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Strong nonlinear or very fast phenomena such as mixing, coalescence and breakup in
chemical engineering processes, are not correctly described using average turbulence prop-
erties. Since these phenomena are modeled by the interaction of fluid particles with single
or paired vortices, distribution of the properties of individual turbulent vortices should be
studied and understood. In this paper, statistical analysis of turbulent vortices was per-
formed using a novel vortex tracking algorithm. The vortices were identified using the nor-
malized Q-criterion with extended volumes calculated using the Biot–Savart law in order
to capture most of the coherent structure related to each vortex. This new and fast algo-
rithm makes it possible to estimate the volume of all resolved vortices. Turbulence was
modeled using large-eddy simulation with the dynamic Smagorinsky–Lilly subgrid scale
model for different Reynolds numbers. Number density of turbulent vortices were quanti-
fied and compared with different models. It is concluded that the calculated number den-
sities for vortices in the inertial subrange and also for the larger scales are in very good
agreement with the models proposed by Batchelor and Martinez-Bazán. Moreover, the
associated enstrophy within the same size of coherent structures is quantified and its dis-
tribution is compared to models for distribution of turbulent kinetic energy. The associated
enstrophy within the same size of coherent structures has a wide distribution that is nor-
mal distributed in the logarithmic scale.
� 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

A detailed description of turbulence spectra is needed to model and quantify many aspects of engineering flows e.g. the
behavior of turbulent mixing, coalescence and break-up phenomena in chemical engineering processes [1]. One of the main
mechanisms behind these phenomena is the interaction of fluid particles with single or paired turbulent vortices. The afore-
mentioned phenomena usually occur very fast, often within a few milliseconds [2], and this time scale is equal to or smaller
than the life time of turbulent vortices for many engineering applications [3]. Thus, the interaction cannot be modeled using
the statistical mean properties of turbulence e.g. turbulent kinetic energy and dissipation rate [3–5]. Instead, the interaction
might be better described by the distribution of the properties of single turbulent vortices, such as vortex size, lifetime, num-
ber density (the number of turbulent vortices per unit fluid volume), growth and dissipation rate, and the turbulent kinetic
energy for vortices of different sizes at different locations.
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Nomenclature

C structure function parameter (–)
CS Smagorinsky constant (–)
E turbulent energy spectrum (m3 s�2)
L largest turbulent vortices length scale and pipe length (m)
_n number density (m�3)
Q Q-criterion (s�2)
r distance (m)
R radius (m)
Rek Taylor microscale Reynolds number
S strain rate (s�1)
t time (s)
u fluctuating velocity (m s�1)
�u mean of fluctuating velocity (m s�1)
x, y, z coordinates
y+ wall unit (–)

Greek letters
D turbulence resolution filter size (m)
Ø pipe diameter (m)
a Kolmogorov constant (–)
e energy dissipation rate (m2 s�3)
j wave number (m�1)
k vortex size (m)
k2 eigenvalue of velocity gradient tensor
m kinematic viscosity (m2 s�1)
q density (kg m�3)
s vortex turnover time (s)
x vorticity (s�1)

Superscripts and subscripts
ind. induced velocity in Biot–Savart integral
n normalized
T residual part in LES grid filter

Acronyms
LES large eddy simulation
RANS Reynolds-averaged Navier–Stokes
TKE turbulent kinetic energy
SGS subgrid scale
Ens enstrophy
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Moreover the detailed description of turbulence spectra helps to improve understanding of turbulence. The understand-
ing of turbulence is a part of ‘‘wish list’’ suggested at Turbulence Colloquium in Marseille 2011 for current and future studies
[6]. The intention of this research work is to improve the understanding of turbulence. For this purpose, a vortex-identifica-
tion algorithm that allows the details of the single turbulent vortices to be visualized and their properties to be quantified, is
required. Several vortex-identification algorithms are proposed in the literature. Many of the vortex identification algorithms
identify the important regions include vortex cores, critical points for vector fields and regions that fit into predefined ideal
shapes; but little work has been done to identify the real shape of three dimensional individual turbulent flow structures so
far. In addition, there is still a need for developing novel methodologies that improve the study of three-dimensional turbu-
lent structures’ properties.

