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Influence of Purlins on Lateral-Torsional Buckling of Steel Girders with Corrugated 

Web  

Master of Science Thesis in the Master’s Programme Structural Engineering and 

Building Technology  

GUÐNI ELLERT EDVARDSSON 

BENGT LUNDQUIST 

Department of Civil and Environmental Engineering 

Division of Structural Engineering 

Steel and Timber Structures 

Chalmers University of Technology 

 

ABSTRACT 

Lateral-torsional buckling is a well-known stability problem in slender unrestrained 

steel girders with doubly symmetric I-section. A rather recent method to increase the 

stability of girders is to have a corrugated shape of the web instead of a flat web. 

Purlins connected to girders improve the stability due to their restraining effects. The 

purlins will restrain lateral movements of the girder at their connection point. In 

addition, rotation of the cross-section can be restrained by attaching the purlins rigidly 

to the girder. In that way, the rotation is controlled by the stiffness of the purlins. This 

increment in stability is of great interest from the designers’ point of view due to 

economic reasons.  

The aim of the thesis is to investigate the lateral-torsional buckling behaviour of steel 

girders with corrugated web of trapezoidal shape, restrained by purlins. The increased 

stability due to the torsional stiffness provided by rigidly attached purlins is of special 

interest. The thesis comprises a literature study and finite element analyses of 

restrained girders. 

In this thesis, the method stated by Horne & Ajmani (1968) to obtain the critical 

moment due to lateral-torsional buckling of restrained girders is investigated. In 

addition, the method presented by Lindner & Aschinger (1990) to include the effects 

from a corrugated shape of the web is studied. The applicability of these expressions 

is evaluated for restrained girders with corrugated web. This evaluation is carried out 

by comparing the critical buckling moment from these expressions with the results 

from linear buckling analyses using elastic material response. In addition, non-linear 

buckling analyses are carried out in order to evaluate how restrained girders with 

corrugated web fit with the design approach, for lateral-torsional buckling, suggested 

in Eurocode 3.  

The thesis concludes that the critical buckling moment can accurately be calculated 

with Horne & Ajmani’s expression. This expression can be used with comparable 

accuracy both for girders with flat web and girders with corrugated web, using 

Lindner’s method. In addition, it is concluded that the design approach for lateral-

torsional buckling suggested in Eurocode 3 is applicable for restrained girders with 

corrugated web in a conservative way. 

 

Key words: Lateral-torsional buckling, corrugated web, steel girder, purlins, discrete 

restraints, torsional stiffness 
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Takåsars inverkan på vippning av stålbalkar med korrugerade liv 
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SAMMANFATTNING 

Vippning är ett välkänt stabilitetsproblem i slanka ostagade stålbalkar med 

dubbelsymmetriskt I-tvärsnitt. En ny metod att öka stabiliteten i balkar är att ha ett 

korrugerat liv istället för ett plant liv. Takåsar anslutna till balkar förbättrar stabiliteten 

på grund av deras återhållande verkan. Takåsar hindrar rörelser i sidled i deras 

anslutningspunkter. Utöver detta, kan rotation av tvärsnittet hindras genom att fästa 

takåsarna styvt på balken. Då är tvärsnittets rotation styrd av takåsarnas styvhet. 

Denna ökning av stabilitet är, ur designers synpunkt, intressant på grund av 

ekonomiska skäl. 

Syftet med denna rapport är att undersöka det kritiska vippningsmomentet av 

stålbalkar, med trapetskorrugerade liv, stagade av takåsar. Den ökade stabiliteten på 

grund av vridstyvhet försedd av styvt anslutna takåsar är av särskilt intresse. 

Rapporten består av en litteraturstudie och finita element-analyser av stagade balkar.  

I denna rapport undersöks metoden föreslagen av Horne & Ajmani (1968) för att 

erhålla det kritiska vippningsmomentet av stagade balkar. Utöver detta, undersöks 

metoden föreslagen av Lindner och Aschinger (1990) för att inkludera effekterna av 

att ha ett korrugerat liv. Utvärderingen av dessa metoder utförs för stagade balkar med 

korrugerat liv. Utvärderingen utförs genom att jämföra det kritiska 

vippningsmomentet från dessa uttryck med resultat från linjära bucklingsanalyser med 

elastisk materialrespons. Dessutom utförs icke-linjära bucklingsanalyser för att 

utvärdera hur stagade balkar med korrugarade liv passar in i designmetoden för 

vippning föreslagen i Eurocode 3. 

Rapporten fastslår att det kritiska vippningsmomentet med hög noggrannhet kan 

beräknas med Horne & Ajmanis metod. Uttrycket kan användas med jämförbar 

noggrannhet både för balkar med plana liv och balkar med korrugerade liv, 

användandes Lindners metod. Utöver detta dras slutsatsen att designmetoden för 

vippning föreslagen i Eurocode 3 kan användas för stagade balkar med korrugerade 

liv med konservativa resultat. 

Nyckelord: Vippning, korrugerat liv, stålbalk, takåsar, stagning, vridstyvhet 
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Notations 

Roman upper case letters 

  Cross-sectional area 

  Modulus of elasticity 

   Tangent modulus 

  Force  

  Shear modulus 

  Second moment of area  

   Torsion constant 

  
  Equivalent torsion constant from Lindner’s approach 

  
  Equivalent torsion constant from modified Lindner’s approach 

   Warping constant 

  
  Equivalent warping constant from Lindner’s approach 

  
  Equivalent warping constant from modified Lindner’s approach 

   Second moment of area around the y-axis  

   Second moment of area around the x-axis 

    Second moment of area around the y-axis for the top flange of an I-beam 

    Second moment of area around the y-axis for the bottom flange of an I-

beam 

   Second moment of area around the  -axis 

   Second moment of area around the  -axis 

   Bending moment 

       Design buckling resistance moment according to Eurocode 3 

    Critical buckling moment 

      Critical buckling moment caused by torsion along a restrained beam 

      Critical buckling moment caused by lateral-torsional buckling between 

restraints 

     Design moment according to Eurocode 3 

    Ultimate moment 

        Yield moment 

   External bending moment applied at end supports of a beam  

   Bending moment around the  -axis 

   Bending moment around the  -axis 

   Bending moment around the  -axis 

  Axial load 

    Critical axial buckling load 

   St. Venant torsional moment 

   Vlasov torsional moment 

  Strain energy 

  Potential energy 

    Sectional modulus  

 

Roman lower case letters 

  Length of the longitudinal panel of a corrugated web 

   Distance between the shear centre and the lateral restraint of a restrained 

cross-section 
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  Projected length of the inclined panel of a corrugated web 

   Width of the flange of an I-beam 

  Length of the inclined panel of a corrugated web 

  Maximum corrugation eccentricity of a corrugated web  

   Yield stress 

   Distance between centroids of flanges of an I-beam 

   Height of the web of an I-beam 

  Buckling coefficient 

    Reduction factor for initial imperfection in Eurocode 3 

   Spring stiffness 

   Torsional stiffness 

   Total length of a structural element 

  Number of half-sine waves in the longitudinal direction of a member 

   Number of restraints along the total length of a girder 

  Radius of gyration 

  Spacing of purlins 

  Wall thickness of a plate or shell 

   Thickness of the flange of an I-beam 

   Thickness of the web of an I-beam 

  Deflection in the direction of the x-axis 

   Lateral component of lateral displacement due to lateral-torsional 

buckling 

   Torsional component of lateral displacement due to lateral-torsional 

buckling 

  Deflection in the direction of the y-axis 

  Width of a plate 

  Lateral axis of the global coordinate system  

  Vertical axis of the global coordinate system 

  Longitudinal axis of the global coordinate system 

 

Greek lower case letters 

  Angle of the inclined panel in relation to the longitudinal axis 

     Imperfection factor in Eurocode 3 

    Partial factor in Eurocode 3  

  Maximum deflection  

   Deformation of a spring 

   Elastic strain 

   Plastic strain 

  Longitudinal axis of the local coordinate system 

  Vertical axis of the local coordinate system 

  Non-dimensional slenderness ratio of steel members 

 ̅    Non-dimensional slenderness ratio of beams 

  Poisson’s ratio 

  Lateral axis of the local coordinate system 

    Critical stress 

  Angle of rotation  

  Reduction factor 

     Reduction factor according to Eurocode 3  
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Definitions 

Beam – Structural element that is capable of withstanding load primarily by resisting 

bending. 

Bifurcation load – The critical load for buckling to occur in a structure. 

Bifurcation point – The point on a load-deflection curve where the bifurcation load 

has been reached. 

Bracing – Lateral and/or torsional restraint on a structure. 

Critical buckling moment – Used to determine the load-carrying capacity against 

elastic lateral-torsional buckling.   

Elastic strain,    – Strain in which the deformed element returns to its original shape 

and size when the deforming force is removed. 

Girder – Main structural member, often supporting smaller beams i.e. purlins. 

Lateral restraint – Full restraint against lateral movement at a specific point. In this 

report it is caused by purlins. 

Linear analysis – Assumes elastic material with no geometrical imperfections nor 

residual stresses in this study. 

Mode shape – Describes the shape of a buckled beam. The mode shape number tells 

in how many half-sine waves the beam buckles.  

Non-dimensional slenderness ratio,   – Used to describe the slenderness of steel 

members in a non-dimensional expression.    

Non-linear analysis – Assumes plastic material with strain hardening, geometrical 

imperfection and residual stresses in this study. 

Poisson’s ratio,   – Negative ratio of transverse strain and axial strain. 

Plastic strain,    – Strain in which the deformed element does not return to its 

original size and shape after the deforming force has been removed. 

Purlins – Secondary beams connected to girders to support the roof cladding. Provide 

restraint against lateral movement and torsion. 

Radius of gyration – Is used to describe the distribution of cross-sectional area in a 

column around its centroidal axis,   √
 

 
. 

Reduction factor,   – Ratio between the critical stress and the yield stress, expressed 

as:          . 

Torsional restraint – Partial restraint against torsion at a specific point. In this report 

it is caused by purlins. 

Ultimate moment,     – The maximum moment obtained from non-linear plastic 

analysis. 

Yield moment – Moment that causes the yielding in the cross-section, expressed as: 
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1 Introduction 

1.1 Background 

Steel portal frames are commonly used in construction of industry halls. They are 

typically low-rise structures that consist of rigidly connected columns and beams. One 

of the governing failure modes of such structures is often lateral-torsional buckling of 

the beam. The stability of the frame can be increased by designing a haunch in the 

beams, by using a corrugated web or by adding stiffeners to the web.  

The top flanges of the beams in the steel portal frames are connected to purlins at 

certain intervals which in turn are connected to the roof cladding. The top flange of 

each beam is usually in tension close to the eave of the frame and in compression 

close to the apex. In order to increase the lateral-torsional buckling capacity of the 

beam, stiffeners are provided at certain intervals to prevent rotation. The connection 

between the purlins and the frame in-between the stiffeners are usually not rigid, and 

can be considered to only provide lateral restraint to the frame. If the connection 

would be made rigid, the torsional stiffness from the purlins could be taken into 

account and consequently the distance between the stiffeners could be increased.  

Important parameters that affect the stability of the frames are the load distribution, 

the shape of the corrugation and the geometrical parameters of the cross-section. The 

problem can be simplified by only consider the beam segment in-between two 

stiffeners. The beam segment is considered to be subjected to pure bending and 

connected to purlins at evenly spaced intervals. 

 

Figure 1.1: Beam segments extracted from a steel portal frame. 

 

1.2 Aim and objective 

The aim of this thesis is to investigate the lateral-torsional stability of steel girders 

with corrugated web of trapezoidal shape loaded in pure bending. The increased 

strength due to the torsional stiffness provided by rigidly attached purlins is of special 

interest. The objective of the thesis can be split into different parts: 
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 To carry out a literature study on how purlins affect the lateral-torsional 

stability of steel girders and how existing knowledge is treating the problem. 

 To investigate how corrugated shape of the web influence the lateral-torsional 

stability of steel girders and how it is treated in analytical expressions. 

 Evaluate the applicability of the analytical expressions for the critical moment 

due to lateral-torsional buckling of restrained girders with corrugated web. 

 Investigate if the existing design approach for lateral-torsional buckling 

resistance from Eurocode 3 is applicable for laterally and torsionally restrained 

girders with corrugated web. 

 

1.3 Method 

A literature review was performed in order to achieve comprehensive understanding 

of the behaviour of steel beams undergoing lateral-torsional buckling. The effects 

from discrete lateral and torsional restraints along the beam were also investigated in 

order to understand how purlins affect the lateral-torsional buckling phenomenon. A 

further investigation was also performed in order to find an effective method of taking 

the increased stiffness, from the corrugated profile of the web, into account when 

calculating the critical buckling moment of the beam with analytical solutions. 

A parametric study was carried out, with linear buckling analysis in ABAQUS CAE, 

in order to understand how the most influencing parameters affect the lateral-torsional 

buckling phenomenon of girders with flat and corrugated webs. The critical buckling 

moment from the parametric study was compared with an analytical solution, derived 

by Horne & Ajmani (1968), in order to examine its applicability. The difference in 

behaviour of girders with flat and corrugated webs was also investigated in order to 

evaluate the applicability of the analytical expression, proposed by Lindner (1990), to 

take the corrugated shape of the web into account. 

In order to evaluate the applicability of the design approach for lateral-torsional 

buckling resistance in Eurocode 3 for restrained girders, non-linear buckling analyses 

with plastic material properties, including initial imperfections, were performed in 

ABAQUS CAE. From the analyses, buckling curves were obtained and compared 

with equivalent buckling curves in Eurocode 3. This was performed for girders with 

flat web and girders with corrugated web in order to investigate the difference in 

behaviour between the two girder types. 

 

1.4 Limitations 

In this project, only doubly symmetric, prismatic, I-sections with flat web and 

equivalent cross-sections with corrugated web will be considered. Fork supports are 

chosen as boundary conditions in order to imitate a beam segment between torsional 

stiffeners in steel portal frames. All structural members mentioned in this report will 

be considered to be of steel unless otherwise stated. Welds between the web and the 

flanges are not considered in this study.  

The study will be limited to: 

 Girders with homogeneous, isotropic material properties. 
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 Lateral-torsional buckling, other failure modes are not of interest.  

 Bending moment around the strong axis, applied at the end supports. 

 Steel with a yield stress of     MPa when non-linear material properties are 

used. 

1.5 Outline of the thesis 

Chapter 1 – Introduction of the project including background information, aim and 

objective, method and limitations.  

Chapter 2 – Literature review comprising the theory describing lateral-torsional 

buckling, effects from restraints, the influence of corrugated shape of the web in 

girders and design approach suggested in Eurocode 3.   

Chapter 3 – Description of the method used to obtain the aim of the project. 

Chapter 4 – Procedure of the finite element analyses.  

Chapter 5 – The results of the project are presented and discussed.  

Chapter 6 – Conclusions of the project. 
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2 Literature Review 

Lateral-torsional buckling is a well-known stability problem in slender unrestrained 

steel beams with doubly symmetric cross-section. Purlins will provide an increased 

stability due to their restraining effects. The purlins will restrain lateral movements of 

the beam at their connection points. In addition, they will restrain rotation of the 

sections if the connections are rigid. This increment in stability is of great interest 

from the designers’ point of view due to economic reasons. Another alternative to 

increase lateral-torsional stability in beams is to have a corrugated web instead of a 

flat web. This chapter will explain the lateral-torsional buckling phenomenon and 

discuss the restraining effects from purlins as well as the effects from having 

corrugated web instead of flat web. 

 

2.1 Stability of steel members 

The structural stability of steel members is controlled by different failure modes, such 

as yielding, fatigue and buckling. Elastic buckling of steel members can only occur in 

the parts of members which are in compression when instability conditions are 

reached before yielding of the steel. In order to understand lateral-torsional buckling 

of beams, it is good to have some understanding of different kinds of buckling 

behaviour in simple steel members.  

