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Development of energy-optimal control strategies for a fully electric vehicle. 

 
Master of Science Thesis in the Master’s Programme  

 ALEJANDRO FERREIRA PARRILLA 
Department of Automatic Control 

Chalmers University of Technology 

 

ABSTRACT 

The development of new strategies in order to increase the range of fully 

electric vehicles by minimizing the energy consumption using on-board and 

off-board sources has been the subject of this work. To do so, an innovative 

energy management strategy has been developed for intersections regulated by 

Traffic Lights.   

EU founded research projects like OpEneR unify efforts of several partners to 

develop such new technologies. This work contributes to OpEneR project and 

deals with Traffic Lights. The objective is to develop energy optimal control 

strategies for the fully electric OpEneR prototypes. It is assumed that Vehicle-

to-Infrastructure (V2I) communication provides required data about Traffic 

Lights along considered road segment. Model Predictive Control is used as the 

framework methodology, which allows for specific powertrain representation 

and managing of the Traffic Light problem through constraints. In order to test 

the efficiency of developed control method, the controller is subjected to 

several representative simulation use-cases, including a real world road in 

Graz, Austria. The results have shown energy consumption reductions 

compared to a standard driver varying between 17 and 37 % depending on 

selected use-case. It is therefore concluded that the presented methodology 

constitutes an effective approach to the Traffic Light control problem 

management. 

Additionally, a Speed Advisory optimization-free algorithm dealing with 

Traffic Lights was also introduced. It is designed as a real-time implementable 

alternative to Model Predictive Control formulation. Furthermore, work 

performed with Human Machine Interface as well as a vehicle mock-up for 

demonstration purposes are also described. Finally, investigations regarding 

Explicit and Nonlinear Model Predictive Control are also presented and their 

strengths and drawbacks are highlighted. 

The Master Thesis has been written in close collaboration with AVL List 

GmbH and contributes to the European research project OpEneR. 

 

Key words: Traffic Lights, Model Predictive Control (MPC), Electric 

Vehicle, Energy consumption, Advanced Driver Assistance 

Systems (ADAS), Vehicle-to-Infrastructure (V2I) Communication, 

Speed Advisory, Vehicle Simulator. 
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1 Introduction 

 

Intelligent vehicle driving systems are nowadays becoming a necessity for 

sustainable and safe mobility in the context of modern society. As the world 

population is moving towards city living, sustainable and green mobility plays 

an essential role for such areas. To a great extent individual mobility relies on 

traditional combustion passenger cars, but the imminent shortage of fossil fuels 

is pushing academia and industry towards other alternatives such as 

hybridization or electrification. In that regard, electric mobility is especially 

suited for city driving, where the travelled distances are relatively short and the 

constant stop and go manoeuvers allow for regenerative braking [1].  

Traffic lights (TL) coordinate the traffic for most of the city intersections. A 

busy intersection in a typical urban area might coordinate the movement of 

thousands of vehicles a day [2]. In this context, the cumulated energy waste due 

to stopping at red light and the corresponding generated emissions become 

crucial. Therefore, being able to fluently cross the Traffic Lights is of great 

value.  A Traffic Light Assistant (TLA) would therefore contribute to improve 

the overall transportation system energy efficiency and, for the case of a fully 

electric vehicle, to the all-electric range extension. It is well known that electric 

vehicles suffer problems of limited range. 

In this Thesis, it is assumed that the electric vehicle -the OpEneR prototype- , 

has advanced information access thanks to on-board systems as well as 

Vehicle-to-Infrastructure (V2I) communication. I.e. information about Traffic 

Light shifting times, distances to TL, ego-vehicle position, or other vehicle’s 

kinematics can be obtained in real time and are accessible to the Vehicle 

Control Unit (VCU).  

This thesis is written in close collaboration with AVL List in Graz, Austria, as 

part of the OpEneR project and its purpose is to develop optimal control 

methods to deal with Traffic Light scenarios. The goal is to develop control 

algorithms that can reduce energy consumption required to cross upcoming 

Traffic Lights.  

 

1.1 OpEneR project 

 

OpEneR (Optimal Energy consumption and Recovery), is a European research 

project launched in May 2011 under the Seventh Framework Program (grant 

agreement n. 285526). The aim of the project is to develop advanced driving 

strategies and assistance systems which increase vehicle efficiency and 

therefore range. The project involves the following institutions: 

 Robert Bosch GmbH 

 Robert Bosch Car Multimedia GmbH 

 Peugeot Citroën Automobiles S.A. 

http://www.citroen.at/
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 AVL List GmbH 

 Centro Tecnológico de Automoción de Galicia 

 FZI Forschungszentrum für Informatik an der Universität Karlsruhe 

 

During the development of the project, several prototype vehicles were built to 

ultimately test developed technologies (Figure 1). The OpEneR prototypes are 

4WD full electric vehicles with two permanent magnet 50 kW electric 

machines, connected through a dog clutch to front and rear axles respectively. 

The base vehicle is the Peugeot 3008 Hybrid4. The electric energy is supplied 

by a 40 kWh Li-ion battery package and the estimated range for the prototypes 

is approximately 200 km. [3] 

 

 

Figure 1: OpEneR 4WD Twin Axle Fully Electrical Vehicles 

 

1.2 Complex Simulation Tool-Chain 

 

In order to test the control strategies developed within this master project, an 

accurate and reliable simulation platform that faithfully represents all relevant 

aspects of vehicle, its environment and driver is a need. A powerful simulation 

tool-chain composed of IPG CarMaker, AVL CRUISE and Matlab/Simulink is 

used for this work. The controllers are developed in Matlab/Simulink 

environment, while as vehicle and realistic traffic environment are provided by 

IPG CarMaker. Specific powertrain configurations are managed by the in-

house software AVL CRUISE.  

The Co-simulation toolchain combining the above mentioned enhanced 

simulation tools is shown in Figure 2, and it supports complex vehicle and 

powertrain development. It uses highly developed simulation tools for each 

specialized application. Integration of diverse tools is set up through standard 

interfaces and yields an enhanced model-in-the-loop (MiL) and Software-In-

The-loop (SiL) platform. This platform is also extendable to Real-time on a 

Hardware-in-the-Loop (HiL) or Powertrain Testbed.  
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Besides an accurate simulation model, the ease of generating complex traffic 

scenarios and 3D modelling of the test roads is a major feature of the developed 

simulation platform. OpEneR technologies can be tested on a dedicated public 

road test corridor in Vigo, Spain, which features enhanced digital maps, and a 

real car-to-car and car-to-infrastructure communication network operated by 

CTAG. Detailed road information for the Vigo test corridor (e.g. curvatures, 

inclination, speed limits) is included in the simulation toolchain for offline 

development and pre-calibration of the control strategies. The benefit of this 

approach is that the developed control algorithms are tested on realistic real 

world driving routes and real world benefits in terms of energy efficiency are 

determined early in the development process.  

 

 

Figure 2: Co-simulation toolchain consisting of AVL CRUISE, IPG CarMaker®, and MATLAB/Simulink® 

1.3 Model Predictive Control. An Introduction. 

 

A vehicle integrated in an Intelligent Transportation System (ITS) is to receive 

information about upcoming road segments. This vast amount of data can range 

from upcoming speed limits, traffic conditions ahead, to gradients or Traffic 

Light status. This enables the vehicle to look ahead several kilometres along the 

road and opens multiple possibilities to optimize energy consumption. Model 

Predictive Control (MPC) is often cited as one of the most popular advanced 

control techniques. MPC was firstly used in Chemical industry, but in recent 

time the Automotive industry has shown growing interest for MPC applications 

including engine, transmissions, emissions, energy management, etc. [4]. The 

main reasons for its success are that MPC: 
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 Handles multivariate problems with ease. 

 Can take into account actuator limitations. 

 Plant physical constraints are intuitively implemented to the 

formulation. [5] 

On the other hand, main drawback for MPC is the required online optimization. 

In case of large plant models, the required calculations can quickly increase. 

This needs special care in case of systems with fast dynamics. It must also be 

noted that in the case of non-Linear systems, the optimization problem to solve 

each time-step becomes non-linear and difficulties in solving the constrained 

optimization problem arise.    

In essence, MPC is based on optimizing the future plant control trajectory 

subject to constraints. Those constraints can be classified under plant states 

constraints, plant control constraints, or plant output constraints. (Note that the 

constraints can be functions of time).  In traditional MPC formulation, the 

objective consists of minimizing a given cost function J. This objective or cost 

function penalizes deviations of states from reference set-points while limiting 

control action to do so. The optimization problem is often a constrained 

optimization problem, and ease to include a large variety of constraints to the 

formulation is one of the main features of MPC. The result of the optimization 

process is the optimal control sequence Uopt for the control horizon Nc,. Only 

the first element of the optimal control sequence is applied to the plant. The rest 

of the control sequence is employed for plant behaviour estimation in the 

prediction module. This optimization is repeated each time-step in a receding 

horizon fashion. [5-7]. A schematic representation of MPC structure can be 

found in Figure 3. Interested readers are referred to [5-7] for more detailed 

descriptions. 

 

 

Figure 3: Schematics of  MPC controller structure 

As it will be shown in Chapter 2, the proposed MPC formulation includes the 

following factors for handling the Traffic Light problem:  
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 Repeated calculation of the upper-level “Green-Wave” optimal 

trajectory, which accounts for changes in traffic conditions. 