Among the turbulent vortex properties, the vortex number density is critical for modeling of coalescence and break-up
processes. Existing models predict different vortex number densities and they are only valid for the inertial subrange of
the energy spectrum of turbulent flows. No model is available which is valid for a wider range of flow situations [7,8]. In
addition the vortex number distributions should be used to derive expressions relating to the fractional rate of surface re-
newal and mass transfer coefficients across gas–liquid and solid–liquid interfaces [9]. For these reasons, a systematic eval-
uation of available models on vortex number density is required as a foundation for further investigations.
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The objective of the present study is to perform statistical analyses of turbulent vortices identified by a novel vortex-iden-
tification algorithm developed by the authors. The vortex-identification algorithm was developed to visualize and identify all
individual turbulent vortices resolved by LES, and quantify their turbulent properties. The turbulent vortex core was ex-
tended by computing the induced-velocities based on the Biot–Savart law in order to capture more of the coherent structure
that is related to the vortex core. The calculated number density of turbulent vortices is compared with predicted number
densities from existing models. The properties of the vortices including enstrophy and vortex size are described as function
of radial position at two different flow conditions.

2. Computational details

2.1. Modeling of vortex number density

Generally, number density of turbulent vortices, _n, is defined as the number of turbulent vortices per unit fluid volume. A
relationship between the number density of turbulent vortices of sizes between k and k + dk and turbulent energy spectrum,
E(j), can be formulated by writing an energy balance for vortices of wave number between j and j + dj in the inertial
subrange
Table 1
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dk ¼ EðjÞqcð�djÞ: ð1Þ
Here, the wave number, j, is 2p/k. �uk is the mean fluctuating velocity of turbulent vortices of size k and it is theoretically
given by [10],
uk � C1=2ðekÞ1=3
; ð2Þ
where C is the functional parameter of the turbulent structure. A number of authors reported different estimates for C as
shown in Table 1.

The turbulent energy spectrum in the inertial subrange is
EðjÞ ¼ ae2=3j�5=3: ð3Þ
On substituting of Eqs. (2) and (3) into Eq. (1) the number density of turbulent vortices of sizes between k and k + d k is given
by
_nk ¼
C1

k4 ; ð4Þ
and
C1 ¼
24a

ð2pÞ5=3C
: ð5Þ
The experimental data shows that the constant a is 1.5 approximately [11]. According to Table 1, and applying the values for
the coefficient C, a variety of coefficient C1 in the number density equation can be found. Different values for the coefficient
C1 are summarized in Table 1.

Risso and Fabre [12] have used the same value as given by Pope [13] and Lasheras [14] has pointed out that there is a
range for C from about 2–8.2. In this study, several number density models for turbulent vortices suggested in the literature
were applied and compared with the number density of turbulent vortices quantified by using the vortex tracking algorithm.

2.2. Large eddy simulation and assessment

In this work, turbulence was modeled using large eddy simulation (LES) with the dynamic Smagorinsky–Lilly subgrid
scale model. In LES the governing equations, continuity and momentum equations, are separated into resolved and subgrid
parts by a spatial filtering operation. The governing equations with an added subgrid stress tensor are:
coefficients in the number density models in the literature.

el C C1

bsen [10] 2 0.841
and Svendsen [5] 2.045 0.822
helor [15] 7.23 0.2327

[13] 1.973 0.8528
inez [26] 8.2 0.2052
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where sij is the subgrid stress tensor and Sij ¼ 1
2 ð

@ui
@xj
þ @uj

@xi
Þ represents the resolved strain rate tensor. The Smagorinsky model

is:
sij �
1
3
skkdij ¼ �2mT Sij: ð8Þ
Regarding mT , which represents the subgrid turbulent eddy viscosity, Smagorinsky proposed the first subgrid scale model
(SGS) entitled the Smagorinsky–Lilly SGS.
mT ¼ ðCSDgÞ2jSj: ð9Þ
Here Dg is the filter size and jSj ¼ ð2SijSijÞ
1=2

is magnitude of the resolved strain rate. The coefficient CS is determined using
the dynamic model [13].

Most equipment in chemical process industries are run at low Reynolds numbers, and Reynolds numbers of 20,000 and
50,000 were selected as suitable ones for this study. The simulations were performed for a turbulent pipe flow (Ø = 5 cm,
L = 20 cm) of water at these Reynolds numbers. The corresponding Taylor microscale Reynolds numbers, shown in Table 2,
indicate a very narrow inertial subrange.

