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Abstract—This paper studies the throughput of spectrum shar-
ing networks utilizing rate adaptation. We use some recent results
on the achievable rates of finite block-length codes to analyze
the secondary user (SU) throughput with a constraint on the
primary user (PU) codeword drop probability. With codewords
of finite length, we derive closed-form expressions for the SU
activation probability and throughput. The results are obtained
in different scenarios with no channel state information atthe SU
transmitter. As demonstrated numerically and analytically, using
finite-length codewords there is considerable potential for the
data transmission of unlicensed secondary users under different
quality-of-service requirements of the licensed primary users.

I. I NTRODUCTION

Spectrum is a scarce and valuable resource in today’s
wireless communication networks; with the ever-increasing
number of wireless devices such as smart phones, there is
growing demand for spectrum resources. This point has led
to complaints about spectrum shortage which is expected to
grow even more in the future. To tackle the spectrum shortage
problem, several solutions have been proposed, with spectrum
sharing being among the most promising ones [1]–[19].

In general, the goal of a spectrum sharing scheme is to
alleviate the spectrum scarcity problem by allowing unlicensed
secondary users (SUs) to access the spectrum that is allo-
cated to licensed primary users (PUs) under the condition
of preserving the PUs quality-of-service requirements. There
are two approaches to exploit the idea of spectrum sharing,
namely, interference-avoiding and simultaneous transmission.
The interference-avoiding (interweave) paradigm [19], [20]
refers to the scheme where, provided that the SU transmitter
can sense the temporal, spatial or spectral gaps of the PU
resources, it can adjust its transmission parameters to fillthese
white spaces. In the simultaneous transmission (underlay)
technique, on the other hand, a SU can simultaneously coexist
with a PU as long as the PU quality-of-service constraints are
satisfied [1]–[18]. In this paper, we concentrate on the simul-
taneous transmission paradigm of spectrum sharing networks.

The performance of spectrum sharing networks has been
studied in various papers, e.g., [2]–[18]. Particularly, con-
sidering perfect [2], [5]–[11] and no/imperfect channel state
information (CSI) [2]–[5], [12]–[14] at the SU transmitter, the
ergodic [2]–[14], the delay-limited [8] and the outage capacity
[3], [11] of spectrum sharing networks were investigated,
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and results were obtained in the cases with a PU received
signal-to-interference-and-noise ratio (SINR) [6], a PU outage
probability [11]–[14] and a PU average [2], [4]–[10] or peak
interference [3]–[8] constraint. Also, [15]–[18] study the ex-
pected throughput [15], [16], the outage probability/throughput
[17] and the average rate [18] of the automatic repeat request
(ARQ)-based spectrum sharing networks with imperfect CSI.

As a common point, the results of [2]–[18] (and many other
papers) are obtained under the assumption of asymptotically
long codewords where the instantaneous achievable rate of a
user is given bylog(1+x) with x standing for the user instan-
taneous received SINR. On the other hand, in many applica-
tions, such as vehicle-to-vehicle and vehicle-to-infrastructure
communications for traffic efficiency/safety or real-time video
processing for augmented reality, the codewords are required
to be short (in the order of∼ 100 channel uses) [21]–[24].
Thus, it is interesting to study the performance of spectrum
sharing networks in the presence of finite-length codewords.

In this paper, we study the data transmission efficiency of
spectrum sharing networks utilizing codewords of finite length.
We use the recent results of [25]–[27] on the achievable rates
of finite block-length codes to analyze the system performance.
With a constraint on the PU codeword drop probability (DP),
we maximize the SU throughput in the cases with no CSI at the
SU transmitter. We derive closed-form expressions for the SU
activation probability (Lemma 1 and Eq. (19)) and throughput
under different PU DPs (Lemma 2). Moreover, we maximize
the no-CSI throughput of the SU via rate adaptation.

The numerical and the analytical results demonstrate that,
with codewords of finite length, remarkable throughput im-
provements can be achieved in spectrum sharing networks,
if the transmission rates are properly adapted. Moreover,
for different PU DP constraints, there are finite optimal SU
and PU transmission powers such that the SU DP-limited
throughput is maximized (Figs. 2, 3). Finally, for different
SU/PU transmission powers and PU DP constraints, the SU
throughput is considerably affected by the length of the
short codewords. However, for sufficiently long codewords,
the throughput degradation due to the finite length of the
codewords is negligible (Fig. 4).

