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Abstract—Hybrid automatic repeat request (HARQ) plays an
important role in improving the transmission efficiency and the
robustness of wireless networks. ConsideringK-tier heteroge-
neous networks (HetNets) and modelling the locations of thebase
stations (BSs) as a homogeneous Poisson point process (PPP),
this paper investigates the performance of HetNets implementing
HARQ. We give closed-form expressions for the quality of service
(QoS) coverage probability which is defined in terms of whether
the received signal quality is above a predetermined threshold,
and the per-user throughput with HARQ. We show that us-
ing HARQ can indeed improve the QoS coverage probability.
However, depending on the channel conditions, the per-user
throughput of the HetNets may decrease by the implementation
of HARQ. Furthermore, we show that the small cell density has
negligible effect on the QoS coverage probability and the per-
user throughput, and the per-user throughput may increase with
the small cell path loss.

I. I NTRODUCTION

The key challenge for the next generation wireless network
is the large growth in data traffic, connected devices and
various performance requirements. One solution is to develop
heterogeneous cellular networks (HetNets) by deploying dif-
ferent tiers of base stations (BSs) [1]. The idea is to use
the tier-1 cells to provide the highest transmitting power and
the largest coverage area along with low-power and low-
coverage small cells to reduce outage and improve the hotspot
throughput inside tier-1 cells, e.g., the 3-tier cellular networks
consist of macro cells, pico cells and femto cells with descend-
ing transmit power [1]–[3]. However, this type of network
topology poses new challenges to the network performance
analysis. Due to the random distribution of the small cells and
the lack of dedicated planning, the conventional hexagonal
grid model and the Wyner model [4] are no longer suitable
for modelling the randomly distributedK-tire of networks. In
order to capture the random node distribution in HetNets, [5],
[6] suggests a tractable and well-known model by using the
tools from stochastic geometry.

Modelling the locations of the BSs as a Poisson point
process (PPP), many researchers study the quality of service
(QoS) coverage probability which measures the probability
that the received signal-to-interference-plus-noise ratio (SINR)
is above a predetermined threshold. Closed-form expressions
for the QoS coverage probability are derived for a single tier
network [7] and are further extended intoK-tier HetNets [8],
[9]. In the HetNets environment, it is preferred to connect

a user to a lightly-loaded small cell rather than a heavily-
loaded large cell. Therefore, considering the cell association
strategy, [9] introduces a bias factor to weight the received
signal power, thus achieving better load-balancing. Although
the PPP may not be appropriate to model large cells between
which the distance is usually large, [7] shows that the PPP
model is almost as accurate as the grid model in a single tier
cellular network.

Due to the limited power and high interference, many
technologies have been applied to achieve the coverage re-
quirements in theK-tier networks. Based on the PPP model,
some of the leading techniques, such as inter-cell interference
coordination [10] and multi-antenna transmission [11] have
been studied by numerous researchers. However, little research
has been conducted into analyzing the hybrid automatic repeat
request (HARQ) in the PPP-based HetNets. On the other hand,
considering single-user setups, many works, e.g., [12]–[14],
have previously showed that HARQ can effectively reduce the
probability of outage and increase the throughput in wireless
networks. For this reason, it is important to study the benefits
of HARQ in HetNets, in order to design efficient systems.
The problem becomes more important when we remember
that the HARQ protocols have been already provided in many
wireless standards, e.g., IEEE 802.11n, IEEE 802.16e and
LTE-A [15]–[17]. Hence, needing no additional design, HARQ
becomes a cost- and complexity-efficient approach to fulfil
different quality-of-service requirements. In addition,HARQ
is an efficient sequential feedback approach to provide the BSs
with partial channel state information (CSI), while other partial
CSI feedback schemes (such as CSI quantisation) are usually
difficult to implement in large HetNets. Therefore, HARQ not
only presents potentials for performance improvements, but
also is an effective and realistic approach in HetNets.

This paper incorporates the HARQ into the PPP-based
HetNet model and study some of the key network metrics.
First, we build a system model for theK-tier HetNet based on
the PPP model and introduce HARQ by retransmitting the data
under certain conditions. Next, considering PPP-based HetNets
with different BS density parameters, we derive closed-form
expressions for the long-term throughput and the QoS cov-
erage probability, and analyze the system performance in the
cases using repetition time diversity (RTD) HARQ protocols.
Finally, using the closed-form expressions, we evaluate the



effect of different parameters such as the BS density, the
codewords rates and the small cell path loss on the system
performance.

