

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2014

Visualization of Configurations
Degree Project, BSc in Computer Engineering

Magnus Dannerstedt

Niklas Helgegren

Visualization of Configurations

Magnus Dannerstedt, Niklas Helgegren

© MAGNUS DANNERSTEDT, NIKLAS HELGEGREN, 2014

Department of Computer Science and Engineering

Chalmers University of Technology

SE-412 96 Gothenburg

Sweden

Tel: +46-(0)31-772 1000

Fax: +46-(0)31-772 3663

Department of Computer Science and Engineering

Gothenburg, 2014

Visualization of Configurations

Abstract

There exist multiple configurations for an RBS (Radio Base Station) in a telecommunication

network. The combinations between equipment configurations and functional configurations are

numerous. Due to this mapping between functional and equipment the validity of a configuration

is complex. When developing or deploying an RBS it is important to understand the

configuration.

This degree project investigates the ability to visualize this domain with the environment

Intentional Domain Workbench. The main method of doing this is creating two kind of type

catalogues for equipment and functional. Then one can use the type catalogues to create

configurations that then are able to map between each other.

A basic prototype in the environment was developed which lets two types of users interact with

the prototype. The two types of users have different views. That is for letting the specific type of

user use the program in the best way possible. The prototype developed was tested by a group of

prospective users. They did see potential in the prototype and gave suggestions of improvements

for the future. Future improvements of the prototype would be to increase the validation making

sure it would be hard make mistakes while using the prototype, and increase usability.

Sammanfattning

Det existerar många olika konfigurationer för en RBS(RadioBasStation) i ett

telekommunikationsnätverk. Kombinationerna mellan hårdvarukonfigurationer och funktionella

konfigurationer är mångtaliga. Därför är validering av mappning mellan hårdvara och

funktionalitet komplex. När man utvecklar eller placerar ut en RBS är det viktigt att förstå

konfigurationen.

Detta examensarbete undersöker möjliheten att visualisera denna domän med miljön Intentional

Domain Workbench. Den huvudsakliga metoden att göra detta är att skapa två sorters

typkataloger för hårdvara och funktionella delar. Sedan kan man använda typkatalogerna för att

skapa konfigurationer som kan användas till att mappa emellan.

En enkel prototyp utvecklades som låter två typer av använder interagera med prototypen. De två

användarna har olika vyer. Detta är så att en specifik typ av användare ska kunna nyttja

programmet på det bästa möjliga sättet. Prototypen testades av en grupp tilltänkta användare. De

såg potential i prototypen och gav förslag om framtida förbättringar. Framtida förbättring av

prototypen kan vara att öka valideringen för att minska risken för misstag och öka

användarvänlighet.

Acknowledgments

We would like to thank Staffan Ehnebom, Lars Boström, Chongchi Phung and Mikael Krekola

for their support and assistance to this project. We would also like to thank Mats Helander for the

support and time he spent helping us with the programming and Magnus Almgren for his

guidance with the report and feedback on our workflow.