II. SYSTEM MODEL

Consider a spectrum sharing network where a primary user
and a secondary user share the same narrow-band frequency
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with normalized bandwidthW = 1. LetHpp, Hsp, Hps andHss

be the instantaneous fading channel coefficients in the PU-PU,
the SU-PU, the PU-SU and the SU-SU links, respectively.
Moreover, we defineGpp , |Hpp|2, Gsp , |Hsp|2, Gps ,

|Hps|2 andGss , |Hss|2 which are denoted as channel gains
in the following. In this way, the channel outputs are given by

{

Yp =
√

TpXpHpp +
√
TsXsHsp+ Zp

Ys =
√
TsXsHss+

√

TpXpHps+ Zs
,

E[|Xp|2] = 1, E[|Xs|2] = 1, (1)

whereXp andXs are the PU and the SU unit-variance input
messages, respectively, andYp andYs denote their correspond-
ing outputs. Also,Tp andTs represent the PU and the SU input
powers, respectively,E[.] is the expectation operator and the
complex white Gaussian noisesZp andZs added at the PU
and SU receivers are supposed to have distributionsCN (0, 1).

The system performance is studied in block-fading condi-
tions, e.g., [1]–[18], [23]–[27], where the channel coefficients
remain constant during the channel coherence time, and then
change to other values according to the fading probability den-
sity function (PDF). The PDF and the cumulative distribution
function (CDF) of a random variableX are represented byfX
and FX , respectively. In harmony with [1]–[11], [13], [14],
[17], [18], we assume that there is a feedback link from the
PU or aband managerto the SU, such that in each slot the
SU is informed whether it can become active or not. That is,
in each slot the PU permits the SU data transmission, if the
PU SINR is so high that its DP constraint is satisfied. In each
slot, the receivers are assumed to know their received SINR,
which is an acceptable assumption in block-fading conditions
[1]–[18], [23]–[27]. Then, the system performance is studied
in the cases where the SU transmitter is provided with no
information about the SU received SINR. Indeed, performance
analysis in the cases with imperfect CSI at the transmittersis
an interesting extension of the paper. The results are obtained
for Rayleigh fading channels where the channel gains PDFs
are given byfGpp(x) = λppe

−λppx, fGsp(x) = λspe
−λspx,

fGps(x) = λpse
−λpsx andfGss(x) = λsse

−λssx with λpp, λsp, λps

and λss representing the fading parameters. Under these as-
sumptions, the instantaneous received SINR at the PU and the
SU receivers are given by

φp =
TpGpp

1 + TsGsp
, (2)

and

φs =
TsGss

1 + TpGps
, (3)

respectively, and their CDFs are obtained as

Fφp(x) = Pr(
TpGpp

1 + TsGsp
≤ x)

=

∫ ∞

0

λspe
−λspt Pr

(

Gpp ≤
x

Tp
(1 + Tst)

)

dt = 1− e
−λppx

Tp

1 +
λppTs

λspTp
x
,

Fφs(x) = 1− e−
λssx
Ts

1 +
λssTp

λpsTs
x
. (4)

III. PROBLEM FORMULATION

We consider a DP constraint for the PU. In each slot, the
PU checks whether the channel conditions are good enough
so that its DP constraint is satisfied. Then, the PU informs the
SU transmitter whether it can send messages or not. Upon
receiving this permission, the SU encodesKs information
nats into a codeword of lengthL and rateRs = Ks

L
nats-

per-channel-use (npcu), and sends the codeword towards its
corresponding receiver. In this way, the optimization problem
of the paper is rephrased as

max ηs

subject to Θp ≤ θp,
(5)

where ηs (in npcu) denotes the SU throughput,Θp is the
PU DP andθp represents the PU DP constraint. In (5), the
optimization can be on different rate and/or power terms of
the SU, as long as the other rate/power values are given and
the SU throughput and the PU DP are expressed in closed-
form. Specifically, in the results of Section V we optimize the
SU throughput with respect to, e.g., the SU power.

In Section IV, we study (5). First, we derive closed-form
expressions for the SU throughput and the PU DP. Then,
we use the expressions to analyze the system performance
in different conditions. Indeed, to find the expressions, we
need to implement approximation techniques. However, as
demonstrated in the following, the final conclusions are in
harmony with the numerical simulations with high accuracy.

We first review some of the results of [25]–[27] on the
achievable rates of the finite-block length codes as follows.

