
THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY 
 

 

 

 

 

 

 

A Methodology for Identifying 

Transformation Pathways for Industrial 

Process Clusters: Toward Increased Energy 

Efficiency and Renewable Feedstock 
 

 

 

 

 

ROMAN HACKL 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Heat and Power Technology 

Department of Energy and Environment 

CHALMERS UNIVERSITY OF TECHNOLOGY 

Göteborg, Sweden 2014



 

 

 

 

 

 

 

 

 

 

A Methodology for Identifying Transformation Pathways for Industrial Process Clusters: 

Toward Increased Energy Efficiency and Renewable Feedstock 

ROMAN HACKL 

ISBN 978-91-7597-091-2 

 

 

© ROMAN HACKL, 2014 

 

 

Doktorsavhandlingar vid Chalmers tekniska högskola 

Ny serie nr 3772 

ISSN 0346-718X 

 

 

Publication 2014:1 

Heat and Power Technology 

Department of Energy and Environment 

CHALMERS UNIVERSITY OF TECHNOLOGY, GÖTEBORG 

ISSN 1404-7098 

 

 

CHALMERS UNIVERSITY OF TECHNOLOGY 

SE-412 96 Göteborg 

Sweden 

Phone: +46 (0)31-772 10 00 

 

 

 

 

Cover: 

Industrial site in Gothenburg, Sweden 

 

 

 

 

Printed by Chalmers Reproservice 

CHALMERS UNIVERSITY OF TECHNOLOGY 

Göteborg, Sweden 2014



iii 

A Methodology for Identifying Transformation Pathways for Industrial Process Clusters 

Toward Increased Energy Efficiency and Renewable Feedstock 
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Chalmers University of Technology 

 

ABSTRACT 
 

The European process industry is facing major challenges. Modern, large-scale 

production facilities in other parts of the world are often more efficient. Furthermore, 

limited access to inexpensive shale gas from North America has led to an additional 

disadvantage for the European industry. At the same time, the European Union (EU) has 

implemented policy instruments aiming at increasing the costs for emitting Greenhouse 

Gases (GHG) in order to curb global warming. 

According to the International Energy Agency (IEA), the only measure that decreases 

GHG emissions and at the same time achieves economic, environmental and societal 

goals is increasing energy efficiency. Clusters of industrial production plants often offer 

considerable opportunities to increase efficiency at the total site level. Another option for 

the process industry is to tap into new markets in order to stay competitive. The interest 

for biomass based products has increased lately due to societal expectations for 

sustainable development and renewable feedstock based products.  

This work presents a framework methodology that can provide guidance to the process 

industry in order to manage this transformation in an efficient way. Process integration 

tools are used to identify common measures to improve energy efficiency at a site-wide 

scale. This targeting procedure is followed by a detailed procedure for design and 

evaluation of practical energy efficiency measures. This step should be performed in 

close collaboration with experts from the industrial cluster in order to present solutions 

that can overcome some of the main barriers for the implementation of common energy 

efficiency measures. The knowledge obtained during this targeting and design process 

can also be used to identify favourable ways to integrate biomass based processes that can 

replace fossil with biogenic feedstocks and utilise existing infrastructure. In most 

chemical processes, there is usually excess process heat that cannot be utilised internally. 

In the last stage of the framework methodology developed in this work, the opportunity to 

export industrial excess heat should be investigated. This includes an assessment of the 

quantity of available heat, the economic feasibility and the competition between internal 

integration and the export of heat. 

The framework methodology is demonstrated via a case study of a chemical cluster in 

Sweden. 

 

Keywords: total site analysis, process integration, energy efficiency, biorefinery, district 

heating 
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1 1 Introduction 
 

This chapter provides background information for this PhD project. Drivers for Energy 

Efficiency (EE) in industry are identified; additionally, industrial clusters are defined, the 

concepts of industrial symbiosis and eco-industrial parks are introduced and the role of 

clusters in EE and the integration of processes based on renewable feedstocks are 

described. 

1.1 Background 

The industrial sector is one of the main users of energy in the European Union (EU) and 

worldwide. The sector’s consumption of primary energy carriers accounts for 

approximately 26% of the total primary energy use in the EU. This portion is 

approximately the same share as the two other main users, i.e., the residential and road 

transport sectors (see Figure 1). [1] 

 

Figure 1 Total energy use (including electricity) between 1990 and 2012 by sector 

within the EU-28 [1]. Energy carriers, such as naphtha or natural gas, which are 

converted into non-energy products, e.g., petrochemicals, are included in the energy 

use of the industrial sector. 
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Energy in the industrial sector is used for a wide variety of purposes, e.g., heating, 

cooling, refrigeration, air conditioning, processing, assembly and lighting. Energy use is 

strongly related to GreenHouse Gas (GHG) emissions. Consequently, the emissions of 

GHGs in the EU are largest from the three aforementioned sectors; industry is ranked 

second after the transportation sector, with approximately 1,000 Mt-CO2-equ/y of GHG 

emissions in 2010
2
. Most GHG emissions are caused by direct combustion of fuels, which 

accounts for approximately 60% of the total industrial GHG emissions [2], whereas 

approximately 40% of industry-related emissions are caused by energy transformation. 

Due to the decline in domestic fossil resources, primary energy supply produced within 

the EU is steadily decreasing, with the exception of renewables (see Figure 2). However, 

the overall energy demand is relatively stable (Figure 1). 

 

Figure 2 Primary energy supply produced within the EU-28 [1]. 

 

Thus, energy imports to the EU that are necessary to offset the energy demand increase 

the EU’s energy dependence. For example, imports of natural gas have doubled in the 

past decade, and in 2012, these imports accounted for approximately 66% of the total 

natural gas consumption. The general trend in the EU is toward increased imports of 

fossil fuels and, to a lesser extent, biofuels. [1] 

As noted above, the industrial sector contributes significantly to the total energy use and 

related emissions of GHGs, which affect both environmental and energy security. 

According to the Intergovernmental Panel on Climate Change (IPCC) [3], global GHG 

emissions must be reduced by 40-70% compared with the 2010 levels by 2050 and 

continue to decrease thereafter to curb the global temperature increase at 2 °C.  
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Furthermore, the International Energy Agency (IEA) has noted that increased end-use 

efficiency for fuel and electricity is critical for reaching the 2 °C goal [4]. Cellulosic 

biomass, which can replace fossil fuels and fossil feedstock in industrial production 

processes, can also contribute to reaching this goal [5]. 

High efficiency industrial production processes are extremely important to remain 

competitive. Rapid changes in the political atmosphere and energy costs in different 

regions of the world place pressure on energy security and competitiveness. 

 

Figure 3 Japanese and European natural import prices relative to the US natural gas 

spot price [6]. European prices are weighted average price of imports at the German 

border. Japanese prices are for deliveries of LNG to import terminals. US prices are 

Henry Hub. 

 

One example of rapid local-scale changes in energy costs is the so-called “shale gas 

revolution” in the US, which led to a competitive advantage for natural gas consumers in 

the US compared with other parts of the world. The ratio of natural gas import prices in 

Europe and Japan to the US spot price is illustrated in Figure 3. The ratio has increased 

considerably in recent years, resulting in a 3 times higher natural gas price in Europe 

(almost 5 times higher in Japan) compared with the US at the end of 2013. According to 

the latest IEA World Energy Outlook 2013, this ratio is likely to decrease in the future 

[6]; however, natural gas prices will remain considerably higher in Europe and Japan 

compared with the US. These costs are putting pressure on energy-intensive industries in 

Europe [6]. Furthermore, the construction of modern, large-scale production facilities in 

regions such as Asia has resulted in productivity advantages that the generally older, 

smaller facilities in Europe struggle to match [7]. Increased energy end-use efficiency is 

an important part in counteracting these economic disadvantages since it decreases both 

dependence on energy imports and the amount of GHG emissions. 