Acronyms, Abbreviations and Terms

Functional A term for the logical parts in the

 configuration

IDW Intentional Domain Workbench

DSL Domain Specific Language

RBS Radio Base Station

View A workbench with a specific purpose

Table of Contents

1. Introduction …………………………………………………………………………………..1

1.1 Background …………….………………………………………………………….1

1.2 Purpose ………....……………………………………………………………….…1

1.3 Goal ……………...……...……………………………………………………….…2

1.4 Restrictions …….…….……………………………………………………….….2

2 Method ...………………..………………………………………………………………..….3

 2.1 Preparations ………………………………………………………………….…….3

 2.2 Creating Workbenches …………………………………………………….……..3

 2.2.1 Creating a Configuration ……………………………...………………..3

 2.3 Evaluation …….……….…………………………………………………………....4

3 Technical Background ……………………………………………………………………..5

3.1 Language Workbenches …….………………………………………………...5

3.2 Intentional Domain Workbench …………………………………………….…6

3.2.1 Meta Model or Schema ……..…………………………………….…6

3.2.2 Projections and Projectdef …………………………………….….6

3.2.3 Virtualdef ……………………………………………………………...8

3.2.4 Validation ……………………………………………………………...8

3.2.5 Cmdprocs, Classes, BackQuote and BookQuote ……………….8

 3.3 Descriptions of Terms Used ..………………………………………..9

4 Implementation …………..………………………………………………………………….11

4.1 Meta Model or Schema .…………………………………………………….…11

4.2 Projections …...……………………………………………………………….…12

4.2.1 Type Catalogues View ……………………………………………..12

4.2.2 Configuration and Mapping View …………….………………....12

4.3 Validation …….……………………………………………………………….…13

4.4 Cmdprocs and Helper Classes ……….………………………………….….13

5 Result ………………………………………………………………………………….…..15

5.1 Type Catalogues ………………………………………………………….…….15

5.2 Configuration …………..………………………………………………………..17

5.3 Mapping ……….……………………………………………………………….…21

6 Evaluation ……..……………………………………………………………………….…..23

 6.1 Practical Testing ………...………………………………………………………..23

 6.1.1Result of Practical Testing ……………………………………………..23

 6.2 Evaluation Questionnaire ……….……………………………………………...23

 6.2.1 Result of Questionnaire ………..………………………………….…24

7 Conclusion …….………………………………………………………………………..….25

7.1 Recap ………..…………………………………………………………….…...25

7.2 Critical Discussion ….………………………………………………….….…25

 7.2.1 Sustainability Concerns ………..……………………………..….….25

 7.2.2 Configuration and Type Catalogue ………………………….….….25

 7.2.3 Intentional Domain Workbench …………………..………….……..26

 7.2.4 Differences in Plan Versus Execution ……………………….……..26

7.3 Future Development …………………………………………………….……..27

7.4 Conclusion ……………...……………………………………………….……....27

References

Appendix

1

1. Introduction

1.1 Background

Ericsson is an international telecommunications company. Ericsson was founded in 1876 by Lars

Magnus Ericsson [1]. Today Ericsson products exist in more than 1,000 networks in over 180

countries and at least 40% of the world’s mobile traffic passes through these networks [2].

The department where the degree project is done is focused on software for Ericsson's radio base

stations.

An RBS (Radio Base Station) in a telecommunication network can be configured in many ways.

There are numerous combinations of equipment configurations (hardware and software

capabilities) and logical configurations (functional demands). Because of the complexity of an

RBS configuration, it is sometimes hard to understand the configuration, i.e. the mapping of the

logical configuration onto the equipment configuration. Furthermore, it can also be hard to

understand whether a configuration is a valid. The need for this understanding is of high

importance when working in development and deployment of an RBS. Therefore, it is interesting

to investigate how to edit, validate and visualize large configurations in an efficient way. In other

words, to investigate how to make efficient domain specific languages for editing and exploring

large configurations. One level of visualization is just for manual validation. Another, more

advanced, level of visualization is to support automatic validation and/or proposal(s) of

configurations.

When there is just a few kinds of equipment items and functions it is realistic to document them,

but when more items are added, the complexity grows [3]. To improve this, another way to show

configurations is needed and providing a visualization is a good way to do it [4].

Visualization is used in wide range of subjects and for many different reasons. It can range from

how a tree structure is best visualized [5] to finding errors in computer networks [6].

When you

have information it is important to find a good way to visualize it [7]. If the visualization of

information is represented in a rather large graph it could be good to figure out how to navigate

in large graphs [8].

1.2 Purpose

The purpose of this degree project is visualizing large RBS configurations using a Domain

Specific Language (DSL). The created program should have the possibilities to show which

different layers of configurations that the product has. The DSL user should be able to see how

different parts are interconnected. Together this should make it easier for the DSL user to get a

2

grasp of what the product consists of and how different parts and layers are related to each other.

1.3 Goal

The goal of this project is to develop a prototype/workbench with the following functionality.

One view with type catalogues where functional and equipment types will be defined and placed

in the catalogues of the domain experts. There will be both an equipment type catalogue and a

functional type catalogue (described further in chapter 4.2).

 Another view to be defined will be the configuration view. This is a view where the DSL user

can create and connect instances. These instances are of the types that are defined in the type

catalogues view. When created they are placed in a functional or equipment diagram. Both

works in similar ways when a DSL user does the connections between equipment or functional

items. This view will also show the mapping between functional and equipment. The view will

show what functional instances an equipment instance may have or on which equipment instance

a functional instance is deployed.

Both the configuration view and the type catalogues view should have validation controls that

can suggest appropriate values for a field. This will be used when adding ports for a unit or

connection. The suggested validation will also be applied when a capacity demand or capability

is selected (described in chapter 4.2). The choices of which resources the domain expert can

choose from will be included in the schema.

1.4 Restrictions

The environment platform that will be used is the “Intentional Domain Workbench” .The

intention is to evaluate this projectional editor for visualization. No comparison with other

visualization tools will take place. Intentional Domain Workbench is used to develop the

prototype. The prototype comprises only basic validations. However, more enhanced ones are

possible to add later on. The prototype at this time is limited to two layers, one equipment layer

and one functional layer. The prototype will have the ability to add more layers later on with ease

but for the specific version that will be used for demonstration within this project only two layers

will be used.

3

2. Method

The method that will be used is scrum [9] like, where there will be a meeting in the beginning of

each week with supervisors to show what has been done and plan what the focus will be until

next meeting. A task that will be ongoing but also done last is to polish the code by removing

unnecessary code and making it more readable.

The workflow will be to have a progress meeting each week with both supervisors on Ericsson

and help from Intentional Software Corporation. Furthermore there will be additional Skype

meetings with Intentional Software Corporation, for help with the coding. In each week it will be

decided what will be the focus, what can be scratched or added. In addition to this every other

week there will be a meeting with the Chalmers supervisor. The following phases of the project

have been identified and will be described below; preparations, creating workbenches and

evaluation.