Columns are the simplest structural element for the study of buckling. According to 

Timoshenko & Gere (1961), the Euler theory suggests an expression for the critical 

buckling load of axially loaded columns. It assumes the column to be perfectly 

straight with ideally elastic material response and centrally applied load. After the 

bifurcation point is reached, the column becomes unstable and the magnitude of the 

deflection becomes indeterminate. The column will require the same amount of 

energy to buckle in any direction and is therefore symmetric around the bifurcation 

point. For a column hinged at both ends the critical load can be expressed by the 

following equation: 

     
      

  
 2.1  

where   is the modulus of elasticity,   is the second moment of area,   is the length of 

the column and   is mode shape number. The first mode shape (for    ) requires 

the lowest critical load. Mode shapes with higher number are only of interest in very 

slender bars or when lateral restraints are applied at the inflection points. 
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Figure 2.1: Column buckling; a) an axially loaded column of length   with deflection  ;       

b) a normalized axial load as a function of deflection for a perfectly straight column and a 

column with an initial bow imperfection. 

Figure 2.1b shows a graph of the applied load on the column, normalised with the 

critical buckling load, as a function of the deflection for perfectly straight column and 

a column with an initial bow imperfection. As can be seen, the perfectly straight 

column remains straight until the critical load is reached and it becomes unstable If an 

initial bow imperfection is present, further deflection increases with increasing load 

until it becomes unstable. The maximum load for the column to remain stable 

becomes lower as the initial imperfection is higher. 

The buckling phenomenon can be described with the Euler buckling curve in terms of 

the non-dimensional slenderness ratio,  ̅, and the reduction factor,  , according to Al-

Emrani & Åkesson (2013), which can be seen in figure 2.2. From the slenderness of 

the column, the reduction factor can be obtained and the critical buckling load 

calculated according to the following expression: 

             2.2  

where    is the yield stress of the steel and   is the cross-sectional area of the column. 

By assuming elastic material response, the reduction factor increases to infinity as the 

slenderness ratio approaches zero. Since columns will undergo failure due to yielding 

when the yield stress is reached, the Euler curve is fixed to not exceed    . It can 

be seen from figure 2.2 that the critical buckling load gets lower as the columns get 

more slender. Due to initial imperfections, which are inevitable in steel members, the 

critical buckling load from the Euler theory is an upper bound solution. In order to 

take this into account when designing steel structures, design curves have been 

implemented to reflect the actual behaviour of the column and to avoid 

unconservative design approaches. 
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Figure 2.2: The Euler buckling curve and a design curve for columns, presented with the reduction 

factor,  , as a   function of the non-dimensional slenderness ratio, , (Larsson & Persson, 

2013). 

The Euler theory can be extended to derive the critical buckling stress for axially 

loaded plates, simply supported on the loaded edges, according to figure 2.3a. The 

lowest critical axial load for such plates can be expressed by taking the Poisson’s 

ratio,  , into account and is expressed with the following equation:  

     
      

  
 

 

(    )
  2.3 

This can be reformulated as the critical axial stress of plates with equation 2.4, where 

  is the thickness of the plate. 

     
     

  (    )  (
 
 )

  2.4 

 

Figure 2.3: a) An axially loaded plate simply supported on its loaded edges; b) An axially loaded plate 

simply supported on all four edges. 
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For a plate simply supported on all four edges, as can be seen in figure 2.3b, the 

critical axial stress can be expressed with the following equation:  

       
   

  (    )  (
 
 )

  2.5 

where   is the width of the plate and the buckling coefficient,  , is expressed with the 

following equation: 

   (
   

 
 

 

   
)
 

 2.6 

where   is the number of half-sine waves in the longitudinal direction of the buckled 

shape of the plate. The value of   is dependent on the aspect ratio,    , and will 

always be a natural number. The minimum value of the buckling coefficient is 

      when   has the same value as the aspect ratio.  

The buckling behaviour of plates is strongly dependent on the boundary conditions. A 

plate supported only on the loaded edges will behave in a similar way as the column 

in figure 2.1. On the contrary, if the plate is supported on all four edges it will behave 

in a different way. When the bifurcation stress is exceeded in a perfectly plane plate, 

supported on all four edges, it will start to deflect. Due to the boundary conditions, a 

redistribution of stresses will result in a stable state of the plate, as can be seen in 

figure 2.4. As the load is increased further, the deflection increases until a maximum 

stress is reached and failure occurs. This increased strength is often, according to Al-

Emrani & Åkesson (2013), referred to as a post-buckling strength. The plate will 

require the same amount of energy to buckle in both directions. Consequently the 

post-buckling behaviour can be considered as stable and symmetric around its 

bifurcation point. 

 

Figure 2.4: Plate buckling; normalized axial stress as a function of deflection for a perfectly plane 

plate and a plate with an initial bow imperfection. 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:100 
8 

Buckling in shell elements is of interest when comparing different buckling 

behaviour. Consider a thin-walled cylindrical shell with length   and radius   loaded 

in axial compression, as can be seen in figure 2.5a. According to Timoshenko & Gere 

(1961), the critical buckling stress of a perfect cylinder at the bifurcation point is 

expressed by the following equation:  

     
   

 
 

 √   

 √ (    )
 2.7 

where   is the wall thickness of the shell and    is the tangent modulus of the cylinder. 

 
Figure 2.5: Shell buckling; a) An axially loaded shell of length   with deflection  ; b) a normalized 

axial stress as a function of deflection for perfect shell and a shell with an initial 

imperfection. 

When the critical stress is reached in the perfect shell it becomes unstable. For a shell 

with initial imperfection the critical stress reduces very fast with increasing 

imperfections, which makes shells more sensitive to initial imperfections than 

columns and plates. A shell requires more energy to buckle outwards than inwards. 

Consequently the buckling behaviour after the bifurcation stress is exceeded can be 

considered as unstable and asymmetric around its bifurcation point.  

 

2.1.1 Local and global behaviour 

Buckling phenomena of steel members can be subdivided into local and global 

behaviour. Local behaviour occurs at one specific part of the member. Global 

buckling, on the other hand, is an overall instability mode of the member.  

Local buckling occurs where the in-plane stresses are concentrated in a structural 

member and is usually described with theory for plates, according to Trahair (1993). 
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Resistance against local buckling in beams with doubly symmetric I-section can be 

increased by adding stiffeners to the web or having a corrugated shape of the web. 

Flexural buckling occurs when a member buckles around one of its main axes. 

Buckling around its weak axis is referred to as lateral buckling. For a beam subjected 

to torsion, the cross-sections twist around its central axis. Lateral-torsional buckling is 

a combination of a lateral buckling and torsion. Flexural buckling, torsion and lateral-

torsional buckling can be referred to as global buckling modes. 

 

Figure 2.6: a) Flexural buckling; lateral buckling to the left and vertical buckling to the right; b) 

torsion; c) lateral-torsional buckling. 

Distortional buckling is intermediate to local and global behaviour. It involves a 

deformation of the cross-sectional shape and the mode typically has the shape of a 

half-wavelength in the web or the flange of a beam.  

 

2.2 Lateral-torsional buckling of I-beams 

The structural stability of slender I-beams loaded in bending is often controlled by the 

lateral-torsional buckling capacity. This section treats topics such as lateral buckling 

and torsion in order to derive the expression describing lateral-torsional buckling of 

doubly symmetric I-beams. 

 

2.2.1 Coordinate system 

Global and local coordinate systems have to be defined in order to describe the 

buckling behaviour of an I-beam. The global coordinate system is defined with the 

fixed axes x, y, z where the x-axis is in the lateral direction, the y-axis is in the 

vertical direction and the z-axis is in the longitudinal direction of the beam. The x-axis 

can also be referred to as the major (strong) axis and the y-axis can be referred to as 

the minor (weak) axis. The local coordinate system is defined with the axes  , η, 

 which are taken at the centre of the cross-section at any section of the beam and is 

equivalent to the global coordinate system. The definition of both coordinate systems 

can be seen in figure 2.7. 
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Figure 2.7: Definition of the global and local coordinate systems; a) a cross-sectional view; b) a beam 

seen from the side; c) a beam seen from above. 

 

2.2.2 Lateral buckling 

Flexural buckling causes deformation of the beam around one of the main global axes, 

which has the lowest stiffness. An I-beam loaded in bending in the plane of the web 

will buckle laterally when the critical buckling moment has been reached. The 

deflections of the beam are expressed with the variables   and   in the  - and  -

direction respectively. For small deflections, the curvature of the beam can be 

expressed as 
   

    for the xz-plane and  
   

    for the yz-plane. The bending moment 

around the  - and  -axes can then, according to Timoshenko & Gere (1961), be 

described with the Euler-Bernoulli beam theory:  

       
   

   
 2.8a 

 
      

   

   
 2.8b 

where the variables    and     are the second moment of area around  - and  -axis 

respectively. 

 

2.2.3 Torsion 

Torsional resistance of structural members can be divided into two distinct 

mechanisms. These mechanisms are often referred to as St. Venant torsional 

resistance and Vlasov torsional resistance, according to Estabrooks & Grondin (2008). 

St. Venant torsion, or pure torsion, is defined as the rotation of a cross-section through 

an angle  , according to Seaburg & Carter (2003). For non-circular cross-sections, 

such as I-sections, pure torsion is usually accompanied by Vlasov torsion. Vlasov 
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torsion, or warping torsion, occurs when the transverse sections do not remain plane 

during torsion. These two mechanisms are illustrated by figure 2.8. 

 

Figure 2.8: a) St. Venant torsion, or pure torsion; b) Vlasov torsion, or warping torsion (Seaburg & 

Carter, 2003). 

An I-beam, loaded with torsional moment at both ends, as shown in figure 2.9, with 

all sections free to warp will have the same shear stress distribution in all sections of 

the beam (Timoshenko & Gere, 1961). If these conditions are fulfilled, the total St. 

Venant torsional resistance is expressed with the following equation:  

          2.9 

where   is the shear modulus for steel,    is  the torsion constant for the cross-section 

and    is the first derivative of the angle of rotation.     can also be referred to the 

torsional stiffness of the cross-section. The torsion constant for doubly symmetric I-

beams with flat web is, according to Lundh (2000), expressed with the following 

equation: 

    
     

      
 

 
 2.10 

where    and    are the width and the thickness of the flanges, respectively.    and 

   are the height and the thickness of the web, respectively. 
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Figure 2.9: An I-beam subjected to torsional moment,  , at both ends. 

If any section of the beam is restrained to warp or if the torsional moment,   , varies 

along the length of the beam, there will be tension or compression of the longitudinal 

fibres and the warping will vary along the length of the beam. The total resisting 

moment due to restrained warping of the cross-section is, according to Timoshenko & 

Gere (1961), described with the following equation: 

             2.11 

where     is the warping stiffness of the cross-section and      is the third derivative 

of the angular displacement. The warping constant,   , for doubly symmetric I-beams 

with flat web is expressed with equation 2.12 according to Seaburg (2003). 

    
    

 

 
 2.12 

where    is the second moment of area around the y-axis and    is the distance 

between the centroids of the flanges. The total torsional resistance of the beam can 

now be expressed as the sum of the St. Venant and Vlasov components: 

                 2.13 
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2.2.4 Lateral-torsional buckling 

Regard a simply supported I-beam which is subjected to bending moment    around 

the  -axis at each support as indicated in figure 2.10. 

 

Figure 2.10: A beam with bending moment applied at both ends. 

If the applied moment,   , is smaller than the critical buckling moment,    , it will 

cause vertical deflection without any out-of-plane movement. If the moment is 

increased until it exceeds the critical buckling moment,    , the beam will buckle 

laterally along with an angle of twist, according to  Galambos & Surovek (2008). This 

is due to redistribution of the applied moment to the main axes of the local coordinate 

system as indicated in figure 2.11. The moments contributing to the deflection in the 

vertical and lateral directions are expressed with the variables    and   . The 

moment contributing to the rotation of the cross-section is expressed with   . For a 

small angle of deflection, this can be stated in terms of the applied moment    in the 

following way: 

       2.14a 

        2.14b 

 
    

  

  
   

2.14c 

where 
  

  
 is the angle between the local  -axis and the global  -axis. The moment 

around the  -axis is negative considering the positive direction of the moments. 

 

 

Figure 2.11: a) Rotation of the cross-section caused by the moment    around the  -axis; b) vertical 

deflection of the beam caused by the moment    around the  -axis; c) lateral deflection 

caused by the moment    around the  -axis. 
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In order to derive a formulation to describe lateral-torsional buckling, the moment 

from equation 2.14b is set equal to equation 2.8b, describing lateral deflection. In 

addition, the moment from equation 2.14c is set equal to the total torsional resistance 

in equation 2.13. These equations can now be combined to obtain the following 

expression: 

    
   

   
    

   

   
 

  
 

   
    2.15 

This can be solved mathematically by finding a general solution for the differential 

equation and use the boundary conditions of a simply supported beam. This will, 

according to Timoshenko & Gere (1961), lead to the following expression for the 

critical buckling moment: 

     
     

  
√

  
  

 
     
     

  2.16 

 

2.3 Restrained buckling 

Structural members are often influenced by different types of restraints that can affect 

the stability. A beam is considered to be continuously restrained if all sections of the 

beam are restrained. Continuous restraints are typically provided by slabs or metal 

decks, which are connected to the flange of beams. Continuous stiffeners can also be 

added to the web or the flanges of a beam. Discrete restraints, on the other hand, 

consist of a finite number of restraints on the beam. One type of discrete restraints is 

purlins attached to the top flange of an I-beam. 

Stabilisation of beams can be divided into two types, lateral and torsional restraints. 

The following sections describe important factors that affect the lateral and torsional 

restraints, focusing on the effects of purlins.  

 

2.3.1 Lateral restraints  

There are several factors that influence the performance of laterally restrained girders. 

According to Yura (2001), the most important factors are how the member is loaded, 

where at the cross-section the restraint is applied, the number of restraints along the 

girder and the stiffness of the restraints.  

Since the location of the restraint at the cross-section is an important parameter, the 

behaviour of a laterally restrained girder during lateral-torsional buckling will be 

different if the compression flange or the tension flange of an I-beam is restrained. An 

I-beam undergoing lateral-torsional buckling will have the maximum lateral 

deflection at the compression flange. A lateral restraint connected to this flange will 

effectively eliminate lateral movements of the restrained section. Consequently, there 

will be no rotation of the restrained section. 

Lateral restraints on the tension flange of an I-beam will lower the centre of rotation 

during lateral-torsional buckling at the restrained section, as can be seen in figure 

2.12. The lateral displacement can be split up into two components, deflection due to 
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lateral movement,     and deflection due to torsion of the cross section,   . Lateral 

restraints will cause reduction of    but    will not be affected, unless torsional 

stiffness of the restraint is present.  

 

 

Figure 2.12: a) Rotation of an unrestrained I-section undergoing lateral-torsional buckling; b) rotation 

of a laterally restrained I-section undergoing lateral-torsional buckling, resulting in 

lower centre of rotation and smaller   . 

2.3.2 Torsional restraints 

The number of stiffeners and the location of the load on the cross-section are, 

according to Galambos (2008), not as important for torsional restraints as for lateral 

restraints. Torsional restraints are equally effective if they are applied at the 

compression flange or at the tension flange of girders.  

A combination of lateral and torsional restraints is of interest when regarding the 

effects from rigidly attached purlins on a girder. As mentioned in section 2.3.1, lateral 

restraints at the compression flange effectively eliminate rotation of the restrained 

section. The torsional stiffness, provided by rigidly attached purlins, is therefore only 

of interest when the purlins are connected to the flange subjected to tension. As can be 

seen in figure 2.13, both the lateral and the torsional components of the lateral 

displacement are affected by torsional restraints. The torsional stiffness provided by 

the purlins is greatly dependent on the rigidity of the connection of the purlins to the 

girder and is therefore often disregarded in design due to lack of rigidity. However, 

this torsional stiffness can be of interest for design purposes due to economic reasons. 
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Figure 2.13: a) Rotation of a cross-section of a torsionally unrestrained girder; b) rotation of a cross-

section of a torsionally restrained girder, resulting in smaller    and   . 