Despite the current low price for carbon emissions, the implementation of the European 

Emissions Trading System (ETS) is another (future) driver for industrial EE. The ETS 
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includes 11,000 power stations and industrial installations in 31 countries, including 

approximately 45% of the EU-28 total GHG emissions [8]. The limited availability of 

GHG emission allowances increases the costs of using energy, which makes investments 

in EE a viable option to decrease energy use and avoid GHG emissions. 

As stated in a current report by the ECN [9], rising cost associated with GHG emission 

will provide incentives for companies to invest in EE measures, although only to a certain 

price level. Research shows that despite their economic viability, not all EE measures are 

implemented. The authors suggest using direct policies, such as introducing an EE 

obligation or using ETS auction revenues to fund EE programs. In addition, 

methodologies that assist industry in setting energy savings targets and identifying 

specific EE measures, including basic design considerations and economic evaluation, 

must be developed to bridge the gap between the potential for cost-effective energy 

savings and the actual level of their implementation. 

As noted above, increased EE can assist with simultaneously achieving economic, energy 

security and environmental objectives. Therefore, increased EE is an important building 

block when planning future energy systems. Methods to identify and tap the potential 

energy savings of industrial processes and the efficient integration of processes based on 

renewable feedstocks are critical to achieving these goals. 

The European Chemical Site Promotion Platform, a forum promoting new investments in 

Europe’s chemical clusters, argues that the formation and strengthening of chemical 

clusters in Europe is one of the main factors to ensure that chemical production remains 

competitive in Europe [10].  

1.2 Industrial clusters in the chemical industry 

One definition of clusters in an economic context is formulated by Porter [11]: “Clusters 

are geographic concentrations of interconnected companies and institutions in a 

particular field, linked by communalities and complementarities.” Porter later states the 

following: “A cluster allows each member to benefit as if it had greater scale or as if it 

had joined with others without sacrificing its flexibility.” 

According to this definition, clusters in the chemical industry are agglomerates of 

chemical companies that are interconnected in some manner. Examples of possible 

interconnections include: 

 Common logistics infrastructure, e.g., a common port or railway; 

 Interconnected material flows, e.g., one company’s product is another company’s 

feedstock; 

 Common utility infrastructure, e.g., steam/electricity generation and distribution; 

 Shared labor pool; and 

 Shared facilities, e.g., administration and research. 
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In her work regarding the economic and environmental aspects of integrated chemical 

production sites, Kimm [12] identified benefits attained by chemical clusters due to 

strong integration. To utilize the advantages offered by integrated chemical production, 

methodologies are needed to identify and implement this strong integration. 

This work focuses on chemical clusters and their opportunities to improve 

competitiveness as well as decrease fossil resource consumption and GHG emissions. In 

the following section, two applications of the concept of industrial clusters from the field 

of industrial ecology are described. 

1.3 Industrial symbiosis and eco-industrial parks 

According to Chertow [13] “industrial symbiosis engages traditionally separate 

industries in a collective approach to competitive advantage involving physical exchange 

of materials, energy, water, and/or by-products. The keys to industrial symbiosis are 

collaboration and the synergistic possibilities offered by geographic proximity.” Eco-

industrial parks are an application of industrial symbiosis in which companies in 

geographic proximity are in “symbiosis”, exchanging and sharing resources, including 

materials, energy, water, information and infrastructure [12]. The concept may involve 

the direct utilization of waste/by-product material streams of one unit at a neighboring 

plant, the use of excess process heat that cannot be utilized at the unit where it is 

generated at another plant or the sharing of common energy equipment, such as CHP 

plants and utility infrastructure. 

One example of an eco-industrial park is located in Kalundborg, Denmark. Here, the 

collaboration between a power station, an oil refinery, a biotechnology company, a 

producer of plasterboard, the city of Kalundborg and a soil remediation company has led 

to increased environmental and economic efficiency, e.g., an estimated annual reduction 

of CO2 emissions by approximately 130 kt and annual savings of approximately 

15 million US$ [14]. Moreover, other benefits, e.g., personal, equipment and information 

sharing, have been identified [13].  

Several tools are available to promote the creation and improvement of industrial 

symbiosis and eco-industrial parks. In this work, a framework methodology based on 

process integration tools is developed to systematically identify, design and evaluate heat 

integration opportunities among industrial facilities in geographic proximity. The 

framework methodology also enables the identification of renewable feedstock-based 

processes that can be integrated with existing clusters to improve economic performance 

and reduce GHG emissions. 

In the following section, advantages and challenges of chemical clusters are discussed, 

which is followed by a more specific description of the implications of clustering 

chemical production sites on EE and the potential for integration of renewable feedstock-

based processes. 
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1.4 Advantages, opportunities and challenges of chemical 

clusters 

Kimm [12] investigated the advantages of integrated chemical production sites. Short 

distances between production plants enable the direct utilization of by-products or 

intermediates as feedstock for neighboring processes without additional transport. Direct 

product transfer by pipeline decreases safety risks from sea, rail or truck transport and 

transport costs and related emissions. 

Energy is another important aspect of integration in chemical clusters. Chemical 

processes require heat and electricity to operate sub-process units, such as evaporation, 

condensation, and compression. Heat to chemical processes is typically provided by an 

energy carrier, such as steam, which is generated via the combustion of fuel in a boiler. A 

more energy-efficient method to provide process heat is the co-generation of heat and 

(electric) power in a combined heat and power (CHP) plant. These plants are typically 

more cost-effective at larger scales. A CHP plant in a small stand-alone chemical 

production site is typically not cost effective, whereas CHP plants providing heat and 

electricity to a chemical cluster provide these utilities more efficiently (less overall 

emissions) and at lower costs.  

Heat Integration (HI) also offers significant opportunities for EE within larger clusters. 

Whereas stand-alone plants are limited to HI within one process, HI within a chemical 

cluster can be far more extensive. If excess heat from one process can supply heat to 

another via, e.g., a steam or another utility network, HI can lead to substantial primary 

energy savings. 

Another advantage of chemical clusters is related to both energy and material transfer. 

Direct material transfer can enable heat savings due to the possibility of transferring hot 

materials. For example, in a stand-alone unit, the product must be cooled/liquefied for 

transportation. At the receiving site, the feedstock must be heated/evaporated to achieve 

suitable process conditions. Direct material integration can reduce the utilities consumed 

in these stages. 

By-products that cannot be utilized in another process and must be incinerated can be 

utilized more efficiently in a chemical cluster. Single process plants might not be able to 

use the additional heat generated from by-product incineration, whereas clusters can use 

this heat. Moreover, by-product fuels can replace fuels in CHP plants for supplying heat 

and electricity to chemical clusters, leading to additional efficiency gains. 

Depending on the processes used at a chemical site, the need for infrastructure may vary. 

In general, installations such as those required for the energy supply (e.g., steam, 

electricity, and natural gas), material and utility distribution (e.g., material pipeline, 

steam, water, and electricity networks), waste management (e.g., waste water treatment 

and waste incineration) and transport (e.g., road, sea, and rail infrastructure) can be 

utilized more efficiently or might only be available at larger scales. Moreover, the costs 

for services, including engineering, IT and communications, analytics, and safety (e.g., 

fire brigade and site security), benefit from economies of scale, which are provided by 

chemical clusters. 