2.1 Preparations

The first thing that is done is to learn about the problem domain. When that is done it is time to

use one week to learn the platform that is going to be used, in this case the Intentional Domain

Workbench. Then it is time to define the schema for the specific domain. As a scrum-like

method is used, there will not be much further detailed planning for each week; instead there is

going to be a scrum-board with backlog where we can choose what to focus on each week.

2.2 Creating Workbenches

After the schema is defined the plan is to develop a workbench where the domain expert can edit

and see the different unit types, connection types and port types for both equipment and

functional. Other tasks that are planned are the configuration view for equipment and functional

units and the mapping view.

There will be a set of starting points to choose from for both equipment and functional so that the

DSL user does not start from scratch each time when building a new configuration, even if that is

an option.

2.2.1 Creating a Configuration

There will be validation for mapping and connections between units to ensure that no invalid

configurations are created. Another thing that is planned is to calculate how much an equipment

unit is used and color-code it if overused. Programming or choosing a graphical library to

represent the functional and equipment graph is another task to be done.

4

2.3 Evaluation

To ensure that the prototype has a practical usage, an evaluation will be done at the end. The

group evaluating the created prototype should be persons working in the field. In that way the

evaluation gives the best information if the prototype will be of practical usage. The evaluation

will let the group of people test the prototype doing a specific task. After the task is done they

will answer a questionnaire. The questionnaires will be analysed. In addition to the

questionnaire, the functionality will be constantly tested during the development of the

prototype.

5

3. Technical Background

The platform that is used in this degree project, the Intentional Domain Workbench (IDW), is an

example of a language workbench. The following sections will describe what a language

workbench is and then focus on Intentional Domain workbench. When projections are mentioned

in the following text, it refers to how the data in a language workbench is presented graphically.

3.1 Language Workbenches

Language workbenches are built upon a tree structure which means in IDW that everything needs

to be defined where it is in the tree before any compilation can be done. The workbench is used

to define knowledge of a specific field in a concrete way based mostly on business knowledge.

This is what is called a Domain Specific Language (DSL). This means that instead of a language

as java or another programming language, a DSL is specifically tailored to one small domain

[10]. The method is to define something known as the meta model or schema. It is important to

think of every detail due to how the DSL user and domain expert want it in the schema. After the

schema or meta model is done, it is possible to project the language in a comfortable projection

for a DSL user or domain expert to use it. A projection is what it is called when the program

visualizes the data in some way such as tables, text, diagram, images etc. The language

workbench has three different kinds of persons that interact with it [11]. The domain experts that

have detail knowledge about the types, the DSL developer who interprets the domain expert and

translates his knowledge into the type catalogues and the DSL user, who will use the finished

product to create solutions for different situations as illustrated in Figure 3.1.

Figure 3.1 The Different Users

6

3.2 Intentional Domain Workbench

The environment used for this project is Intentional Domain Workbench. The reason for this was

that it is possible to project the model visually in several different ways without doing changes in

the domain. The possibility to have several views but only one model can make it possible for

different users to understand the model, and modify it in the most appropriate way.

Intentional Domain Workbench is an environment platform that can be used to make other tool

platforms known as workbenches. In this project the type catalogues view and the configuration

view are examples of new workbenches created by IDW. The views have a specific purpose but

much of the original workbench functionality remains.

3.2.1 Meta Model or Schema

The meta model or schema is the building blocks of the program. This is where the DSL is

defined. In Intentional Domain Workbench this is done by using the keyword def followed by a

name which can be seen in Figure 3.2. In the def it is possible to include different fields with

different types and decide if it should be a list or not. After the schema is defined the DSL

developer can start building the projections. If the standard projection is not wanted, then for

each item that needs a different projection, a so-called projectdef is defined.

Figure 3.2 A def example

3.2.2 Projections and Projectdef

A projectdef (Figure 3.3) is what determines how a specific def is projected if another projection

than the standard projection is wanted. In the projectdef it is decided which def it will determine

the projection for. They are listed after the declaration that the following code is a projectdef.

One projectdef can determine the projection for several defs. Figure 3.3 is the projectdef for the

defs, Equipment Type Catalogue and Functional Type Catalogue.

The projectdef in Intentional Domain Workbench is built by the Alanguage. Alanguage is

specific to Intentional Domain Workbench and allows the DSL developer to build very specific

projections. Options include AChapter, for the ability to close and open, Atable to project as

tables, Agraphs for a diagram and more. The DSL developer then uses these keywords to build

7

the structure for the projection. An example of using Alanguage is shown in Figure 3.3 If more

interactivity is required for example pressing a button to add a new item defined in the schema or

sorting a list this can be programmed in CL1. CL1 is an extension of C# with added features so it

is possible to easily incorporate nodes and trees in the programming. Figure 3.4 is an example of

how to add a node to a tree, and in this case used for creating new instances in the Configuration

view

Figure 3.3 Projectdef for the type catalogues

Figure 3.4 CL1 program example

8

3.2.3 Virtualdef

A virtualdef is a def that matches on a reference to another def. This can be used to make certain

projection for parts of the schema or validation. So instead of creating a projectdef or validation

for all fields of the type, instead the DSL developer can set just a couple of fields to the virtualdef

which means that the projectdef or validation will only apply to those fields. Another

improvement is the ability to add fields in the virtualdef with extra information which can be

seen in Figure 3.5.