The torsional stiffness that rigidly attached purlins would provide to a girder at the 

connection points is dependent on the properties of the purlins. The torsional stiffness 

can be estimated from the angle of rotation due to the moment    around the  -axis 

caused by lateral-torsional buckling of the girder. The expression for the torsional 

stiffness,   , is presented in equation 2.17 and the derivation of it can be seen in 

appendix A. 

    
     

  
  2.17 

The parameter    is the span of the purlin, i.e. length between adjacent girders,    and 

   are the modulus of elasticity and the second moment of area of the purlin, 

respectively. 

 

2.4 Critical moment for girders restrained by purlins 

The following sections describe how the critical buckling moment for girders, loaded 

in pure bending and discretely restrained by purlins, can be approximated with 

analytical expressions. The critical buckling moment will be regarded for girders 

restrained either at its compression flange or its tension flange. 

 

2.4.1 Girders restrained at the compression flange 

When a girder is connected to purlins at its compression flange, the restraining effect 

from the purlins will prevent lateral movement and rotation of the entire restrained 

section of the girder as described in section 2.3.1. The girder will therefore not be able 
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to undergo lateral-torsional buckling along its total length and will instead buckle 

along the length between the purlins. The critical buckling moment can therefore be 

approximated to be equal to the critical buckling moment for an unrestrained girder, 

from equation 2.16, where the length of the girder,  , is reduced to the spacing 

between the purlins,  . The critical buckling moment for girders connected to purlins 

at the compression flange can now be expressed with the following equation: 

     
     

  
√

  
  

 
     
     

 2.18 

Reducing the buckling length will increase the critical buckling moment. For short 

spacing between purlins, the critical buckling moment will be high and it is likely that 

other failure mode than lateral-torsional buckling will be critical for the total load 

bearing capacity. 

 

2.4.2 Girders restrained at the tension flange  

An approach to determine the critical buckling load of axially loaded columns 

supported with discrete lateral and torsional restraints was developed by Dooley 

(1966). This was further developed by Horne & Ajmani (1968) by taking bending 

moment into account. Both approaches start off similarly where the strain energy 

  caused by the buckling process is put equal to the change in potential energy  . 

Both articles derive expressions for two different cases. The first case is when the 

number of half-sine waves of the buckled girder,  , is not equal to the number of 

intervals between the discrete restraints,    . The second case is when   is equal to the 

number of intervals. Horne & Ajmani derived the critical buckling moment for these 

two cases for pure bending moment, which can be expressed in the following way:  

Case 1:    
 

 
  

This case occurs when the girder buckles by twisting around the restrained 

longitudinal axis of the girder. The critical buckling moment is described with the 

following equation: 

       
 

   
(    

     

  
(     

   )  
  

 
 

  

    
 ) 2.19 

where    is the distance between the shear centre of the girder and the centre of the 

rotation of the restraint.     is the torsional stiffness provided by each restraint and   

is the spacing between the restraints. The critical buckling moment is the minimum 

value of       for            where    is the number of purlins attached to the 

girder. 

Case 2:    
 

 
  

When this requirement is fulfilled, the torsional stiffness is high enough to assume full 

torsional restraint. The critical buckling moment is therefore independent of the 

torsional stiffness and represents the critical buckling moment caused by lateral-

torsional buckling along the length between restraints. This can be expressed with the 

following equation: 
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√ 

  
  

 
     
     

 2.20 

These equations will hereafter be referred to as Horne & Ajmani’s expression. They 

are derived under the assumption that the tension flange is continuously restrained. 

Consequently, they only apply when the restraints are equally spaced.  

 

The critical buckling moment of a restrained girder, calculated with equation 2.19, 

increases linearly with increasing torsional stiffness for each mode shape. As the 

mode shape number gets higher, the increment of the critical buckling moment 

becomes less steep for increasing torsional stiffness of the restraint. When the mode 

shape has the same number as the number of spans between restraints, i.e      , the 

requirement for case 2 is reached and the critical buckling moment is calculated 

according to equation 2.20.  

 

Consider a girder with three evenly spaced purlins connected to its tension flange, as 

can be seen in figure 2.14. The critical buckling moment can be plotted as a function 

of the torsional stiffness of the restraints as can be seen in figure 2.15, for all possible 

mode shapes. For each value of the torsional stiffness, the critical buckling moment is 

given with the minimum value from each mode shape. 

 
Figure 2.14:  A side view of a girder attached to three purlins at its tension flange. 

 
Figure 2.15: The critical buckling moment from Horne & Ajmani’s expression,    ,plotted as a 

function of the torsional stiffness,   , for every mode shape for a girder with three purlins 

along its length. The critical buckling moment of the girder is obtained from the minimum 

value of     for each mode shape, indicated with the thick solid line. 
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2.5 Girders with corrugated web 

A common way of increasing the buckling strength in steel girders is to add stiffeners 

to the web. The most common way of adding those stiffeners to the girder is to weld 

them manually, which is both time consuming and expensive. A more recent 

alternative is to use corrugated web in order to obtain increased stiffness and delay 

fatigue failure. The corrugated web and the flanges can be machine-welded together 

which will save time and cost, according to Sayed-Ahmed (2007). A commonly used 

shape of the corrugated profile is trapezoidal, which can be seen in figure 2.16.  

 

Figure 2.16: Trapezoidal profile of a corrugated web. 

Some research has been carried out to investigate the effects from the corrugated web 

on the structural stability, but the knowledge is still limited. From a theoretical point 

of view, the corrugated shape of the web makes the derivation of load bearing 

formulations more complicated. The shear strength of corrugated webs can be 

calculated with relatively good accuracy, according to Galambos (1998). When the 

shape of the web has course corrugation, the shear strength of the web is controlled by 

local buckling in the web. As the corrugation gets denser, global buckling of the 

whole beam is more likely to become the critical failure mode. 

Unlike girders with flat web, girders with corrugated web are considered to resist 

bending only by their flanges and the shear force is resisted by the web. The web is 

therefore not taken into account in the second moment of area around the major axis. 

One of the main design aspects, for thin-walled I-beams, is lateral-torsional buckling. 

One way of taking the effects from the corrugated shape of the web into account is a 

method suggested by Lindner & Aschinger (1990) which hereafter will be referred to 

as Lindner’s approach. 

 

2.5.1 Lindner’s approach 

A beam with corrugated web has an increased critical buckling moment,    , 

compared to a beam with flat web. The eccentricity of the web gives an increased 

strength against warping and torsion. One way of taking this increment into account is 

suggested by Lindner & Aschinger (1990). This method proposes that the critical 

buckling moment of unrestrained and simply supported beams with corrugated web 

can be calculated using the same formula for     as for beams with flat web but 

inserting new warping and torsion constants in order to take the effects from the 

corrugated web into account. These constants are expressed with the following 

equations: 
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     2.21a 

 
  
       

  

   
 2.21b 

By this approach, the torsion constant is approximated to be the same as for an 

equivalent beam with flat web and the increased stiffness due to the corrugated shape 

is included in the warping constant. The variable    is expressed in the following 

way: 

    
(  )    

 

     (   )
 2.22a 

 
   

  

     
 

  
 (   ) 

      

       

      
 

2.22b 

where    is the distance between the centroids of the flanges and    is the thickness 

of the web.     and     are the second moment of area around the strong axis for the 

top and bottom flanges respectively. The parameters     and   are defined in figure 

2.17. 

 

Figure 2.17: Shape of a trapezoidally corrugated web. 

Lindner’s approach was carried out by assuming unrestrained beams and therefore 

assumes the beam to buckle in the first mode shape. Restrained girders have the 

possibility to buckle in higher order mode shape, which needs to be taken into 

account. The warping constant in equation 2.12b should therefore be rewritten in a 

more general form by exchanging the length of the beam to the length of each half-

sine wave of the buckled shape. This can be expressed with the following equations: 

   
     2.23a 

 
  
       

  

     
 

2.23b 
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These equations apply for both restrained and unrestrained beams. For unrestrained 

beams, which buckle with the first mode shape, the warping constant from equation 

2.23b will become the same as in equation 2.21b, since    . This approach of 

taking the corrugation into account is dependent on the length of the beam and the 

mode shape. This is not the usual case for sectional constants, which normally only 

depend on sectional properties. A modification of this approach has been suggested by 

Larsson & Persson (2013) and is explained in the following section. 

 

2.5.2 Modified Lindner’s approach 

Lindner’s approach suggests that the increased stiffness from the corrugation should 

be added to the warping constant, while the torsion constant is the same as for an 

equivalent beam with flat web. In order to make these sectional constants only 

dependent on sectional properties, Larsson & Persson (2013) suggested a modification 

of Lindner’s approach, which is expressed in equation 2.24. This reformulation adds 

the effects from the corrugation to the torsion constant instead of the warping 

constant.  

   
     

  

 
 2.24a 

   
     2.24b 

The modified Lindner’s approach takes higher order mode shapes into account, as can 

be seen in the derivation in appendix A. Since the modified Lindner’s approach is a 

reformulation of the original Lindner’s approach, it will give exactly the same result 

when calculating the critical buckling moment.  

 

2.6 Lateral-torsional buckling in Eurocode 3 

Design suggestions for buckling resistance of steel members are treated in Eurocode 

3. It suggests a verification against lateral-torsional buckling for laterally unrestrained 

steel members, subjected to major axis bending, with the following condition:  

 
   

     
     2.25 

where     is the design value of the moment and       is the design buckling 

resistance moment.        is calculated for laterally unrestrained beams according to 

the following equation: 

 
            

  

   
 2.26 

where    is the appropriate section modulus, dependent on the classification of the 

cross-section, and     is the reduction factor for lateral-torsional buckling. Eurocode 

3 suggests two different ways of calculating the reduction factor, which will be 

described hereafter. 
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1. Lateral-torsional buckling curves - General case 

The reduction factor is given for the general case for members in bending with 

constant cross-section with the following equations: 

 
    

 

    √   
     

 
     

2.27 

        [     (       )     

 
] 2.28 

 

    √
   

   
 2.29 

    is the elastic critical moment due to lateral-torsional buckling and     is an 

imperfection factor, which is determined from the corresponding buckling curve. The 

buckling curves in Eurocode 3 are presented as the reduction factor,    , as a function 

of the non-dimensional slenderness,  ̅  , and can be seen in figure 2.18. The 

recommended value of the imperfection factor, corresponding to the appropriate 

buckling curve, can be seen in table 2.1. Furthermore, table 2.2 shows the 

recommendations for the choice of buckling curve with regard to the cross-sectional 

dimensions.   

 

Figure 2.18: Buckling curves according to Eurocode 3. 
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Table 2.1: Imperfection factor,   , corresponding to the appropriate buckling curve in Eurocode 3. 

Buckling 

curve 
           

Imperfection 

factor,     
0.13 0.21 0.34 0.49 0.76 

 

Table 2.2: Recommended values for lateral-torsional buckling curves for cross-sections using equation 

2.27. h and b are the total height and the width of the cross-section, respectively. 

Cross-section Limits Buckling curve 

Rolled I-sections       

      

a 

b 

Welded I-sections       

      

c 

d 

Other cross-sections - d 

 

2. Lateral-torsional buckling curves for rolled sections or equivalent welded 

sections 

The reduction factor for rolled sections or equivalent welded sections is calculated in 

similar way as in the general case, with the exception of the variables       and  , 

which have the recommended values     and     , respectively. Table 2.3 shows the 

recommended choice of buckling curve with regard to the cross-sectional dimensions. 

The reduction factor is given with the following equations:  

 

    
 

    √   
    

  

 
 {

   
 

   

 
 2.30 

        [     (         )      

 
] 2.31 

Table 2.3: Recommended values for lateral-torsional buckling curves for cross-sections using equation 

2.30. h and b are the total height and the width of the cross-section, respectively. 

Cross-section Limits Buckling curve 

Rolled I-sections 
      

      

b 

c 

Welded I-sections 
      

      

c 

d 
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3 Method 

The torsional stiffness provided by purlins is of special interest considering the aim of 

the project. As explained in section 2.3.1, lateral fixation at the compression flange 

will effectively eliminate lateral-torsional buckling of the restrained section. 

Consequently, torsional stiffness is only of interest when girders are restrained at their 

tension flange.  

A parametric study is carried out in order to evaluate analytical expressions for the 

critical buckling moment of restrained girders. The results from the analytical 

solutions and the linear buckling analyses are compared. In addition, non-linear 

analyses are carried out in order to evaluate the approach suggested in Eurocode 3 to 

treat lateral-torsional buckling. The following sections explain the methodology more 

thoroughly.  

 

3.1 Geometry of the studied girders 

There are two main types of girders studied in this project. One has a doubly 

symmetric I-section with flat web and the other has equivalent cross-section with 

corrugated web. Both girder types are considered to be welded, but the influence from 

the welds are neglected in calculations. The sectional view of the girder with flat web 

can be seen in figure 3.1. The cross-sectional dimensions of the studied girders, along 

with their total length can be seen in table 3.1. The only difference between the 

dimensions of the girders is the thickness of the web. The girder with flat web has a 

thicker web in order to prevent local behaviour in the web, since only global buckling 

behaviour is of interest in this study. The shape of the corrugated profile can be seen 

in figure 3.2. The dimensions of the corrugation used in this report are commonly 

used by the steel product manufacturer Borga Steel Buildings and can be seen in table 

3.2. 

 

Figure 3.1: Geometry of the cross-section of the studied girder with flat web.  
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Table 3.1: Dimensions of the studied girders with flat web and with corrugated web. All values are in 

meters.   

               

Flat web 9.5 0.2 0.012 0.7 0.006 

Corrugated web 9.5 0.2 0.012 0.7 0.002 

 

Table 3.2: Dimensions of the corrugated profile. All values are in meters unless otherwise stated. 

          [°] 

0.140 0.05 0.071 0.025 45 

 

Figure 3.2: Shape of a trapezoidally corrugated web. 

 

3.2 Parametric study 

Girders with lateral and torsional restraints connected to the tension flange are 

modelled in order to verify the applicability of the Horne & Ajmani’s expression, 

equations 2.19 and 2.20. Both girders with flat web and girders with corrugated web 

are modelled in order to evaluate the applicability of Lindner´s approach, equation 

2.23, for restrained girders. In addition to the Lindner’s approach, the difference 

between the analytical expressions of the critical buckling moment for the two girders 

is the second moment of area. For the girder with flat web it is determined by the 

whole cross-section and for the girder with the corrugated web, it is determined only 

by the flanges, excluding the influence from the web. The range of the studied 

parameters can be viewed in table 3.3. 
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Table 3.3: Range of the studied parameters for girders restrained at the tension flange. 

Parameter Range 

Number of restraints     

Torsional stiffness         Nm/rad 

Web thickness      mm 

Web height          mm 

Flange thickness      mm 

Flange width         mm 

 

When the number of restraints and the torsional stiffness of the restraints are studied, 

the cross-sectional dimensions are set to the values stated in section 3.1. For a girder 

with fixed cross-sectional dimensions, the torsional stiffness of the restraints decides 

which mode shape requires the lowest amount of energy to occur and consequently is 

the governing mode shape. Altering cross-sectional dimensions, while the torsional 

stiffness of the restraints is fixed, will affect the behaviour of a girder in a similar 

way. It is of interest to study if the behaviour when changing cross-sectional 

dimensions differs when different modes shapes are decisive. It is decided to study the 

first and the second mode shape. Consequently, geometrical parameters are studied 

for two different values of the torsional stiffness, resulting in the first and the second 

mode shape. These two values differ between the different geometrical parameter 

studies, in order to obtain the same mode shape throughout the whole range of each 

studied parameter. All geometrical parameters are studied for girders with five 

restraints along its length. When cross-sectional dimensions are studied, the remaining 

dimensions are set to the values stated in section 3.1.  