Chapter 1. Introduction 

 

7 

Another important advantage of chemical clusters compared with single, stand-alone 

plants is based on the opportunities for information and knowledge sharing and access to 

a common labor pool. The proximity of the individual companies and their employees 

being involved in common projects leads to an exchange of knowledge and experience 

that promotes the development of the entire cluster. Furthermore, clusters have a larger 

demand for skilled labor and other services. Therefore, the regional importance of clusters 

increases. Meanwhile, a climate conducive to education, research and other services 

related to the cluster activities is created. 

Despite the advantages that chemical clusters offer to companies in geographical 

proximity to each other, these opportunities are rarely exploited to their full extent. To 

remain competitive with clusters in other growing markets, such as Asia, European 

clusters must increase their productivity. In general, plants in Europe are older and do not 

benefit from the economies of scale that are achieved by new large production facilities in 

Asia. Changes across entire production facilities and companies in contrast to traditional 

single company investments are necessary to obtain significant productivity 

improvements [7]. 

Joint investments in measures to improve productivity within a cluster result in a larger 

degree of complexity compared with investments of single companies. One potential 

difficulty is competition between companies involved in the investment because there is 

often a limited culture of collaboration, which makes it difficult for project partners to 

work together. Joint investments require the long-term strategies of all partners to 

interlock for the investment to occur. Business models for joint investments are another 

issue. Instead of focusing on benefits for the entire cluster, companies tend to put their 

own interests first [15]. 

Clusters differ depending on their geography, size and interaction between the 

participating companies. In the following section, aspects of EE via improved HI on a 

site-wide scale and efficient integration of renewable feedstocks are highlighted.  

1.5 Energy efficiency and integration of renewable feedstocks 

in the context of chemical clusters 

From an EE perspective, the short distances between companies located in a cluster 

enables the exchange of materials, heat and cooling between the different process plants. 

Therefore, the overall EE of the cluster can be increased. A production plant that 

generates excess heat at a temperature that prohibits its use within its own plant 

boundaries can export this heat to a neighboring plant. This transfer reduces the need to 

produce the same amount of heat in a utility boiler, which saves primary energy.  

Methodologies based on HI targeting tools for single sites have been developed that allow 

for the targeting of such energy collaboration opportunities, namely, Total Site Analysis 

(TSA) [16]. However, one of the many potential barriers in implementing such 

collaborative measures is the ownership structure of the cluster. If the constituent plants 

have different owners and operate in different markets with different business cycles, 

adopting common EE measures can present major challenges. Hence, it is important to 
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also assess the potential for EE improvements if each plant adopts measures solely at its 

own site and uses this assessment as a benchmark for collaborative EE measures.  

In addition to improving EE in existing processes, another option to improve the 

competitiveness of chemical clusters discussed in this work is the biorefinery concept, 

which represents a method for substituting fossil hydrocarbon feedstock in processes that 

produce synthetic products and liquid fuels using renewable raw materials. A wide range 

of renewable feedstock materials can be converted into value-added products and thus 

substitute fossil feedstocks. For example, the raw materials that can be used as feedstock 

for a biorefinery are crops and residues, lignocellulosic material, municipal solid waste 

and algae. Biorefineries apply a wide range of technologies to separate the biomass inputs 

into their building blocks, such as hydrogen, carbohydrates and proteins, which are 

subsequently converted into value-added products [17]. 

The integration of a biorefinery process within a chemical cluster can be advantageous 

compared with stand-alone operations for the following reasons: 

 Utilization of existing infrastructure e.g., ports, railways, roads, boilers, piping, 

and storage; 

 Excess heat from certain biorefinery components (e.g., excess steam from a 

gasification unit) can partially offset the heat demands in other parts of the cluster; 

 Excess heat from the cluster can be used in biorefinery processes, such as biomass 

drying and biogas reactor heating; 

 Biorefinery products can be used directly as feedstock in the cluster (e.g., syngas 

and ethanol), thus eliminating the need for transport, while the direct delivery of 

warm products can conserve energy; and 

 Biorefinery operations can capitalize on existing knowledge regarding the 

operation of chemical processes. 

The consequences of implementing both EE measures and a biorefinery in a chemical 

cluster are illustrated in Figure 4. The energy and material flows into, within and out of a 

chemical cluster with a low degree of integration are shown on the left side of Figure 4. 

Large amounts of fossil feedstocks, fuels and electricity are imported and converted into 

products and large amounts of excess heat. An illustration of measures to decrease the 

clusters’ environmental footprint and improve efficiency is presented on the right side of 

Figure 4. The following major changes are suggested: 

 More efficient use of excess heat; 

 Integration of biorefinery processes to decrease the clusters’ fossil feedstock 

dependence; 

 Decreased import of fossil feedstocks, fuels and electricity; and 

 Export of by-products. 
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Figure 4 Left: Illustration of energy and material flows in a chemical cluster with a 

low degree of integration (no HI, limited materials integration). Right: Energy and 

material flows in an industrial cluster with a high degree of integration (heat and 

material integration), a CHP for delivering heat and electricity, and integrated on-site 

processing of renewable feedstocks (biorefinery concept). 

 

These improvements can be accomplished by: 

 Increased EE of single plants; 

 Increased EE by site-wide energy collaboration, whereby companies send excess 

heat and cooling capacity to other plants for optimal re-use; 

 Implementation of process-integrated biorefinery units; 

 Increased utilization of low-grade excess heat, which cannot be recovered directly 

within the cluster, e.g., extended district heating (DH), low-temperature 

refrigeration/electricity generation, heat pumping and biomass drying; and 

 Increased co-generation. 

This work presents a framework to investigate opportunities for systematically 

implementing such improvements. 
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1.6 Appended papers 

A general overview of the papers included in this thesis is presented and illustrated in 

Figure 5.  

In Paper I, the methodology used for identifying site-wide HI opportunities within an 

existing industrial cluster is presented. The methodology, which is called TSA, is 

illustrated with a case study of a chemical cluster in Sweden. The paper is based on an 

extensive project report that is not included in this thesis [18]. Paper II presents an 

extension of the methodology applied in Paper I to identify heating, cooling and related 

shaft work savings targets using advanced HI. The same cluster is used to illustrate the 

methodology. 

In Paper III, a design strategy for integrating advanced biorefinery processes with 

existing industrial clusters is developed and illustrated for a biorefinery producing 

ethylene from lignocellulosic biomass. 

The methodologies used and the results obtained in Papers I, II and III are used to 

describe a framework methodology that simultaneously targets EE and replaces fossil 

feedstocks with biomass in industrial clusters. This framework methodology is 

established in Paper IV.  

In Paper V, a targeting approach for delivering industrial excess heat to DH systems is 

presented. The economic conditions for exporting industrial excess heat at different levels 

of cluster internal heat recovery are investigated. Moreover, consequential CO2 emissions 

due to heat recovery within an industrial cluster versus exporting excess heat to a DH 

network are investigated.  

Paper VI extends the TSA methodology by creating a detailed flexible design for 

common site-wide heat recovery systems in industrial clusters with or without common 

energy infrastructure. The methodology is presented and illustrated in a case study of the 

same cluster used in the previous papers. 
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Figure 5 Overview of the appended papers and their relation. 