On the achievable rates of the finite-length codes [25]–[27]:
Define an(L,N, T, δ) code as the collection of

• An encoderΥ : {1, . . . , N} 7→ CL which maps the
messagen ∈ {1, . . . , N} into a length-L codeword
xn ∈ {x1, . . . , xN} satisfying the power constraint

1

L
‖xj‖2 ≤ T, ∀j. (6)

• A decoderΛ : CL 7→ {1, . . . , N} satisfying the maximum
error probability constraint

max
∀j

Pr(Λ(y) 6= J |J = j) ≤ δ (7)

with y denoting the channel output induced by the
transmitted codeword.

The maximum achievable rate of the code is defined as

Rmax(L, T, δ) = sup

{

logN

L
: ∃(L,N, T, δ)code

}

(npcu).

(8)

Considering non-fading and block-fading conditions with dif-
ferent levels of CSI at the transmitter, [25]–[27] have recently
presented a very tight approximation for the maximum achiev-
able rate (8) as

Rmax(L, T, δ) = sup {R : Pr(log(1 + gT ) < R) < δ}

− O
(

logL

L

)

(npcu), (9)
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which, for codes of rateR npcu, leads to the following error
probabilities [27, eq. (59)]

δnon-fading(L,R, P ) ≃ Q

(
√
L (log(1 + gP )−R)
√

1− 1
(1+gP )2

)

, (10)

for non-fading channels, and

δblock-fading(L,R, P ) ≃ E

[

Q

(
√
L (log(1 + gP )−R)
√

1− 1
(1+gP )2

)]

,

(11)

for block-fading channels. Here,g is the instantaneous value of
the channel gain,E[.] denotes the expectation with respect to
the channel gaing andU(x) = O(V (x)), x → ∞ is defined as

limx→∞ sup |U(x)
V (x) | < ∞. Moreover,Q(x) = 1√

2π

∫∞
x

e−
t2

2 dt
represents the GaussianQ-function. Since the approximations
(10)-(11) have been shown to be very tight for sufficiently
large values ofL [25]–[27], for simplicity we will assume
that they are exact in the following. This is accurate because
the practical codes of interest for, e.g., vehicle-to-vehicle com-
munication have been suggested to be in the range of 100-300
channel uses, e.g., see [21]; this is the range of the codewords
length for which (10)-(11) are reasonably tight [27]. Also,the
error functions in (10)-(11) are the best available closed-form
expressions for the performance analysis of finite-length codes.

IV. T HROUGHPUTANALYSIS

In this section, we study the SU throughput in DP-limited
conditions. First, we find the PU DP which determines the
activation probability of the SU. Then, we analyze the SU
throughput for different conditions.

Assuming perfect CSI at the PU receiver, if the SU becomes
active, the PU instantaneous error probability (conditional on
the fading channel state) is given by (10). Thus, in each slot
with an instantaneous SINR realizationφp, the PU receiver
allows the SU transmitter to transmit messages iff

Q

(

√
L (log(1 + φp)−Rp)
√

1− 1
(1+φp)2

)

≤ θp. (12)

Here, Rp =
Kp

L
denotes the PU data rate, withKp being

the number of information nats per PU codeword, and (12)
follows from (2) and (10)1. That is, in each slot the PU checks
whether the instantaneous channel conditions are such that
its interference-affected DP satisfies a given quality-of-service
requirement. Consequently, the SU activation probability, i.e.,
the average fraction of time slots where it is possible for the
SU to send messages, is obtained by

Ψs = Pr
(

Q
(

√
L
(

log(1 + φp)−Rp
)

√

1− 1
(1+φp)2

)

≤ θp

)

= 1− Fφp(ξp),

(13)

1For simplicity, we assume the SU and the PU to have codewords of the
same length. It is straightforward to extend the results to the cases with
different codeword lengths for the SU and the PU.

where

ξp , arg
x







√
L (log(1 + x)−Rp)
√

1− 1
(1+x)2

= Q−1(θp)







. (14)

In (13) and (14), we have used the fact that theQ-function
and

W (x) =

√
L (log(1 + x) −Rp)
√

1− 1
(1+x)2

(15)

are decreasing and increasing functions ofx, respectively.
Also, Q−1(.) represents the inverseQ-function.

Due to the monotonicity of theQ(x) andW (x) functions,
it is straightforward to show thatξp will be unique for
every given values ofRp, Tp, Ts. Unfortunately, there is no
general closed-form solution forξp. Therefore, we propose
approximate solutions of (14) as follows.