 Figure 3.5 virtualdef

3.2.4 Validation

In Intentional Domain Workbench there are two different kinds of validations, validateisa and

validateNode. ValidateNode is used to check the relevant nodes after committing, while

validateisa limits choices before the domain expert or the DSL user selects a new node to add to

the tree. Valiadateisa is implied for one def, a virtualdef.

In the validateisa (Figure 3.6) node the programmer write code and in the end there is one or

several assert statements. If all asserts evaluate to true the nodes are allowed to be chosen but if

at least one evaluates to false that node will not be shown when the domain expert or the DSL

user is selecting from the dropdown menu.

Figure 3.6 Validation

3.2.5 BackQuote, BookQuote, Cmd_proc and Classes

A BackQuote in IDW is when the DSL developer switches from the normal context to a

programming context for example writing some code in a projectdef. BookQuote is the opposite

which is when the programmer wants to go from code to be able to add a new Book. A Book is a

free tree that has not been inserted into the main tree yet. But it is easily inserted with append or

9

another appropriate command. Each new node or subtree that any of the users wants to insert to

the main tree is done by defining a new Book.

A cmdproc is a function written in CL1 code that is executed when the domain expert or the DSL

user clicks a hyperlink that links to that cmdproc. In addition to this the DSL developer can also

write CL1 classes in IDW, to define public classes with helper functions that can be comparators,

name creators etc.

3.3 Descriptions of Terms Used

It is hard to visualize so much complex data and using the same language consistently. The

method that was used in this project is to create several equipment and functional types. The

types that exist are equipment connection types, functional connection types, equipment port

types, functional port types, equipment unit types, functional types, Connection Resource

Capacity Types (CRCTs) and Unit Resource Capacity Types (URCTs).

The URCTs and CRCTs are of a fixed number that will not be changed. All the other types can

vary by adding new types in the type catalogues workbench. Functional and equipment types are

different types but they have the same structure.

Each type except for the URCTs and CRCTs also has an instance. The following instances exist;

equipment unit instance, functional unit instance, equipment connection instance, functional

connection instance, equipment port instance and functional port instance. An instance is either

referred to as the previous names or similar but without mentioning instance. What makes it an

instance is that all instances have a reference to a type but are not the same item as the type and

each instance is unique.

In this report types catalogues view or configuration view is often mentioned. A view in this case

is a workbench created by the Intentional Domain Workbench. In a workbench it is not only

possible to see the types catalogues or the configuration but it is also possible to edit and the

visualization will adapt instantly.

10

11

4. Implementation

The following sections are going to describe how the prototype was developed. Instead of

describing it in a chronological order, the different sections are instead divided into appropriate

logical building blocks of the prototype. The focus will be on the meta model or schema,

projections, validation and cmdprocs and helper classes.

4.1 Meta Model or Schema

In the schema the unit types, connection types and port types are defined. The same pattern was

used for both equipment and functional types. A unit type contains references to port types. A

connection type also contains references to what port types it can be connected to. In the schema

a certain number of CRCT and URCTs are defined. URCT stands for Unit Resource Capacity

Type and CRCT stands for Connection Resource Capacity Type. An equipment unit type has a

field called capacity capability while a functional unit type has a similar field named capacity

demand. This is also true for the connection types. The field is a list of type Resources. The def

Resources have two fields named amount and type as can be seen in Figure 3.2. The type field

shows what kind of URCT or CRCT it is and the amount field shows how much of it that is

required. Each unit type has a certain amount of CRCT and URCT types. Capacity capability tells

how many functional items can be deployed on an equipment unit and what kind of functional

items it supports. The capacity demand on the functional item on the other hand tells what kind

of capability is needed to support that function. The two type catalogues are defined as each

containing the same fields but with different types. The fields in a type catalogue are unit types,

port types and connection types.

The basics for the configurations and mapping are that virtualdefs are created that match

references to types in the type catalogue. This means one virtualdef each for the functional port

type, the equipment port type, the equipment unit type, the functional unit type, the equipment

connection type and the functional connection type.

The def that represents configurations is named config and contains the following fields:

equipment connections, functional connections, equipment configuration, functional

configuration, hide ports and hide connection names.

In the schema a few different wizards defs are designed, one wizard to add new equipment units,

one wizard to add connections between ports on equipment units. Two more wizards are defined

that have the same functionality for the functional configuration. One wizard to map between a

functional unit and an equipment unit. The last wizard is the mapping between functional

connection to equipment unit or equipment connection.