1.7 Thesis outline 

The relevant scientific literature is presented in Chapter 2, which provides an overview of 

the development and current status of methods and tools for improving EE in industrial 

clusters and the integration of new bio-based processes. At the end of this chapter, 

research needs are identified. Based on these needs, the objectives and scope of this thesis 

are described in Chapter 3. Chapter 4 provides a detailed overview of the methods used in 

this work, and the methodologies developed in this work and their application to a case 

study are presented in Chapter 5. In Chapter 6, the main findings of this work are 

summarized, and the primarily conclusions are discussed. Chapter 7 discusses potential 

sources of error and uncertainty and their implications on this work, and Chapter 8 

outlines interesting future areas of research in the field of process integration with a focus 

on industrial clusters. 
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2 2 Literature review and research 

needs 
This chapter presents an overview of the current scientific literature on EE in industrial 

clusters and the integration of biorefinery concepts with existing (industrial) 

infrastructure. Thereafter, the research needs that were identified based on the literature 

review are described. 

2.1 Literature review 

The scientific literature includes both papers on methodologies and case studies targeting 

improved EE in industrial clusters. Developing methodologies for identifying 

implementation strategies for site-wide EE measures remains a necessity. There are a 

limited number of papers discussing methods for the practical implementation of EE 

measures in real industrial clusters. The literature on biorefinery integration with 

chemical clusters is limited to studies investigating different biorefinery processes and 

their internal integration potential or integration opportunities with other single process 

plants, e.g., gasification plants that co-generate fuels, heat and electricity integrated with 

industrial processes, such as pulp and paper mills, or local DH networks. 

2.1.1 Total site analysis and exergy analysis for heat integration targeting 

TSA represents a set of tools developed for targeting HI on a chemical site level. Since its 

introduction by Dhole and Linnhoff [19], TSA has been significantly developed by, e.g., 

Raissi, who extended the methodology by introducing the site composite and site utility 

grand composite curves and applied TSA to greenfield, site expansion and retrofit 

projects [16].  

Hui and Ahmad [20] developed a methodology for the optimal design of total site utility 

systems that combines the principles of traditional pinch analysis and exergy analysis. 

Transferring heat from a utility to a process stream implies a certain amount of exergy 

loss due to the temperature difference between the two streams. Hui and Ahmad utilized 

exergy analysis for steam (hot utility) costs to determine the optimal utility system 

configuration for an entire site. The methodology can be applied to chemical sites with a 

common utility system to increase efficiency. 

Klemeš et al. [21] summarized the results of 5 different studies in the petroleum, chemical 

and pulp & paper industries in which TSA was applied to target EE. Their results 

indicated that the identified heat savings resulted in fuel and emissions savings of up to 

20% and 50%, respectively. HI via a utility system often exhibits considerable effects on 
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the power generation potential of a chemical site. At large chemical sites, power is co-

generated when supplying heat. HI decreases heat consumption and related power 

generation in CHP systems.  

Maréchal and Kalitventzeff introduced a methodology for targeting and synthesizing site-

scale utility (including co-generation and refrigeration) systems using mathematical 

programming techniques to minimize the energy supply costs of an entire site [22]. The 

methodology was applied to a case study that suggested an approximately 36% reduction 

in operating costs at the investigated site. They also developed a method for targeting 

utility systems that accounts for multi-period operation; thus, this approach considers 

temporal changes in utility demands at the different plants within an entire site [23].  

Matsuda et al. [24] first applied the TSA methodology to one of the largest, centrally 

integrated chemical clusters in Japan. Despite relatively well-integrated single plants, a 

large potential for heat savings through the use of site-wide measures was identified. In 

this study, TSA tools were applied to visualize changes to the utility systems at the 

investigated sites that are necessary to achieve the targeted heat savings. Project ideas 

resulting from this analysis were described in their paper; however, no detailed design for 

measures that realize the potential heat savings was presented. In another case study, the 

methodology was applied to an industrial area in Thailand, where the TSA revealed an 

energy savings target of 28% [25]. 

Becker and Maréchal [26] proposed a methodology for targeting and optimal integration 

at industrial sites. The methodology accounts for the fact that not all units are able to 

exchange heat directly, which makes it necessary to introduce heat transfer units, such as 

hot water heat recovery systems. The optimal placement of energy conversion units, e.g., 

CHP and heat pumps, was also investigated. 

Pouransari et al. [27] applied techniques based on process integration to develop a 

methodology for EE improvements at large chemical sites. The methodology uses 

different levels of detail in data acquisition (e.g., black, grey, white box and 

simple/detailed model analysis); moreover, they illustrated the quality improvements due 

to the use of more detailed data acquisition. Single processes and total site integration 

were investigated, illustrating that larger efficiency gains can be achieved by site-wide 

HI. Multi-objective optimization indicated that a detailed representation of all units is not 

always necessary to identify the most beneficial retrofit options for a given process. 

Pouransari and Maréchal [28] proposed a targeting approach for solving the heat load 

distribution problem for large industrial sites. The approach identifies feasible near-

optimal solutions that are compatible with the Minimum Energy Requirement (MER) of 

the heat load distribution problem while simultaneously reducing the complexity of the 

problem. The approach was illustrated using a case study. 

Bandyopadhyay et al. [29] incorporated the concept of assisted heat transfer. Self-

sufficient pockets in the Grand Composite Curve (GCC), which indicate opportunities for 

process internal heat exchange in pinch analysis, are exploited to supply heat to other 

processes at the site. The authors showed that it was possible to increase site-wide HI by 

not removing the pockets from the GCC. The methodology can be applied to identify the 

site utility levels and target potential energy savings and co-generation. 



Chapter 2. Literature review and research needs 

 

15 

The work of Varbanov and Klemeš [30] extended the traditional total site HI approach to 

include intermittent renewable energy sources, such as solar, wind, biomass and 

renewable waste streams, for a site’s energy system.  

Stijepovic and Linke [31] proposed a methodology to target waste heat recovery and 

reuse in industrial zones by identifying specific waste heat recovery options via existing 

utility systems. The methodology aims at identifying optimal recovery and reuse 

techniques for excess heat and accounts for the distance between plant units within an 

industrial zone. Only the generation and transfer of hot utilities of a quality already 

present in one of the utility systems within the industrial zone are considered; no new 

utilities are introduced. Hot utilities generated from excess heat are assumed to be 

transferred to the utility system of another plant, whereas changes to the hot 

utility/process interface are not considered. The approach was extended to also include 

heat and power co-generation [32]. 

A recent paper by Varbanov et al. [33] introduced an individual-ΔTmin approach that 

accounts for changes in heat transfer characteristics for different processes. In the 

traditional approach, an average ΔTmin is used for all heat exchange processes throughout 

a site to estimate the potential heat savings. This new method allows distinct ΔTmin values 

for intra-process, process-to-utility and utility-to-process activities to be identified, which 

allows for a more realistic estimate of the site’s heat recovery potential. 

Wang et al. [34] presented a methodology that accounts for the distance between the 

plants when targeting total site HI. Heat losses, pump power and piping costs are the 

major factors that affect total costs when process heat is recovered across different plants, 

which are represented in the suggested targeting procedure. The authors illustrated the 

methodology using a case study. In another paper, Wang et al. [35] extended their 

methodology by investigating different connection patterns (e.g., parallel, series or split) 

when constructing pipeline infrastructure across several plants. Issues regarding the 

choice of heat transfer fluid (steam/hot water) for site-wide heat recovery were also 

addressed.  

