberately introducing e.g. an impact
parameter can increase the amplitude, as is shown by the
dashed and dotted curves in Fig. 4. If σ is the angle between
x⊥
0 and l⊥, then the approximate behavior of the amplitude

is given by (32) with ρ2 replaced by

ρ2 − 2ρτθ=s cosðσÞ þ ðτθ=sÞ2; ð33Þ

which, depending on parameter values and signs, can
describe a shift of the Gaussian as seen in Fig. 4.

D. Ellipticity

Ellipticity is the most commonly considered signal of
vacuum birefringence. It is perhaps more natural though,
from both scattering and experimental perspectives, to
consider the number of photons which could pass through
a given arrangement of polarizers and be detected (a
detailed calculation of which will be presented elsewhere).
Hence we will discuss the ellipticity only briefly.
In [12] we showed, for the case of plane wave probes

(with a single frequency) that the induced probe ellipticity δ
is equal to the amplitude T. The ellipticity for beam-like
probes (with a frequency range) is given by averaging T
over the transverse distribution of photons in the probe
beam. This can be shown explicitly by combining the
methods developed in [12], in which the probe field is
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FIG. 4 (color online). The probe arrives at the focal plane
f0; 10; 20g fs after the field has peaked, with incidence angle 10°
and azimuthal angle 180°. Introducing a nonzero impact param-
eter then improves the signal.
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obtained from the expectation value of the field operator,
with the Heisenberg-Euler approach of Sec. II A, or by
solving the modified Maxwell equations following from
the Heisenberg-Euler Lagrangian, as in [42–44]. For the
purposes of this work it is sufficient to illustrate the
situation as follows. Consider the specific case of two
paraxial pulses (as above) which are counterpropagating,
up to a transverse separation r. One pulse is the optical
target, the second is the probe. For a paraxial pulse probe
with focal width ω0

0 the transverse photon distribution is
Gaussian, and the ellipticity becomes

δ ¼
Z

d2y⊥
πw0

02 e
−ðy⊥=w0

0
Þ2T½xγ�; ð34Þ

with the wordline given by, compare (24),

xμγ ðϕÞ ¼ fϕ=2; y1 þ r cosφ; y2 þ r sinφ;−ϕ=2g; ð35Þ

in which y⊥ parametrizes the probe width and r is the
transverse separation. If the probe waist w0

0 is small
compared to the scales at which the background varies,
we can simply neglect y⊥ in T, and the Gaussian integrals
in (34) can be performed, leaving δ ¼ T; the ellipticity is
then equal to the flip amplitude again. For wider probes
there will be corrections to δ, given by (34).
In particular, the expected HIBEF probe width is

w0
0 ¼ 0.3 μm, which is not so much less than the target

waist of w0 ¼ 1.75 μm; we should therefore expect some
finite width effects. Given the accuracy of (27), we can use
that approximation to calculate (34) analytically. Defining
the ratio of probe to target widths ϖ ¼ 2w0

0
2=w2

0 we find

δðρÞ≃ TðρÞ 1

1þϖ
e2ρ

2 ϖ
1þϖ: ð36Þ

For our parameters we have ϖ ≃ 0.08, so that δðρÞ≃ ð1 −
ϖÞTðρÞ ¼ 0.92TðρÞ for small ρ, and there are indeed finite-
size corrections to the narrow probe result, as shown in
Fig. 5. Note that the full exponent in (36) is −2ρ2=ð1þϖÞ,
so that the falloff of the ellipticity is still Gaussian. See [44]
for the ellipticity in a ‘double slit’ setup, in which a probe
passes through two parallel, intense optical fields; the probe
ellipticity there also exhibits a Gaussian falloff as a function
of the separation between the optical lasers.

IV. EXACT SOLUTIONS

Finally, we confirm that the above results hold in more
sophisticated pulse models which are, in particular, exact
solutions of Maxwell’s equations. We base our analysis on
the Narozhny-Fofanov beam [45] (see also [46]), describing
the background optical laser as a momentum distribution
peaked around kμ ¼ ωð1; 0; 0; 1Þ, for propagation in the
z-direction. To describe a pulse we take a distribution
ΨðjkjÞ in jkj ∈ Rþ, and to describe focussing we take a
vectorial distributionΦðnÞ on the photons’ direction n ∈ S2.
A gauge potential (in radiation gauge, A0 ¼ 0 ¼ ∂iAi) is