12

4.2 Projections

In this project two different views are created. Each view is meant to be used by different users,

and each view is projected so that the intended user has all information needed for editing and

understanding. The different views are, the “type catalogues view” and the “configuration and

mapping view”. Also in general a color coding is used where equipment is set to blue in the type

catalogues and functional is set to green. In the ”configuration and mapping view” there is a

slight difference, while functional is still green the equipment matching color is black instead.

Since the default style for names in IDW is green this style changed to violet to avoid

misinterpretations. The following sections will explain the projectdefs for each view in more

detail.

4.2.1 Type Catalogues View

Both the functional and equipment type catalogue will be displayed in a similar way. The

projectdef for a unit is an Adecl for the ability to open and close. Every field in unit except

description is projected with an Achapter which means it gets a black headline and can open and

close. Furthermore so is the content of each field displayed with the help of Atables where the

first row will be colored blue or green depending on if it was the equipment or functional unit.

Under each table except the description table there are two hyperlinks for adding a new item of

that definition or sort the relevant table.

Port types are simple since they are only an Adecl and then the description field is defined to be

projected as an ATable. The connections are using the same principle as units.

The type catalogues view will display all different types of a configuration. Here the domain

expert will be able to add new types and modify old types. The other views will use the

definitions in this view. In this view all data regarding a specific type is typed in so this is the

only view where the types can be modified. The type catalogue is defined with one Achapter and

then each field is also defined as an Achapter.

4.2.2 Configuration and Mapping View

This view starts with defining the hyperlinks to different cmdprocs which are the following: Add

Equipment Unit, Add Equipment Connection, Add Functional Unit, Add Functional Connection,

map Functional Unit to Functional Connection and map Functional Connection to Equipment

Unit or Connection.

In the projectdef for Config there are two main BackQuotes that create the two different

diagrams, one for equipment and one for functional. It is in those BackQuotes the flags are

13

checked to see if connection names are hidden or shown. The connections are defined as

Agraphedges with no direction. In the projectdefs for units both the functional and the equipment

are defined as an Agraphnode. Also in each projectdef in a unit there is some code to check the

hide/show unused ports flag. The projectdef for the different wizards was designed using

ATables and following the color coding with blue for equipment, green for functional and grey

for the mapping table.

4.3 Validation

A certain amount of validateisas were created for the configuration view. A validation for

equipment units were created so that the DSL user can only choose units from the current

configuration when using the wizard. Validations for both from and to equipment port were

created that checked that the DSL user could only choose a port from the selected unit and a port

that was free. Another validation rule was created for equipment connection so that when the

ports are chosen the DSL user can see which connections match those ports and there is no

direction on the connection. Naturally all the validators for the equipment side were matched

with analogous validators on the functional side. Except for the equipment and functional

validators, mapping validators were also added.

The validators make sure the DSL user can only map to items in the same configuration. There is

one validation for mapping functional unit to equipment unit. If both fields are empty, all units in

the configuration will be valid but as soon as one of the fields is filled in, the validator will check

the capacity demand or capacity capabilities and sort out only the units that match. The same

principle is used in the validator for mapping functional connection to equipment unit or

equipment connection.

4.4 Cmdprocs and Helper Classes

Cmdprocs have been created for the different sort links so there exists a sort command for each

group of nodes that should be sorted. There also exist cmdprocs for adding new items into the

tree such as Units, Connections, Ports, Instances of the same and more. In addition to the

cmdprocs there exist public helper classes with static methods and a couple of comparators for

the sorting methods. The other static methods that exist are for creating connection names and

swap values on flags. A connection name is created by taking the unit name from the from port

then adding the port name and then bind it together with the to side which results in a name of

the form Uf.pf-Ut.pt where Uf stands for the unit name for the from unit, pf the portname in the

from unit and Ut and pt are equivalent for the to part of the name.

14

15

5. Result

5.1 Type Catalogues

In the type catalogues view there exist two catalogues, the Equipment Type Catalogue and the

Functional Type Catalogue. Since both catalogues work similarly except that capacity

capabilities are named as capacity demands in the functional type catalogue, only the equipment

type catalogue will be explained here. The domain expert can collapse and expand the catalogue

as seen in Figure 5.1 where one catalogue is collapsed and the other expanded.

Figure 5.1 Equipment Type Catalogue

In a catalogue there are three sections Unit Types, Port Types and Connection Types. All of these

can be collapsed and expanded. Under each section there are hyperlinks for adding a new item or

sort the existing items under the category. Opening up a unit reveals the description, Capacity

16

Capabilities and Ports (Figure 5.2). Each of these sections in the unit can be closed and

expanded except for the description. The description is a table that contains the description of the

unit and can be modified by the domain expert. Capacity capability is a table that contains the

kind of functional demand that can be mapped onto the unit. Under the table there are links to

add new capabilities and to sort the current ones. The last table in the unit is the Ports table and

in this table the ports for the unit exist. This one also have an add and sort link as above. When

the domain expert first creates a unit, Description, Capacity and Ports are empty. The Capacity

capabilities when added can only be chosen from the predefined options in the program while

the ports must be chosen from the ports section of the catalogue. The ports section is basically

add Port and sort Ports hyperlinks and each new port only has a description that can be modified

and do not require anything more except the name. The connection section also has add

connection and sort connection hyperlinks. In addition to a description it is like a unit in that it

has capacity capabilities. Instead of ports though it has a connectable to a section and in it there

is a table which shows which port EndPoint A can connect to and which port EndPoint B can

connect to.