Boldyryev et al. [36] suggested an approach to target the minimum heat transfer area for 

site-wide heat recovery. The cost optimal utility temperature level is determined by 

dividing the area between the hot and cold process streams in the composite curves into 

enthalpy intervals and calculating the utility temperature that results in the minimum heat 

transfer area for each interval. Based on this approach, the utility temperature with the 

overall minimum heat transfer area can be identified. 

Liew et al. suggested approaches to address several total site related HI issues, such as 

water sensible heat [37], variable energy supply and demand [38] and plant layout [39]. A 

retrofit framework for total site heat recovery networks was also proposed by the 

authors [40]. The presented algorithm focuses on identifying EE improvements at 

industrial sites with a central utility system. The approach was demonstrated using a case 

study.  

A large consumer of power in chemical processes is refrigeration. Linnhoff and 

Dhole [41] developed a methodology that extended pinch analysis to the design of low-

temperature processes. The authors combined pinch analysis with exergy concepts. The 
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main goal of the method is to achieve a more in-depth understanding of how to design a 

refrigeration system and a Heat eXchanger (HX) network to achieve low energy 

requirements. Linnhoff and Dhole introduced the Exergy Grand Composite Curve 

(EGCC) as a tool to target decreased exergy losses and suggested a short-cut method to 

estimate shaft power requirements based on exergy flows. They also demonstrated the 

application of the concept for evaluating the effects of process changes on shaft power 

consumption. 

Umeda [42] proposed a combined exergy/pinch analysis approach for HI targeting. Dhole 

and Linnhoff [19] presented a summary of TSA tools and demonstrated a combined TSA 

and exergy analysis approach. The authors presented targeting procedures to identify the 

optimal use of fuel, co-generation and process cooling. They also suggested a 

methodology for the overall design and analysis of low-temperature processes [43]. The 

methodology is based on the EGCC approach introduced in their earlier work. Case 

studies conducted by the authors identified average shaft power savings of 15% compared 

with a traditional pinch analysis-based approach. 

Several authors have applied the aforementioned combined exergy/pinch analysis 

approach to target EE measures in single plant industrial case studies. Fritzon and 

Berntsson [44] demonstrated the approach at a slaughter and meat processing plant and 

found that 10% to 16% of the shaft power currently used for refrigeration could be saved 

by improving the current systems using measures identified by the combined 

exergy/pinch analysis. Panjeshahi et al. [45] applied the concept for targeting improved 

EE at an ammonia production plant. The authors determined optimal temperature levels 

for the refrigeration systems that resulted in potential shaft power savings of 15%.  

Hirata and Kakiuchi [46] studied the integration of adsorption heat pumps driven by 

excess heat to replace cooling capacity in refrigeration systems in an ethylene production 

process, achieving shaft power savings of approximately 12% in the existing refrigeration 

systems. 

Fabrega et al. [47] performed an exergetic analysis of the refrigeration system in a steam 

cracker plant. In their study, the equipment with the highest rates of exergy destruction 

was identified; they suggested measures that could reduce exergy destruction by 

approximately 13%.  

Ataei [48] presented a case study regarding the combined use of pinch and exergy 

analysis to decrease the power consumption of an olefin plant. Moreover, Ghorbani and 

Salehi [49] applied a combination of pinch and exergy analysis to design the refrigeration 

cycle for natural gas liquefaction.  

Maréchal and Favrat [50] used the exergy concept combined with a pinch-based approach 

to study the optimal integration of energy conversion systems. The authors determined 

the minimum exergy demand for a process considering the exergy demand caused by the 

minimum temperature difference (ΔTmin) due to heat exchange, the exergy deficit above 

the pinch point, the exergy excess between the pinch point and the ambient temperature 

and the exergy demand for refrigeration. Based on this approach, the optimal integration 

of energy conversion systems was determined to minimize energy costs or exergy losses. 
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Aspelund et al. [51] extended pinch analysis and exergy principles to design sub-ambient 

temperature processes by incorporating pressure-based exergy in the targeting and design 

procedure.  

Marmolejo-Correa and Gundersen identified challenges related to using exergy efficiency 

as a performance indicator for the design of low-temperature processes. The authors 

identified a lack of standardization and an incorrect understanding of the exergy 

transformation inside the process or unit operation as the factors that explain why exergy 

efficiencies are difficult to use for this type of study. Marmolejo-Correa and Gundersen 

[52] proposed mathematical expressions to represent the internal exergy transfer for 

processes operating at sub-ambient temperatures. A new graphical approach to directly 

obtain exergy targets when designing low-temperature processes [53] and processes that 

operate both above and below ambient temperatures [54] was also developed. 

2.1.2 Integration of advanced biorefinery processes with industrial clusters 

A large body of literature on the development, design and process integration of biomass-

based fuels and chemical production processes is available. Most studies have assumed 

stand-alone operation and/or the integration of different energy conversion technologies, 

such as co-generation, whereas other studies have considered HI with, e.g., a local DH 

system to increase the biorefinery efficiency. Several investigations have been conducted 

regarding the integration of biomass-based processes with existing industrial process 

plants. 

Integration with a conventional oxo synthesis plant was studied by Arvidsson et al. [55]. 

Two cases were investigated: a) natural gas as feedstock for synthesis gas production was 

replaced by biomass-derived natural gas via thermal gasification and b) synthesis gas of 

suitable quality was directly produced from gasified biomass. Process simulation and 

integration were used to investigate the efficiency of the new processes under different 

integration scenarios. The study showed that HI with the existing plant was advantageous 

from an EE perspective. 

Holmgren et al. [56] studied the integration of biomass-based methanol production 

connected to the same petrochemical cluster used in the case study presented in this 

thesis. In the case study, it was assumed that the excess steam from the 

gasification/methanol synthesis plant was used to replace steam from the cluster’s boilers. 

Moreover, the availability of excess heat from the cluster for biomass drying was also 

quantified. Different scenarios for the cluster’s future heating demands were investigated. 

The results of the study showed that biomass gasification systems integrated with existing 

industrial processes exhibited a larger potential for reducing GHG emissions than stand-

alone units. 

Hannula and Arpiainen [57] investigated the production of light olefins and biofuels via 

methanol from gasified biomass. Different aspects of integrating parts of the process with 

an existing olefin cracker plant were discussed, including the integration of heat/materials 

and equipment sharing.  

Brau and Morandin [58] investigated the integration of two biomass-to-hydrogen process 

concepts with an existing oil refinery. The concepts were based on indirect and direct 

gasification; different technologies were used for gas upgrading and treatment. Several 
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integration configurations were evaluated in terms of energy and exergy efficiency and 

environmental impacts via a fossil CO2 balance. The authors showed that the performance 

of the two biomass-to-hydrogen concepts could be improved by up to 11% in EE and 9% 

in exergy efficiency through heat integration. 

Heyne et al. [59] investigated the benefits of integrating a gasification-based biorefinery 

with an existing power production plant. A biomass gasification unit producing synthetic 

natural gas was integrated with a biomass CHP plant. The importance of properly 

conducted HI was highlighted in this study. Power production from a well-integrated 

plant was shown to be as much as 10 times larger than in a less integrated scenario.  

An overview of different aspects related to biorefineries is provided in the evolving e-

book entitled “Systems Perspectives on Biorefineries”, by Sandén [60]. Researchers from 

Chalmers University of Technology cover a range of aspects that are important for the 

implementation of biorefineries, including biomass availability, the optimal location of 

biorefineries, potential GHG emission reductions and biorefinery efficiency. 