 

3.3 Evaluation of the design approach in Eurocode 3 

Non-linear buckling analyses are carried out using ABAQUS CAE, in order to 

produce buckling curves for restrained girders. These buckling curves are compared 

with the buckling curves provided by Eurocode 3, described in section 2.6, in order to 

evaluate their applicability for laterally and torsionally restrained girders. This 

procedure is performed for the two girders described in section 3.1. The girders have 

six lateral and torsional restraints applied at the tension flange.  

The buckling curves are obtained by plotting the reduction factor,    , as a function 

of the non-dimensional slenderness,  ̅  , which is calculated with equation 2.29. The 

reduction factor,     is acquired with the following equation: 

     
  

   
  3.1 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:100 
27 

where the denominator,    , is the yield moment. The yield moment is obtained only 

from the flanges for the girder with corrugated web and the whole cross-section for 

the girder with the flat web.     is the ultimate moment retrieved from non-linear 

buckling analyses, including appropriate initial imperfection. Geometrical 

imperfections and residual stresses can be taken into account by adding an initial bow 

imperfection. Values of the initial imperfection for columns in compression,       are 

given in Eurocode 3 and can be seen in table 3.4. These values can be converted, to 

take the lateral-torsional buckling of beams in bending into account, by multiplying 

     by a factor    . Eurocode suggests that the value of     is taken as 0.5. The 

initial bow imperfection for the studied girders is expressed with equation 3.2. This 

procedure eliminates the need of taking additional torsional imperfection into account. 

Table 3.4 shows the recommended initial bow imperfections for columns for each 

buckling curve. For the studied girders, with welded I-sections, buckling curves c and 

d are of interest. 

             3.2 

 

Table 3.4: Values of initial bow imperfections for columns in compression according to Eurocode 3  

Buckling Curve Initial bow imperfection,      

         

        

        

        

        

 

Each buckling curve is obtained for torsional stiffness on the range of           

Nm/rad, in order to vary the slenderness of the girder by altering    . These values of 

the torsional stiffness are chosen since they result in the first mode shape in linear 

buckling analyses of the studied girders. 

The buckling curves from the FEM analyses are compared with the two approaches 

suggested in Eurocode 3 and the Euler buckling curve,        

 
, in order to 

evaluate the applicability of them for restrained girders. The approach for welded 

sections is more appropriate than the general case for the studied girders, since they 

have welded section. The buckling curves suggested in Eurocode 3 are described in 

section 2.6. 
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4 Finite Element Modelling 

All finite element analyses in this project are carried out in the commercial software 

ABAQUS CAE version 6.12-1. This chapter contains description of how the 

modelling of the studied girders is performed. In addition, it includes a convergence 

study, in order to obtain reasonable element size of the mesh, as well as a verification 

of the behaviour of the models.  

 

4.1 Modelling procedure 

Eight node shell elements with quadratic base function and reduced integration, [S8R] 

are chosen to be used in all analyses, which are carried out with the Simpson 

integration rule with five integration points over the thickness. The thickness of the 

geometry is defined as an extension from the centre of each part. This causes an 

overlap where two perpendicular parts meet, as can be seen in Figure 4.1. The 

influence of the overlap on the results is considered to be negligible.  

 

Figure 4.1: Overlap in the cross-section between the web and the flanges. 

 

4.1.1 Linear buckling analysis 

Linear buckling analyses are carried out in order to obtain the elastic critical buckling 

moment of restrained steel girders and compare it with analytical solutions. The 

material response is elastic with the modulus of elasticity,    set to     GPa and the 

Poisson’s ratio,  , is 0.3. For these analyses, the procedure type Linear perturbation - 

Buckle is chosen.  

The critical buckling moment is acquired in terms of the eigenvalues from the 

analyses,  , that are directly proportional to the applied moment,      , according to 

equation 4.1. The eigenvalues are extracted using the Lanczos algorithm.  

            4.1 
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4.1.2 Non-linear buckling analysis 

Non-linear buckling analyses are carried out in order to obtain the ultimate moment, 

  , where initial imperfection, material plasticity and residual stresses are taken into 

account. The procedure type is General – Static, Riks. An elastic-plastic material 

response with plastic hardening is chosen for the analyses. The modulus of elasticity 

and the Poisson’s ratio are the same as in the linear buckling analyses and the yield 

stress of the steel is chosen as     MPa. The plastic material properties can be viewed 

in the table below.  

Table 4.1: Material properties for the non-linear analyses. 

Yield stress [Mpa] Plastic strain (     ) 

      

           

In order to carry out non-linear analyses with initial imperfections, linear analyses 

have to be performed first for the same girder. The buckled shape of the girder in the 

linear buckling analysis is recorded. Thereafter, the initial imperfection is introduced 

in the non-linear analysis. The software will interpret the imperfection as a portion of 

the buckled shape from the linear buckling analysis. The initial lateral displacements 

are calculated with equation 3.2. The load proportionality factor, LPF, and the 

equivalent moment can be obtained for every iteration of the analyses.  The ultimate 

moment,   , is the maximum moment of all iterations. 

 

4.2 Load application 

All buckling analyses are performed with a bending moment applied at the end 

supports of the girders. The moment is applied by adding forces along the edges of the 

flanges, where the top flange is in tension and the bottom flange is in compression, as 

shown in Figure 4.2. The edge loads are obtained according to equation 4.2. 

   
    

     
 4.2 

 

Figure 4.2: Load applied at the edges of the flanges. 
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4.3 End supports 

The applied boundary conditions strongly influence the results of the buckling 

analyses. The analytical expressions that are evaluated are derived for simply 

supported girders. The boundary conditions are thereby chosen to simulate these 

conditions. The end supports are chosen to restrain lateral movement and torsion, but 

allow warping deformation. This is commonly referred to as fork supports and is 

modelled in the following way: 

 Point A, at the mid-height of the web, is restrained for movement in all three 

main directions and rotation about the longitudinal axis. 

 Point B, at the mid-height of the web, is restrained for movement in the lateral 

and vertical direction and for rotation about the longitudinal axis. 

 Lines a and b, along the edges of the web, are restrained for movement in the 

lateral direction. 

 

Figure 4.3: Boundary conditions for a simply supported girder is applied at points A and B, and lines a 

and b.  

 

4.4 Restraints 

When the torsional stiffness of the purlins is neglected, the purlins are modelled by 

restraining the movement in the lateral direction at evenly spaced points on the top 

flange of the girder, as can be seen in figure 4.4. 

 

 

Figure 4.4: A girder with evenly spaced lateral restraints at its top flange. 

 

The torsional stiffness, provided by the purlins when the connection is rigid, is 

modelled with springs. The springs are connected between points at the edges of the 

top flange of the girder and reference points defined above them, as can be seen in 

figure 4.5. The reference points in each restrained section should be constrained to 
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have the same vertical displacement and be free to move in the other directions. The 

height of the reference points is arbitrary and the springs should only add stiffness in 

the vertical direction. Purlins can be modelled in the following way for the studied 

girders:  

 Point B is fully restrained in the lateral direction. 

 Reference points are defined at an arbitrary height above points A and C. 

 A coupling constraint is defined between the reference points. 

 The reference points are restrained to rotate about the longitudinal axis in 

order to make the vertical displacement of the points to be equal. 

 Springs are created between points A and C and their corresponding reference 

points.  

 
Figure 4.5: Point B is fully restrained in lateral direction and springs are connected between the top 

flange, points A and C, and reference points above the two points.  

The stiffness of the springs should be equivalent to the torsional stiffness provided by 

each purlin, from equation 2.17. The spring stiffness is expressed with equation 4.3 

and the derivation can be seen in appendix A. 

    
    

  
   4.3 

As the torsional stiffness increases, local buckling in the flanges and distortion in the 

web at the restrained sections can occur. To prevent this, stiffeners are added to the 

restrained sections as can be seen in figure 4.5. The width and the thickness of the 

stiffeners will be the same as in the flanges, and the height will be the same as the 

height of the web. The stiffeners will restrain the warping of the girder, but the torsion 

will not be affected by them. The restraining effects from the stiffeners are considered 

to be insignificant and are therefore neglected. 

 

4.5 Convergence study 

A convergence study is performed using linear buckling analyses in order to find 

appropriate element size of the mesh. Girders with corrugated web are chosen for the 
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study since they require denser mesh than girders with flat web due to complexity of 

the geometry of the corrugated shape. There are two girders to be studied, one is 

unrestrained and the other has six restraints along its length. The girder with six 

restraints is studied for two different cases; with only lateral restraints and with 

torsional stiffness of       Nm/rad. For each of the studied cases, two different 

element types are tested: 

 4-node 1
st
 order shell elements with reduced integration [S4R] 

 8-node 2
nd

 order shell elements with reduced integration [S8R]   

The convergence study is carried out by studying the critical buckling moment for the 

two element types with varying element size. As can be seen from the graphs in 

appendix B, S8R elements give a better convergence than the S4R elements for all 

studied cases. S8R elements with side length of 40 mm are chosen to be used 

throughout the entire study. 

 

4.6 Verification of the model 

Static analyses are carried out in order to verify the reliability of the models. The 

results are obtained in terms of vertical mid-span deflection and the average stresses 

in the flanges, which are compared with analytical solution calculated with the 

following equations: 

   
 

  
  4.4a 

   
 

 

   

   
 4.4b 

The verification is carried out for the studied girders defined in section 3.1. The stress 

and the vertical deflection from equation 4.4 are not influenced by lateral nor torsional 

restraints and should therefore be the same for unrestrained and restrained girders. 

The verification is consequently performed for girders with varying number of lateral 

restraints in order to verify this behaviour. The results from the verification can be 

seen in table 4.2 for girders with flat web and in table 4.3 for girders with corrugated 

web. The vertical deflection and the stress in the flanges are close to the analytical 

value in all cases. The analytical mid-span deflection and the average stress in the 

flanges can be seen in appendix C. 
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Table 4.2:Vertical deflection and stress in the top and bottom flanges in girders with flat web and 

different number of restraints. The ratio is obtained from the values from the FEM analyses 

and analytical values as calculated in appendix C. 

No. of 

restraints 

        

[mm] 

Ratio: 
       

 
 

Stress in 

top flange 

[MPa] 

Ratio: 
       

 
 

Stress in 

bottom 

flange 

[MPa] 

Ratio: 
       

 
 

0 0.0680 0.987 0.458 1.003 -0.443 0.970 

1 0.0680 0.987 0.458 1.003 -0.443 0.970 

2 0.0680 0.987 0.458 1.005 -0.443 0.972 

3 0.0679 0.986 0.451 0.989 -0.448 0.981 

4 0.0679 0.986 0.458 1.005 -0.443 0.972 

5 0.0679 0.986 0.451 0.989 -0.449 0.986 

6 0.0679 0.986 0.458 1.005 -0.443 0.971 

 

Table 4.3:Vertical deflection and stress in the top and bottom flanges of girders with corrugated web 

and different number of restraints. The ratio is obtained from the values from the FEM 

analyses and analytical values as calculated in appendix C. 

No. of 

restraints 

        
[mm] 

Ratio: 
       

 
 

Stress in 

top flange 

[MPa] 

Ratio: 
       

 
 

Stress in 

bottom 

flange 

[MPa] 

Ratio: 
       

 
 

0 0.0871 0.986 0.598 1.022 -0.577 0.986 

1 0.0871 0.986 0.598 1.022 -0.577 0.986 

2 0.0870 0.986 0.578 0.988 -0.577 0.986 

3 0.0870 0.986 0.583 0.996 -0.577 0.986 

4 0.0870 0.985 0.588 1.005 -0.581 0.993 

5 0.0870 0.985 0.598 1.022 -0.578 0.988 

6 0.0870 0.985 0.585 1.000 -0.584 0.998 
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5 Results and Discussion 

The most important results, with regard to the aim of this project, are presented and 

discussed in this chapter. This includes a parametric study, carried out with linear 

buckling analyses, where the behaviour of the critical buckling moment is studied on 

a range of the most influencing parameters. In addition, the results from non-linear 

buckling analyses are used to evaluate the applicability of the design approach for 

lateral-torsional buckling in Eurocode 3 for restrained girders with corrugated web. 

The results of this study are listed in more detail in appendix D. 

 

5.1 Parametric study 

The following sections list the results from each of the studied parameters from linear 

buckling analyses. The critical buckling moment of the studied girders is obtained for 

the range of each studied parameter and compared with the critical buckling moment 

from the expression from Horne & Ajmani. For girders with corrugated web, the 

Lindner’s method is used. The geometrical parameters are studied for girders with 

five restraints and two values of the torsional stiffness, which results in the first and 

the second mode shape, respectively. 

 

5.1.1 Torsional stiffness and spacing between purlins 

The torsional stiffness of each restraint is studied on the range from         

Nm/rad for girders with 1-6 evenly spaced restraints along its length. The critical 

buckling moment from the analyses correlates well to the analytical solution in all 

cases for both girder types. However, the correlation improves as the spacing between 

the purlins is denser, which is reasonable since the analytical solution is derived under 

the assumption that the restraints are continuously applied. It is also noticeable that 

there is more deviation for higher torsional stiffness. This is due to local deformations 

around the restraints that the analytical solution does not take into account.  



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:100 
35 

 

Figure 5.1: Critical buckling moment plotted as a function of the torsional stiffness on the range 

        Nm/rad for girders with corrugated web and 1-6 restraints along its length. 

The first and the second mode shape have different slope of    for each girder. 

Figure 5.1 shows the comparison of the critical buckling moment, from the analyses 

and the analytical solution, as a function of the torsional stiffness on the studied range, 

for six different girders with corrugated web. The girders have identical cross-section 

and length but have different number of restraints, ranging from one to six. The girder 

with one mid-span restraint shows the maximum variation between the analytical 

solution and the FEM results, about 7 %, which is considered to be tolerable 

considering the assumption of continuous restraint in the derivation of the analytical 

solution. 

There is not much difference in the behaviour of the girders with flat and corrugated 

web on the studied range of the torsional stiffness. However, for further increment of 

the torsional stiffness, there is a great difference. The girder with flat web is more 

likely to experience local buckling in the web, which will result in a failure of the 

girder. The girder with corrugated web will experience increasing local deformation 

in the flanges, close to the restraints, for increasing torsional stiffness.  

When no torsional stiffness of the restraints is present, the girders are affected only by 

lateral restraints. The critical buckling moment should therefore be constant for 

varying number of restraints according to Horne & Ajmani’s expression. However, 

the critical buckling moment from the FEM analyses increases slightly for increasing 

number of restraints. This increment is considered to be so small that it can be 

neglected and the spacing between the purlins has therefore no influence of the critical 

buckling moment unless torsional stiffness is taken into account. 
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5.1.2 Web thickness 

The thickness of the web is studied on the range from      mm for the studied 

girders with five evenly spaced restraints. The girders are studied with torsional 

stiffness of         Nm/rad and         Nm/rad, which results in the first and the 

second mode shape, respectively. In all cases, the critical buckling moment is 

correlating well to the analytical solution and comparison between the girders flat and 

corrugated web is of more interest.  

 

 Figure 5.2: Critical buckling moment as a function of the web thickness for girders with flat and 

corrugated web. Torsional stiffness of the restraint is         Nm/rad. 

Figure 5.2 shows the comparison of the critical buckling moment, from the analyses, 

as a function of the web thickness for the studied girders. The torsional stiffness is 

       Nm/rad, which results in the first mode shape. Girders with flat web thinner 

than   mm will experience local buckling in the web, which results in failure of the 

girder. The girder with corrugated web, on the other hand, can have web thickness 

down to   mm without failure.  

By increasing the torsional stiffness to         Nm/rad, in order to obtain the second 

mode shape, gives similar behaviour. The difference is that the critical buckling 

moment increases and the girder with flat web needs to have minimum thickness of   

mm in order to withstand local buckling of the web, while the girder with corrugated 

web can still have   mm in thickness without failure.  