Figure 5.1 Units in type catalogue

17

5.2 Configuration

Configurations are created in the “configuration and mapping view”. A configuration consists of

several equipment units, functional units and connections, of which each is an instance of types

from the type catalogue. If another type is wanted, the domain expert has to add that type in the

type catalogue view. After that the DSL user can go back to the configuration and mapping view,

creating an instance of the new type.

Figure 5.3 shows an example of an equipment graph. At the top left in each node there is a grey

cross which is a delete button. To the right of the cross the name of the unit is displayed followed

by the type of the unit. Below the name a list of green names appear. These are the names of all

functional units and connections that are mapped on to the specific unit. If the list is empty it is

not displayed, like B3 in Figure 5.3. Under the list of functional units there is another list which

is the ports that are unused. It is possible to hide the unused ports by pressing the link

“hide/show Unused ports”. If the DSL user wants to see the unused ports again the DSL user can

press the link again. The link is shown in Figure 5.4.

Each edge in the graph represents a connection between two units. All edges have a name that is

close to them, and similar to the nodes a grey cross is used for deleting a connection. It is

possible to hide the name of the connections by pressing the “Hide/Show Connection names”.

18

Figure 5.3 Units in configuration view

In order to add a unit instance to a configuration, the DSL user has to press the “add new unit”

link above in the graphical visualization of the configuration. When the link is clicked a table

appears between the link and the graph. In the table the DSL user will be able to enter what type

of instance that is wanted. If the DSL user press ctrl+space a list of all available types will

appear. The table also require the DSL user to type in a name for the new instance. After the

fields in the table have been filled the DSL user may press the “ok” link below the table. This

will create a new unit instance of the given type in the graph. The table and the list of

suggestions are shown in Figure 5.4 with the table for adding new equipments, and the list with

suggestions of different equipment types.

19

Figure 5.4 Adding Equipment Unit Wizard

To link two equipment unit instances together there exists an “add Equipment Connection” link

above the graph. When it is pressed a table is opened where the DSL user has to enter the two

nodes that the DSL user wants to connect. Below the table there will be an “ok” link which will

open a table below the table with nodes. If the DSL user selects one field and hit ctrl-space a list

with suggestions of only valid ports will appear. If there exists no valid ports the list will be

empty. If the DSL user knows the name of the port the DSL user can enter the name of the port

and hit enter. After two ports are selected, one for each node, the DSL user can press the link

“ok” below this table. Then the last table appears where the connection type can be entered. In

this field like the ones above the DSL user can either hit ctrl-space or write directly in the field

what type of connection the DSL user wants. After connection type is selected the DSL user

presses a link that says “ok” and a connection will be established between the two nodes. The

ports allocated for the connection will be removed from the pool of free ports. An example how

all tables look like when they are filled is shown in Figure 5.5. Once a DSL user is done adding

different types to the graph and connecting them it will save all the nodes and connections

20

between them by pressing ctrl-s.

Figure 5.5 Adding Equipment Connection Wizard

21

Figure 5.7 Mapping

5.3 Mapping

In order to map a functional unit on to an equipment unit the DSL user has to press the link “map

Functional unit to EU”. The link will create a table where the DSL user can enter an equipment

unit and a functional unit. To ensure that a functional unit really can be deployed on the

22

equipment there exist a validation for the second unit that is entered. If the second unit that is

entered do not match on the first unit a red field will appear around the name (Figure 5.6) and if

the DSL user presses enter the text will turn purple. If it is a match it will first be bold and when

enter is pressed it will appear as normal black text as seen in Figure 5.7.

23

6 Evaluation

This chapter describes how the testing of the prototype created was performed. The evaluation

consists of two parts. First, we describe the practical testing which contains description of how

each view was tested and evaluated. The other part is a questionnaire handed out to a group of

people after they have tested the prototype. After each part a paragraph describing the result of

the evaluation is given.

6.1 Practical Testing

First the type catalogue view is evaluated since a full type catalogue is needed to test the

configuration view. The evaluation is done by filling up the type catalogue in the same manner

as a domain expert would do it by using the add and sort hyperlinks when appropriate.

A similar approach was taken when evaluating the configuration view instead of having four

finished configurations and see how they are displayed. Instead each of the four configurations is

built the same way a DSL user would do it, clicking Add Unit, Add Connections and Add

Mapping when appropriate. Doing it in this way, usability is also evaluated and not just the

finished configuration.