The length of the pipe was selected to obtain an average residence time, in the same order as the expected life time of the
large energy containing turbulent vortices. Periodic boundary conditions were used in the axial direction. The two grid res-
olutions, one for each Reynolds number, allowed most of the turbulent kinetic energy in the inertial subrange to be resolved
and the largest grid dimension was 0.5 mm in axial direction and less in radial direction. The mean Taylor microscale sizes,
estimated from RANS simulation of the same flow conditions, were approximately 6 to 4 mesh sizes.

In the LES simulations, for space discretization, the bounded central differencing and for time discretization the second
order implicit algorithms were used. The numerical procedure was based on an implicit iterative technique with a pressure
based solver. It is important that the LES simulations are run for at least a few mean flow residence times to become statis-
tically steady [16]. The statistically steadiness was checked by monitoring the time averaged and the turbulent properties at
different points inside the computational domain. Data sampling for turbulence statistics started after about 10 residence
times.

The quality of the LES simulations were assessed in terms of the ratio of the resolved turbulent kinetic energy to the total
turbulent kinetic energy, the ratio of SGS turbulent viscosity to the molecular viscosity, two-point correlations of velocities
and the y+ value for the different Reynolds numbers. In addition, a mesh convergence study was carried out for two different
mesh resolutions in order to assure the quality of the LES simulations.

As shown in Fig. 1, the ratio of the resolved turbulent kinetic energy to the total for the two Reynolds numbers studied,
showed that more than 90% of the total turbulent kinetic energy in the bulk of the flow and more than 80% at y+ > 5 was
captured. When 80% of the turbulent kinetic energy is resolved, the LES simulation can be considered well-resolved [17].

Another measure of resolution quality is the ratio of instantaneous subgrid turbulent viscosity to the molecular viscosity.
In these LES simulations the instantaneous subgrid turbulent viscosity ratio was lower than 0.1 at y+ < 5, and the maximum
of this ratio in the bulk of the flow was 1.55. Furthermore, the maximum instantaneous and average wall y+ were 1.7 and
0.85, respectively, which are in the accepted region for LES simulation. Fig. 2 shows the power spectra in axial direction
at the center of the pipe for Re = 20,000. An inertial sub-range is obtained for j < 1000 or L11 = 2p/j > 6 mm. The vortices
are stretched in the streamline direction with an aspect ratio in the range 3–5 [18]. Consequently, the equivalent sphere
diameter with the same volume will be around 2–3 mm and we conclude that the lower range for the inertial subrange
is 2 mm at Re = 20,000.

Two-point correlations of velocities, is another important method to determine the resolution of resolved-scale flow field
in large eddy simulation. Su et al. [19] and Davidson [20] used two point correlations of velocities to quantify how many cells
ies of flow and turbulence for both Reynolds numbers.

Re = 20,000 Re = 50,000

n Taylor microscale Rek 80 101
ence time (s) 0.5 0.2

n vortex life time, sL-mean = k/e (s) 0.57 0.21
ated lower range of inertial sub range (mm) 2 1.5



Fig. 1. Ratio of the resolved turbulent kinetic energy to the total turbulent kinetic energy for the two different Reynolds numbers. kR is the resolved
turbulent energy.

Fig. 2. Energy spectrum in axial direction for Re = 20,000.

Fig. 3. The axial and radial root-mean-squared velocities of the LES data for Reynolds number 20,000 and two different mesh resolutions.
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are resolving the large structures. At least five to ten cells are required to ensure that the largest scales are well resolved in
LES [20]. For both Reynolds numbers studied, the two-point correlation analysis showed that at least fifteen grid cells were
resolving the large scales.

The mesh convergence study showed that the LES simulations were almost mesh independent. Fig. 3 shows the variations
of axial and radial root-mean-squared velocities of the LES data for Reynolds number 20,000, as function of the radial loca-
tion, for two different mesh resolutions. The difference is minor and the RMS is somewhat higher close to the wall as ex-
pected since a larger part of the turbulent kinetic energy is resolved with finer mesh. Similar results were obtained for
the Reynolds number of 50000.
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3. Vortex identification and analysis methods

Several Eulerian methods for flow structure visualization are proposed in the literature. They are generally formulated in
terms of the invariants of the velocity gradient tensor. These criteria includes the iso-surfaces of vorticity, stream lines, Helic-
ity, Q-criterion, complex eigenvalues of the velocity gradient tensor, k2, swirl strength and pressure minimum [21]. Chakr-
aborty and et al. [22] showed that the Q-criterion and k2 almost give the same flow structures.