2.2 Research needs 

Based on the aforementioned literature review, research needs regarding the further 

development of current methodologies for identifying EE opportunities in industrial 

clusters and integrating renewable feedstocks are highlighted below. 

Single plants in clusters that are not centrally integrated typically have their own utility 

systems consisting of  

 Boilers or CHP plants supplying heat (and power); 

 Steam distribution/condensate collection systems with plant-specific utility levels; 

 Other hot utilities (e.g., hot oil) at plant-specific temperature levels; 

 Cooling water; and 

 Refrigeration systems. 

All of these systems are suitable for single plants (e.g., utility temperature/pressure levels 

and condensate purity), which are not necessarily the same throughout an entire cluster. 

Current tools and studies have not considered this aspect of clusters and their inherent 

difficulties and limitations.  

Current TSA-based tools for targeting EE in industrial clusters are based on the analysis 

of large, highly integrated chemical sites, where site-wide utility systems and 

infrastructure are already in place and the sites are centrally managed by a site entity. In 

these clusters, large CHP plants typically supply heat (and power) to the common utility 

systems. To increase EE, current methodologies are primarily used to identify 

opportunities for heat recovery or increased co-generation assuming coherent site-wide 

utility levels.  
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Mathematical programming approaches, which are used to target total site HI, become 

increasingly complex as company-, plant- or even HX-specific constraints are considered. 

Examples of such constraints include differing long-term strategies that cause EE to be 

prioritized differently by each company, different maintenance schedules that influence 

the time window during which site modifications can be conducted or HXs being viewed 

as “difficult” to replace due to space, control or other constraints. A more flexible semi-

automated approach can be used to consider a wider range of constraints in real retrofit 

situations. 

It is not realistic to consider retrofitting an entire cluster of chemical production plants for 

maximum site-wide heat recovery at a single point in time. Instead, it is more realistic to 

consider implementing a series of EE projects over a given period of time. Traditional 

graphical and mathematical programming approaches target an optimal heat recovery 

system and provide limited guidance on how to gradually plan investments to achieve this 

optimal situation. In practice, perfect integration is difficult to achieve, especially at the 

scale of an entire chemical cluster with many constraints, as discussed previously. Based 

on the optimum system, a sequence of small site-wide HI projects must be defined to 

initiate inter-company collaboration. If correctly planned, these projects will lead to a 

gradual evolution of the site topology toward the optimal system. An engineering 

methodology to specifically determine these projects is necessary. It is important to 

translate targets into specific, implementable systems to convince stakeholders of the 

viability of site-wide HI. A flexible and pedagogical approach should be developed. 

Proposing heat recovery systems that only realize a small portion of the total heat 

recovery potential but are less complex can be a starting point for extensive systems if the 

initial small project demonstrates the feasibility of successful collaboration.  

The utilized methodologies must also account for the investment needs and visualize the 

economic and GHG emission reduction performance of the HI systems to justify 

investments. 

In recent studies, the combined exergy/pinch analysis approach on a total site level has 

primarily focused on investigating heat recovery measures via common steam or other hot 

utility systems. As an extension to available methods, the site-wide recovery of cooling 

capacity via common cold utility systems using refrigerants across different plants and 

companies and resulting shaft power savings should also be addressed.  

Biorefinery integration with existing installations currently focuses on single processing 

plants. Integration with clusters of different types and utility infrastructures has only been 

investigated on a higher systems level, where excess heat from a biorefinery replaces heat 

in the cluster. A new approach for more detailed integration of a biorefinery with an 

industrial cluster is necessary. Current and future HI scenarios should be considered to 

investigate close integration of both the biorefinery and cluster and to determine a 

suitable utility system for the biorefinery that enables this integration. 

The aim of this work is to address the aforementioned issues by developing a holistic 

framework for EE in industrial clusters that also enables the investigation of efficient 

biorefinery integration opportunities. 
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3 3 Objectives and scope 
 

In this chapter, the main objectives of this work are described and the scope of this thesis 

is defined. 

3.1 Objectives 

The overall objective of this work is to develop a methodology to identify cost-effective 

measures for decreasing the energy demands of industrial clusters, which also enables the 

identification of favorable methods to integrate biorefinery operations that replace fossil 

with renewable feedstocks. A high level of EE is considered an important factor for 

achieving this goal. Traditional HI tools provide targets for improved EE. On a site-wide 

scale, numerous integration measures must be implemented to achieve these targets. To 

provide decision makers with the necessary information on concrete EE projects, it is 

necessary to determine a range of suitable projects for the specific site.  

The primary goals of the methodological framework to be developed are as follows: 

1. Target the most efficient utility system to minimize the energy demands in an 

industrial cluster; 

2. Identify measures to achieve this overall EE target (considering process 

heating/cooling and refrigeration process); 

3. Develop a flexible implementation strategy for EE measures under challenging 

business conditions, e.g., multi-company collaboration; 

4. Identify renewable feedstocks and processes suitable for decreasing the 

dependence on fossil resources and quantifying integration advantages; and 

5. Assist in designing utility systems for new biorefinery processes that can be 

integrated with an industrial cluster. 

The tools developed in this work should provide the flexibility required to consider a 

wide range of site-specific conditions.  
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3.2 Scope and limitations 

A methodology for HI within an existing industrial cluster and the energy efficient 

integration of new biomass-based processes is presented and illustrated in a case study of 

a chemical cluster in Sweden. 

To perform a proper analysis of an entire chemical site, a vast amount of data is needed; 

therefore, significant data gathering and close collaboration with companies is necessary. 

As a result, the case study is limited to one chemical cluster.  

A major environmental benefit of implementing EE measures in the chemical industry is 

decreased GHG emissions because fuel combustion for utility generation and electricity 

imports are both avoided. Quantifying GHG emissions is also important from an 

economic perspective because current and future attempts to reduce carbon emissions, 

such as the ETS, will results in an additional incentive for implementing EE measures [8]. 

In this work, environmental consequences of HI are limited to lifecycle GHG emission 

reductions due to avoided fuel consumption in cluster boilers. The effects of avoided 

emissions of other harmful substances are not assessed. Moreover, emissions caused by 

the construction and installation of EE equipment as well as end-of-life emissions are not 

accounted for in this work. 

Procedures for estimating investment costs that have an accuracy of +/- 30% are applied. 

More detailed estimates are not performed because the methodology presented in this 

work is intended to provide input to decision makers who decide on whether more 

detailed design studies should be conducted. 

Process simulation of a generic biorefinery process and a methodology for evaluating 

integration opportunities with an existing chemical cluster are both demonstrated. In this 

work, no comparison to overall GHG emissions is performed because the goal of the 

methodology is to compare different integration strategies for the same biorefinery 

process. Instead, the differences between integration strategies in terms of EE are 

quantified. 

Potential valorization of excess heat from the cluster is limited to a study assuming a DH 

system as a potential user of the heat. Parts of the methodology presented in this study 

can also be applied to other heat recovery technologies, such as low-temperature 

electricity generation or biomass drying. Moreover, the economic potential and changes 

in CO2 emissions due to exporting excess heat from a cluster are assessed. Applications to 

the technologies discussed here are not demonstrated in this work. 

In Chapter 7, additional sources of error and uncertainty in the methodology are 

discussed. 
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4 4 Methods 
 

This chapter describes the methods on which the framework methodology is based and 

presents the background data used in this work. Moreover, the assumptions made to 

perform the economic and GHG emission evaluations are presented. The methods 

described here are based on pinch technology, which is widely used to target EE. Specific 

tools to target single processes, total sites, as well as greenfield or retrofit projects are 

available within pinch technology.  