Lemma 1: The SU activation probability is obtained as

Ψs =
e
−

λppξp
Tp

1+
λppTs
λspTp

ξp
whereξp is approximately given by

ξp = e
(
Q−1(θp)√

L
+Rp) − 1. (16)

Proof. Removing the denominator in (14), which is a good
approximation for moderate/large values ofx, we have

ξp ≃ arg
x

{√
L (log(1 + x)−Rp) = Q−1(θp)

}

, (17)

which leads to (16).

It is interesting to note that with an infinitely long code,
i.e., letting L → ∞, we haveΨs = Pr(log(1 + φp) ≥
Rp) = 1 − Fφp(e

Rp − 1), and in each slot the PU knows
with certainty whether it can decode its corresponding message
correctly. Thus, the finite length of the codewords reduces the

SU activation probability by∆ ≃ (Fφp(e
(
Q−1(θp)√

L
+Rp) − 1)−

Fφp(e
Rp − 1)).

In addition to the lemma, we can use the approximations
log(1 + x) ≃ x and

√

1− 1
(1+x)2 ≃

√
2x for small values of

x, to rewrite (14) as the solution of

x−Rp =
Q−1(θp)√

L

√
2x

⇒ x2 − 2(Rp +
(Q−1(θp))

2

L
)x+R2

p = 0. (18)

Then, because from (18) we havex ≥ Rp for θp ≤ 1
2 (resp.

x < Rp for θp > 1
2 ), (18) leads to

ξp ≃






Rp +
(Q−1(θp))

2

L
+

√

(Q−1(θp))2

L
(2Rp +

(Q−1(θp))2

L
) θp ≤ 1

2

Rp +
(Q−1(θp))

2

L
−
√

(Q−1(θp))2

L
(2Rp +

(Q−1(θp))2

L
) θp > 1

2 ,

(19)

at low SINRs (see Fig. 1 for the tightness of (16) and (19)).
Receiving thefree-to-sendfeedback signal from the PU

receiver, the SU sends the message with rateRs and the
codeword is dropped by the SU receiver if it cannot be
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decoded correctly. Thus, the SU throughput, averaged over
many codeword transmissions, is given by

ηno-CSI
s = ΨsRs

(

1− θno-CSI
s

)

,

θno-CSI
s = E

[

Q

(
√
L (log(1 + φs)− Rs)
√

1− 1
(1+φs)2

)]

. (20)

Here,θno-CSI
s is the SU DP with codeword rateRs and no CSI

at the transmitter. In order to find (20), we should determine
θno-CSI

s , which does not have a closed-form expression. The
following lemma approximates (20) as follows.

Lemma 2: The no-CSI throughput of the SU is given by
ηno-CSI

s = ΨsRs
(

1− θno-CSI
s

)

whereθno-CSI
s is approximated as

θno-CSI
s ≃ 1− e−

λss(αs− 1
2µs

)

Ts

1 +
λssTp

λpsTs
(αs − 1

2µs
)

+ (αsµs +
1

2
)





e−
λss(αs− 1

2µs
)

Ts

1 +
λssTp

λpsTs
(αs − 1

2µs
)
− e−

λss(αs+
1

2µs
)

Ts

1 +
λssTp

λpsTs
(αs +

1
2µs

)





− µs

(

(αs −
1

2µs
)(

e−
λss(αs− 1

2µs
)

Ts

1 +
λssTp

λpsTs
(αs − 1

2µs
)
)

− (αs +
1

2µs
)(

e−
λss(αs+

1
2µs

)

Ts

1 +
λssTp

λpsTs
(αs +

1
2µs

)
)

+
λpsTse

λps
Tp Ei(−λss

Ts
(αs +

1
2µs

)− λps

Tp
)

λssTp

−
λpsTse

λps
Tp Ei(−λss

Ts
(αs − 1

2µs
)− λps

Tp
)

λssTp

)

. (21)

Here, Ei(x) =
∫∞
−x

e−t

t
dt represents the exponential integral

function,αs , eRs − 1 andµs ,
√

L
2π(e2Rs−1) .

Proof. To prove the lemma, we use a linearization technique
for the functionQ(

√
L(log(1+x)−Rs)
√

1− 1
(1+x)2

) at pointx = αs to write

Q(

√
L(log(1 + x)−Rs)
√

1− 1
(1+x)2

) ≃ Us(x)

Us(x) =







1 x ≤ αs − 1
2µs

,
1
2 − µs(x− αs) x ∈ (αs − 1

2µs
, αs +

1
2µs

),

0 x ≥ αs +
1

2µs
,

(22)

with

µs = −
∂

(

Q(
√
L(log(1+x)−Rs)
√

1− 1
(1+x)2

)

)

∂x

∣

∣

∣

∣

x=αs

=

√

L

2π(e2Rs − 1)

which is found from the derivative ofQ(
√
L(log(1+x)−Rs)
√

1− 1
(1+x)2

) at

point x = αs.