When there is no imposed non-uniform strain field in the turbulent flow, the Q-criterion can be used to identify the core
location of the turbulent vortices. The Q-criterion represents the local balance between vorticity and strain rate. In order to
visualize a wide range of vortices even the weakest one in the bulk, the Q-criterion can be normalized with respect to the
vorticity [18].

In this study, a vortex-identification algorithm was developed in order to visualize and identify the 3D turbulent vortices.
As shown in Fig. 4, the proposed vortex-identification algorithm contains four steps.

In the first step, a 3D image segmentation algorithm was used to visualize and identify the core of individual vortices. In
the algorithm, turbulent vortices were visualized by iso surfaces of normalized Q-criterion. Theoretically, positive values of
the normalized Q-criterion represent vortices; however in this study, the normalized Q-criterion larger than 0.1 was used as
a cut off, in order to have a clear separation between vortices. This cut off provides a good balance that captures the core of
the turbulent vortices but excludes most of the incoherent turbulent flow.

In a binary image space the volume was identified as inside or outside the boundary described by the normalized
Q-criterion. By using the ‘‘bwconncomp’’ function in MATLAB, the connected regions were identified and labeled with unique
numbers. The properties within each labeled connected region can be integrated over the volume of the region to obtain the
corresponding turbulent vortex data. Furthermore, the total number of identified regions provided the total number of
turbulent vortices. Therefore by using the algorithm, the cores of the turbulent structures visualized by normalized
Q-criterion can be identified and indexed through the entire computational domain at each time. This methodology also
helps to correlate size of the vortices to other properties e.g. location and enstrophy. In this study, for all labeled turbulent
vortices data such as volume, location and enstrophy were quantified.

Recently, an analysis of the turbulent kinetic energy on a 2D plane of a 3D LES simulation revealed that less than 40% of
the turbulent kinetic energy (TKE) on the plane would be captured within the structures identified by the lowest possible cut
off Q-criterion [18]. This occurs because the Q-criterion represents just the vortex cores even with the lowest possible cut off
criterion. Fig. 5 shows that the normalized Q-criterion captures only the core of turbulent vortices while the most of
turbulent kinetic energy is located outside of them. Enstrophy is well captured within the vortex cores described by the
normalized Q-criterion, by excluding the near wall area at y+ < 30 more than 60% of the enstrophy is within the vortex cores.

Since turbulent kinetic energy (TKE) is one of the key parameters in the breakage, coalescence and mixing phenomena, it
was of interest to quantify the amount of TKE in the coherent structures identified with this algorithm. Fig. 6 shows the
Fig. 4. The four steps of the proposed vortex-identification algorithm.



Fig. 5. (a) Overlap of turbulent kinetic energy, 0 < TKE < 0.002 [m2/s2] and turbulent structures identified using iso-normalized Q-criterion >0.1; (b) overlap
of enstrophy, 0 < Ens < 4000 [1/s2] and turbulent structures identified using iso-normalized Q-criterion >0.1.

Fig. 6. Turbulent kinetic energy distribution in an idealized Lamb–Oseen vortex.
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distribution of turbulent kinetic energy for an idealized Lamb–Oseen vortex. Since the cut off used in the algorithm (0.1) is
located very close to the peak in turbulent kinetic energy (Fig. 6), an extension of the volume identified with the normalized
Q-criterion will allow more turbulent kinetic energy to be captured within the vortex. To extend the vortex volume, the
Biot–Savart law was implemented.