 A lower-level, high-precision MPC for more detailed trajectory 

calculations. 

 Ego-vehicle dynamic behaviour as well as acceleration and deceleration 

limits. 

 Prediction of the trajectory of the vehicle ahead. 

 

1.4 State of the Art. 

 

This section presents state of the art techniques extracted from literature to deal 

with Traffic Lights. In addition, contributions of this thesis will be 

differentiated from already existing publications. 

Institutional pressure on reduced emissions and fuel consumption has 

encouraged industry and research institutes to produce innovative advanced 

vehicle driving strategies. Numerous publications around this topic have seen 

the light of day. Publications [8-11] provide good examples of nowadays trends 

for electric vehicles and connected powertrain.  

Some studies regarding optimized efficiency for vehicles in the context of 

Traffic Lights can be found in the literature. They can mainly be divided into 

two categories: macroscopic traffic signal control system and microscopic 

speed modulation techniques.  

Traffic lights are centrally operated, and their shifting schedule is constantly 

updated according to time of the day, predicted traffic, weather forecasts, etc. 

Such macroscopic systems are generally statistically optimized and centrally 

controlled, and allow for a “Green Wave” like behaviour: traffic flow is 

maximized and the Traffic Lights are coordinated such that vehicles can avoid 

stopping as much as possible by catching the so called “Green Wave”. [2]  

On the other hand, microscopic -from an ego-vehicle stand point- speed 

modulation techniques have also been proposed in the literature. State of the 

Art speed modulations techniques such as the GLOSA (Green Light Optimal 

Speed Advisory) initiative [13] provide the driver with a global optimal speed 

recommendation. Other papers derive constant speed trajectories in order to 

cross TL during green phases [13]. Nevertheless, such speed advisory systems 

do not take into account specific powertrain configuration and therefore are not 

optimal for each individual vehicle. In general, the generated speed 

recommendations are calculated off-board and broadcasted to the whole traffic. 

The proposed Traffic Light Assistant developed under MPC framework is an 

on-board feature that has the potential to be adapted to any specific powertrain.  

 

The Thesis is structured as follows:  
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The Traffic Light problem handling under Model Predictive Control framework 

is detailed in Chapter 2. This section represents the main contribution and core 

of this Thesis. To do so, firstly, a model of the vehicle for control purposes is 

derived. Subsequent sections present prediction model and the selected cost 

function. Sets of constraints are then added to the formulation in order to deal 

with Traffic Lights, powertrain limitations but also other vehicles. Finally, the 

chosen parallel MPC structure to deal with the whole problem is described.  

Some details about the controller implementation in the simulation tool-chain 

as well as some practical issues when it comes to the implementation of the 

control strategies are presented in Chapter 3. Details on how controllers are 

migrated from Matlab to Simulink environment are given and implementation 

challenges are highlighted. Tuning of controller parameters are of special 

importance. The effects of different values for controller parameters are 

explained in a comprehensive manner.  

Chapter 4 thereafter presents the results for some relevant use-cases. Selected 

cases aim at presenting the results in a progressive manner with increasing 

control complexity: from a route with a single Traffic Light to a Multiple 

Traffic Light road segment with traffic ahead. At the end of this Chapter, 

realistic road data for a route section in Graz is implemented in the simulation 

environment for testing of the control strategies. 

Chapter 5 presents an alternative formulation to Model Predictive Control for 

Traffic Light problem handling. The generated control strategy, named Speed 

Advisory, offers a less computationally demanding alternative, while providing 

more than satisfying results. The developed Speed Advisory is then integrated 

with Human Machine Interface software which is part of OpEneR project. As a 

final step towards real in-vehicle implementation, the developed software is 

taken to the Real-Time environment and tested in OpEneR mockup at CTAG in 

Vigo, Spain. 

Chapter 6 offers a quick overview of parallel investigations carried out under 

the scope of this Thesis. The idea behind it is to investigate alternatives to 

standard MPC formulation that could be applicable to Traffic Light and other 

problems. More precisely, some considerations about Explicit and Nonlinear 

MPC and their applicability to the Traffic Light problem are given.  

Finally, main conclusions are drawn in Chapter 7 and possible future 

investigation directions are also outlined. 



CHALMERS, Automotive Engineering, Master’s Thesis  2014:EX050 7 

2 Problem formulation under MPC framework 

 

The typical scenario considered in this thesis consists of a vehicle traveling 

along the road and approaching a group of Traffic Lights. Such scenario can be 

easily simulated with the aforementioned tool-chain. Nevertheless, for control 

strategies to be effective there must be suitable good mathematical formulation 

of the use-case in the controller. Therefore, one of the main challenges arising 

is to couple formulation imposed by MPC methodology with the particular type 

of Traffic Light scenarios. 

This section will present the chosen approach to deal with the Traffic Light 

problem in Model Predictive Control framework.  

 

2.1 Plant modelling  

 

An adequate plant model is the foundation for any control strategy aiming at 

controlling a dynamic system. The vehicle dynamics are inherently non-linear, 

and the plant modelling becomes complex. Since MPC solves an optimization 

problem in real-time, the plant model is limited in complexity. Real vehicle 

dynamics would imply solving non-linear optimization problem. Therefore, a 

simplistic model of the vehicle is chosen. This represents a typical trade-off 

between accuracy and real-time implementation.  The underlying complex 

vehicle powertrain model is briefly described in Figure 4 and is providing 

realistic representation of the physical prototypes. The accuracy and validity of 

this model has been proven, but its inherent complexity is further simplified for 

MPC purposes. 

 

Figure 4: Powertrain layout of 4WD  Twin Axle Fully Electrical OpEneR Vehicle.  
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To simplify matters it is reasonable to neglect lateral as well as pitch dynamics 

since neither of them has a significant impact on energy consumption. The 

longitudinal dynamics of the vehicle are expressed as basic kinematic 

relationships together with some dynamic acceleration constraints. Dynamic 

acceleration constraints are defined as limits in vehicle longitudinal 

acceleration as function of vehicle speed (See Section 2.4.2).  

The linear model representing the vehicle is derived from the equations 

describing how position, p, speed, v, and acceleration, a, are related: 

 
  

  

  
 

(1) 

 
  

  

  
 

(2) 

   

Equation (3) approaches real vehicle inertial longitudinal dynamics by a first 

order system. A transfer function between desired acceleration, ades and real 

acceleration of the vehicle is implemented. 

 ̇                           
  

      
      

(3) 

 

 The system gain, Kf  and the time constant Tf are chosen appropriately to 

represent vehicle´s dynamic behaviour and are estimated via a kick-down test. 

The reason behind this first order dynamics is that acceleration changes do not 

occur instantly in the real vehicle due to inertial effects.  

The equations above are formulated under compact state-space representation. 

System states are expressed as the state vector          . The system control 

variable        represents the vehicle desired longitudinal acceleration. The 

system output, y, is chosen to be position since it eases reference setting (see 

later sections). The continuous time state space representation of the vehicle 

movement then can be expressed as 

  ̇          (4) 

       (5) 

With  
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  [

   
   

  
  

  

]     [

 
 
  

  

]           

 

(6) 

 

The continuous time representation described in equations (1-3), needs to be 

adapted to discrete time for simulation and since MPC is using a time discrete 

formulation. This is done via a zero order hold discretization with sample time 

Ts. For most of the simulations, a value of          was selected as a 

reasonable trade-off between accuracy and calculation time. 

 

2.2 Prediction model 

 

The above described vehicle model constitutes the core of MPC algorithm. 

MPC solves an optimization problem every time step. The result is an optimal 

control sequence. This control sequence is employed together with the vehicle 

model to predict system behaviour along the selected prediction horizon Np. 

Predicted future system states are calculated with previous time-step optimal 

control sequence and actual states from plant measurements, x(ki)  (Figure 3). 

The general derivation for predicted states reads: 

  (    )     (  )     (  ) (7) 

  (    )     (    )     (    ) (8) 

 

If equation (7) is substituted into equation (8), 

 (    )    (   (  )     (  ))     (    )      (  )   

    (  )     (    )                                                            ( ) 

The derivation can be easily extended for outputs considering eq. (5). 

Extending the analysis to the whole prediction horizon and presenting it in a 

more compact way (note that the notation will now assume that the control 

sequence is the optimal control sequence obtained in the previous time-

step,          ): 

          (  )              (10) 

                  (  )              (11) 

 

Where, 
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(12) 
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]       [

  
   

  
  

  
            

  
        

] 

 

(13) 

 

  [

  
   
 

    

]       [

   
     

  
  

  
              

  
         

] 

 

(14) 

 

 

2.3 Cost Function 

 

As mentioned previously, MPC formulation includes the minimization of a 

certain functional in every time-step. Standard cost functions are usually 

composed of two terms: the first term penalizes deviations of system outputs 

from a reference set-point chosen by the engineer. The second term penalizes 

amplitude of control action to bring the plant to the states reference (eq. 15). 