The results show that HARQ can effectively increase the
QoS coverage probability. Particularly, the highest perfor-
mance gains are achieved with few numbers of HARQ-based
retransmissions, while, the relative gain in the QoS coverage
probability decreases as the maximum number of permitted
retransmissions increases. On the other hand, depending on
the channel condition, the implementation of HARQ protocols
may decrease the per-user throughput of the HetNets. This isin
contrast to the results in, e.g. [12]–[14], where they consider
the single-transmitter setup and the throughput is shown to
increase via HARQ-based data transmission. We show that
adding more small cells into the network does not affect
the QoS coverage probability and the per-user throughput
significantly, but provides much potential to reduce the outage
zones in large cells and increase the overall throughput.

II. D OWNLINK SYSTEM MODEL

In K-tier HetNet, the BSs from different tiers usually vary in
transmit power, spatial density and coverage area. We assume
the BSs in thei-th tier, 1 ≤ i ≤ K, are spatially distributed
according to a 2D homogeneous PPPΦi with densityλi, and
transmit with constant powerPi. Without loss of generality,
we consider the downlink transmission to a user placed at the
origin of the plane.

As one of the most efficient HARQ protocols, we consider
the RTD HARQ, while the results can be easily extended to
the cases with, e.g., incremental redundancy HARQ. The use
of RTD HARQ is of particular interest in large-scale HetNets
because it implies low implementation complexity. We assume
no instantaneous CSI at the BSs and perfect CSI at the user.
In this way, in each packet transmission, every BS sends
the data with the initial rateR. If the instantaneous SINR
at the receiver supports the rate, i.e.,log (1 + SINR) > R,
the transmission is successful and the message is correctly
decoded. Otherwise, the BS retransmits the same data until the
message is correctly decoded or the number of transmissions
exceeds a permitted maximum numberM + 1. The receiver
jointly decodes received signals using maximum ratio com-
bining and, depending on the message decoding status, sends
acknowledgement/negative acknowledgement (ACK/NACK)
feedback bits after each reception. The feedback channel bits
are assumed to be received by the BSs error-free.

Considering block fading channels, the signal sent from
an arbitrary BSxi in the i-th tier is subject to a path loss
||xi||

−αi and Rayleigh fading with unit mean, whereαi > 2
is the path loss exponent. For simplicity, we assume that the
uncoordinated frequency reuse scheme with reuse factor 1
is used and the thermal noise is negligible compared to the
interference power caused by BSs, therefore we consider the
network as interference limited.

For cell association strategies, we assume the user is asso-
ciated to the BS providing the maximum long-term averaged
power. The system is fully loaded and all BSs except the

associated one cause interference to the considered user.
No handovers occur until all the (re)transmissions end. The
performance is analyzed in quasi-static conditions where the
packet time1 is less than a single block fading duration, which
is reasonable for stationary or slowly moving users, since each
transmission time is much less than the channel coherence time
according to the LTE standard, as discussed in [18], [19].

If the user is associated to thei-th tier and is at a random
distance||xi|| from its associated BS, the received signal-to-
interference ratio (SIR) for each transmission is given by

SIRi =
Pihxi ||xi||

−αi

∑K
j=1

∑

xj∈Φj\xi
Pj ||xj ||−αjhxj

. (1)

wherehx is the independent and identically distributed fading
coefficients and follow the exponential distribution with unit
mean.

In Sections III and IV, we use the system model to evaluate
the effect of the HARQ protocols on the QoS coverage
probability and the throughput of the PPP-based HetNets,
respectively.

III. Q OS COVERAGE PROBABILITY

In this section, we calculate the QoS coverage probability in
K-tier HetNet using HARQ. Since each user can be associated
to only one tier at the same time and does not change the
associated BS during the retransmissions, we first give the
expression of the QoS coverage probability for each tier and
then extend it to be averaged over all tiers.

Assuming that the user is associated to a BS in thei-th tier
and uses the maximum ratio combining of the received signals,
the combined SIR afterm-th (re)transmission ism × SIRi,
where0 < m ≤ M+1, and the resulting data rate decreases to
R/m afterm (re)transmissions. In this case, a user iscovered
and the message is correctly decoded, if the combined SIR at
the end of them-th (re)transmission supports the data rate (and
not before). Hence, the QoS coverage probability conditioned
on that the user is associated to thei-th tier is found as

pi =

M+1
∑

m=1

Pr

(

log (1 + (m− 1)SIRi) < R

≤ log (1 +mSIRi)

)

(2)

= Pr

(

SIRi >
eR − 1

M + 1

)

. (3)

Here, (2) is based on the fact that with the instantaneous SIR
of SIRi, the maximum decodable rate is1m log(1 +mSIRi),
if the same codeword is transmittedm times and maximum
ratio combining is utilised by the receiver.