6.1.1 Result of Practical Testing

Testing both the type catalogue view and the configuration and mapping view showed that both

work as intended. The only exception is sorting the tables in the type catalogue view. The sorting

requires that no configurations in configuration and mapping view reference to the table that is

sorted. If any configuration is referring to the table the references stops working and is

incompatible with any new instances in the configuration.

6.2 Evaluation Questionnaire

When evaluating the practical usage of the prototype created, a group of people were given a

task which they should do using the prototype. Afterwards they were asked to answer a

questionnaire. The questionnaire had the following questions:

1. What is missing in the program?

2. What is good about the program?

3. How easy does it seem to be to use? (scale 1-5)

i. (1 really hard , 2 hard, 3, okay, 4 easy, 5 really easy)

4. In comparison to the tools you know of now, how does this program compare?

i. (1 harder, 2 slightly harder, 3, about the same, 4 slightly easier, 5

easier)

24

These questions were handed out to four persons who after having tested the program got to

answer the questions.

6.2.1 Result of Questionnaire

The evaluation of the program showed that in question 4, 75% of the testers said that the

program is okay in functionality compared to the tool they are using now. 25% said it is better.

The functionality that the users would like to add the most according to question 1 is the

possibility to rearrange the mapping, and validation so that a function cannot exist on two

equipments at the same time. The good thing with the prototype is that it is model based and not

only a painting tool.

50% said in question 3 that the prototype was easy to use while the other half said it was okay in

the matter of usability. The usability that the testers appreciated according to question 2 was the

ability to choose from a list of alternatives when entering values in the tables, and that the layout

matches well the DSL. Improvements that could be made according to the questionnaire are drag

and drop, pictures of real equipments for easier identifications, and a simpler way to add and

change data in the graph.

25

7. Conclusion

7.1 Recap

In this degree project, we investigated and then implemented two separate views. The two

different views are the type catalogues view and the configuration and mapping view. The type

catalogues view have two catalogues, one for functional and one for equipment. Both catalogues

consist of the following: chapters unit types, port types and connection types. For each chapter

the domain expert can add a new item of that type. And there is also an option to sort the items.

The other view is the configuration and mapping view. Here the DSL user has two diagrams: one

for functional and one for equipment. The DSL user has the ability to add, connect and delete

items in each diagram. The mapping is shown by text on the item it is mapped to. It is also

possible to hide characteristics to make a cleaner diagram. The standard view is a circular layout

for equipment and a standard layout for functional. Validation is also included for the ability to

choose the correct nodes.

7. 2 Critical Discussion

7.2.1 Sustainability Concerns

Ericsson wants to build energy effective networks with good energy performance [12]. If the

ability to visualize configurations exists, it might be easier to identify parts and make

improvements which mean a configuration can be optimized to be more environment friendly.

When the configurations are visible and editable it should be easier to validate how to optimize a

certain configuration to make it more energy efficient. It should be possible to get a better picture

and then a person might be able to decide how to make different configurations more

environment friendly for example.

7.2.2 Configuration and Type Catalogue

One of the project´s strengths is the type catalogue where it is easy to add new complex types

and being able to make instances of the new types in the configuration view.

We think that the type catalogue is fairly clean and easy to use for any new domain expert.

While building the configurations in the configuration and mapping view, we used the help of

the validation, which were helpful to create different configurations. The help we received from

the validation was that when creating new units in a configuration we could chose units from a

list that popped up when typing in the type field. In a similar way we used the list of valid types

when we created all the connections between unit instances. It saves time getting suggestions in

a list of which type that could be used, instead of writing the entire name of the unit instance. It

26

also makes it easier, since we did not have to look up the name in the configuration when we

forgot which name we could choose from. The validation did also ensure that only valid

configurations were made.

The validation was also a help while building the type catalogues. When creating the different

types, it was helpful when defining ports and capacity/demand in units to get a list of which

types of ports that existed, and also what kinds of capacities/demands that existed. In that way

we could make sure that all units used the same set of ports and capacities/demands.

One of the project´s weaknesses is the inability to display names for connections without any

overlapping parts. For example when showing the name for connection A1.A-B1.1 in Figure 5.3

A1 and B1 overlaps making all three harder to read. That is one reason why the hide/show

connections names hyperlink is good because then the DSL user have the ability to remove the

connection name and mapping to be able to see a cleaner diagram.

7.2.3 Intentional Domain Workbench

At the beginning it was difficult to work with IDW since it was a new type of language for us.

The new way of thinking and structuring was the hardest part to learn. After spending time with

the program and starting to learn about the way of using it, IDW showed promising potential.

The code was simple to understand once getting a grasp of IDW, and the code readability was

good. It was also faster than if we would have used something like Eclipse and Java due to it

being on a higher abstraction level.