Therefore, when applying this standard formulation to the considered vehicle in 

Traffic Light scenario, it is clear that cost function needs to aim at minimizing 

energy consumption of the vehicle. The approach taken in this Thesis is to try 

to minimize vehicle speed deviations from its initial value. In other words, 

constant speed trajectories are preferred whenever possible. This naturally 

translates into a minimization of required vehicle acceleration (first term of 

eq.15). Additionally, by selecting an appropriate position reference set-point, 

generated trajectories can be tuned to adjust total vehicle travel time as 

explained later.   

Typically the cost function, Ji, is quadratic in the set-point error and system 

output and can then be expressed as 

 

  (  )  ∑     

    

    

 (          )
 
 (          ) 

 

(15) 

where Q and R are tuning matrices which weight the different terms in the cost 

function. Tuning of such parameters is of vital importance to obtain the correct 

controller behaviour. (See Chapter 3, implementation challenges). 
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The following section will prove that the chosen cost function can be 

represented as function of only the control input u and that the final form is a 

quadratic cost function. 

Firstly, let´s recall the fundamental equation of the prediction module: 

          (  )              (16) 

By substitution of this equation into (15), 

  (  )  ∑     

    

    

 (   (  )                  )
 
 (   (  )    

               )                                                                            (  ) 

 

If eq. (17) is further worked, 

  (  )  ∑            
  (   (  )        )    (   (  ))   

    

    

   (  )       (   (  ))    (        )     

               

  (18) 

 

 

It can be seen that the selected cost function is quadratic in U and therefore 

convex. This has numerous advantages. Especially important is the ease and 

speed in solving it. MATLAB solver QUADPROG can solve quadratic 

functions subject to constraints. [12]  

As mentioned previously, the reference set-point in the cost function is used to 

adjust total vehicle travel time. The reference set-point, yref is changing 

depending on the scenario and Traffic Light configuration. For instance, let’s 

consider a scenario with a single Traffic Light. In that case, the reference set-

point would be the absolute Traffic Light position along the road. Minimization 

of differences of real vehicle position with respect to that reference trajectory 

will therefore result in control inputs aiming to decrease travel time. In other 

words, by including the position of the targeted Traffic Light in the cost 

function, solutions can be pushed towards reaching the Traffic Light quicker.  

This selected cost function together with the set of constraints defined in next 

section aim at minimizing vehicle energy consumption while respecting 

constraints introduced by the Traffic Lights shifting.  
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2.4 System Constraints 

 

One of the main advantages of MPC is the ease to include constraints in the 

formulation. The main challenge of this Thesis was to find the correct 

formulation to the problem imposed by upcoming Traffic Lights. The selected 

approach is relying on constraints to restrict the feasible regions for the vehicle 

to be in, since Traffic Lights are objects that impose constraints on vehicle 

positions over time. This is done through constraints on system states. As 

detailed in section 2.4.2, feasibility of the generated control inputs for the real 

vehicle is also guaranteed thanks to additional set of constraints, so that the 

controller does not require accelerations that are not feasible for the real 

vehicle. 

 

2.4.1 Constraints on system states 

 

An upcoming series of Traffic Light poses constraints on vehicle position at 

given time instants: the position of the vehicle must not exceed TL position 

while its status is red. Similarly, the vehicle is free to cross the TL when its 

phase is green: 

A vehicle with initial velocity v0 is approaching a group of Traffic Lights at 

positions xTL1, xTL2…etc. It aims at crossing the aforementioned TL under green 

phase. These phases are characterized by  [tgi < t < tri ] where tri  denotes green 

to red switching time and tgi  red to green switching time. The quantities are 

also defined in Figure 5. It is assumed that the Vehicle Control Unit (VCU) is 

aware of those quantities thanks to V2I communication. 

 Such time dependant constraints naturally transition to constraints on predicted 

states of the system. In other words, the vehicle position has to be in predefined 

and constrained regions between Traffic Lights as shown in Figure 6. In a more 

mathematical description these constrained regions are defined by: 

 ( )                        

 ( )                          

 ( )                           

  ( )                          (19) 

  

Speed constraints are also added to the formulation: for all time instants the 

speed cannot be negative: 

  ( )                             (20) 
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Previously mentioned constraints can be extended to the whole prediction 

horizon, Np as upper and lower limits for the system states for future time 

instants: 

 

       

[
 
 
 
 
 
 
 
    (    )
    (    )
    (    )

 
    (  )

    (  )

    (  ) ]
 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
 
     (    )

     (    )

     (    )

 
     (  )

     (  )

     (  ) ]
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(21) 

 

Note that constraints on predicted system acceleration are similar to the control 

input constraints described in next section. 

In a more compact form: 

 
[

 
  

]    [
          (  )

           (  )
] 

 

(22) 

 

 

 

Figure 5: Schematic of Traffic Light Assistant (TLA). 
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Figure 6: Generic diagram representing the feasible position regions in future time instants. 

 

2.4.2 Constraints on control inputs 

 

Besides system states constraints, it is necessary to ensure that the controller 

does not request unrealistic accelerations which would be infeasible by the real 

vehicle. To do so, the control inputs as well as system states are restricted. This 

means that, at each time-step, the optimal control sequence generated by the 

optimization solver (desired acceleration, ades) is subjected to constraints.  

As described previously, OpEneR prototypes have two electric machines. Since 

intervention of mechanical friction brakes would lead to kinetic energy being 

wasted as heat instead of regenerated and stored in the battery, the control 

inputs should remain within the recuperation potential if the manoeuvre allows 

so. Similarly, requested control inputs must not exceed the EM’s capabilities in 

forward acceleration. Such limits are changing dynamically with vehicle 

longitudinal speed. The limits for the OpEneR vehicle are shown in Figure 7. In 

the figure one can easily recognize the shape of EM standard  -T curves. Such 

curves were then transformed to vehicle speed- vehicle acceleration curves 

through specific testing with the vehicle model. Gas pedal was set to its 

maximum value and acceleration vs speed datapoints were collected. Brake 

pedal was similarly actuated from maximum speed with disabled mechanical 

braking to obtain the full recuperation curves. The resulting data, once 

conveniently filtered, can be seen below. 
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Figure 7: Vehicle's acceleration-speed capability based upon EM(s) characteristics 

 

As described in Figure 7, control input constraints are a function of vehicle 

speed: 

     ( )        ( ) (23) 

As a consequence, those constraints will presumably be different for every 

time-step since vehicle speed will be different for each time instant and 

dependant on the considered scenario.  Nevertheless, it must be noted that even 

though those limits are presumably different for every time-step, they are 

assumed to be constant in the prediction module of the optimization algorithm. 

This approximation is a simplification, but helps maintaining the formulation in 

the linear domain.  

Equation (23) can be alternatively represented in a more convenient 

representation for the optimization algorithm: 

 
[

 
  

]  [
    

     
] 

 

(24) 

 

Where I denotes the identity matrix. 

 

 

2.5 MPC structure for Traffic Light problem 

 

The methodology described until this point considered that the so called 

“crossing gaps” were already selected. For instance, if the vehicle was 

approaching a set of two Traffic Lights with three possible crossing gaps each, 

the green phases at which the vehicle would cross would be defined 

beforehand.  In a real traffic scenario, it is reasonable to assume that several 

crossing gaps are available and feasible for the vehicle to cross at. Therefore, a 
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first preliminary assessment is required to distinguish which Gap configuration 

is more optimal and would output the lower energy consumption. The chosen 

approach in this Thesis is as follows: 

A first quick assessment is performed and will determine which gap 

configuration is a priori most optimal. This is done through a MPC evaluation 

with long sample time, for each feasible TL gap configuration. Sampling time 

is longer in order to decrease calculation time since the number of cases to 

check rapidly increases with increasing number of TL. For instance, when 

considering 3 TL with 3 possible crossing gaps each, a maximum possible of 

27 different combinations should be checked and compared among each other. 

For most of the cases, a large part of those combinations can be neglected since 

they represent cases which are not physically feasible. 

 

In order to distinguish between different crossing gap combinations and to 

assess which would be most optimal, a criterion must be selected. The cost 

function was therefore integrated over the manoeuvre for each feasible 

configuration. The total additive costs for each combination differentiate the 

better alternatives.  The gap combination giving the lowest cumulated cost 

function is therefore the a priori most suitable one. The selected crossing gap 

for each upcoming Traffic Light is then inputted to the short sample-time, high 

accuracy MPC. 

Summarizing, the following steps are performed in the Fast MPC: 

 A scenario with multiple Traffic Lights and multiple possible crossing 

gaps for each Traffic Light is initially considered. 

 The problem is broken down to a sequence of multiple Traffic Lights 

with unique possible crossing gaps. At this stage, gap combinations 

which are not feasible are dismissed.  

 Constraints are generated for each specific case as defined in Section 

2.4.1.   

 A quick MPC evaluation is performed for each individual combination 

to generate approximate vehicle trajectories, and cumulated cost 

function for this approximate trajectory is calculated. 

 The process is repeated for all possible gap combinations. Cumulative 

cost functions for all combinations are compared among each other. The 

one with the lowest cumulative cost is chosen and forwarded to the high 

accuracy MPC. 