Increased web thickness does not result in large increase of the critical buckling 

moment on the studied range. Increasing the thickness of the web can therefore not be 

considered to be an economical way of increasing the buckling strength of the girder 

since it requires large increase in material use for little improvement in strength. 

However, this indicates that the advantage of having corrugated shape of the web 
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instead of a flat web can result in thinner web without reducing the critical buckling 

moment. The difference in thickness between a flat web and a corrugated web is 

larger as the web is thinner.  The corrugated shape of the web can therefore save 

material by reducing the web thickness without reducing the buckling strength of the 

girder.  

 

5.1.3 Web height  

The web height is studied on the range of          mm for the studied girders 

with five evenly spaced restraints. The girders are studied with torsional stiffness of 

        Nm/rad and         Nm/rad, which results in the first and the second mode 

shape, respectively. The FEM results show good correlation with the analytical 

solution in all cases. 

 

Figure 5.3: The critical buckling moment as a function of the web height. Comparison between the 

FEM model and the analytical solution of a girder with a corrugated web. Torsional 

stiffness of each restraint is         Nm/rad. 
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Figure 5.3 shows a comparison of the critical buckling moment from the FEM 

analyses and the analytical solution for girders with corrugated web. The critical 

buckling moment is plotted as a function of the web height for torsional stiffness of 

the restraints set to         Nm/rad, which results in the first mode shape. The 

critical buckling moment follows a parabolic shape when varying height of the web. 

 

Figure 5.4: The critical buckling moment as a function of the web height. Comparison between the 

FEM model and the analytical solution of a girder with a corrugated web. Torsional 

stiffness of each restraint is         Nm/rad. 

Figure 5.4 shows the critical buckling moment as a function of the web height for 

girders with corrugated web with the torsional stiffness of         Nm/rad, which 

results in the second mode shape. As for the first mode shape, the critical buckling 

moment has parabolic shape for varying web height. However, the web height, where 

the minimum value of the parabola is obtained, and the slope of the parabola is not the 

same compared with the first mode shape. 

The parabolic shape of the critical buckling moment can be explained by looking at 

different influencing factors. By increasing the height of the web of an unrestrained 

girder, the critical buckling moment increases. However, for restrained girders, the 

distance between the shear centre of the girder and the centre of the rotation of the 

restraint,   , is also increasing, which affects the critical buckling moment in the 

opposite way. The proportions of these two factors determine whether the critical 

buckling moment is increasing or decreasing when the height of the web is changed.  
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5.1.4 Flange thickness 

The thickness of the flanges is studied on the range from      mm for the studied 

girders with five evenly spaced restraints. The girders are studied with torsional 

stiffness of         Nm/rad and         Nm/rad, which results in the first and the 

second mode shape, respectively. The results show good correlation with the 

analytical solution in all cases. However the difference is slightly higher when the 

torsional stiffness results in the second mode shape.   

 

Figure 5.5: The critical buckling moment as a function of flange thickness. Comparison between the 

FEM models of girders with corrugated web and girders with flat web with 5 restraints and 

a torsional stiffness of        Nm/rad.   

Figure 5.5 shows the comparison of the critical buckling moment from the FEM 

model between the two girder types with a torsional stiffness set to         Nm/rad 

resulting in the first mode shape. As expected, the critical buckling moment increases 

as the thickness of the flanges increases. It is noteworthy that the critical buckling 

moment of the girder with corrugated web increases somewhat faster. This occurs 

both in the FEM analyses and with the analytical expressions as can be seen in table 

D.7 in appendix D.  

The study is also carried out for torsional stiffness of         Nm/rad, resulting in 

the second mode shape. The results show similar behaviour as for the first mode 

shape.  
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5.1.5 Flange width  

The flange width is studied on the range of         mm for the studied girders 

with five evenly spaced restraints. The girders are studied with torsional stiffness of 

        Nm/rad and         Nm/rad, which results in the first and the second mode 

shape, respectively. The results show good correlation with the analytical solution in 

all cases. However, the second mode shape has slightly higher variation between the 

critical buckling moment from the FEM analyses and the analytical solution as can be 

seen in appendix D. 

 

Figure 5.6: The critical buckling moment as a function of flange width. Comparison between the FEM 

models of girders with corrugated web and girders with flat web with 5 restraints and a 

torsional stiffness of        Nm/rad.   

Figure 5.6 shows the comparison of the critical buckling moment, obtained from the 

FEM analyses, as a function of the flange width for the studied girders when the 

torsional stiffness of the restraints was set to         Nm/rad, resulting in the first 

mode shape. As expected, increasing flange width results in an increasing critical 

buckling moment.  

By increasing the torsional stiffness to         Nm/rad, in order to obtain the second 

mode shape, the same behaviour is obtained as for the first mode shape. 

 

5.2 Design approach in Eurocode 3 

The reduction factor,    , and the non-dimensional slenderness ratio,    , are plotted 

as a buckling curve. This is done for the studied girders with six restraints with 

torsional stiffness on the range of           Nm/rad. The procedure of this study is 
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thoroughly described in section 3.3. The results are compared with the approaches 

suggested in Eurocode 3; the general case and the case for rolled sections or 

equivalent welded sections, which are described in section 2.6. The studied girders in 

this project have welded sections and should be designed for buckling curve d, 

according to Eurocode 3, based on the cross-sectional properties. In order to see if 

restrained girders or girders with corrugated web give a reason to lower the 

requirement of the initial imperfection suggested in Eurocode 3, the studied girders 

were also compared with buckling curve c. 

 

5.2.1 Buckling curve d 

The results from the non-linear buckling analyses, including appropriate value of the 

initial imperfections as recommended in Eurocode 3 for buckling curve d, are 

compared with buckling curve d from Eurocode 3 and the Euler buckling curve. 

Figure 5.7 shows the buckling curves for the girder with flat web. The results from the 

FEM model give higher reduction factor compared with the design curve for welded 

sections, which can therefore be considered conservative. Figure 5.8 shows the 

buckling curves for the girder with corrugated web. This gives very similar results as 

the girder with flat web, and the design curve for welded section can be considered to 

give conservative results for girders with corrugated web. 

   

Figure 5.7: Reduction factor,   , as a function of the non-dimensional slenderness,     Comparison of 

the results from non-linear analyses to design approach for buckling curve d in Eurocode 3 

for a girder with a flat web. 
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Figure 5.8: Reduction factor,   , as a function of the non-dimensional slenderness,     Comparison of 

the results from non-linear analyses to design approach for buckling curve d in Eurocode 3 

for a girder with a corrugated web. 

 

Figure 5.9: Reduction factor,   , as a function of the non-dimensional slenderness,     Comparison of 

the results from non-linear analyses between girders with flat- and corrugated web with 

initial imperfection according to buckling curve d in Eurocode 3. 
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The buckling curves obtained from the results from the FEM analyses for the two 

studied girders can be seen in figure 5.9. The girders are equivalent and the range of 

the torsional stiffness is the same for both girders. The only difference between them 

is the shape and the thickness of the web. The girder with the flat web has slightly 

higher reduction factor than the girder with the corrugated web for equivalent value of 

the non-dimensional slenderness. However, the girder with the corrugated web has 

lower value of the non-dimensional slenderness than the girder with flat web with 

equivalent torsional stiffness, resulting in higher reduction factor. This indicates that 

the corrugated shape of the web reduces the slenderness of the girder. 

The difference between the buckling curves for the two girder types can be explained 

by reviewing the expressions used to obtain the bucking curves: 

     
  

   
  5.1 

 

    √
   

   
 5.2 

When looking at the reduction factor, it can be seen from tables D.10 and D.11 in 

appendix D that the ultimate moment,   , is slightly lower for the girder with 

corrugated web than the girder with flat web but the difference is not significant. The 

difference between the yield moment,    , of the two girder types is relatively large, 

compared to the difference between the ultimate moments of the two girder types. 

Consequently, the reduction factor is controlled mainly be the yield moment of the 

two girders. The yield moment is lower for the girder with corrugated web than the 

girder with the flat web, since the web is not included in   for the girder with 

corrugated web. This results in higher reduction factor for the girder with corrugated 

web than equivalent girder with flat web.  

Similar behaviour can be seen in the non-dimensional slenderness. The difference 

between the critical buckling moments of the two girder types is not significant but 

the difference between the yield moment is greater in comparison. This results in 

higher slenderness for girders with flat web than girders with corrugated web. This 

behaviour can be seen in figure 5.9 by comparing equivalent points on the two curves. 

From these results, it can be concluded that girders with corrugated web are 

considered to be less slender than girders with flat web and are therefore less prone to 

lateral-torsional buckling due to higher reduction factor. However it is noteworthy to 

mention that the web is not contributing to the yield strength of girders with 

corrugated web. This means that even though the lateral-torsional stability has been 

increased by increasing the reduction factor, the design buckling resistance moment, 

from equation 2.26, is also controlled by the yield moment, which is lower for girders 

with corrugated web. 

 

5.2.2 Buckling curve c 

The same procedure is performed to obtain buckling curve c as for buckling curve d. 

Figure 5.10 shows buckling curves c for the girder with flat web. For slender girders, 

the results from the FEM analyses end up very close to the design curve for welded 
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sections. This cannot be considered to give conservative design approach and 

buckling curve c can therefore not be recommended for design purposes. Figure 5.11 

shows similar results for the girder with corrugated web. For slender girders, the 

reduction factor from the FEM analyses is lower than from the design curve for 

welded sections and is therefore unconservative. Figure 5.12 shows the difference 

between the buckling curves from the FEM analyses for the two girder types and it 

behaves in the same way as for buckling curve d, which is discussed in section 5.2.1. 

From these results, it can be concluded that design curve c is not appropriate for 

design purposes for the studied girders and the design curve should be chosen 

according to suggestions from Eurocode 3. 

 

Figure 5.10: Reduction factor,   , as a function of the non-dimensional slenderness,     Comparison 

of the results from non-linear analyses to design approach for buckling curve c in Eurocode 

3 for a girder with a flat web. 
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Figure 5.11: Reduction factor,   , as a function of the non-dimensional slenderness,     Comparison 

of the results from non-linear analyses to design approach for buckling curve c in Eurocode 

3 for a girder with a corrugated web. 

 

Figure 5.12: Reduction factor,   , as a function of the non-dimensional slenderness,     Comparison 

of the results from non-linear analyses between girders with flat- and corrugated web with 

initial imperfection according to buckling curve c in Eurocode 3. 
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6 Conclusions 

The critical buckling moment of restrained girders, due to lateral-torsional buckling, 

can be increased significantly by rigidly attaching purlins to the tension flange of 

girders. This is due to the torsional stiffness provided by rigidly attached purlins. The 

torsional stiffness is determined from the material- and geometrical properties of the 

purlins.  

Horne & Ajmani’s expression of the critical buckling moment for discretely restrained 

girders correlates well to the results from the FEM analyses performed in this study. 

This applies to both girders with flat web and corrugated web. The expression 

correlates well to the results from the FEM analyses for both coarsely and densely 

spaced restraints. However, the accuracy increases as the spacing of the restraints get 

denser, due to the assumption of continuous restraint in the derivation of it.  

Lindner’s approach is applicable to take the influence from the corrugated shape of 

the web into account for restrained girders and has comparable accuracy as girders 

with flat web. The main drawback from this approach is that it is dependent on the 

total length and the buckled shape of the girder. This can be solved by using the 

modified version of the approach, suggested by Larsson & Persson (2013), which is 

only dependent on sectional constants of the girder. 

The torsional stiffness, provided by rigidly attached purlins, only affects the critical 

buckling moment when the purlins are attached to the tension flange of the girder. 

When torsional stiffness is present, the number of purlins is an important influencing 

factor on the critical buckling moment, which increases with increasing number of 

purlins. However, if no torsional stiffness is present, and the purlins only provide 

lateral restraint, the critical buckling moment is close to a constant value for varying 

spacing of purlins.  

Having corrugated shape of the web of the girder instead of a flat web, does not result 

in large increment in the critical buckling moment. However, the corrugated shape of 

the web gives the possibility of reducing the thickness of the web without decreasing 

the critical buckling moment. The girder with corrugated web can therefore have 

better material efficiency than the girder with flat web. However it should be kept in 

mind that the shape of the corrugated web requires some increment in material usage, 

compared to equally thick flat web.  

From the non-linear analyses, it can be concluded that the design curves for lateral-

torsional buckling in Eurocode 3 can be used in a conservative way for restrained 

girders when,    , is obtained with Horne & Ajmani’s expression. Restrained girders 

with corrugated web can be designed conservatively in a similar way using Lindner’s 

approach. Girders with corrugated web are considered to be less slender than 

equivalent girders with flat web. By reducing the slenderness, the reduction factor 

increases and the girder has better resistance against lateral-torsional buckling. 

However, the yield moment of girders with corrugated web is lower than in equivalent 

girders with flat web, since the corrugated web is not contributing to the yield strength 

of the girder.  
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7 Suggestions for further research 

In this thesis it was confirmed that the critical moment of restrained girders can be 

accurately described with Horne & Ajmani´s method. Furthermore it was concluded 

that Lindner´s method of taking the increased strength from having a corrugated web 

into account works well combined with Horne & Ajmani´s method. However, this 

study was limited to only study uniform bending moment applied at the ends of the 

girders. The authors of this thesis suggest that load cases such as girders subjected to 

axial load and girders with non-uniform bending moment are studied. Furthermore, 

only one shape of the trapezoidal web was investigated. The authors suggest that more 

corrugation shapes are studied in order to confirm the accuracy of Lindner´s method 

for other types of corrugated profiles when restrained girders are studied.  

The study comprised non-linear analyses in order to produce buckling curves, 

comparing them with the buckling curves provided by Eurocode 3. This was carried 

out for a girder with flat web and a girder with corrugated web. However, the number 

of analyses was limited. Only one set spacing between purlins, and one cross-section 

for each type of girder was studied. The non-linear buckling analyses could be 

extended comprising several cross-sections and shapes of the trapezoidal web, 

extending the        -curves. If this would be done, the curves could be used when 

designing restrained girders.  
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A – Analytical derivations of equations  

This appendix includes derivation of the torsional stiffness provided by the purlins, 

equation 2.17, and the equivalent spring stiffness used when modelling, equation 4.3 

In addition, it contains verification of the applicability of the warping- and torsion 

constants for girders with corrugated web from modified Lindner’s approach for the 

critical buckling moment for restrained girders. 

  



Appendix A 

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:100 
50 

Spring stiffness from equation 4.3 

The spring stiffness in the model in ABAQUS CAE can be calculated in terms of the 

stiffness of the torsional restraint due to the effects of purlins. 

 

 
Figure A.1:    a) The purlins will give a restraining effect to the girder, which can be simplified as a 

spring with certain stiffness; b) Deformation of a purlin due to the rotation of a girder 

caused by LT-buckling. 

The stiffness of the torsional restraint of a purlin is expressed according to the 

definition of torsional stiffness.  