Denoting the probability that a user is connected to ani-
th tier BS by ai, [9] gives the explicit expression for the
cell association probability. As will be seen later, the cell
association probability is cancelled out in the final expression

1A packet is defined as the transmission of a codeword along with all its
possible retransmissions.



of the overall QoS coverage probability, therefore we do not
study ai in detail and denote the QoS coverage probability
averaged overK tiers as

pc =
K
∑

i=1

aipi. (4)

The cumulative distribution function of the SINR, i.e. SIR
in our interference limited case, conditioned on the user
associated to thei-th tier is derived as [9, Eq. 15]

Pr(SIRi < x) = 1−
2πλi

ai

∫ ∞

0

re−
x

SNR−π
∑K

j=1
Cjr

2αi/αj
dr,

(5)

where SNR= Pir
αi

N0
, N0 is the additive noise power and

Cj = λj
Pj

Pi

[Bj

Bi

2/αj

+
2x(Bj/Bi)

2/αj−1

αj − 2
×

2F1

[

1, 1−
2

αj
; 2−

2

αj
;−

xBi

Bj

]

]

, (6)

with Bi denoting the bias given to the average received power
from i-th tier BSs, and2F1[·] being the Gauss hypergeometric
function.

In this paper, we concentrate on the effects of the HARQ.
Thus we simplify by setting all bias factorsBi equal to1 and
considering the interference-limited scenario, we rewrite [9,
Eq. 15] as

Pr(SIRi < x) = 1−
2πλi

ai

∫ ∞

0

re−π
∑K

j=1
Cj(x)r

2αi/αj
dr,

(7)

where

Cj(x) = λj
Pj

Pi

2
αj

(

1 +
2x

αj − 2
2F1

[

1, 1−
2

αj
; 2−

2

αj
;−x

])

,

(8)

Combining (4), (7) and (8), the overall QoS coverage proba-
bility of a user in aK-tier heterogenous network with HARQ
as a function ofM,R is given by

pc(M + 1, R) = Pr

(

SIR>
eR − 1

M + 1

)

=

K
∑

i=1

2πλi

∫ ∞

0

re
−π

∑K
j=1

Cj

(

eR−1

M+1

)

r2αi/αj

dr.

(9)

Figure 1 shows the effects of the HARQ on the QoS
coverage probability. (Note thatM = 0 gives the QoS
coverage probability without HARQ in [9]). As expected, the
larger the maximum number of retransmissions, the better the
QoS coverage probability. Moreover, we observe that the most
gains of the HARQ are achieved with low values ofM . I.e.
the relative gain in the QoS coverage probability decreases
with M , the largest gain occurs when from no HARQ to
using HARQ with M = 1. In the meantime, using (9), it
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Figure 1. QoS Coverage probability under HARQ forM = 0, 1, 2 in a
3-tier HetNet. For tier-1 BSs, the path loss exponent, the BS density and
the transmit power are set toα1 = 3.8, λ1 =

1

π5002
andP1 = 53 dBm,

respectively. For tier-2 BSs, these parameters areα2 = 3.5, λ2 = 2λ1 and
P2 = 33 dBm, respectively. For tier-3 BSs, these parameters areα3 = 4,
λ3 = 20λ1 andP3 = 23 dBm, respectively. The simulations use an additive
noise with power -60 dBm, the comparison with the analyticalresults in the
interference-limited case indicates the negligible effect of the additive noise
in dense networks.
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Figure 2. QoS Coverage probability versus the maximum number of retrans-
missionsM in a 2-tier HetNet. The initial transmission rate of all BSs is set to
R = 0.8149 nat/s/Hz. For tier-1 BSs, the path loss exponent, the BS density
and the transmit power are set toα1 = 3.8, λ1 =

1

π5002
andP1 = 53 dBm,

respectively. For tier-2 BSs, these parameters are considered asα2 = 3.5,
λ2 = 0, 5λ1, 10λ1, 20λ1 andP2 = 33 dBm, respectively.

is straightforward to show thatpc → 1 if M → ∞, ∀R < ∞.
In Figure 2, we calculate the QoS coverage probability for
different values of the maximum number of retransmissions
and the second tier BS density. The QoS coverage improves
with M for all λ2, and the increment is small for largeM .
Also, we observe that, in this setup, the QoS coverage is
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dBm, respectively.

deteriorated when we first introduce the small cells. However,
further increasing the density of the second tier BSs has little
effect on the QoS coverage probability. The results imply that
we can increase the number of small cells to reduce the outage
zones inside tier-1 cells without decreasing the overall QoS
coverage probability significantly.