The selected repetitive approach followed in high-level Fast MPC is described 

in Figure 8. 
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Figure 8: Gap selection process in high-level Fast MPC 

There coexist therefore two parallel MPC algorithms as shown in Figure 9; the 

first one selects the most optimal gap to pass each Traffic Light (the so called 

Green Wave), whilst the second one is in charge of the precise control of the 

vehicle when using the optimal gaps from the other algorithm.  The assessment 

done by the so called Fast MPC is only performed once at the beginning of 

each manoeuvre since this firstly calculated gap combination should remain the 

most optimal one as long as no unexpected events occur. As explained in the 

next section, the presence of other vehicles along the road is among the most 

important sources of disturbances.  

  

Figure 9: Fast MPC integration to ensure most optimal TL gap selection for all time instants 

 

2.6 Traffic ahead consideration 

 

Changing kinematics of vehicles along the road might restrict the access to 

some Traffic Light green phases. From a control perspective, it would be 

beneficial to predict behaviour of vehicles ahead of ego vehicle.  To do so, it is 

assumed that the preceding vehicle’s distance to ego-vehicle, speed and 

acceleration are obtained by measurements from on-board vehicle sensors 

(camera, radars, etc.).  
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An intuitive way to couple a preceding vehicle to the described problem 

approach is through introduction of additional position constraints to the 

problem formulation. Feasible region as defined in Figure 6 is then further 

restricted with information from other vehicles in the road (Figure 10). Note that 

only constant speed trajectory is depicted for simplicity. The estimated position 

of preceding vehicle can be described by basic equations of kinematics. 

Assuming constant acceleration of the preceding vehicle leads to its position 

being expressed as: 

 
          ( )           

 

 
        

 

(25) 

After some testing, it was realized that acceleration/deceleration manoeuvres 

usually only last for a few seconds, and predictions beyond that time limit 

should be done without the acceleration term. The vehicle ahead is therefore 

assumed to follow its actual acceleration only for some time. After that time, 

the trajectory is assumed to be constant speed trajectory. As described below: 

Preceding vehicle’s trajectory:  total prediction time:                        (  ) 

 Constant acceleration for certain time     

 Constant speed after that time for a certain period     

By appropriate tuning of those parameters, satisfactory realistic predictions of 

vehicle trajectories can be obtained. Again, the tuning of those parameters is a 

delicate process, and more accurate calibration techniques should be studied. A 

possibility would be to actively modify those time limits depending on actual 

vehicle speed, state of the traffic, etc. The reader is referred to Chapter 3, 

Implementation challenges for detailed argumentation regarding prediction 

parameters. 

Once a suitable kinematic prediction model is obtained, coupling to current 

problem formulation is straightforward. 

Predicted ego and preceding vehicle trajectories are linked through eq. (27) 

assuming that no overtaking manoeuvre is considered. 

                            (27) 

dsafe indicates safety distance to preceding vehicle. For simplicity of 

implementation, this value is a user-defined parameter and is a constant value. 

For a more realistic implementation, this value could for instance, be a function 

of vehicle speed (as it is usually done in ACC functions, where it is 

proportional to speed with a small offset).  

Eq. (27) is then combined with eq. (21). Upper and lower limits inputted to the 

optimization algorithm for predicted positions of the system are modified 

according to the predicted positions of vehicle ahead.  
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Figure 10: Feasible region modification due to preceding vehicle imposing new set of constraints. 

In some cases, the behaviour of the preceding vehicle may impose deviation 

from the optimality, which was originally assessed via the previously 

mentioned Fast MPC approach. In other words, due to the vehicle in front, it 

might be impossible to cross TL at the desired gap. A possible scenario 

illustrating this concept could be a cut-in vehicle whose lower speed makes 

reaching the next TL in the desired green phase impossible. For such cases, the 

algorithm needs to launch a new gap evaluation, taking into account the 

recently detected preceding vehicle as seen in Figure 9. Since kinematics of 

preceding vehicle are a priori unpredictable for long term, the algorithm should 

periodically re-evaluate the most optimal gap combination based upon updated 

information. The frequency of recalculation ,frec, must be sufficient in order to 

capture all changing dynamics of the vehicle ahead, and is again a user-tuned 

parameter. Nevertheless, there must be a possibility for a non-scheduled 

recalculation due to the preceding vehicle significantly changing its kinematics. 

Additionally, another recalculation of the optimal gap is performed when a new 

Traffic Lights comes within the prediction horizon.  

To summarize, three different events might trigger a Fast MPC evaluation: 

 At the beginning of each manoeuvre, when the system is engaged. 

 When a vehicle ahead is firstly detected and periodically after, with an 

update frequency. 

 Preceding vehicle significantly changing its kinematics.  

 New Traffic Lights come within the prediction horizon. 

 

2.7 Complete Mathematical Problem Definition 

 

This section summarizes collects and unifies the complete problem definition 

as explained in sections 2.1-2.6 under appropriate mathematical description: 

 

The optimization problem solved at each time-step is to find the optimal 

control sequence U(k) such that it minimizes: 
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(28) 

The two first lines in the above inequality refer to limits in acceleration and 

deceleration. The last two lines correspond to feasible positions as given by 

optimal gaps and preceding vehicle restrictions.  

This formulation corresponds to a quadratic cost function in U (as 

demonstrated in Section 2.3) subject to linear inequality constraints in control, 

U. This problem formulation is well known and documented in the literature 

and efficient algorithms exist for its solution. MATLAB QUADPROG solver 

was used in this Thesis.  

The optimization problem above is also complemented by the prediction 

model, stated as: 
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3 Implementation Challenges 

 

The described methodology poses a large number of engineering challenges. 

First of them is to implement MPC formulation from scratch. A set of Matlab 

scripts dealing with Prediction and Optimization modules were created and 

their functionality was extensively tested to ensure correct behaviour. As a 

second stage, considerations regarding controller parameters tuning are 

presented. 

  

3.1 Controller development in Matlab/ Simulink 

 

The main challenge in this work was to manage Traffic Light scenarios and to 

create controllers from scratch based upon defined control strategies. The 

design process was always structured as follows: Controller design and 

functionality testing in Matlab Script environment. Once the desired 

functionality was obtained, the controller was taken to Simulink environment, 

and interfaced with CarMaker for Simulink models. The adaptation from script 

to CarMaker blocks was mainly handled through Embedded Matlab blocks. 

Such blocks allow for script-like programming and provide a straightforward 

adaptation. Nevertheless, some limitations appear:  

 Embedded Matlab blocks use static memory allocation. This means that 

all internal variables need to be previously allocated in memory. No 

variable is allowed to change its size during execution time. This was 

initially a huge drawback, since many of the generated variables which 

deal with Traffic Lights are variable-sized. Matrices for prediction 

module for instance are changing their size dynamically depending on 

the actual prediction horizon. Nevertheless, some smart workarounds 

exist. Additional blocks were created that initialized size of matrices 

every iteration depending on current parameters. Those variables still 

are variable-sized, but their size is static for Embedded Matlab blocks. 

 Solvers like MATLAB QUADPROG must be defined as extrinsic 

functions. This has implications for code generation. During simulation, 

the code generation software generates code for the call to an extrinsic 

function, but does not generate the function’s internal code. Therefore, 

the simulation can only be run on platforms with installed MATLAB 

software. If a real implementation of controller in an independent 

environment is required, a custom QP solver algorithm should be 

developed.    

  

An overview of controller structure as described in Section 2.5 can be found in 

Figure 11. The controller structure is as follows: 
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 Block 1: Raw Traffic Light data is processed in a block number 1. Input 

values are given correct format, and Traffic Lights are clustered in 

proximity. This is the first block in the processing sequence. Outputs are 

taken to blocks 2 and 3.  

 

 Block 2: This block corresponds to the Fast MPC for efficient Green 

wave gap selection as described in Section 2.5. This block is a triggered 

subsystem, which only updates outputs under certain conditions. Signals 

produced in this subsystem, including the selected gap combination, are 

forwarded to main MPC controller. 

 

 Block 3: The main MPC controller can be found in this block. Data from 

Fast MPC together with ego and preceding vehicle kinematics are 

imputed. The result is desired optimal vehicle acceleration. 

 

 Blocks 4 and 5 can be found under Block 3. Block 4 is in charge of 

predictions of system behaviour based upon a model of the system. 

Generated variables are then employed in block 5, the QP solver. In this 

block, the constraints for the optimization problem are generated based 

upon updated information. Once the set of constraints and the cost 

function have been correctly generated, QP solver is called and the 

optimization problem is launched. Optimal control inputs are generated. 

 

 Block 6 is a PI controller translating desired acceleration signals into 

corresponding gas and brake pedal signals. 

 

 Block 7 defines needed variables for interfacing the controller with 

CarMaker and is also sending selected variables to Matlab workspace 

for results generation. 
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Figure 11: Simulink implementation of MPC controller 

 

3.2 Pedal inputs corresponding to acceleration control 

 

The developed controller was put together with the complex simulation 

environment of CarMaker. The generated controller outputted reference 

acceleration for the vehicle to follow. This reference acceleration needed to be 

transformed into throttle/brake signals via a PI controller (Figure 12). The PI 

controller structure was adapted from the ACC module already available, since 

this controller had reference acceleration as an input and was actuating throttle 

and brakes and was therefore already tuned for the application. 
 