Using (20) and (22), the no-CSI DP of the SU is found as

θno-CSI
s =

∫ ∞

0

fφs(x)Q





√
L(log(1 + φs)−Rs)
√

1− 1
(1+φs)2



dx

≃ Fφs(αs −
1

2µs
) + (αsµs +

1

2
)(Fφs(αs +

1

2µs
)

− Fφs(αs −
1

2µs
))− µs

∫ αs+
1

2µs

αs− 1
2µs

xfφs(x)dx

= 1− e−
λss(αs− 1

2µs
)

Ts

1 +
λssTp

λpsTs
(αs − 1

2µs
)

+ (αsµs +
1

2
)





e−
λss(αs− 1

2µs
)

Ts

1 +
λssTp

λpsTs
(αs − 1

2µs
)
− e−

λss(αs+
1

2µs
)

Ts

1 +
λssTp

λpsTs
(αs +

1
2µs

)





− µs

(

(αs −
1

2µs
)(

e−
λss(αs− 1

2µs
)

Ts

1 +
λssTp

λpsTs
(αs − 1

2µs
)
)

− (αs +
1

2µs
)(

e−
λss(αs+

1
2µs

)

Ts

1 +
λssTp

λpsTs
(αs +

1
2µs

)
) +

∫ αs+
1

2µs

αs− 1
2µs

e−
λssx
Ts

1 +
λssTp

λpsTs
x

dx

)

(23)

which, using the definition of the exponential integral function
in the last integration, leads to (21) in the lemma. In (23), the
approximation comes from (22) and the last equality is found
by (4) and partial integration.

Note that, although the results are obtained for spectrum
sharing networks, the same approximation techniques are
useful for the finite block-length analysis of single-user net-
works. Furthermore, using the approximate expressions of the
throughput, we can solve (5) numerically or analytically, which
is not a difficult task. Finally, to close the section, it is worth
noting that with an infinitely long code, i.e.,L → ∞, the SU
no-CSI throughput is given by

ηno-CSI
s,L→∞ = ΨsRsPr(log(1 + φs) ≥ Rs)

= ΨsRs(1− Fφs(e
Rs − 1)) =

ΨsRse
−λss(e

Rs−1)
Ts

1 +
λssTp

λpsTs
(eRs − 1)

, (24)

which can be maximized numerically or analytically. For
instance, lettingL → ∞ in Lemma 2, setting the derivative
of the throughput with respect toRs equal to zero and
implementing some manipulations, we have

ηno-CSI
s,L→∞ ≃

ΨsW
(

λpsTs

λssλps+λssTp

)

e−
λss






e
W

(

λpsTs
λssλps+λssTp

)

−1







Ts

1 +
λssTp

λpsTs

(

e
W

(

λpsTs
λssλps+λssTp

)

− 1

) ,

(25)

in the optimal case, whereW is the Lambert W function. In
Section V, we validate the accuracy of the approximations pro-
posed in (16)-(25) by comparing them with the corresponding
exact values that can be evaluated numerically.
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V. NUMERICAL RESULTS

In all figures, we setλss = λsp = λps = λpp = 1, unless
otherwise stated. Thus, as the noise variances are set to 1,Tp

andTs (in dB, 10 log10 Tp and 10 log10 Ts) represent the PU
and the SU signal-to-noise ratio (SNR) as well. According to
[26], [27], the approximations in (9)-(11) are very tight for
sufficiently long codewords, and the tightness increases with
the codewords’ length. For the numerical results, we consider
cases withL ≥ 50 channel uses, for which the approximation
is tight [26], [27], and do not consider shorter codewords.
In the meantime, although the approximation is not tight for
small L’s and the results should not be fully trusted in that
case, we observed the same qualitative conclusions as in the
case ofL ≥ 50, when the simulations are run for very short
(practically not interesting) codewords (see [26], [27] for more
discussions on the tightness of (9)-(11) and [21] for practical
codes of interest in, e.g., vehicle-to-vehicle communication).