IV. PER-USERTHROUGHPUT

In this section, we study the per-user throughput of aK-tier
HetNet in the presence of HARQ. Assuming only one active
user per cell, the per-user throughput measures the successful
data rate over a long period with many packet transmissions.
Denoting the initial data rate asR = n/N , wheren andN are
the information bits and code bits, respectively, the per-user
throughput can be expressed as

η
.
=

E{successfully decoded bits}
E{number of channel uses}

(10)

=
npc(M + 1, R)

∑M+1
m=1 mN Pr (Am)

(11)

=
Rpc(M + 1, R)

∑M+1
m=1 mPr(Am)

. (12)

Here, the first equality comes from the renewal-reward the-
orem [12]–[14] andPr(Am) denotes the probability that the
(re)transmissions end at them-th round (and not before). The
probabilityPr(Am) is given by

Pr(Am) =
K
∑

i=1

ai Pr
(

log(1 + (m− 1)SIRi) < R

≤ log (1 +mSIRi)
)

(13)

= pc(m,R)− pc(m− 1, R), (14)
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Figure 4. (a) Per-user throughput versus the maximum numberof retrans-
missionsM in a 2-tier HetNet. The initial transmission rate of all BSs is
set to R = 0.8149 nat/s/Hz. For tier-1 BSs, the path loss exponent, the
BS density and the transmit power are set toα1 = 3.8, λ1 =

1

π5002
and

P1 = 53 dBm, respectively. For tier-2 BSs, these parameters are considered
asα2 = 3.5, λ2 = 0, 5λ1, 10λ1 andP2 = 33 dBm, respectively. (b) Per-
user throughput versus the path loss exponent of second tierBSs in a 2-tier
HetNet. All considered parameters are the same as before, except that we
consider varyingα2 and a fixedλ2 = 10λ1.

for 1 ≤ m ≤ M , and

Pr(AM+1) = 1−
M
∑

m=1

P (Am) = 1− pc(M,R), (15)

for m = M + 1.
Hence, the per-user throughput in aK-tier HetNet under

HARQ with the maximum number of retransmissionsM is
given by

η = Rpc (M + 1, R)×

{

M
∑

m=1

m [pc (m,R)− pc (m− 1, R)] +



(M + 1) [1− pc (M,R)]
}−1

, (16)

which, using (9), can be evaluated numerically or analytically.
In Figure 3, we calculate the per-user throughput based on

(16). As it is seen, although the QoS coverage probability
improves by using HARQ (Figs. 1-2), for the considered
parameter settings of the figure, the per-user throughput de-
creases withM . The explanation is that, while the QoS
coverage is improved by retransmitting the same data, the
expected number of channel uses also increases, leading to
a loss in the throughput. However, the throughput loss is
negligible particularly at low and high transmission rates.
Moreover, the figure indicates that there exists an optimal
initial transmission rate maximizing the per-user throughput
and the optimal initial transmission rate maximizing the
throughput is (almost) insensitive to the maximum number of
retransmissions. For low initial transmission rate, although the
QoS coverage probability is high, the per-user throughput is
bad and vice versa. Thus, there is a trade-off between the initial
transmission rate and the QoS coverage probability, in terms of
the per-user throughput. Finding the analytical expression for
the optimal initial transmission rate maximizing the per-user
throughput is left for future work.

Figure 4(a) shows the effects of the maximum number of
retransmissions and the second tier BS density on the per-user
throughput. Again, the per-user throughput decreases withM
for all λ2. However, the change of the per-user throughput
is small due to further increasing the second tier BS density.
Therefore, adding more small cell BSs does not affect the
per-user throughput significantly, but allow more users to be
served, thus increasing the overall throughput.

The per-user throughput under different path loss exponents
of second tier BSs, i.e.,α2, is illustrated in Fig. 4(b). For all
values ofα2, there is always a loss in the throughput by in-
creasing the maximum number of retransmissions. Also, note
that the per-user throughput does not increase monotonically
with α2 for all M . This is because the larger theα2, the less
the interference from the second tier BSs. Whenα2 is large,
the per-user throughput only depends on the parameters of the
first tier BSs.

V. CONCLUSIONS

Implementing hybrid automatic repeat request (HARQ),
this paper studies the QoS coverage probability and the per-
user throughput of the heterogeneous networks (HetNets)
modelled by a homogeneous Poisson Point process (PPP). We
derived closed-form expressions for the network QoS coverage
probability and the throughput. Also, we showed that the QoS
coverage is improved substantially as the maximum number of
retransmissions increases. However, depending on the channel
condition, the implementation of HARQ may lead to slight
throughput reduction. Furthermore, we demonstrated that the
QoS coverage probability and the per-user throughput are
almost invariant to the density of small cells. In addition,
the per-user throughput increases with the small cell path
loss exponent. Future works include the energy efficiency in

HetNets considering the power consumption of the different
tiers, as well as implementation of adaptive modulation and
coding in conjunction with HARQ.
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