1 2

3

7

6

4 5
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Figure 12: Detailed view of PI for Gas/Brake pedals from desired acceleration 

 

3.3 Cost function relative weighting factors tuning 

 

Another implementation challenge that requires dedicated effort is the tuning of 

values of Q and R weighting matrices for the cost function. Let’s first recall the 

cost function:  

 

  (  )  ∑     

    

    

 (          )
 
 (          ) 

 

(29) 

 

 

The first term, weighted with matrix R, is trying to minimize acceleration. The 

second term, weighted by matrix Q, aims at minimizing differences between 

generated trajectories and reference trajectories. Since reference trajectories 

were selected to be position of the last Traffic Light, the second term is pushing 

for the vehicle to quickly arrive to TL position and consequently save travel 

time. Cost function is therefore trying to reach the last TL with lowest use of 

acceleration. Large values for weighting parameter R in relation to parameter Q 

will generate trajectories that present minimal deviation from initial vehicle 

path. If weighting balance is inverted, generated trajectories will tend to have 

high acceleration values to quickly reach TL position. In general, one would 

aim at energy-optimal trajectories, which mean that in practice, Q values are 

low in relation to R values 
 

3.4 Relative tuning of Control and Prediction horizons  

 

In general, Prediction Horizon, Np is a fixed quantity for a specific scenario, 

and depends on how far in time are shifting phases of TL. Large predictions 
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horizons are beneficial for sake of stability of the closed loop behaviour as well 

for the global optimality of the solution. On the other hand, Control Horizon, 

Nc can be tuned. Experimental tests revealed that an increase in Control 

Horizon implied smoother solutions since the control action calculation 

considers larger time-frame in the horizon. If possible, large Control Horizons 

must be chosen. This implies increased matrix sizes for MPC controller, and 

therefore increased calculation time. Again, a trade-off arises. As a general rule 

of thumb, control horizons were kept in between 1/3 and 1/2 of Prediction 

Horizons. 

Some tests were performed to illustrate the influence of increasing Control 

Horizon. The integration of cost function for a specific manoeuvre was used as 

metrics for improved solution. 

Table 1: Values of cost function integration over time for different values of Control Horizons for a specific 

manoeuvre. (Np=30 for all cases) 

Nc value (s) 
Value of the integration 

of J over time 

7 81.40 

15 10.16 

 30 

(Nc=Np) 
8.94 

Note how the case in which Prediction and Control horizons are equal is the 

one presenting lower integrated cost function value. 

 

3.5 Tuning of revaluation frequency and vehicle ahead 

prediction horizon 

 

Another challenge arises from selection of revaluation frequency, frec , and 

preceding vehicle prediction horizon. The first parameter indicates how often a 

Fast MPC evaluation is launched to check which gap configuration would give 

best performance. Second parameter defines how far in time predicted 

trajectory of preceding vehicle is projected. The larger this value, less probable 

becomes that real vehicle behaves as predicted. 

Every certain number of iterations a fast MPC evaluation is launched to 

evaluate the “a priori” most optimal gap configuration. The reason behind this 

revaluation is that a vehicle ahead with an unpredictable trajectory could open 

new gap combinations or turn some combinations more optimal than the others.  

 Once an optimal configuration has been chosen, the system is forced to follow 

this gap combination until the new revaluation. In this period of time, the 
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system must satisfy the overall gap constraints together with the instantaneous 

preceding vehicle’s positional constraints. 

If too long vehicle ahead prediction horizons are chosen, the problem might 

very quickly become infeasible since the constant acceleration trajectories 

become too restrictive to cross any of the gap configurations (Figure 13), 

access to selected gap is prevented. 

On the other hand, if the gap revaluations are not frequent enough, the vehicle 

in front might change its kinematics drastically in between two subsequent 

revaluations, and the problem might also become infeasible since the 

previously selected optimal gap configuration is not feasible anymore (Figure 

14).  

 

 

 

Figure 13: Problem turned infeasible due to too large vehicle ahead prediction horizons. 

The curves in grey represent preceding vehicle’s trajectory as well as predicted 

trajectories. It can be seen that for the right hand sided diagram, predicted 

trajectory is blocking the access to selected gap and therefore turning the 

problem infeasible. 

 

Figure 14: Problem turned infeasible due to not frequently enough gap revaluation. 
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It can be seen that the selected gap is not valid since preceding vehicle is 

following a slow trajectory. This scenario happens when revaluation frequency 

is not high enough.  

The above descriptions exemplify the sensitivity in tuning of these parameters. 

In the tested code, revaluation frequency and vehicle ahead prediction horizon 

were chosen to be in the order of 5 seconds for both parameters. This allowed 

capturing kinematic variations in other vehicles for the simulated use cases. 

Nevertheless, as long as computational resources allow, revaluation frequency 

should be high. Vehicle ahead prediction horizon should be adapted to the type 

of driver. For instance, more aggressive drivers usually request higher 

acceleration and decelerations, and their prediction horizons should be 

shortened in order to avoid generating unfeasible trajectories.  Summarizing, 

fine tuning of those parameters would require extensive testing and possibly 

some adaptive strategy which ensures stability under all possible disturbances. 
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4 Results and use-cases 

 

This chapter will present the main results of testing of the Traffic Light 

Assistant system. It is essential that a consistent and clear testing methodology 

is established. The objective is to develop the metrics for energy consumption 

estimation. Since OpEneR prototypes are fully electric vehicles, a simple way 

to compare energy consumptions is by battery depletion. State of Charge (SoC) 

for the vehicles is compared through selected manoeuvres. In addition, the time 

required for the vehicle to finalize the manoeuvre (cross the last TL), is also 

defined as a comparison criterion. In general, the ideal controller would finalize 

the manoeuvre in the lowest time possible with lowest possible energy 

consumption.  The baseline vehicle is the same OpEneR prototype but without 

access to TLA. The vehicle is controlled by IPGDriver module which is based 

on a statistical average driver. In order for comparisons between controllers to 

be fair, it is required that start and end positions and speeds are equal for both 

vehicles.  

In order to present the results in an intuitive and didactic way, this section will 

introduce gradually increasing complexity in the selected scenarios: Firstly, a 

single Traffic Light will be considered. The amount of TLs will be gradually 

increased to finally end up with a real world road scenario with several clusters 

of TLs. In addition, a use-case in which a vehicle ahead is restricting the 

feasible solutions will also be presented. 

Use-cases 1 to 3 will all be simulated with generic Traffic Light data. The 

purpose of such test cases is not to use realistic data, but to show the general 

controller’s functionality and potential.  

Selected use-cases aim at demonstrating the potential of TLA, but in order to 

assess complete controller performance, a whole statistical analysis should be 

performed. 

Use-cases 1 to 3 are simulated with generic TL data shown in Table 2: 

Table 2: Traffic Light data for use-cases 1 to 3 

Traffic Light  

(if present) 

Absolute position 
along road [m] 

Red phase 
duration [s] 

Green phase 
duration [s] 

1 200 10 10 

2 400 10 10 

3 600 10 10 
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4.1 Use-case 1: Single Traffic Light 

 

Ego vehicle initial kinematics can be found in Table 3.This firstly simulated 

use-case presents a road segment with a single TL in the horizon. As seen in 

Figure 15, normal unaware driver has to stop at the TL, while as MPC 

controlled vehicle smoothly accelerates enough just for the vehicle to cross TL 

under green to red switching. High energy savings can be observed in Figure 

16. Normal vehicle is able to recuperate energy while braking for the TL, but 

there is huge energy consumption in accelerating back again to same end speed 

and route position as MPC controlled vehicle. 

Initial ego vehicle quantities for both MPC and Normal driver are defined in 

Table 3. 

Table 3: Initial kinematic quantities for use-case 1 

 Initial speed 
[km/h] 

Initial position [m] Initial 
acceleration 
[m/s2] 

Ego vehicle 32 0 0 

 

 

 

Figure 15: Trajectories for MPC and Normal Driver vehicles in use-case 1 
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Figure 16: Battery SoC figure for MPC and Normal Driver vehicles in use-case 1 

This use-case presents energy consumption reduction of 37.5% w.r.t. Normal 

driver and required travel time to complete the manoeuvre is 13.8 seconds 

lower, which accounts for a 36.4% reduction in total travel time.  

 

4.2 Use-case 2: Two Traffic Lights 

 

The second simulated use-case represents a road with 2 Traffic Lights with 

absolute positions and phase durations as defined in Table 4. Figure 17 depicts 

generated trajectories. MPC controller smoothly accelerates in identical manner 

to use-case 1 to avoid stopping at red. Afterwards, a constant speed trajectory is 

followed by MPC controller. This is an expected result, since cost function was 

mainly penalizing control action, vehicle acceleration in this case. Therefore, 

generated control inputs tend to zero when possible, leading to constant speed 

trajectories. In this case, Normal driver has to stop at the first TL but is able to 

cross the second one. 

State of Charge, Figure 18, shows again significant energy savings, 31.6 % as 

compared to Normal driver. Time savings for this use-case account for 28%. 

Table 4: Initial kinematic quantities for use-case 2 

 Initial speed 
[km/h] 

Initial position [m] Initial 
acceleration 
[m/s2] 

Ego vehicle 32 0 0 
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Figure 17: Trajectory plots for MPC and Normal Driver vehicles in use-case 2 

 

Figure 18: SoC evolution for MPC and Normal Driver vehicles in use-case 2 

Note that normal driver SoC discontinuity is due to end speed adjustment 

reasons for fair comparison.  