A distribution of vorticity in a vortex induces the relative velocity field based on the Biot–Savart law [23]. According to the
Helmholtz–Hodge decomposition, any smooth vector field which decays sufficiently fast to infinity may be uniquely
determined by its curl and divergence, and can be written as the sum of a curl (solenoid or divergence free) and a divergence
(irrotational). The irrotational part can be described using potential flow and the curl part can be calculated by the
Biot–Savart law. The induced-velocity generated by Biot–Savart law in a three dimensional volume can be expressed as:
uind: ¼
1

4p

Z
V
x�r 1

r

� �
dV ¼ 1

4p

Z
V

1
r
ðr �xÞ � r� 1

r
x

� �� �
dV : ð10Þ
Here uind:;x; r and V are induced velocity, vorticity, distance between points and volume of the vortex cores respectively.
By applying the Biot–Savart law in three-dimensions to generate the induced-velocities of the vortex, the volume of the

vortex can be extended in order to cover the peak in the turbulent kinetic energy which is obtained from the induced veloc-
ities (Fig. 6). This extended volumes allows more TKE to be confined within the extended vortex, while the extended vortex
keeps the shape of the core-vortex.

In this study, the Biot–Savart law in three-dimensions was firstly tested on a Lamb–Oseen vortex synthesized with
specific parameters. Fig. 6 shows the Lamb–Oseen vortex radius estimated by the normalized Q-criterion and the one
extended based on the Biot–Savart law. The vortex volume extension was based on capturing 85% of the total turbulent



F. Ghasempour et al. / Applied Mathematical Modelling 38 (2014) 4226–4237 4233
kinetic energy, which was calculated from the induced velocities, within the vortex. The figure shows the turbulent kinetic
energy calculated from the synthesized idealized Lamb–Oseen vortex and the induced velocities using Eq. (10). As shown in
Fig. 6 the distribution of the induced-velocities using Biot–Savart were very similar to the synthesized velocities. Only the
core of the vortex captured by the normalized Q-criterion was used in the integration of Eq. (10) to induce the velocities.

For a vortex, the axial length of the turbulent structure can be captured with the normalized Q-criterion while the radial
size will be underestimated. Fig. 6 shows that the radius of the core-vortex idealized Lamb–Oseen vortex must be much lar-
ger to capture 85% of the total induced turbulent kinetic energy. However, an appropriate extension criterion cannot be
determined from idealized Lamb–Oseen vortex data, since real vortices are affected by neighboring vortices and the energy
dissipation in the fluid. Instead, the extension criterion was obtained by analyzing the LES data using the Biot–Savart law to
extend the volume from the core region determined with the normalized Q-criterion. The objective was that 85% of the tur-
bulent kinetic energy associated with the vortex should be captured, and the induced turbulent kinetic energy was calcu-
lated from the Biot–Savart calculation (Eq. (10)) based on the vorticity of the core-vortex. The iso-surface was obtained
from connecting the points around an iso-Q surface where the induced velocities calculated from Biot–Savart decreased
to 40% of its maximum value. This results in capturing close to 85% of the total TKE. Fig. 7a shows the iso surface of a sample
vortex visualized by iso normalized Q-criterion. The iso surface of the extended vortex based on its induced velocity using
the Biot–Savart law was shown in Fig. 7b. This extended vortex contains the maximum peak region of the total induced tur-
bulent kinetic energy within the extended volume. Fig. 7c shows the top view of these two iso surfaces overlapped.

Fig. 8 shows the ratio of the extended volume based on the Biot–Savart law to the core volume obtained from the iso nor-
malized Q-criterion for a number of vortices in the LES data. The ratio was different for various vortex sizes. Particularly for
the smallest vortices, there were large differences in their ratios. The reason is that these vortices were located in different
areas; the smallest vortices were mostly located in an area close to the wall and most of the turbulent kinetic energy var-
iation occurs in that area. The average ratio was computed over three different size groups based on their equivalent diam-
eters (equivalent spheres). As shown in Fig. 8, the average ratio of the extended volume based on the Biot–Savart law with
respect to the core volume obtained from the iso normalized Q-criterion was varying between 2.25 and 1.75, and the cor-
responding standard deviations between 0.6 and 0.2.

The Biot–Savart calculation takes a great deal of time to process for all vortices. Consequently it was not possible to ana-
lyze thousands of vortices, identified through the entire of the computational domain, based on their Biot–Savart calcula-
tions separately. Instead, to simplify the statistical analysis of turbulence, all core volumes identified by the vortex
tacking algorithm were multiplied by the average ratios of the extended to the core volume to get closer to the aimed con-
ditions. More specifically, the volumes of vortices which their equivalent diameters were less than 1 mm were multiplied by
2.25 and the ones which their equivalent diameters were between 1 and 2 mm were multiplied by 2 and for the rest of core
volumes a factor equal to 1.75 was applied. Subsequently, the diameters of equivalent spheres were calculated from the ex-
tended volumes. Using this average extension of the core volume will introduce some error but even for the vortices below
1 mm the ratio in volume is within 1.5 and 3 for more than 90% of the vortices. This difference corresponds to an error of less
than 15% in estimated diameter using the constant value 2.25.