7.2.4 Differences in Plan Versus Execution

The plan was to find or create our own graphical engine but after discussions it was decided due

to the time constraint and our domain that the auto layout of the IDW would be appropriate for

this degree project. Having preconstructed configurations as starting points was also scratched

due to the time constraint. Another feature that was scratched due to time constraints was the

ability to see how much of an equipment unit was used. One of our greatest problems was the

lack of time, the initial plan for this project was too large in scope, as this was a rather big

project.

27

7.3 Future Development

The following is suggested future work.

● As was seen with the hide/show connections names and unused ports the ability to make

a cleaner diagram was appreciated which suggests to continue in that direction by adding

flags for hide/show mapping.

● Functionality that can be added is the ability to start with a prefabricated configuration

instead of having to start from scratch.

● It would be good to be able to have the ability to add several units of the same type at

once.

● It would be useful for the DSL user, having an option to have the wizard open so the DSL

user can add connections for an example until he is done, could be added.

● To give the DSL user better overview. It would be useful to adding more layers so that

the functional units and connections are grouped together and can be mapped together.

● It would be good if an equipment unit is showing if it is over or under utilized by color-

coding the unit.

● It would be good if when clicking on a port it opens the appropriate wizard. That saves

time, avoiding the multiple steps needed to take for connecting units.

● It would be good to solve the problem with the sort link in the Type Catalogue view. So

that when sorting the references to the types sorted will still be correct.

● For usability testing, it would be good to create a test case with a large configuration to

see how Intentional will handle that.

● It would be good if a delete popup was implemented, that shows what the user are about

to delete. So that the DSL user does not delete the wrong part or delete anything by

mistake.

● The possibility to zoom in and out to get better overview could be added. To make it

easier for the DSL user to navigate in a configuration.

7.4 Conclusion

A basic prototype was developed which lets two types of users interact with the prototype. One

user is in charge for defining and implementing the specifications for each functional and

equipment unit type. The other user takes instances of the unit types the first user created,

connecting them and mapping the functional layer on to the physical layer. In that way the two

users are creating configurations which are displayed visually in graphs.

We think that the developed prototype is a good prototype for visualization and editing of

configurations. It also has good validation controls which we noticed when building the example

configurations. We are well aware that there are many improvements that can be done on the

product. But since we had a limited amount of time, we had to decide what parts should be

28

prioritised. We hope that the work done can be the foundation for future work on visualization

and editing of configurations.

29

References

[1] http://www.ericsson.com/thecompany/company_facts/history (accessed 23 April 2014)

[2] http://www.ericsson.com/thecompany/company_facts (accessed 23 April 2014)

[3] http://www.ericsson.com/ourportfolio/telecom-operators/heterogeneous-networks (accessed

23 May 2014)

[4] A.Pleuss and G.Botterweck Visualization of variability and configuration options (Springer-

Verlag 2012)

[5] Kobsa, A.: User experiments with tree visualization systems. In: INFOVIS '04: Proceedings

of the IEEE

Symposium on Information Visualization, page.9-16 IEEE Computer Society, Washington, DC,

USA (2004)

[6] Zhicheng Liu et al, Interactive visualization to enhance automated fault diagnosis in

enterprise networks. Visual Analytics Science and Technology (VAST), 2010 IEEE Symposium

on

[7] Lam.H, et al, Empirical Studies in Information Visualization: Seven Scenarios. In

Visualization and Computer Graphics IEEE Trans. 12 juli 2012

[8] Herman. I et al : Graph visualization and

navigation in information visualization: a survey. IEEE Trans. Vis.

Comput. Graph. Vol 6 No1, page 24–43 (2000)

[9] http://en.wikipedia.org/wiki/Scrum_(software_development) (accessed 5 June 2014)

[10] M. Voelter et al, DSL Engineering Designing, Implementing and Using Domain-Specific

Languages [E-book] (2013)

[11] http://www.intentsoft.com/intentional-technology/intentional-platform/ (accessed 23 April

2014)

[12] http://www.ericsson.com/thecompany/sustainability-corporateresponsibility/reducing-our-

environmental-impact/energy-efficient-portfolio (accessed 29 May 2014)

http://www.ericsson.com/thecompany/company_facts/history
http://www.ericsson.com/thecompany/company_facts
http://www.ericsson.com/ourportfolio/telecom-operators/heterogeneous-networks
http://en.wikipedia.org/wiki/Scrum_(software_development)
http://www.intentsoft.com/intentional-technology/intentional-platform/
http://www.ericsson.com/thecompany/sustainability-corporateresponsibility/reducing-our-environmental-impact/energy-efficient-portfolio
http://www.ericsson.com/thecompany/sustainability-corporateresponsibility/reducing-our-environmental-impact/energy-efficient-portfolio

30

Appendices

Appendix A

1. Vad saknas i programmet?

2. Vad var bra?

3. Hur lätt verkar programmet vara att använda?

mycket svårt svårt okej lätt mycket lätt

4. I jämförelse med nuvarande metoder hur verkar detta verktyg?

mycket sämre sämre okej bättre mycket bättre