 

4.3 Use-case 3: Three Traffic Lights and Vehicle ahead 

 

For this use-case, the number of Traffic Lights is increased to 3. This use-case 

includes a vehicle ahead along the road. Assuming that no overtaking is 

possible, that vehicle is restricting the access to most optimal gaps. This 

scenario illustrates the theoretical description under Section 2.6.  The controller 

therefore needs to recalculate the most optimal gap configuration based on 

predictions of preceding vehicle’s kinematics. Furthermore, use-case illustrates 

that generated logic is also able to cluster and optimize trajectories for up to 3 

TL simultaneously. Test-case data can be found in Table 5. As seen in Figure 

19, preceding vehicle follows a trajectory such that access to the second gap of 

second TL is blocked. MPC controlled vehicle “realizes” that the gap is 

inaccessible some seconds earlier, corresponding to vehicle ahead prediction 
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horizon. From that point on, a new optimal trajectory is generated to timely 

cross the last TL before it turns red. 

 

Table 5: Initial kinematic quantities for use-case 3 

 Initial speed 
[km/h] 

Initial position [m] Initial 
acceleration 
[m/s2] 

Ego vehicle 28 0 0 

Vehicle ahead 28 100 0 

 

Regarding vehicle ahead prediction parameters: 

-                       , length of the prediction of the vehicle’s ahead 

trajectory                               

-                       , frequency of recalculation of the optimal gap 

combination. 

For this use-case, Figure 20 shows SoC evolution for the manoeuvre. Again, 

MPC controlled vehicle achieves much better energetic results, reducing 

required energy by 36.8 %. On the other hand, for this scenario, manoeuvre 

completion time is marginally higher for MPC controlled vehicle, with an 

increase of travel time of 3.8% w.r.t. Normal driver. 

 

Figure 19: Trajectory plots for MPC, Normal Driver and preceding vehicle in use-case 3 
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Figure 20: SoC evolution for MPC and Normal Driver in use-case 3 

 

4.4 Use-case 4: Graz route segment with multiple Traffic 

Lights 

 

This use-case represents a road segment in Graz containing a total of 14 Traffic 

Lights. Shifting information and absolute TL positions are obtained from 

OpenStreetMap [15] and are summarized in Table 6. Nevertheless, TL 

macroscopic control is a complex topic. Road authorities can actively adjust 

shifting depending on expected traffic flow, time of the day, and other factors. 

Therefore, obtained switching times represent an estimation of TL daily 

operating routines. Selected road segment starts at Keplerstraße, follows the 

Mur River along Lendkai, then along Brückenkopfgasse to close the circuit via 

Eggenberger Gürtel (Figure 21). Traffic Lights are distributed along the 

segment, and they are clustered based on proximity between lights. The MPC 

controller optimizes trajectories for each clustered group separately. For road 

segments in which no TL are in range, constant speed trajectories are assumed 

for both MPC and Normal driver controllers. 

 

 

 

 

 

 

 

 

 

 



  

 CHALMERS, Automotive Engineering, Master’s Thesis 2014:EX050 
34 

Table 6: Traffic Light data for selected route segment in Graz 

Traffic Light number (clockwise) Red Phase duration (s) Green Phase duration (s) Absolute Position (m) 

1 10 30 150 

2 10 30 380 

3 10 20 880 

4 20 10 1030 

5 10 30 1300 

6 26 20 2340 

7 30 30 2530 

8 30 30 2602 

9 10 30 2902 

10 10 30 3042 

11 10 30 3172 

12 10 30 3642 

13 10 30 3835 

14  10 30 4235 

 

 

Figure 21: Google Maps representation of selected Graz road 
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As it can be seen in Figure 22, MPC controller successfully completes the road 

segment without stopping at any TL. Normal driver stops 4 times over the 14 

TL. It is reminded that Traffic Light shifting is selected by road control 

organizations in such a way that vehicles are guided to catch the “Green 

Wave”. Moreover, green phases are generally longer than red phases, which 

increases the possibilities for the unaware driver to cross under green light.  

Figure 23 shows SoC evolution for both vehicles. It can be noticed how both 

states evolve in parallel and how energy is drained from the battery every time 

vehicle stops under red light. After 540 seconds manoeuvre, energy 

consumption of MPC equipped vehicle is reduced by 17%, while required 

completion time is 3.8 % lower.  Lower values are obtained for this use-case as 

compared to previous scenarios, mainly due to a longer time frame and Normal 

driver not stopping so often.  

 

Figure 22: Trajectories for MPC and Normal Driver vehicles in Graz route 

 

Figure 23: SoC evolution for MPC and Normal Driver vehicles in Graz route 
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Table 7: Energy and time savings for selected use-cases 

Use-case Energy saving (%) Time saving (%) 

1 37.5  36.4 

2 31.6 28.0 

3 36.8 -3.8 

4 17 3.8 

Note: negative time savings indicate an increase in required travel time w.r.t. 

normal driver. 

 

Results for use-cases 1-3 indicate extremely large energy savings. These 

numbers must be taken with care: energy calculations are performed over a 

short time manoeuvre. If such energy consumption reductions are put into 

perspective, i.e. over a longer manoeuvre, the absolute energy consumptions 

takes more realistic values. Such behaviour can be seen in use-case 4. Even 

though short-time energy savings are extreme (especially if Normal Driver 

needs to stop at TL), long-time energy savings show a more realistic tendency. 

This section demonstrated the energy and time saving potential of TLA. The 

Graz road segment demonstrated encouraging results, especially in energy 

savings. It was demonstrated that MPC approach is therefore a valid 

methodology for the approach of Traffic Light problem. It was also shown that 

the selected MPC methodology is able to efficiently deal with traffic ahead 

considerations, which brings the applicability of the controller closer to real 

world implementation. Additionally, the implementation of TL assistant on a 

relatively low portion of vehicle fleet might have positive effects on whole 

traffic fuel consumption, since the TLA equipped vehicles will probably force 

other vehicles to follow more energy efficient trajectories, resulting in 

multiplied energy savings. As it has been shown for ACC, even a low 

penetration rate has beneficial effects on fuel consumption for whole traffic. 
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5 Speed Advisory 

 

The presented methodology has proven that MPC can be successfully applied 

to Traffic Light context with satisfactory results. Such advanced control 

technique has great potential and possible applications to any kind of 

powertrain. Nevertheless, it can be calculation intensive, especially if 

considered time horizons are large.  VCU’s capabilities would need to be 

enhanced with corresponding price increase. Therefore, next logic step was to 

simplify inherent algorithm complexity and to generate a “light but in-vehicle 

implementable” controller. 

Back to the design phase, it was noticed that the problem structure could easily 

be condensed in matrix form. Number of Traffic Lights and number of gaps 

intuitively form a two dimensional matrix. Dynamic Programming-like 

techniques (DP) could possibly be applied. In DP, decisions are taken that 

minimize a certain cost. DP algorithms will examine all possible combinations 

and pick the best solution. [16].   

The objective of this approach is therefore to present a very fast algorithm 

capable of recommending cruising speed for the driver to catch the green 

phases. In a similar way to Dynamic Programming algorithms, Speed Advisory 

is based on cost-to-go calculations. The energy required for the vehicle to cross 

a Traffic Light at a certain green phase is approximated by a cost function. 

Cumulative cost to cross the required TL’s are calculated and the solution with 

lower cumulated cost is chosen as the most optimal one. Such a speed advisory 

system should not only provide driver with a recommended speed to cross the 

next TL in the closest green phase, but should take into account the multiplicity 

of TL and green phases, so that overall manoeuvre optimality is considered 

when providing a recommended speed. The critical point for such an approach 

is the selection of an appropriate cost function reflecting aforementioned 

criteria. The chosen cost function yields an approximation for the energy 

consumption required to go from gap i to gap j, see Figure 24: 
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Figure 24: Schematic representation of deviation from initial trajectory criteria. Green line represents 

unaltered vehicle trajectory. 

 

Figure 25: Delta time between two selected gaps. 

As described in eq.(30,31), selected cost function is composed of two terms: 

 A first term accounting for deviations of the selected gaps from the 

initial vehicle constant speed trajectory. (Figure 24). The idea behind 

this term is that gaps that initially are “closer” to the vehicle trajectory 

are most likely to be energy optimal, since no deviation from constant 

speed trajectory would be required. The main purpose is to alter 

vehicle’s initial speed to a minimal extent. 

 A second term accounting for time spent in between two consecutive 

green gaps. (Figure 25).When cumulative costs are calculated for the 

whole manoeuvre, this term accounts for total travel time. In this way, 

driver’s desire to quickly cross the TL sequence is reflected. 

 

The first term of selected cost function is the equation for the Euclidean 

distance from a straight line to a point. Straight lines take the generic equation 

in x-y coordinates: 

             (32) 

 

Identifying terms with the equation of the unaltered constant speed trajectory, 

         , it can be seen that the corresponding coefficients are       
               .  
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Since the generic distance from a straight line as defined in eq. (32) and a point 

with coordinates (xi, yi)  is : 

 
  

|           |

√     
 

 

(33) 

By substitution of the previously calculated coefficients into eq.(33), the first 

terms of the cost function can be calculated. Coordinates for the points (xi, yi)  

are defined as the centres of the green gaps. 