Since the turbulent kinetic energy and number of turbulent vortices are varying with the pipe radius and most of the
variations are in areas with high shear rate close to the wall, it was highly motivated to do the statistical analysis also at
different radial locations. In this study, the analysis was done for 5 radial fractions. Data sampling and statistical analysis
were further performed at three different axial pipe segments. Three six-centimeter axial pipe segments were considered.
Since we do not expect any axial difference in turbulent statistics, this separation will show the stability of the vortex
tracking algorithm.
Fig. 7. (a) Iso surface of normalized Q-criterion; (b) the iso surface of the extended vortex based on its induced velocity using the Biot–Savart law; (c) and a
cross section of the superimposed volumes.



Fig. 8. Ratio of extended volume found using Biot–Savart to the original. The green lines show the average of the ratio for different range of equivalent
diameter. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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4. Results and discussion

In this study, the turbulence properties such as vortex number density, enstrophy distribution, volume (core and the ex-
tended volume) and location were computed and analyzed by using the vortex identification algorithm. The vortex-identi-
fication algorithm was implemented to LES simulation of a turbulent pipe for two different Reynolds numbers, 20,000 and
50,000. More than 8100 and 13,300 vortex cores were identified at these two flow conditions respectively.
4.1. Number density models for turbulent vortices

The number density of turbulent vortices was calculated using relevant literature models (Table 1), and compared with
the results obtained with the vortex tracking algorithm. In fact, the number density of turbulent vortices of various models
was calculated for vortex sizes between k and k + dk. In this work, the bin sizes were small for the smaller vortices and
increasing gradually for the larger ones.

The number density of turbulent vortices at three different axial segments of pipe (Initial, Middle and End) had the same
distribution which confirms the stability of the vortex tracking algorithm. However, for the largest vortices, the number
densities deviate slightly, mainly due to the fact that a low number of large vortices were identified.

In Fig. 9, the number density of turbulent vortices quantified by means of the vortex tracking algorithm are compared
with the number densities of turbulent vortices computed by using the models in Table 1. Since all these models are valid
only in the inertial subrange, the number densities of turbulent vortices predicted by the models are plotted only for the
inertial subrange in Fig. 9.

The comparison shows that the number density of turbulent vortices quantified by means of the vortex tracking
algorithm has similar size dependence as the models. In particular the number densities computed from the Batchelor
Fig. 9. Comparison between number densities identified with the vortex tracking algorithm and the different models. (The models by Pope and Lou and
Svendsen coincide in the figure).
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and Martinez-Bazán models agree very well for vortex sizes in the inertial subrange. Since the values of constant C (Table 1)
obtained by Batchelor and Martinez-Bazán are so close, the results obtained by their models are the same. The other models
predicted almost three times higher number density.

Below the inertial subrange all the models over predict the number density. This is expected since the smallest vortices
are not resolved with our mesh size and the dissipation of turbulent kinetic energy affects the small turbulent scales. For
larger vortices there was a considerable compatibility between the number densities of turbulent vortices quantified and
modeled specially the number densities computed with the Batchelor and Martinez-Bazán models. Therefore the rest of
analysis was performed by using the Batchelor and Martinez-Bazán models.

By increasing the Reynolds number, the inertial subrange in a turbulent flow is increased [24]. As shown in Fig. 9, the
range over which the number densities are following the modeled line, is larger in the case of higher Reynolds number
i.e. at Re = 50,000, which is expected.

Showing the number densities of all vortices independent of their locations as in Fig. 9 may be misleading since the aver-
age number of vortices will be dominated by more vortices in the near wall region. The number density of turbulent vortices
is shown as a function of the radial position in Fig. 10. As shown here the number density of turbulent vortices calculated
with the Batchelor model, agrees somewhat better near the pipe wall (0.8 < r/R < 1) than in the core of the pipe.