4.1 Pinch technology 

Pinch technology was introduced by Bodo Linnhoff at the University of Leeds during the 

late 1970s [61] and has been developed further at several institutions, including the 

University of Manchester Institute of Science and Technology (UMIST). An updated 

version of the original user guide for pinch analysis was published by Kemp [62]. Several 

studies have shown that energy savings of 20-40% can often be achieved using Pinch 

Technology [63]. 

Streams in industrial processes are often heated or cooled to fulfill the process 

requirements. Therefore, heat is added or removed, respectively, which is achieved by 

heat exchange with hot and cold utility streams or by transferring heat between hot 

process streams that must be cooled and cold process streams that must be heated. To 

achieve these exchanges in an energy-efficient manner, pinch technology can be applied 

to target the minimum heating and cooling demands of a process and design HX 

networks.  

Pinch technology provides a set of tools that are widely applied in process integration to 

target increased EE. Typical applications include the following: 

 Energy targeting; 

 HX area targeting; 

 Cost targeting; 

 Utility selection; 

 Co-generation targeting; 
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 HX network design; 

 Integration of energy conversion technologies, such as heat pumps and 

refrigeration systems; and 

 Integration of energy intensive equipment, such as distillation columns. [62,64] 

Several tools and their applications are described below. 

The method is used both in grass-root and retrofit projects. In this work, a framework for 

improving EE in existing process industries is developed. Therefore, only the procedure 

for retrofit projects is described here. 

4.1.1 Stream data collection 

Data extraction for targeting existing processes is not always a straightforward process. 

Data consistency is important to obtain useful targets and suggest practical improvements. 

Kemp [62] provided the following guidelines for data extraction: 

 Use the highest temperature heat that is available for the hot streams and the 

lowest temperature necessary to heat the cold streams; 

 Do not divide streams unless it is necessary; 

 Avoid non-isothermal mixing in the energy targeting phase; and 

 If available, use more accurate stream data around the pinch point. 

4.1.2 Composite curves 

Composite Curves (CC) are important graphical tools for achieving insights about the 

characteristics of thermal flows within a process. In order to construct these curves, the 

first step is to identify the hot streams in the process which need to be cooled and the cold 

streams that need to be heated. After this identification, the temperature characteristics of 

all hot streams are combined to construct a single composite curve by defining 

temperature ranges that are distinguished by changes in the overall rate of enthalpy 

change with temperature. Streams within each temperature range are then combined into 

a composite hot stream. The same procedure is applied to all cold streams. Both 

composite curves are plotted together in one diagram that depicts the temperature versus 

the heat flow (T-Q-diagram; see Figure 6).  
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Figure 6 Composite curves showing the pinch point and energy targets [65]. 

Feasible heat exchange between the two curves, i.e., between the streams from which the 

curves are constructed, is only possible where the hot composite curve is hotter than the 

cold composite curve. Therefore, the region where the two curves overlap shows the 

potential heat recovery from the process, Qrecovery, max. If the two curves intersect, the cold 

composite curve must be shifted to the right to maintain a minimum temperature 

difference ΔTmin as a driving force. The point at which the distance between the curves on 

the temperature axis is ΔTmin is the so-called pinch point. The diagram shows the 

minimum heating and cooling demand (QH, min and QC, min, respectively) of the system for 

ΔTmin, which are represented by the non-overlapping areas in the diagram.  

ΔTmin represents an economic trade-off between capital costs and operating costs (hot/cold 

utility costs). For an initial HX network design, it is often assumed that no HX between 

hot and cold streams results in a lower temperature difference than ΔTmin.  

The pinch point divides the CCs into two parts, i.e., above and below the pinch point. 

Above the pinch point, the system has a net deficit of heat, whereas below the pinch 

point, a net excess of heat occurs. Three rules for the design of HX networks can be 

established based on this configuration: 

 Heat must not be removed from process streams located above the pinch point, 

 Heat must not be added to process streams located below the pinch point and 

 Heat must not be transferred through the pinch point. 

In this work CCs are used to determine QH, min and QC, min for the individual processes. 

Moreover, the principles of CC construction are used to construct the curves used for 

TSA (see section 4.2.2).  
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4.1.3 Grand Composite Curve 

Another diagram derived from the stream data and used in pinch technology is the GCC. 

The entire process is divided into temperature intervals. The diagram shows the heat 

supply and demand in each of these temperature intervals. A positive slope indicates a 

heat demand, whereas a negative slope indicates a heat surplus. This surplus can be 

transferred downward to streams with heat deficits. The GCC is used for various 

purposes, including the following: 

 Selection of appropriate hot and cold utility levels and loads; and  

 Identification of opportunities for integrating energy conversion technologies, such 

as heat pumps and combined heat and power units. 

 

Figure 7 shows an example of a typical GCC with suggestions for utility levels, heat 

pump integration and internal heat exchange (pockets) [64]. The temperature (T* in 

Figure 7) represents a shifted temperature, which is considered to account for the 

temperature difference necessary for exchanging heat between hot and cold streams. 

Stream temperatures are shifted by a certain value; for cold streams, the temperature is 

shifted upward, whereas for hot streams, the temperature is shifted downward. 

 

Figure 7 Example GCC with hot/cold utility levels, heat pump integration and 

internal heat exchange. 

The shaded areas represent self-sufficient pockets, where process heat can be directly 

utilised to heat cold streams. The placement of hot and cold utilities is shown in Figure 7 

(HP steam and CW). The GCC can be used to investigate opportunities for integration of 

energy conversion technologies such as a heat pump. For example, Figure 7 shows how 

heat from below the pinch point can be pumped to above the pinch and used to substitute 

hot utility. Thereby heat from below the pinch, where there is a net excess of heat, is 

utilized above the pinch. 
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In this study, pinch analysis is used to identify the minimum heating and cooling demands 

of single process plants to provide an overview of the potential energy savings in case 

site-wide heat recovery is not considered. The GCC is also applied to estimate the 

available amount of excess heat from a cluster to be utilized in a biorefinery. 

4.1.4 Background/foreground analysis 

An extension to the GCC approach is the so-called background/foreground analysis, 

which is useful for determining the HI potential of separate processes or sub-processes. 

The GCCs of two processes/sub-processes are created and presented into the same 

diagram.  

 

Figure 8 Illustration of background/foreground analysis between a process and a sub-

process. 

An illustration of such a diagram is shown in Figure 8. This representation can be used to 

investigate possibilities for delivering/receiving heat to/from each process. Figure 8 

shows how excess heat from the main process (solid line) can be delivered to the sub-

process (dashed line). The amount of heat that can be transferred between the processes 

corresponds to the overlap of the two curves. The tool can also be used to determine 

process parameters in one or both processes that can be adjusted to increase their overlap 

and improve HI. Modifications that can be identified by this procedure include pressure 

changes in distillation columns to enable the utilization of excess process heat.  

In this work, background/foreground analysis is applied to estimate the integration 

potential of different processing steps in a biorefinery process. 