SettingRp = 1 npcu, L = 100 and θp = 10−3, Fig. 1
shows the SU activation probability given in (13)-(14) and
compares the results with the ones in Lemma 1 and (19). As
demonstrated in the figure, the approximation method (19) is
tight at low SU SINRs, while the tightness decreases with the
SU SINR. On the other hand, the approximation approach of
Lemma 1, i.e., (16), is very tight for all ranges of SU and PU
SINRs. For this reason and also to avoid mixing the effects
of different approximations, in the following figures the SU
activation probabilityΨs is calculated numerically, while the
same curves (with very high accuracy) are obtained ifΨs is
derived via Lemma 1. That is, for all considered scenarios
the curves are indistinguishable whether the SU activation
probability is determined numerically or via Lemma 1.

In Figs. 2-4, we study the system throughput. Figure
2 verifies the tightness of the approximations derived in
Lemma 2. Here, the results are obtained forL = 200, Tp =
10, 15 dB, Rs = Rp = 1 npcu andθp = 10−2. Moreover,
shown in Fig. 3 are the maximum SU DP-limited throughput,
optimized according to (20), versus the SU transmission
power. Here, the simulation results are compared with the ones
derived in the cases with asymptotically long codewords, i.e.,
(24)-(25). Finally, Fig. 4 evaluates the effect of the PU DP
constraint, where the SU no-CSI throughput is plotted versus
the PU DP constraints for different lengths of the codewords.

According to the figures, the following conclusions can be
drawn:

• As seen in Fig. 2, the approximation approach of Lemma
2 is very tight for a broad range of SINRs/parameter
settings.

• Figures 2 and 3 indicate that with a PU DP constraint
there are finite optimal transmission powers for the SU
and the PU such that the SU throughput is maximized.
However, the SU DP-limited throughput converges to
zero at low and high SINRs. Intuitively, this is because,
with a PU DP constraint, at high SINRs (resp. low SINRs)
no data transmission is allowed by the PU (resp. the SU
achievable rate is small although it is active in many
time slots). In harmony with (20), the optimal SU power
depends on the codewords length. Moreover, the opti-
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Figure 1. SU activation probability for different SU transmission SNRs
10 log10 Ts (dB), Rayleigh fading channels,L = 100, Rp = 1 npcu,
θp = 10−3.
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Figure 2. On the tightness of the approximations of Lemma 2, Rayleigh
fading channels, no CSI at the SU transmitter,L = 200, Rp = Rs = 1 npcu,
θp = 10−2.

mal SU transmission power maximizing the DP-limited
throughput increases with the length of the codewords
(Fig. 3).

• For short codewords, the SU DP-limited throughput is
remarkably affected by the length of the codewords at
hard DP-limited conditions, i.e., whenθp is small (Fig.
4). However, the effect of the finite-length codewords
decreases when the PU DP constraint is relaxed, i.e.,
θp increases, and the throughput is less sensitive to the
PU DP constraint for long codewords (Fig. 4). Also, the
throughput increases with the length of the codewords, as
expected. As shown in Fig. 4, the finite length of the code-
words leads to considerable SU throughput degradation,
for codewords of short length. However, with different
SU/PU transmission powers and the considered PU DP
constraints, the effect of the codewords length on the SU
throughput is negligible for long codewords.

• The tolerance of the primary user, modeled by the DP
constraintθp, plays a great role in the secondary channel
throughput. That is, the more secure the PU quality-
of-service requirement, the less the data transmission
allowed within the PU activation time slots and the
less the throughput achieved at the secondary channel,
converging to zero (Fig. 4).

Finally, the results emphasize that, using finite-length code-
words and rate adaptation, there is considerable potential
for the data transmission of the unlicensed secondary users
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The black dashed curves are obtained by numerical optimization of (20). Then,
the numerical results are compared with the ones derived by (25). Rayleigh
fading channels,Rp = 0.5 npcu,θp = 10−2, Tp = 5 dB.
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under different quality-of-service requirements of the licensed
primary users.

VI. CONCLUSION

Considering PU DP-limited conditions, we studied the
throughput of spectrum sharing networks with codewords of fi-
nite length. The results were obtained in the cases with no-CSI
at the SU transmitter. We derived closed-form approximations
for the SU throughput and the PU DP. As demonstrated both
numerically and analytically, the finite length of the codewords
leads to remarkable SU throughput degradation, for codewords
of short length. However, with different SU/PU transmission
powers and PU DP constraints, the effect of the codewords
length on the SU throughput decreases for long codewords.
Finally, for different PU DP constraints, there are finite optimal
SU and PU transmission powers such that the SU DP-limited
throughput is maximized.
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