4.2. Enstrophy of turbulent vortices

Moreover, the vortex tracking algorithm revealed details of the vortex properties including enstrophy distribution. An
analysis of the associated enstrophy within the turbulent coherent structures found by the normalized Q-criterion showed
that the enstrophy is increasing with the radial position in the pipe. The accumulated probability distribution of the volume
averaged enstrophy of each vortex is shown as a function of five radial locations in Fig. 11.

The volume averaged enstrophy distribution of vortices was expected to be analogous to the distribution of turbulent ki-
netic energy. The fluctuating velocity at the surface of the iso-Q volume can be approximated by u / xR and the turbulent
kinetic energy which is the square of the fluctuating velocity can be correlated with the enstrophy by k / x2R2. Therefore,
the enstrophy for each vortex size should have the similar probability distribution as turbulent kinetic energy in the inertial
subrange.

It is frequently assumed that for each vortex size, k, there is a distribution of fluctuating velocities. A model of turbulent
kinetic energy probability distribution, peðuÞ, is given by Angelidou et al. [25],
peðuÞ ¼
1

eðkÞ expð�uÞ; ð11Þ
where
u ¼ eðkÞ
eðkÞ : ð12Þ
Here ē(k) is the average vortex energy in the inertial subrange for a vortex size k.
The cumulative distribution of volume averaged enstrophy for all vortex sizes grouped together vs. the logarithm of nor-

malized enstrophy is shown in Fig. 12. The volume averaged enstrophy was normalized by the average vortex enstrophy for
each vortex size k. The blue and red curves are for Reynolds numbers 20,000 and 50,000, respectively. The distributions are
normal distributed in the logarithm scale as seen by the circle and diamond legends on top on the blue and red curves that
shows the cumulative normal distribution. The cumulative distribution of Eq. (11) is shown as the black line in Fig. 12. It can
Fig. 10. Number density of turbulent vortices at different radial locations.



Fig. 11. Volume averaged enstrophy of turbulent vortices at different radial locations.

Fig. 12. The probability distribution of weighted enstrophy comparing with normal and exponential distributions.
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be concluded that the zero parameter model by Angelidou et al. [25] predicts a reasonable but not perfect distribution of
enstrophy.
5. Conclusions

The study was done at rather low Reynolds numbers 20,000 and 50,000, corresponding to Taylor microscale Reynolds
numbers 80 and 101, respectively. At these low Reynolds numbers the inertial subrange is very narrow. However, these flow
conditions are close to what is observed in chemical process equipment and motivates a detailed study.

The LES simulations were done with very good resolution. Two point correlation analyses showed that at least fifteen grid
cells were resolving the large scales. Also more than 95% of the total turbulent kinetic energy was resolved and the maximum
subgrid turbulent viscosity to molecular viscosity ratio was 1.55.

An efficient vortex tracking algorithm that allows identification of thousands of vortices, and quantification of turbulent
properties, needed for statistical analysis of turbulence was developed.

It was shown that by using the Biot–Savart law in three-dimensions the core size of a vortex estimated by the normalized
Q-criterion can be extended to the larger size to increase the amount of turbulent kinetic energy captured within the vortex.
However, the extending volumes based on Biot–Savart law may conflict with the requirement of a clear separation between
the vortices, which is necessary when vortices are tracked over time.

A separate analysis of the coherent vortices in three different axial segments of the pipe gave almost identical results,
confirming the stability of the algorithm; only a random effect was noticed mainly due to the identification of very low num-
bers of the largest vortices.

The calculated number densities of vortices in the inertial subrange and larger scales agree very well with the Batchelor
and Martinez-Bazán models in the literature. There is some difference in radial position for the larger vortices but no valid
conclusions can be drawn since there are too few vortices in each bin size for large vortices. The effect of Reynolds number on
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vortex number density distribution is minor with a tendency to decrease the slope of the distribution at lower Reynolds
number. This is due to a more narrow inertial subrange at low Reynolds number. However determining the exact region
of inertial subrange is challenging since it is a local value and depends on local dissipation rates.

The enstrophy distribution for a given vortex size is very large and this variation must be taken into account when esti-
mating properties of turbulent flow e.g. for calculation of break-up rate of bubbles and drops. The associated enstrophy with-
in the same size of coherent structures is normal distributed in the logarithmic scale.
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