   
  

 
 

where    is the resulting moment caused by the rotation of the girder and   is the 

angle of rotation. The moment    and the angle    can be defined in the following 

way: 

        

  
 

    
 

where F is the force needed to deform a spring of stiffness    of a distance   and    is 

the width of the flange of the beam. The torsional stiffness can now be rewritten as: 

   
    

 

   
 

     
 

 
 

This can be solved for the spring stiffness as  

   
    

  
  

Torsional stiffness from equation 2.17 

The angle of rotation at the restrained cross-section of the girder is limited to the angle 

of rotation of the purlin according to the following equation:  

   
    

     
 

Where   ,    and    are the length, elastic modulus and the second moment of area for 

the purlin. This can be inserted into the equation for torsional stiffness to obtain the 

following expression: 
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Warping and torsional constants for the modified Lindner’s approach 

 

Unrestrained beams 

Insert the warping- and torsion constants from the Lindner’s approach, equation 2.23 

with    , into equation 2.16 describing the critical moment due to lateral-torsional 

buckling for unrestrained beams.  
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This can now be expressed in terms of the torsion and warping constants from the 

modified Lindner’s approach 

    
     

  
√

   

  
 

     
 

     
 

where   
     

  

 
 and   

     

 

 

Beams restrained at its compression flange 

 

Insert the general form of the warping- and torsion constants from the Lindner’s 

approach, equation 2.23, into equation 2.18 describing the critical moment due to 

lateral-torsional buckling for beams restrained at its compression flange. The spacing 

between purlins is considered to be       .  
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This can now be expressed in terms of the torsion- and warping constants from the 

modified Lindner’s approach: 
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Beams restrained at its tension flange 

 

Insert the general form of the warping- and torsion constants from the Lindner’s 

approach, equation 2.23, into equation 2.19 describing the critical buckling moment 

for beams restrained at its tension flange.  
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This can now be expressed in terms of the torsion- and warping constants from the 

modified Lindner’s approach 
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B – Convergence study 

This appendix contains the results from the convergence study carried out for this 

project. 
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Unrestrained beam with a corrugated web: 

 
Figure B.1:    a) Convergence study for an unrestrained beam with corrugated web. 

 

Girder with corrugated web and six lateral restraints along its length: 

 
Figure B.2:    a) Convergence study for a girder with six evenly spaced lateral restraints. 
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Girder with a corrugated web and six lateral and torsional restraints along its 

length. Torsiona stiffness:          Nm/rad ,  

 
Figure B.3:    a) Convergence study for a girder with six evenly spaced restraints with torsional 

stiffness of          Nm/rad. 

 
Table B.1: Comparison of the critical moment between FEM-model and analytical solution for a girder 

with flat web 

El. size unrestrained lateral restraints         Nm/rad 

[mm] S4R S8R S4R S8R S4R S8R 

20 158.5 159.2 168.6 169.2 1011.8 1011.6 

30 158.2 159.4 168.0 168.9 1009.8 1011.4 

40 157.0 159.4 166.8 169.6 1005.0 1011.1 

50 155.4 159.3 165.5 169.4 1000.4 1014.1 

60 150.8 160.8 160.4 169.5 978.5 1012.7 

70 150.7 161.5 160.2 170.6 976.7 1015.3 

80 150.7 159.7 160.1 169.6 977.2 1009.1 

90 152.2 160.1 159.1 169.1 975.5 1011.8 

100 155.4 161.4 164.2 168.1 993.4 1001.5 
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C – Verification of the models 

This appendix contains comparison of the deflection and stresses in the flanges 

between the FEM models and the analytical solution in order to verify the reliability 

of the models.  
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D – Results 

This appendix includes tables and graphs which contain the results from this study. 

This includes the results for the parametric study, using linear buckling analyses, and 

buckling curves, using non-linear analyses. The parameter study included the 

following parameters:  

 Torsional stiffness of the restraints    

 Spacing between the restraints 

 Thickness of the web 

 Height of the web 

 Thickness of the flanges 

 Width of the flanges 

 Height of the connection point of the purlins.  
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Laterally restrained girders 

Restrained at the tension flange 

 
Table D.1: Comparison of the critical moment between FEM-model and analytical solution for a 

girder with flat web 

No. of restraints                             Ratio: 
          

   
 

0 156.0 159.6 0.977 

1 158.5 162.8 0.974 

2 159.9 162.8 0.982 

3 161.3 162.8 0.991 

4 162.7 162.8 0.999 

5 164.1 162.8 1.008 

6 165.5 162.8 1.017 

 

Table D.2: Comparison of the critical moment between FEM-model and analytical solution for a 

girder with a corrugated web 

No. of restraints                             Ratio: 
          

   
 

0 159.2 163.4 0.974 

1 162.2 167.5 0.968 

2 163.8 167.5 0.978 

3 165.7 167.5 0.989 

4 166.3 167.5 0.993 

5 168.2 167.5 1.004 

6 169.6 167.5 1.013 
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Laterally and torsionally restrained girders 

 

Torsional stiffness & Number of purlins 

 

Figure D.1 shows the comparison of the critical buckling moment from the FEM 

model and the analytical solution from Horne & Ajmani, equations 2.19 and 2.20, for 

girders with 6 mm thick flat web and with 1-6 purlins along its length. The values for 

this comparison can be seen in Table D.3. 

 

 
Figure D.1:    The critical buckling moment, from the FEM model and the analytical solution, as a 

function of torsional stiffness provided by each purlin on 6 girders with flat web. The 

girders have 1-6 purlins along its total length.  
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Table D.3: Comparison of the critical buckling moment for varying torsional stiffness of the purlins for 

girders with flat web and number of purlins on the range 1-6. 

Torsional Stiffness 

[    
  

   
] 

1 purlin 2 purlins 

                       

       
 

                       

       
 

[kNm] [kNm] [kNm] [kNm] 

0.0 158.5 162.8 0.974 159.9 162.8 0.982 

0.2 211.7 216.8 0.976 240.4 243.9 0.986 

0.4 263.8 270.9 0.974 320.0 325.0 0.985 

0.6 314.4 325.0 0.967 398.7 406.1 0.982 

0.8 363.7 379.1 0.959 476.4 487.2 0.978 

1.0 411.4 433.1 0.950 553.3 568.3 0.974 

1.2 457.4 487.2 0.939 629.2 649.5 0.969 

1.4 501.7 541.3 0.927 678.7 697.5 0.973 

1.6 544.0 554.6 0.981 696.4 717.7 0.970 

1.8 544.8 554.6 0.982 713.9 738.0 0.967 

2.0 544.8 554.6 0.982 731.0 758.3 0.964 

Torsional Stiffness 

[    
  

   
] 

3 purlins 4 purlins 

                       

       
 

                       

       
 

[kNm] [kNm] [kNm] [kNm] 

0.0 161.3 162.8 0.991 162.7 162.8 1.000 

0.2 268.8 270.9 0.992 297.1 298.0 0.997 

0.4 375.2 379.1 0.990 430.3 433.1 0.993 

0.6 480.7 487.2 0.987 562.2 568.3 0.989 

0.8 585.1 595.4 0.983 681.4 690.7 0.986 

1.0 678.5 690.7 0.982 713.5 724.5 0.985 

1.2 703.8 717.7 0.981 745.3 758.3 0.983 

1.4 728.8 744.8 0.979 776.9 792.1 0.981 

1.6 753.6 771.8 0.976 808.2 825.9 0.979 

1.8 778.2 798.8 0.974 839.2 859.7 0.976 

2.0 802.5 825.9 0.972 869.9 893.5 0.974 

Torsional Stiffness 

[    
  

   
] 

5 purlins 6 purlins 

                       

       
 

                       

       
 

[kNm] [kNm] [kNm] [kNm] 

0.0 164.1 162.8 1.008 165.5 162.8 1.017 

0.2 325.4 325.0 1.001 353.6 352.0 1.005 

0.4 485.2 487.2 0.996 540.1 541.3 0.998 

0.6 643.6 649.5 0.991 692.3 697.5 0.993 

0.8 709.6 717.7 0.989 737.8 744.8 0.991 

1.0 748.3 758.3 0.987 782.9 792.1 0.988 

1.2 786.6 798.8 0.985 827.7 839.4 0.986 

1.4 824.5 839.4 0.982 872.0 886.7 0.983 

1.6 862.2 880.0 0.980 915.9 934.0 0.981 

1.8 899.4 920.5 0.977 959.4 981.4 0.978 

2.0 936.4 961.1 0.974 1002.4 1028.7 0.974 
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Figure D.2 shows the comparison of the critical buckling moment from the FEM 

model and the analytical solution from Horne & Ajmani, equations 2.19 and 2.20, for 

girders with 2 mm thick corrugated web and with 1-6 purlins along its length. The 

values for this comparison can be seen in Table D.4. 

 

Figure D.2:    The critical buckling moment, from the FEM model and the analytical solution, as a 

function of torsional stiffness provided by each purlin on 6 girders with corrugated web. 

The girders have 1-6 purlins along its total length.  
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Table D.4: Comparison of the critical buckling moment from FEM and analytical solution for varying 

torsional stiffness for girders with corrugated web and number of purlins on the range 1-6. 

Torsional Stiffness 

[    
  

   
] 

1 purlin 2 purlins 

                       

       
 

                       

       
 

[kNm] [kNm] [kNm] [kNm] 

0.0 162.2 167.5 0.969 163.8 167.5 0.978 

0.2 215.5 221.6 0.973 244.4 248.6 0.983 

0.4 267.5 275.6 0.971 324.0 329.7 0.983 

0.6 318.3 329.7 0.965 402.9 410.8 0.981 

0.8 367.6 383.8 0.958 480.8 491.9 0.977 

1.0 415.5 437.9 0.949 557.9 573.0 0.974 

1.2 461.7 491.9 0.939 634.1 654.2 0.969 

1.4 506.2 546.0 0.927 686.4 701.9 0.978 

1.6 548.5 558.7 0.982 704.4 722.1 0.975 

1.8 554.4 558.7 0.992 722.0 742.4 0.973 

2.0 554.5 558.7 0.992 739.4 762.7 0.969 

Torsional Stiffness 

[    
  

   
] 

3 purlins 4 purlins 

                       

       
 

                       

       
 

[kNm] [kNm] [kNm] [kNm] 

0.0 165.7 167.5 0.989 166.3 167.5 0.993 

0.2 273.6 275.6 0.992 300.4 302.7 0.993 

0.4 380.4 383.8 0.991 433.5 437.9 0.990 

0.6 486.3 491.9 0.989 565.3 573.0 0.986 

0.8 591.2 600.1 0.985 688.2 695.1 0.990 

1.0 685.5 695.1 0.986 720.9 728.9 0.989 

1.2 711.5 722.1 0.985 753.0 762.7 0.987 

1.4 736.9 749.2 0.984 784.9 796.5 0.985 

1.6 762.0 776.2 0.982 816.5 830.3 0.983 

1.8 786.8 803.2 0.980 847.8 864.1 0.981 

2.0 811.4 830.3 0.977 878.9 897.9 0.979 

Torsional Stiffness 

[    
  

   
] 

5 purlins 6 purlins 

                       

       
 

                       

       
 

[kNm] [kNm] [kNm] [kNm] 

0.0 168.2 167.5 1.004 169.6 167.5 1.013 

0.2 329.7 329.7 1.000 359.1 356.7 1.007 

0.4 489.9 491.9 0.996 555.0 546.0 1.016 

0.6 648.7 654.2 0.992 698.0 701.9 0.994 

0.8 716.2 722.1 0.992 743.9 749.2 0.993 

1.0 755.1 762.7 0.990 789.3 796.5 0.991 

1.2 793.7 803.2 0.988 834.4 843.8 0.989 

1.4 832.0 843.8 0.986 879.1 891.1 0.986 

1.6 870.0 884.4 0.984 923.4 938.4 0.984 

1.8 907.7 924.9 0.981 967.5 985.8 0.981 

2.0 945.1 965.5 0.979 1011.1 1033.1 0.979 
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Thickness of the web 

 
Table D.5: Comparison of the critical buckling moment for varying thickness of the web for girders 

with flat and corrugated web. The torsional stiffness of the restraints are      
          and              , which results in the first and the second mode 

shape, respectively. 

  Flat web,                     Corr web,                  

Web thickness                        

       
 

                       

       
 

[mm] [kNm] [kNm] [kNm] [kNm] 

2 
   

489.9 491.9 0.996 

3 
   

491.6 492.9 0.997 

4 477.9 483.1 0.989 493.5 494.2 0.999 

5 481.6 484.8 0.993 496.0 496.0 1.000 

6 485.2 487.2 0.996 499.1 498.5 1.001 

7 489.4 490.6 0.998 503.3 501.9 1.003 

8 494.6 495.2 0.999 508.6 506.5 1.004 

9 500.9 501.0 1.000 515.4 512.3 1.006 

10 508.6 508.3 1.000 523.7 519.5 1.008 

  Flat web,                   Corr web,                  

Web thickness                        

       
 

                       

       
 

[mm] [kNm] [kNm] [kNm] [kNm] 

2   

 

  832.0 843.8 0.986 

3   

 

  834.0 844.8 0.987 

4   

 

  836.2 846.1 0.988 

5   

 

  839.1 847.8 0.990 

6 824.5 839.4 0.982 842.9 850.4 0.991 

7 829.9 843.0 0.984 847.7 853.8 0.993 

8 836.0 847.8 0.986 853.8 858.3 0.995 

9 843.2 854.0 0.987 861.3 864.1 0.997 

10 851.7 861.7 0.988 870.5 871.3 0.999 
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Figure D.3:    The critical buckling moment, from the FEM models as a function of torsional stiffness 

provided by each purlin. The girders have 5 purlins along their total length and torsional 

stiffness of               . 

 

Figure D.4:    The critical buckling moment, from the FEM models as a function of torsional stiffness 

provided by each purlin. The girders have 5 purlins along their total length and torsional 

stiffness of               .  
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Height of the web 

 

Table D.6: Comparison of the critical buckling moment for varying height of the web for girders with 

flat and corrugated web. The torsional stiffness of the restraints are                

and              , which results in the first and the second mode shape, respectively. 

  Flat web,                     Corr web,                  

Web height                         

       
 

                       

       
 

[mm] [kNm] [kNm] [kNm] [kNm] 

500 473.1 474.5 0.997 482.0 482.6 0.999 

600 430.8 431.7 0.998 438.7 437.9 1.002 

700 405.5 406.1 0.998 410.0 410.8 0.998 

800 390.9 391.3 0.999 396.1 394.9 1.003 

900 383.5 383.8 0.999 387.5 386.5 1.003 

1000 381.1 381.5 0.999 383.6 383.3 1.001 

  Flat web,                   Corr web,                  

Web height                         

       
 

                       

       
 

[mm] [kNm] [kNm] [kNm] [kNm] 

500 799.2 813.3 0.983 808.0 821.2 0.984 

600 802.6 816.5 0.983 810.8 822.4 0.986 

700 824.5 839.4 0.982 832.0 843.8 0.986 

800 857.5 874.8 0.980 868.1 878.0 0.989 

900 896.2 918.7 0.976 911.8 920.8 0.990 

1000       960.4 969.6 0.990 
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Figure D.5:    The critical buckling moment as a function of the height of the web. Comparison between 

the FEM model and the analytical solution of a girder with a flat web and 5 restraints 

along its length with torsional stiffness of              . 

 

Figure D.6:    The critical buckling moment as a function of the height of the web. Comparison between 

the FEM model and the analytical solution of a girder with a corrugated web and 5 

restraints along its length with torsional stiffness of              . 
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Figure D.7:    The critical buckling moment as a function of the height of the web. Comparison between 

the FEM model and the analytical solution of a girder with a flat web and 5 restraints 

along its length with torsional stiffness of              . 

 

Figure D.8:    The critical buckling moment as a function of the height of the web. Comparison between 

the FEM model and the analytical solution of a girder with a corrugated web and 5 

restraints along its length with torsional stiffness of              . 
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Thickness of the Flanges 

 

Table D.7: Comparison of the critical buckling moment for varying thickness of the flanges for girders 

with flat and corrugated web. The torsional stiffness of the restraints are      
          and              , which results in the first and the second mode 

shape, respectively. 