Balance between the two terms of the cost function is tuned through the 

weighting parameters  . Again, selection of such parameters represents a 

challenge, since higher values of    in relation with    lead to gap selection 

aiming at a quick crossing of the TLs. If the parameters relation is inverted, the 

algorithm selects gaps which present low deviation from the vehicle initial 

trajectory. (Figure 26) 

 

Figure 26: Quick crossing trajectories against minimal deviation from initial kinematics trajectory. 

 

By observing Figure 27, it is clear that some gap combinations are not feasible 

For instance, going from 0 to 2 and then to 4 is impossible. In the same way, 

going from one gap to another one of same TL is not feasible. Cost-to-go for 

such combinations is set to infinity (Figure 28). As a consequence, only a few 

combinations are feasible since most of them have some infinite intermediate 

cost. This together with efficient coding makes calculation time very fast.  

 

t

d

v0

Quick crossing trajectory Minimal deviation trajectory
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Figure 27: Exemplification of gaps available for a scenario with 3 TLs with 3 gaps each. 

 

 

Figure 28: Cost to go matrix representation. Rows represent starting gap, while columns represent end gap. 

Once the most optimal gap combination is known, piecewise recommendation 

is given to the driver: required constant speed trajectories to cross each 

individual TL just in the middle of the green phase are calculated. 

The described methodology presents high number of advantages, but also 

inherently some disadvantages: 

 Contrarily to MPC formulation, the presented implementation does not 

take into account powertrain specific characteristics. This algorithm is 

therefore simple to implement on any vehicle.  

 There is no consideration of any physical limitation in acceleration 

capabilities of the vehicle. This means that the controller can output too 

high acceleration values depending on the simulated case. Nevertheless, 

such disadvantage is easily compensated by adding logic that keeps the 

recommended speed within certain boundary.  

 Speed Advisory is not able to deal with other vehicles in the road.  

 

Despite those drawbacks, speed advisory performance was compared to MPC 

controller. It is expected that speed advisory would output worse results due to 

reduced complexity. A scenario where a vehicle is approaching a series of 3 

Traffic Lights with equal regular shifting schedule is simulated. Energetic 

results for vehicle equipped with MPC, Speed Advisory (SA) system are 

presented in Figure 30. The baseline vehicle is labelled as Normal Driver, 

controlled by IPGDriver module and represents same vehicle without access to 

advanced information. It can be seen in Figure 29 that both MPC and SA are 

able to cross Traffic Lights without stopping at red while baseline vehicle 
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needs to stop twice. In addition, it can be seen how SA crosses TL just in the 

centre of the green gap.  

From energetic perspective, State of Charge graph indicates that MPC 

controller provides, as expected, the best results. Speed advisory follows 

closely and demonstrates a good trade-off between complexity and energy 

consumption. Nevertheless, manoeuvre completion time is the highest for SA.    

 

Figure 29: Trajectory plots for MPC, Speed Advisory and Normal driver vehicles 

 

Figure 30: SoC plots for MPC, Speed Advisory and Normal Driver vehicles 

 

5.1 Integration in Human Machine Interface software  

 

A next step in the development process of advanced assistance functions is to 

include Human Driver in the Loop. This represents an important step towards more 

advanced and closer to real implementation functionalities. Such simulation 
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environment allows for functionality as well as specific software testing (Figure 

32). 

During the development of OpEneR project, advanced HMI software was 

developed by Centro Tecnológico de Automoción de Galicia (CTAG) for driver in 

the loop implementations. Such HMI is capable to display high number of 

indicators: actual speed, autonomy, blinkers, Electric Machine torques, 

recuperation capabilities, failures in multiple components… and more importantly 

upcoming traffic scenarios. The central console space is reserved for such 

scenarios management. Specific icons were developed for the implementation of 

TL assistance system. The HMI is capable of displaying actual state of Traffic 

Lights, recommended speed and distance to the next TL (Figure 31). 

The physical OpEneR prototypes are equipped with such HMI software and 

displays and the communication is handled through CAN messages. Nevertheless, 

in office simulation context, the HMI software is emulated under Linux operating 

system and these CAN messages are created in a “CAN Bus emulator” in 

MATLAB/Simulink. The communication between HMI Software and the 

emulated CAN signals is handled via TCP/IP communications. The CAN 

messages are packed and sent over a specific IP address to the HMI software. 

Since HMI software was developed for Linux, emulation of such Operating 

System was required. For that purpose, a virtual machine was used which ran the 

required Linux platform (Figure 32).  

In addition, driver interaction was allowed via Joystick input. Several buttons were 

directly linked to pedal and brake signals and the driver was able to, in real time, 

control the vehicle model based upon speed recommendation. As mentioned 

before, this layout allows for function development and HMI software testing.  

 

 

Figure 31: Concept HMI for OpEneR prototypes developed by CTAG including custom icons for TL 

scenario management. 
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Figure 32: Layout for HMI testing using single simulation PC. 

  

 

5.2 Integration in Mock-up 

 

The previously described Speed Advisory will be tested in a simulator mock-up 

(Figure 34, Figure 35). To make that possible the developed function had to be 

adapted to the real time environment used in the simulator. This section 

describes the environment and the required Speed Advisory modifications. 

The developed Speed Advisory System was adapted and integrated for Mock-

up implementation in CTAG, Vigo, Spain as part of the OpEneR technologies 

demonstrator. All developed technologies were presented to open public and 

press. The mock-up available was equipped with Speed Advisory system 

displayed on HMI, and the driver had to actively control the vehicle to follow 

the recommendations and successfully crossing the Traffic Lights of a given 

test track (Figure 35). 

This section will not present test results. As mentioned, the purpose was purely 

demonstrative.  Nevertheless, the adaptation of the developed controller in real-

time environment including a real driver in the loop was needed. The same 

OpEneR vehicle, powertrain and Energy Manager models were used and 

implemented in a Real Time environment with some interface modifications.  

To do so, Real Time capable versions for each component of the tool-chain 

were used: 

- Real Time capable CarMaker (InMotionTM) 

- AVL Cruise RT 

- Matlab/Simulink in Real Time Workshop 

I/O communication was handled with AVL InMotion Real Time Platform. It 

allowed communication between simulator components (e.g. steering wheels 

and haptic pedals) and also to send suitable signals to HMI screen and 
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command haptic pedals.  CAN Bus was used as the main communication bus 

with the same architecture as in the car. Test case definition and GUI animation 

was handled via a simulation PC (Figure 33). 

Additionally, some modifications were necessary to redesign the interfaces 

between simulation tools and to fulfil real-time conditions. Main challenges in 

this respect regarded the adaptation of the designed controller to a Driver-in-

the-Loop setup, enabling/disabling of the system and HMI signals handling. 

Driver acceptance was also assessed via pedal check. If the driver insistently 

kept on pressing the gas pedal, driver commands overrode the controller’s 

signal and the control was given back to the driver. Summarizing, two different 

driving modes were distinguished, automated driving, in which the driver let 

the control to the vehicle, and manual driving, in which the driver had the 

control and choice to follow recommended speed. As mentioned before, any 

automation was subjected to driver acceptance. As soon as a cluster of Traffic 

Lights were detected in the vicinity, the system was engaged, and either speed 

recommendation or vehicle control actions were taken (Figure 39). 

 
Figure 33: Structure for RT HiL Mock-up setup. 

 

Figure 34: Detail of Mock-up HMI and HuD 
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Figure 35: Mock-up setup at CTAG 

 

 

Figure 36: TLA interfaces to Driver 

The functionality of Speed Advisory was successfully demonstrated in the 

described mock-up. Unfortunately, due to time limitations, the use-cases 

described in Chapter 4 were not reproduced in this new testing environment.  
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6 Parallel Investigations  

 

On-board vehicle computation and storage capabilities are limited. Vehicles 

need nowadays to handle large amounts of data processing, and the 

optimization required by MPC approach is computationally demanding. This 

Chapter will briefly summarize different directions taken during this thesis 

project. As it was explained, MPC is relying on solving an online optimization 

at each iteration. The investigations described in this chapter aim at finding 

optimization-free alternatives to Model Predictive Control. In addition, 

performed investigations on Nonlinear MPC will be summarized. 

 

6.1 Explicit MPC 

 

This first subsection will describe the investigations performed regarding 

Explicit MPC (EMPC). Similarly to Speed Advisory, the idea was to develop 

optimization-free methodology which could be applied to Traffic Light 

scenarios. As it will be demonstrated, EMPC has great potential to be applied 

to any type of problems, but some limitations exist that made the approach to 

TL problems of no practical use. Nevertheless, results of conducted research 

are presented here.  

Explicit MPC is a method for optimal control of processes with constraints 

where the control law is given in explicit form.  Explicit MPC is derived in 

parallel to standard MPC, but the optimization problem is solved 

parametrically.   Under certain assumptions of problem structure, it has been 

shown that the solution of the classical convex optimization problem takes the 

form of a piecewise affine function (PWA) defined over a polyhedral partition 

of the feasible system sate variables. The typical domain of interest is a subset 

of the state space, which is partitioned in a finite number of regions called 

critical regions. For each critical region, a particular state feedback control law 

yields the optimal control value. 