AðxÞ ¼ ARe
Z

d3kΨðωÞΦðnÞe−ikx; ð37Þ

in which A is an amplitude, k2 ¼ 0 and n ¼ k=jkj ¼
fsin θ cosϕ; sin θ sinϕ; cos θg. In [45], Ψ was chosen to be
a delta function in jkj, giving a single frequency component
to the beam, and the angular distribution in Φ was limited by
a step function, i.e. a ‘hard cutoff’.
We choose a space fixed angular distribution, so that we

can eliminate Ey from the outset, giving linear (x) polari-
zation of the electric field in the plane transverse to
propagation. This is analogous to the Gaussian pulse above,
and mirrors the function of a real polarizer. The price we
pay is that the electric field will develop a longitudinal
component Ez, unlike in [45] where it can be taken purely
transverse. When the angular spread is small, so is Ez,
matching what happens in a Gaussian beam when OðsÞ
corrections are included. To avoid edge effects, we take
bump-function distributions in frequency and angle which,
for the focussing parameters we consider, are very close to
Gaussian distributions. Explicitly, we have

ΨðjkjÞ ¼ exp

�
−
�
2ω

πσω

�
2

tan2
�
πðjkj − ωÞ

2ω

��
ð38Þ

with jkj ∈ ½0; 2ω�, and

ΦðnÞ ¼ exp

�
−
tan2 θ
σ2θ

�
ŷ × nðθ;ϕÞ; ð39Þ

where ŷ denotes the unit vector in the y-direction. The
larger σθ, the more focused the beam and the smaller the
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FIG. 5 (color online). The amplitude and ellipticity for the
HIBEF parameters, as a function of the transverse beam sepa-
ration (in units of target waist radius) in an otherwise head-on
collision.
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focal waist. To parallel the discussion above, we choose
σθ ¼ s and σω ¼ Δω. Taking the total energy to be 30J then
determines the amplitude A.
Though it is not possible to perform all the integrals in

(37) analytically, this exact solution of Maxwell’s equations
looks very similar to (20) in position space, as shown in
Fig. 6. Far from the focus the wave fronts are circular,

centred at the focus. The transverse field has cylindrical
symmetry around z, while the small longitudinal field is
proportional to cosϕ. However, the ϕ-dependent effects
introduced are Oð1%Þ, and we do not show them here.
In Figs. 7–9 we plot T as a function impact parameter,

angle and jitter, with parameters as above. The results are
practically identical to those obtained for Gaussian pulses,
both in amplitude and form, implying that our results are
insensitive to the fine details of the pulse model.

V. CONCLUSIONS

We have found a simple expression for the low-energy
photon helicity/polarization flip probability in arbitrary
background fields. The result can be deduced from that
in a plane wave background, by observing that the light-
front time integral therein can be interpreted as an integral

FIG. 6. E2
x=E2

S (peak values shown in each panel) for the
Gaussian pulse (20) (first row) and the exact solution (37)–(39)
(second row). The third row shows longitudinal E2

z=E2
S of the

exact solution. The cross section is made through the x–z plane,
where Ez is largest. The three snapshots are taken at 66 fs=20 μm
apart, the rightmost being at the focus.
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FIG. 8 (color online). The scattering amplitude T for a probe
with incidence angle θ to the z-axis, which passes through the
focus at (top to bottom) times t ¼ f0; 10; 20…70g fs.
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FIG. 9 (color online). The probe arrives at the focal plane a
distance x from the focal point, at f0; 10…50gfs after the field
has peaked, with incidence angle 10° and azimuthal angle 180°.
As in Fig. 4, a nonzero impact parameter improves the signal.
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FIG. 7 (color online). The scattering amplitude T for a probe
with momentum anti-parallel to z, which passes through the focal
plane at time t, at a distance x from the focus. Top to bottom,
t ¼ f0; 10; 20…70g fs.
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over the worldline of a massless particle. This is another
example of how lightfront field theory is well suited to
studying strong field QED [47,48]. A derivation from
Heisenberg-Euler, although more involved, gives insight
into the approximations behind the result, and how the
energy scales in play relate to the relevance of forward vs
backscattering in laser-laser collisions.
The flip probability is closely related to the ellipticity

to be measured in the proposed vacuum birefringence
experiment at HIBEF [6,11]. Our results therefore give
us a simple method for investigating the impact of beam
geometry on birefringence signals. We have seen that beam
models which do not account for pulse duration (such as
standard paraxial Gaussian beams) overestimate both the
flip amplitude (by an order of magnitude) and the relevance
of peripheral collisions. In short pulses, the signal reduction
due to “imperfect” collision angle is much less severe
than predicted by the paraxial beam model, provided the
probe is timed to arrive at the focus at close to the instant of

peak field strength. While the effect of any single imper-
fection (collision angle, impact parameter, jitter) naturally
reduces the signal, we have also seen that if it is exper-
imentally necessary to include e.g. an angle, then it may be
possible to optimize other parameters to partially counter
its negative effect.
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