  Flat web,                     Corr web,                  

Flange thickness                        

       
 

                       

       
 

[mm] [kNm] [kNm] [kNm] [kNm] 

8 425.3 426.6 0.997 423.2 424.4 0.997 

9 439.4 440.4 0.998 438.7 439.6 0.998 

10 454.1 455.1 0.998 455.0 455.8 0.998 

11 469.4 470.6 0.997 472.0 473.2 0.997 

12 485.2 487.2 0.996 489.9 491.9 0.996 

13 501.7 504.9 0.994 508.7 511.9 0.994 

14 518.8 523.8 0.990 528.6 533.3 0.991 

15 536.5 543.9 0.986 549.4 556.1 0.988 

16 554.9 565.4 0.981 571.3 580.3 0.984 

17 573.8 588.4 0.975 594.3 606.1 0.981 

  Flat web,                  Corr web,                  

Flange thickness                        

       
 

                       

       
 

[mm] [kNm] [kNm] [kNm] [kNm] 

8 632.8 646.3 0.979 634.8 643.8 0.986 

9 680.6 693.1 0.982 683.1 691.9 0.987 

10 728.2 740.8 0.983 731.9 741.2 0.987 

11 776.1 789.6 0.983 781.5 791.9 0.987 

12 824.5 839.4 0.982 832.0 843.8 0.986 

13 873.5 890.4 0.981 883.4 897.2 0.985 

14 923.1 942.8 0.979 935.8 952.0 0.983 

15 973.3 996.5 0.977 989.2 1008.3 0.981 

16 1024.2 1051.6 0.974 1043.6 1066.2 0.979 

17 1075.7 1108.3 0.971 1099.1 1125.6 0.976 
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Figure D.9:    The critical buckling moment as a function of the thickness of the flanges. Comparison 

between the results from the FEM models of girders with flat and corrugated web. The 

girders have 5 restraints along its length with torsional stiffness of              . 

 

Figure D.10: The critical buckling moment as a function of the thickness of the flanges. Comparison 

between the results from the FEM models of girders with flat and corrugated web. The 

girders have 5 restraints along its length with torsional stiffness of              . 
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Width of the Flanges 

 

Table D.8: Comparison of the critical buckling moment for varying width of the flanges for girders 

with flat and corrugated web. The torsional stiffness of the restraints are      
          and              , which results in the first and the second mode 

shape, respectively. 

  Flat web,                     Corr web                  

Flange width                        

       
 

                       

       
 

[mm] [kNm] [kNm] [kNm] [kNm] 

125       

150 242.2 242.8 0.997 244.9 245.2 0.999 

175 278.6 278.6 1.000 281.2 282.1 0.997 

200 325.4 325.0 1.001 329.7 329.7 1.000 

225 384.3 383.7 1.002 389.3 389.5 0.999 

250 456.9 456.2 1.001 462.6 463.1 0.999 

 
Flat web                  Corr web                  

Flange width                        

       
 

                       

       
 

[mm] [kNm] [kNm] [kNm] [kNm] 

125 406.5 434.1 0.936 411.1 435.0 0.945 

150 511.3 530.4 0.964 518.9 532.5 0.974 

175 648.1 663.4 0.977 654.6 666.7 0.982 

200 842.5 839.4 1.004 832.0 843.8 0.986 

225 1047.5 1064.4 0.984 1059.2 1069.9 0.990 

250 1321.4 1344.7 0.983 1335.3 1351.2 0.988 
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Figure D.11: The critical buckling moment as a function of the width of the flanges. Comparison 

between the results from the FEM models of girders with flat and corrugated web. The 

girders have 5 restraints along its length with torsional stiffness of              . 

 

Figure D.12: The critical buckling moment as a function of the width of the flanges. Comparison 

between the results from the FEM models of girders with flat and corrugated web. The 

girders have 5 restraints along its length with torsional stiffness of              . 
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Non-linear analyses 
 

Table D.9: Values of the yield stress, yield moment and initial imperfections, for buckling curves d and 

c, used in the non-linear buckling analyses for the two studied girder types. 

 
       Curve d Curve c 

 
[MPa] [kNm] [mm] [mm] 

Flat web 355 727.3 31.67 23.75 

Corrugated web 355 596.6 32.67 23.75 

 

Table D.10: Values of the most important variables to create the buckling curves for a girder with flat 

web. The curves are presented in chapters 5.2.  

   
curve d curve c 

                         

[   Nm/rad]   [kNm] 
 

[kNm] 
 

[kNm] 
 

0 162.8 2.114 160.9 0.221 163.4 0.225 

0.5 257.4 1.681 229.8 0.316 235.4 0.324 

1 352.0 1.437 296.3 0.407 304.3 0.418 

1.5 446.7 1.276 360.2 0.495 371.0 0.510 

2 541.3 1.159 421.6 0.580 435.1 0.598 

2.5 635.9 1.069 479.9 0.660 496.1 0.682 

 

Table D.11: Values of the most important variables to create the buckling curves for a girder with 

corrugated web. The curves are presented in chapters 5.2.  

   
curve d curve d 

                         

[   Nm/rad]   [kNm] 
 

[kNm] 
 

[kNm] 
 

0 167.5 1.887 145.8 0.244 150.8 0.253 

0.5 262.1 1.509 213.4 0.358 221.5 0.371 

1 356.7 1.293 277.1 0.464 289.0 0.484 

1.5 451.4 1.150 336.2 0.564 351.0 0.588 

2 546.0 1.045 389.7 0.653 406.6 0.682 

2.5 640.6 0.965 428.6 0.718 447.6 0.750 
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E – Matlab code 

This appendix contains all Matlab codes used to calculate and plot the results in this 

project. All graphs are presented in chapter 5 and/or in appendix D 
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Torsional stiffness & spacing between purlins 

 
Table E.1: Excel file: torsionalstiffness.xlsx; contains the critical buckling moment of the FEM model, 

used in the following Matlab code. 

  Flat web, 6 mm,  

Spring stiffness 1 purlin 2 purlins 3 purlins 4 purlins 5 purlins 6 purlins 

0 158.5 159.9 161.3 162.7 164.1 165.5 

1 211.7 240.4 268.8 297.1 325.4 353.6 

2 263.8 320.0 375.2 430.3 485.2 540.1 

3 314.4 398.7 480.7 562.2 643.6 692.3 

4 363.7 476.4 585.1 681.4 709.6 737.8 

5 411.4 553.3 678.5 713.5 748.3 782.9 

6 457.4 629.2 703.8 745.3 786.6 827.7 

7 501.7 678.7 728.8 776.9 824.5 872.0 

8 544.0 696.4 753.6 808.2 862.2 915.9 

9 544.8 713.9 778.2 839.2 899.4 959.4 

10 544.8 731.0 802.5 869.9 936.4 1002.4 

  Corrugated web, 2 mm 

Spring stiffness 1 purlin 2 purlins 3 purlins 4 purlins 5 purlins 6 purlins 

0 162.2 163.8 165.7 166.3 168.2 169.6 

1 215.5 244.4 273.6 300.4 329.7 359.1 

2 267.5 324.0 380.4 433.5 489.9 555.0 

3 318.3 402.9 486.3 565.3 648.7 698.0 

4 367.6 480.8 591.2 688.2 716.2 743.9 

5 415.5 557.9 685.5 720.9 755.1 789.3 

6 461.7 634.1 711.5 753.0 793.7 834.4 

7 506.2 686.4 736.9 784.9 832.0 879.1 

8 548.5 704.4 762.0 816.5 870.0 923.4 

9 554.4 722.0 786.8 847.8 907.7 967.5 

10 554.5 739.4 811.4 878.9 945.1 1011.1 
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% Parametric study: 

% Torsional stiffness & spacing between purlins 

clc, clear all, close all 

  
%% Properties of the girders 

  
% Material properties 
E = 210e9;          % [Pa] elastic modulus 
v = 0.3;            % Poission ratio 
G = E/(2*(1+v));    % [Pa] Shear modulus 

  
% Sectional properties 
h_w = 0.700;        % [m] Height of the web 
t_w_corr = 0.002;   % [m] Thickness of the corrugated web 
t_w_flat = 0.006;   % [m] Thickness of the flat web 
b_f = 0.200;        % [m] Width of the flange 
t_f = 0.012;        % [m] Thickness of the flange 
l = 9.5;            % [m] Length of the girder 

  
h_m = h_w+t_f;      % [m] Distance between centroid of flanges 
a = (h_w+t_f)/2;    % [m] Distance from center of cross-section to 

restr. 

  
% Second moment of area around the weak axis for girders with flat 

and 
% corrugated webs 
I_y_flat = h_w*t_w_flat^3/12+2*t_f*b_f^3/12;    % [m^4] 
I_y_corr = 2*t_f*b_f^3/12;                      % [m^4] 

  
% Shape of the corrugation 
a_1 = 0.140;        % [m] length of straight webpanel 
a_3 = 0.050;        % [m] length of inclined webpanel 
b_t = 0.050;        % [m] eccentricity of the corrugation 

  
u_x = h_m/(2*G*a_1*t_w_corr)+h_m^2*(a_1+a_3)^3/(600*a_1^2*E)*2/... 
    (b_f*t_f^3/12); 
c_w = b_t^2*h_m^2/(8*u_x*(a_1+a_3)); 

  
% Warping and torsion constants for a girder with flat web 
I_w_flat = I_y_flat*h_m^2/4;                % [m^6] 
I_t_flat = (2*b_f*t_f^3+h_w*t_w_flat^3)/3;  % [m^4] 

  
% Warping and torsion constants for a girder with corrugated 
% web using modified Lindner's approach 
I_w_corr = I_y_corr*h_m^2/4;                        % [m^6] 
I_t_corr = (2*b_f*t_f^3+h_w*t_w_corr^3)/3+c_w/G;    % [m^4] 

  
%% Torsional stiffness & number of purlins:  
% spring stiffness ranging from 0-10 MN/m 
% number of purlins ranging from 1-6 

  
k_max = 10;        % [MN/m/rad] Maximum spring stiffness 
n_max = 6;          % Highest number of restraints 

  
M_flat = zeros(n_max,k_max*10+1);   % M_cr for girders with flat web 
M_corr = zeros(n_max,k_max*10+1);   % M_cr for girders with 

corrugated web 

  
for n_res = 1:n_max;        % Number of restraints 
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    s = l/(n_res+1);        % [m] Spacing between purlins 

     
    % Critical buckling moment from case 2 (eq. 2.19) 

     
    M_bp_flat = pi^2*E*I_y_flat/s^2*sqrt(I_w_flat/I_y_flat+s^2*G*... 
        I_t_flat/(pi^2*E*I_y_flat)); 
    M_bp_corr = pi^2*E*I_y_corr/s^2*sqrt(I_w_corr/I_y_corr+s^2*G*... 
        I_t_corr/(pi^2*E*I_y_corr)); 

     
    % [Nm] Critical buckling moment from case 1 (eq. 2.18) 

     
    M_t1_flat = zeros; M_t1_corr = zeros; 

     
    % Calculate M_cr as a function of the torsional stiffness 
    for k = 0:0.1:k_max   % [MN/m/rad] spring stiffness 

         
        k_phi = k*10^6*b_f^2/2;  % [Nm/rad] torsional stiffness 

         
        M_t_flat = zeros; 
        M_t_corr = zeros; 

         
        for n = 1:n_res     % mode shape number 

             
            % M_cr from Horne & Ajmani  
            M_t_flat(n) = 1/(2*a)*(pi^2*E*n^2/l^2*... 
                

(I_w_flat+a^2*I_y_flat)+G*I_t_flat+k_phi/s*(l/(pi*n))^2); 
            M_t_corr(n) = 1/(2*a)*(pi^2*E*n^2/l^2*... 
                

(I_w_corr+a^2*I_y_corr)+G*I_t_corr+k_phi/s*(l/(pi*n))^2); 

             
        end 

         
        M_t1_flat(round(k*10+1)) = min([M_t_flat,M_bp_flat]); 
        M_t1_corr(round(k*10+1)) = min([M_t_corr,M_bp_corr]);         
    end 

     
    % M_cr for girders with flat and corrugated web. (n,k) matrix 

where n 
    % is the number of purlins and k is spring stiffness 
    M_corr(n_res,:) = M_t1_corr;    % [Nm]   
    M_flat(n_res,:) = M_t1_flat;    % [Nm]  

     
end 

  
A = xlsread('torsionalstiffness.xlsx'); 

  
%% Plots of M_cr vs. Spring stiffness, nubmer of purlins on the range 

1-6 

  
k1 = 0:0.1:k_max; 
k2 = A(:,1); 

  
k1 = k1.*10^6*b_f^2/2; 
k2 = k2.*10^6*b_f^2/2; 

  
% Girder with flat web, number of purlins ranging 1-6 
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figure           
for n = 1:n_max     % Number of purlins 

    
    plot(k1,M_flat(n,:)/1000), hold on  
    plot(k2,A(:,n+1),'.-r') 
    xlabel('k_{\phi} - [Nm/rad]') 
    ylabel('M_c_r - [kNm] ') 
    legend('Horne & Ajmani','FEM model','Location','SouthEast') 
    xlim([0 2*10^5]) 
end 

  
% Girder with corrugated web, number of purlins rangin 1-6 
figure  
for n = 1:n_max       % Number of purlins 

     
    plot(k1,M_corr(n,:)/1000), hold on  
    plot(k2,A(:,n+7),'.-r') 
    xlabel('k_{\phi} - [Nm/rad]') 
    ylabel('M_c_r - [kNm] ') 
    legend('Horne & Ajmani','FEM model','Location','SouthEast') 
    xlim([0 2*10^5]) 
end 
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Thickness of the web 
 

Table E.2: Excel file: webthickness.xlsx; contains the critical buckling moment of the FEM model, used 

in the following Matlab code. 

Web thickness 

thickness             

   
                

   
    

[mm] Flat Corr Flat Corr 

2 
 

489.91 
 

832.02 

3 
 

491.64 
 

833.95 

4 477.87 493.54 
 

836.2 

5 481.58 495.95 
 

839.08 

6 485.21 499.12 824.52 842.86 

7 489.43 503.28 829.89 847.7 

8 494.61 508.63 836.01 853.8 

9 500.92 515.39 843.17 861.34 

10 508.59 523.72 851.65 870.51 

 

 

%% Parametric study - web thickness 
clc, clear all, close all 

  
% values from the FEM analysis 

  
A = xlsread('parametric study.xlsx'); 

  
% 2MN/m for corrugated and flat web 

  
figure 
plot(A(1:9,1),A(1:9,3),'.-r'), hold on 
plot(A(1:9,1),A(1:9,2),'.-b') 
xlabel('t_w - [mm]') 
ylabel('M_c_r - [kNm]') 
legend('Girders with a corrugated web','Girders with a flat web',... 
    'Location','NorthWest') 

  
% 7MN/m for corrugated and flat web 

  
figure 
plot(A(1:9,1),A(1:9,5),'.-r'), hold on 
plot(A(1:9,1),A(1:9,4),'.-b') 
xlabel('t_w - [mm]') 
ylabel('M_c_r - [kNm]') 
legend('Girders with a corrugated web','Girders with a flat web',... 
    'Location','NorthWest') 
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Height of the web 
Table E.3: Excel file: webheight.xlsx; contains the critical buckling moment of the FEM model, used in 

the following Matlab code. 

Web height 

height           
  

   
           

  

   
 

[mm] Flat Corr Flat Corr 

500 473.1 482.0 799.2 808.0 

600 430.8 438.7 802.6 810.8 

700 405.5 410.0 824.5 832.0 

800 390.9 396.1 857.5 868.1 

900 383.5 387.5 896.2 911.8 

1000 381.1 383.6   960.4 

 
% Parametric study - web height 
% Plots the critical buckling moment as a fucntion of the web height 
clc, clear all, close all 

  
% material properties 
E = 210e9;          % [Pa] elastic modulus 
v = 0.3;            % Poission ratio 
G = E/(2*(1+v));    % [Pa] shear modulus 

  
% values from the FEM analysis 

  
A = xlsread('webheight.xlsx'); 

  
% web height 

  
t_w_corr = 0.002;   % [m] Thickness of the corrugated web 
t_w_flat = 0.006;   % [m] Thickness of the flat web 
b_f = 0.200;        % [m] Width of the flanges 
t_f = 0.012;        % [m] Thickness of the flanges 
l = 9.5;            % [m] Length of the girder 

  
% Sectional properties 

  
M_f1 = zeros; 
M_c1 = zeros; 

  
M_f2 = zeros; 
M_c2 = zeros; 

  
for h = 500:10:1000 

     
    x = round(h/10-49); 
    h_w = h/1000;       % [m] height of the web 

     

     
    h_m = h_w+t_f;      % [m] distance between centroid of flanges 
    a = (h_w+t_f)/2;    % [m] dist. from centre of cross-section to 

restr. 