Multi Parametric Optimization allows solving optimization problems as 

functions of certain number of parameters. Explicit MPC solves the 

optimization problem with system states as the parameters of the system. By 

doing so, the optimal control input can be evaluated on-line via a simple 

function evaluation. The computational effort is condensed off-line, where the 

set of optimal controls is calculated as functions of partitions of the feasible 

states of the system.  

In the implementation there is no need for repetitive optimization since only the 

explicit solution is evaluated every sampling instant with reduced 

computational effort as demonstrated by Herceg and Scibilia [17,18]. 

The quadratic programming problem defined in 2.7 can be easily adapted to a 

Multi Parametric Quadratic Program (MPQP) through the change of variable as 
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demonstrated by Francesco Scibilia in [17]. By applying KKT conditions to 

the MPQP, an explicit expression for the optimal solution as function of the 

parameter x, state space, for each critical region can be obtained. 

Due to time limitations, the MPT3 optimization toolbox was used. This toolbox 

is an open source, Matlab-based toolbox for parametric optimization, 

computational geometry and model predictive control developed by the ETH 

Zürich [19]. YALMIP is used in MPT3 background as a modelling language 

for advanced modelling and solution of convex and nonconvex optimization 

problems.  

One of the main advantages of using MPT3 toolbox is the ease of 

implementation of standard MPC formulations. Plant model, cost function and 

simple constraints are easily implemented and the problem as defined in 

chapter 2 could be reproduced. Nevertheless, custom constraint definitions 

were required to match the complex system of constraints needed for Traffic 

Light management as defined in section 2.4. The underlying modelling code in 

YALMIP was therefore adapted and modified.  

Once the MPC controller is fully defined, the toolbox allows for explicit MPC 

code generation. The result is a simple Matlab function outputting the optimal 

control input as function of the system states. Figure 37 describes the regions of 

the polyhedral partition of the state space, and Figure 38 depicts the optimal 

control input for each different Critical Region for specific simulated use-case 

Note that only the first element of the optimal control sequence is depicted. 

 

The simulated use case was: 

 

Table 8: Traffic Light data for selected manoeuvre 

Traffic Light Position (m) Green gap (s) 

1 100 5-10 

2 200 25-20 

 

In addition, constraints on system acceleration were added as maximum and 

lower limit of [5,-5] m/s
2 

respectively.  
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Figure 37: Polyhedral State Space partition in Critical Regions. 

 

Figure 38: Optimal control inputs for each different Critical Region. 

 

Despite the promising expectations of this method, it was finally concluded that 

EMPC could not be applied to the Traffic Lights problem: the proposed MPC 

approach is relying on dynamically changing constraints. As soon as the 

vehicle moves from one time instant to the next one, the whole set of position 

constraints is shifted a time unit to emulate the TL green gap approaching in 

time. This is a key feature of the proposed controller but makes explicit 

approach impracticable since one should generate a different explicit controller 

for each specific scenario, which is of no practical use. Nevertheless, it must be 

highlighted that this methodology has a great potential for other formulations. 
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6.2 Non-Linear MPC 

 

In general, NMPC problem is formulated similarly to MPC:  solving an on-line 

open-loop optimal control problem with a finite horizon. Such problem is 

completed with constraints involving system states and controls. A nonlinear 

prediction model is defined as: 

  ̇   (  ( )  ( ))     ( )     (34) 

    (  ( )  ( )) (35) 

where     are nonlinear functions.  

Furthermore, the constraints are of the shape: 

  ( )              ( )              (36) 

Here the set of feasible input and states values are denoted by U and X 

respectively. 

Nonlinear MPC is therefore characterized by the use of nonlinear system 

models in the prediction module. While generated optimization problems are 

convex in MPC, they are not convex anymore in NMPC. This poses challenges 

for stability and solution of such problems. In addition, the complexity of the 

optimization problem translates into an important increase in computation time. 

Furthermore, obtaining nonlinear models for some processes is a challenge by 

itself. Several techniques exist such Neural Networks, Local model Networks, 

empirical models, etc. [6] 

The following key characteristics define NMPC: 

 NMPC allows use of nonlinear prediction model 

 Similarly to MPC, NMPC allows explicit consideration of constraints on 

inputs and states. 

 In MPC and NMPC, a certain performance criteria shaped under a cost 

function is minimized on-line. 

 Predicted system behaviour and closed loop behaviour differ in general. 

[20]. 

  

It can be concluded that NMPC allows for accurate representation of non-linear 

systems. Most of real world processes are inherently non-linear. Being able to 

represent such dynamics into the system model opens the gate to advanced 

control strategies. For instance, explicit vehicle dynamics, and electric machine 

efficiency could be taken into account directly in the system model. 

The main drawback of NMPC is the difficulty to solve constrained nonlinear 

optimization problems. Methods to solve such problems cannot guarantee 

global optimality of the solution.   
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The following section describes in a simplified manner different alternatives 

available to deal with nonlinearities (Figure 39): 

 

Figure 39: Schematic for possibilities to deal with nonlinear MPC 

The first method to deal with nonlinearities is to linearize the system equations 

around an operating point. With this approach, the standard MPC formulation 

can still be used. The only difference is that plant model consists of a simplified 

version of complex plant dynamics. Nevertheless, if operating point is too far 

away from the linearization point, huge errors might occur. Therefore, a 

constant relinearization is needed to guarantee acceptable operating conditions.  

On the other hand, if nonlinearities are preserved, two alternatives are 

available: 

 The nonlinear, nonconvex optimization problem can be directly solved.  

This is usually done using Sequential Quadratic Programing (SQP). SQP 

is an iterative technique in which a sequence of quadratic problems 

subject to linear approximations of the nonlinear constraints. Nonlinear 

Optimization Problem is successively replaced by a problem in which 

the objective is replaced by a quadratic approximation. The exact 

solution of such problems is a difficult task and there is no guaranteed 

global optimality.  

 An alternative to directly solving the nonconvex optimization problem is 

to approximate the optimal solution. Efficient formulations have 

appeared in recent years. All of them try to avoid directly solving the 

nonconvex optimization problem: 

 

o Extended Linear MPC: this is one of the simplest methods. The idea 

is to add a new term to the prediction module that tries to take into 

account nonlinearities in the process and compensate for disparities 

between nonlinear and linear models.  

 

o Suboptimal NMPC: The underlying principle is to stop optimization 

when satisfying enough results have been obtained and stability can 

still be guaranteed. It can be shown that under certain circumstances, 

the solution is guided towards a continuous decrease in cost. The 

main technique that uses this concept was proposed by Scokaert, 

Mayne, and Rawlings [21]. 
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o MPC based on Volterra Models: In this method, it is required that the 

Nonlinear Problem has a special structure, with polynomial 

nonlinearities in this case. The nonlinear problem is solved by 

iteration of the linear solution, based on that particular structure. This 

can be exploited to achieve feasible solutions for the general 

optimization problem. 
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7 Conclusions and Future Work 

 

The developed methodology has proven huge potential regarding energy and 

time savings. Energy savings between 17 and 37 % were observed depending 

on the selected use-case. Time savings present in general a reduction tendency, 

again subjected to use-case. It has been demonstrated that MPC is an applicable 

methodology for handling of the TL problem: TL crossing gaps can be 

efficiently represented through constraints and the selected minimization 

criteria represents a good approximation of energy consumption. Furthermore, 

presented MPC methodology is able to deal with a preceding vehicle in the 

road and to keep energy-optimal trajectories.  

Model Predictive Control is relying on solving an optimization problem every 

iteration. Therefore, its computational load is not negligible. As a consequence, 

an optimization-free algorithm was developed. Speed Advisory uses a cost-to-

go approximation of energy consumption to select the most optimal crossing 

gaps. Human-in-the-Loop testing of the Speed Advisory was implemented via 

HMI software which was part of OpEneR project. Furthermore, the developed 

controller was adapted for implementation in a Mock-up simulator at CTAG, 

for OpEneR final review meeting.  

Finally, one should remember that there is the potential to apply MPC approach 

to any kind of powertrain topology. This opens up the possibility for more 

detailed efficiency considerations, resulting in better control. Nevertheless, 

further investigation on Nonlinear MPC and especially on methods for solving 

such complex non-convex optimization problems is required.  

 

During development of this thesis, several possible work extensions or topics 

where further work would be of interest were found: 

 Extend the MPC formulation to a more precise powertrain description, 

enabling enhanced control strategies. On the other hand, full powertrain 

efficiency representation might lead to non-linear control strategies. 

However, it should be emphasized that the Traffic Light problem 

formulation is valid independently of the specific powertrain.  

 Study a better performing algorithm for the Fast MPC approach. Instead 

of checking all possible gap combinations at once, the number of gaps 

considered as well as the combinations should be checked progressively.  

One way of achieving this could be to launch a first optimization round 

for the gap combinations which would probably the most energy 

efficient, and to progressively extend the calculations to adjacent gaps 

until no improvement in cost function is found. 

 Develop and efficient clustering TL algorithm. Perform some literature 

research to define the optimal size of TL clusters: e.g. a group of 4 

incoming TL should be clustered as 2+2 or 4 at once and which are the 

benefits/drawbacks of large clusters. Larger clusters inherently require 
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higher computations. The trade-off between computations and energetic 

gain should be analysed. 

 Traffic behind consideration. Consider vehicles behind in the problem 

formulation with the aim of letting as many vehicles as possible pass a 

Traffic Light.  
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