     
    % [m^4] second moment of area of the weak axis for girders with 

flat  



Appendix E 

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:100 
82 

    % and corrugated web 

     
    I_y_flat = h_w*t_w_flat^3/12+2*t_f*b_f^3/12; 
    I_y_corr = 2*t_f*b_f^3/12; 

     
    % shape of the corrugation 
    a_1 = 0.140;        % [m] length of straight webpanel 
    a_3 = 0.050;        % [m] length of inclined webpanel 
    b_t = 0.050;        % [m] eccentricity of the corrugation 

     
    u_x = 

h_m/(2*G*a_1*t_w_corr)+h_m^2*(a_1+a_3)^3/(600*a_1^2*E)*2/... 
        (b_f*t_f^3/12); 
    c_w = b_t^2*h_m^2/(8*u_x*(a_1+a_3)); 

     
    % warping [m^6] and torsional [m^4] constants for girders with 

flat web 
    I_w_flat = I_y_flat*h_m^2/4; 
    I_t_flat = (2*b_f*t_f^3+h_w*t_w_flat^3)/3; 

     
    % warping [m^6] and torsional [m^4] constants for girders with  
    % corrugated web using modified Lindner's approach 
    I_w_corr = I_y_corr*h_m^2/4; 
    I_t_corr = (2*b_f*t_f^3+h_w*t_w_corr^3)/3+c_w/G; 

     
    n_b = 5;        % Number of restraints 
    s = l/(n_b+1);  % Spacing between purlins 

     
    % Torsional stiffness of 7 MN/m 

     
    n = 2;                      % Mode shape number 
    k_s = 7;                    % [MN/m] spring stiffness 
    k_phi = k_s*10^6*b_f^2/2;   % [Nm/rad] torsional stiffness 

     
    % The critical buckling moment 

     
    M_f1(x) = (1/(2*a)*(pi^2*E*n^2/l^2*(I_w_flat+a^2*I_y_flat)+... 
        G*I_t_flat+k_phi/s*(l/(pi*n))^2))/1000; 
    M_c1(x) = (1/(2*a)*(pi^2*E*n^2/l^2*(I_w_corr+a^2*I_y_corr)+... 
        G*I_t_corr+k_phi/s*(l/(pi*n))^2))/1000; 

     
    % Torsional stiffness of 2 MN/m 

     
    n = 1;                      % Mode shape number 
    k_s = 1.5;                  % [MN/m] spring stiffness 
    k_phi = k_s*10^6*b_f^2/2;   % [Nm/rad] torsional stiffness 

     
    % The critical buckling moment 

     
    M_f2(x) = (1/(2*a)*(pi^2*E*n^2/l^2*(I_w_flat+a^2*I_y_flat)+... 
        G*I_t_flat+k_phi/s*(l/(pi*n))^2))/1000; 
    M_c2(x) = (1/(2*a)*(pi^2*E*n^2/l^2*(I_w_corr+a^2*I_y_corr)+... 
        G*I_t_corr+k_phi/s*(l/(pi*n))^2))/1000; 

  
end 

  
h = 500:10:1000; 
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% 1.5 MN/m for corrugated 2mm and flat web 6 mm 

  
% Flat web vs. Horne & Ajmani 
figure 
plot(A(:,1),A(:,2),'.-b'), hold on 
plot(h,M_f2,'k') 
xlabel('h_w - [mm]') 
ylabel('M_c_r - [kNm]') 
legend('FEM model','Horne & Ajmani') 

  
% Corrugated web vs. Horne & Ajmani 
figure 
plot(A(:,1),A(:,3),'.-b'), hold on 
plot(h,M_c2,'k') 
xlabel('h_w - [mm]') 
ylabel('M_c_r - [kNm]') 
legend('FEM model','Horne & Ajmani') 

  
% 7MN/m for corrugated 2mm and flat web 6 mm 

  
% Flat web vs. Horne & Ajmani 
figure 
plot(A(:,1),A(:,4),'.-b'), hold on 
plot(h,M_f1,'k') 
xlabel('h_w - [mm]') 
ylabel('M_c_r - [kNm]') 
legend('FEM model','Horne & Ajmani') 

  
% Corrugated web vs. Horne & Ajmani 
figure 
plot(A(:,1),A(:,5),'.-b'), hold on 
plot(h,M_c1,'k') 
xlabel('h_w - [mm]') 
ylabel('M_c_r - [kNm]') 
legend('FEM model','Horne & Ajmani') 
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Thickness of the flanges 
Table E.4: Excel file: flangethickness.xlsx; contains the critical buckling moment of the FEM model, 

used in the following Matlab code. 

Flange thickness 

thickness           
  

   
           

  

   
 

[mm] Flat Corr Flat Corr 

8 425.33 423.21 632.79 634.79 

9 439.43 438.74 680.61 683.11 

10 454.11 454.97 728.17 731.94 

11 469.36 471.99 776.1 781.54 

12 485.21 489.91 824.52 832.02 

13 501.68 508.74 873.51 883.41 

14 518.79 528.58 923.11 935.77 

15 536.51 549.4 973.33 989.16 

16 554.85 571.3 1024.2 1043.6 

17 573.76 594.27 1075.7 1099.1 
 

% Parametric study - flange thickness 
clc, clear all, close all 

  
A = xlsread('flangethickness.xlsx'); 

  
% torsionals stiffness 2 MN/m  

  
figure 
plot(A(:,1),A(:,3),'.-r'), hold on 
plot(A(:,1),A(:,2),'.-b') 
xlabel('t_f - [mm]') 
ylabel('M_c_r - [kNm]') 
legend('Girders with a corrugated web','Girders with a flat web',... 
    'Location','SouthEast') 

  
% torsionals stiffness 7 MN/m  

  
figure 
plot(A(:,1),A(:,5),'.-r'), hold on 
plot(A(:,1),A(:,4),'.-b') 
xlabel('t_f - [mm]') 
ylabel('M_c_r - [kNm]') 
legend('Girders with a corrugated web','Girders with a flat web',... 
    'Location','SouthEast') 
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Width of the flanges 
 

Table E.5: Excel file: flangewidth.xlsx; contains the critical buckling moment of the FEM model, used 

in the following Matlab code. 

Flange width 

width 

  

        
  

   
           

  

   
 

[mm] Flat Corr Flat Corr 

125     406.5 411.125 

150 242.18 244.9 511.275 518.850 

175 278.60 281.2 648.1125 654.588 

200 325.37 329.7 842.5 832.000 

225 384.3 389.25 1047.488 1059.188 

250 456.875 462.625 1321.375 1335.250 

 
% Parametric study - flange width 
% Plots the critical buckling moment as a fucntion of the flange 

thickness 
clc, clear all, close all 

  
A = xlsread('flangewidth.xlsx'); 

  
% 0.2 Nm/rad corrugated web 2 mm and flat web 6 mm 

  
figure 
plot(A(:,1),A(:,2),'.-b'), hold on 
plot(A(:,1),A(:,3),'.-r') 
xlabel('b_f - [mm]') 
ylabel('M_c_r - [kNm]') 
legend('Girders with a flat web','Girders with a corrugated web',... 
    'Location','SouthEast') 

  
% 1.4 Nm/rad corrugated web 2 mm and flat web 6 mm 

  
figure 
plot(A(:,1),A(:,4),'.-b'), hold on 
plot(A(:,1),A(:,5),'.-r') 
xlabel('b_f - [mm]') 
ylabel('M_c_r - [kNm]') 
legend('Girders with a flat web','Girders with a corrugated web',... 
    'Location','SouthEast') 
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Bucling curves 
Table E.6: Excel file: buckling curve.xlsx; contains the ultimate moment from the non-linear buckling 

analysi, used in the following Matlab code. 

   Corrugated web Flat web 

             Curve c Curve d Curve c Curve d 

0.0 150.8 145.8 163.4 160.9 

0.1 221.5 213.4 235.4 229.8 

0.2 289.0 277.1 304.3 296.3 

0.3 351.0 336.2 371.0 360.2 

0.4 406.6 389.7 435.1 421.6 

0.5 447.6 428.6 496.1 479.9 

 
% Buckling curve 
% Non linear analysis 
clc, clear all, close all 

  
% material properties 
E = 210e9;          % [Pa] elastic modulus 
v = 0.3;            % Poission ratio 
G = E/(2*(1+v));    % [Pa] shear modulus 
f_y = 355e6;        % [N/m^2] yield stress 

  
% Dimensional properties of the girder 

  
b_f =  0.200;       % [m] width of the flange 
t_f = 0.012;        % [m] thickness of the flange 
h_w = 0.700;        % [m] height of the web 
t_w_corr = 0.002;   % [m] thickness of the web 
t_w_flat = 0.006; 
l = 9.5;            % [m] length of the beam 

  
h_tot = h_w+t_f*2;  % [m] total depth of the beam 
h_m = h_w+t_f;      % [m] dist. between centroid of flanges 

  
a = (h_w+t_f)/2;    % [m] dist. from centre of cross-section to 

restr. 

  
% sectional modulus 

  
I = (b_f*h_tot^3/12-b_f*h_w^3/12);  % [m^4] around the strong axis 
y = h_tot/2;                        % [m] 
W_corr = I/y;                       % [m^3] sectional modulus 

  
I = (b_f*h_tot^3/12-b_f*h_w^3/12)...% [m^4] around the strong axis 
    +t_w_flat*h_w^3/12; 
y = h_tot/2;                        % [m] 
W_flat= I/y;                        % [m^3] sectional modulus 

  
I_y_corr = 2*t_f*b_f^3/12;                    % [m^4] around the weak 

axis 
I_y_flat = 2*t_f*b_f^3/12+h_w*t_w_flat^3/12;  % [m^4] around the weak 

axis 

  
% shape of the corrugation 
a_1 = 0.140;        % [m] length of straight webpanel 
a_3 = 0.050;        % [m] length of inclined webpanel 



Appendix E 

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:100 
87 

b_t = 0.050;        % [m] eccentricity of the corrugation 

  
u_x = h_m/(2*G*a_1*t_w_corr)+h_m^2*(a_1+a_3)^3/... 
    (600*a_1^2*E)*2/(b_f*t_f^3/12); 
c_w = b_t^2*h_m^2/(8*u_x*(a_1+a_3)); 

  
% warping- and torsion constants 

  
I_w_corr = I_y_corr*h_m^2/4; 
I_t_corr = (2*b_f*t_f^3+h_w*t_w_corr^3)/3+c_w/G; 

  
I_w_flat = I_y_flat*h_m^2/4; 
I_t_flat = (2*b_f*t_f^3+h_w*t_w_flat^3)/3; 

  
% Yield moment 

  
M_y_corr = W_corr*f_y/1000; 
M_y_flat = W_flat*f_y/1000; 

  
% Critical buckling moment 

  
n = 1;          % Mode shape number 
n_b = 6;        % number of restraints 
s = l/(n_b+1);  % spacing between purlins 

  
X_ec_corr = zeros(5,6); 
X_ec_flat = zeros(5,6); 

  
X_ec_corr2 = zeros(5,6); 
X_ec_flat2 = zeros(5,6); 

  
X_corr = zeros; 
X_flat = zeros; 

  
U_corr = zeros(5,6); 
U_flat = zeros(5,6); 

  
lam_corr = zeros; 
lam_flat = zeros; 

  
X_Euler_flat = zeros; 
X_Euler_corr = zeros; 

  
A = xlsread('buckling curve.xlsx'); 

  
for k = 1:length(A(:,1)) 

     
    % critical moment M_cr 
    k_phi = A(k,1)*10^5; 
    M_c_corr = (1/(2*a)*(pi^2*E*n^2/l^2*(I_w_corr+a^2*I_y_corr)+... 
        G*I_t_corr+k_phi/s*(l/(pi*n))^2))/1000; 
    M_c_flat = (1/(2*a)*(pi^2*E*n^2/l^2*(I_w_flat+a^2*I_y_flat)+... 
        G*I_t_flat+k_phi/s*(l/(pi*n))^2))/1000; 

     
    % Lambda_LT 
    lam_corr(k) = sqrt(M_y_corr/M_c_corr); 
    lam_flat(k) = sqrt(M_y_flat/M_c_flat); 
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    for i = 1:2 

         
        X_corr(i,k) = A(k,i+1)/M_y_corr; 
        X_flat(i,k) = A(k,i+3)/M_y_flat; 

         
        % X_LT from EC: General case 
        alpha = [0.49 0.76];    % imperfection factor for curves c 

and d 

         
        P_corr = 0.5*(1+alpha(i)*(lam_corr(k)-0.2)+lam_corr(k)^2); 
        P_flat = 0.5*(1+alpha(i)*(lam_flat(k)-0.2)+lam_flat(k)^2); 

         
        X_ec_corr(i,k) = 1/(P_corr+sqrt(P_corr^2-lam_corr(k)^2)); 
        X_ec_flat(i,k) = 1/(P_flat+sqrt(P_flat^2-lam_flat(k)^2)); 

         
        % X_LT from EC: welded sections 
        beta = 0.75; 

         
        P_corr2 = 0.5*(1+alpha(i)*(lam_corr(k)-

0.4)+beta*lam_corr(k)^2); 
        P_flat2 = 0.5*(1+alpha(i)*(lam_flat(k)-

0.4)+beta*lam_flat(k)^2); 

         
        X_ec_corr2(i,k) = 1/(P_corr2+sqrt(P_corr2^2-

beta*lam_corr(k)^2)); 
        X_ec_flat2(i,k) = 1/(P_flat2+sqrt(P_flat2^2-

beta*lam_flat(k)^2)); 

         
        % Euler 
        X_Euler_flat(i,k) = 1/lam_flat(k)^2; 
        X_Euler_corr(i,k) = 1/lam_corr(k)^2; 

         
    end 
end 

  

  
for i = 1:2 
    figure 
    plot(lam_flat,X_flat(i,:),'.-k'), hold on 
    plot(lam_corr,X_corr(i,:),'+-k') 
    grid on 
    xlabel('$\bar{\lambda}_{LT}$','Interpreter','latex') 
    ylabel('{\chi}_{LT}') 
    legend('Girder with flat web','Girder with corrugated web') 
end 

  
for i = 1:2 
    figure 
    plot(lam_corr,X_Euler_corr(i,:),'k'), hold on 
    plot(lam_corr,X_corr(i,:),'*k') 
    plot(lam_corr,X_ec_corr2(i,:),'.-k') 
    plot(lam_corr,X_ec_corr(i,:),'x-k') 
    grid on 
    axis([0.9 2.2 0.1 1.1]) 
    xlabel('$\bar{\lambda}_{LT}$','Interpreter','latex') 
    ylabel('{\chi}_{LT}') 
    legend('Euler buckling curve','FEM model','EC3: Welded 

sections',... 
        'EC3: General case') 
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end 

  
for i = 1:2 
    figure 
    plot(lam_flat,X_Euler_flat(i,:),'k'), hold on 
    plot(lam_flat,X_flat(i,:),'*k') 
    plot(lam_flat,X_ec_flat2(i,:),'.-k') 
    plot(lam_flat,X_ec_flat(i,:),'x-k') 
    grid on 
    axis([0.9 2.2 0.1 1.1]) 
    xlabel('$\bar{\lambda}_{LT}$','Interpreter','latex') 
    ylabel('{\chi}_{LT}') 
    legend('Euler buckling curve','FEM model','EC3: Welded 

sections',... 
        'EC3: General case') 
end 

 