4.1.5 Retrofit targeting procedure 

The following procedure is typically followed when using pinch technology to investigate 

opportunities for retrofitting an energy system in an industrial process and to reduce 

external utility requirements: 
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 Define the stream system to be investigated; 

 Gather stream data from appropriate sources (e.g., starting temperature Tstart, target 

temperature Ttarget, and heating/cooling loads Q); 

 Select the minimum acceptable temperature difference for heat exchange ΔTmin; 

 Use pinch analysis targeting tools to determine the minimum hot and cold utility 

demands and potential for maximum internal heat exchange;  

 Determine the present heating and cooling demands from available process data and 

quantify the target for heat recovery enhancement; 

 Identify process modifications to increase HI; 

 Identify pinch rule violations in the existing heat exchanger network; 

 Identify opportunities for integrating energy conversion technologies; 

 Suggest a set of possible modifications to the existing HX network that eliminate or 

reduce pinch violations; 

 Calculate investment costs for the suggested changes and analyze their economic 

performance [66]; 

 Repeat the procedure for different values of ΔTmin; and 

 Identify a reduced set of retrofit options for detailed engineering investigations. 

4.1.6 Area and cost targeting for DH delivery 

A simplified procedure based on the area targeting approach described by Smith [64] is 

applied to estimate the number and area of HXs necessary to collect and export excess 

heat from a chemical cluster to a regional DH network. Based on the number and area of 

HXs, the related investment costs for exporting DH can be estimated based on standard 

cost estimation procedures. 

The number and size of heat exchangers is determined by assuming vertical heat transfer 

between the hot (process) and cold (DH water) composite curves. The area between the 

hot process stream profile and DH water profile is divided into enthalpy intervals ΔHh 

(Figure 9). The HX area necessary to transfer heat from the hot process to the DH water 

profile in each interval is estimated as follows: 

,

       Eq. (1) 

where U is the overall heat transfer coefficient estimated based on the fluid properties on 

both sides of the HX, fouling factors and tube thickness, F is a factor to account for non-

ideal countercurrent flow in the HX, and ΔTml, h is the logarithmic mean temperature 

difference between the hot and cold streams in the interval (Figure 9). 

For each enthalpy interval h of ΔHh, the number of heat exchangers required to transfer 

heat from the hot process stream profile to the DH water is assumed to be the number of 

process streams present in that enthalpy interval. The area Ah of each of these HXs is 

estimated by equally distributing the total area in the interval AΔHh across all HXs. The 

purchasing cost of a heat exchanger unit is estimated via the generalized cost equation 

found in Ref. [67]. More detailed assumptions on the cost targeting procedure are 

provided in Paper V. 

hml
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Figure 9 Vertical heat exchange between a hot process stream profile and DH water 

profile.  

4.2 Total Site Analysis 

TSA represents an extension of the pinch analysis method and is typically applied to 

industrial sites to target increased EE via a common utility system. Due to a number of 

factors, such as long distances between individual plants, different operation times, plant 

safety, direct heat exchange between different plants is difficult to achieve. TSA is used 

to investigate opportunities for integrating the individual heating and cooling demands of 

different processes at a total site. Excess heat from one process plant is transferred to a 

common utility (e.g., steam, hot water, or hot oil) and delivered using the common utility 

system to processes with a heat deficit. The TSA method enables targets to be established 

based on the amounts of hot utility generated and used by the combined individual 

processes, the amount of heat recovery in a common hot utility system, the steam demand 

from the boilers and the co-generation potential [68]. The approach can also target 

changes in the utility system that increase EE by increasing heat recovery and co-

generation. 

4.2.1 Data collection approaches for TSA 

Data collection for TSA studies is time consuming; therefore, practitioners have defined 

different approaches that can be used to conduct studies at different levels of detail. These 

approaches are briefly discussed below. The necessary data for each process stream 

include Tstart, Ttarget, Q and the respective utility (if the stream is currently heated or 

cooled by a utility). 
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White box approach or detailed pinch: 

Detailed stream data for all process heating and cooling demands for each plant are 

collected. Thereafter, complete CCs and GCCs can be constructed for the total site. 

Moreover, the minimum hot and cold utility demands for each process can be determined.  

Grey box approach: 

For each plant, only the process-utility interface is considered; process-process heat 

recovery is ignored. Only process streams that are heated/cooled by utilities are 

considered in the analysis based on their Tstart, Ttarget and Q. The current level of 

process/process HI within each single plant is accepted as is; however, the grey box 

approach identifies opportunities for transferring heat between plants and changes in the 

process-utility interface that lead to increased heat recovery. 

Black box approach: 

The process (stream) is represented by data for the corresponding utility streams in 

heaters and coolers. Other utility users, such as steam tracing or tank heating, are often 

represented as black boxes [69]. 

Figure 10 illustrates the three approaches. It is important that all utility usage and 

potential demands are included when conducting a TSA study [70].  

 

Figure 10 Illustration of the different data collection approaches in TSA. 

The decision of whether and at which level of detail (i.e., which of the three approaches 

above should be selected) to include processes, sub-processes or specific streams depends 

on several factors and must be decided prior to data collection. There are several issues 

that must be considered, including the following: 

 Existing heat recovery measures: The current level of heat recovery within a 

process might be accepted and therefore streams included in process-process HXs 

are disregarded from data collection. 

 Size of the streams: Heat recovery that utilizes minor streams might not justify 

investment in new HXs and the related increase in complexity and other related 

costs; 

Black box: Process is 
represented by its utility 

demand only

Grey box: Only process-
utility heat exchange 

(ignores process-process, 
accepts current direct 
process integration)

White box: Detailed pinch 
analysis (including process-
process heat exchangers)

All site utility demands and potential demand have to be included by one of the three approaches

ProcessQUtility TProcess,in TProcess,out

Utility

Q
TProcess,in TProcess,out

TProcess,in

TProcess,out
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 Intermittency: Heat recovery that involves processes, sub-processes or streams 

that only operate over limited time periods are less likely to justify investment; 

and 

 Process requirements: Utility streams that are particularly important for the 

processes include the expansion of utility steam to supply mechanical power to the 

process at all times and the steam demand for direct steam injection to the process. 

4.2.2 Total Site Profiles and Total Site Composite Curves 

Process source/sink profiles can be constructed based on the collected data. By matching 

these profiles, the maximum potential for heat recovery is identified. Direct heat 

exchange across several plants is difficult to achieve. In order to illustrate the interaction 

of the thermal process streams with the utility systems and to identify the potential for 

heat recovery via the utility system utility profiles matching the process source/sink 

profiles are plotted. In this work, a minimum temperature difference (ΔTmin) of 10 K 

between the process and utility streams is chosen. The so-called Total Site Profiles (TSP) 

are subsequently obtained (left side of Figure 11), which enables the analysis of how heat 

is supplied to and removed from the processes by different utilities. The site utility 

profiles are developed from process stream lists that represent the utilities used to 

cool/heat each process stream.  

To determine the maximum amount of heat recovery possible at the total site scale by 

heat exchange through the combined utility system, the total site profiles are shifted until 

the hot and the cold utility curves intersect (right side of Figure 11). This point is the so-

called site pinch, which limits the amount of heat that can be recovered by the utility 

system. The overlapping curves to the right in this figure are the so-called Total Site 

Composites (TSC). The TSCs show the minimum amount of heat that must be externally 

supplied to the processes as hot utility (Qheating), which is illustrated in Figure 11. 

Therefore, Qheating is directly related to the boiler fuel requirements.  

Figure 11 Left: Total Site Profiles. Right: Total Site Composites [20]. 

The cooling demand (Qcooling) in Figure 11 represents the amount of heat that must be 

discharged from the processes. The TSPs and TSCs can be used to identify changes to the 

utility system that improve the total site HI through the utility system. Utility system 
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changes include replacing steam by introducing new steam levels, utility (often steam) 

generation from recovered process heat at higher levels, process stream heating using 

utilities (often steam) at lower levels [20] or introducing a hot water circuit [71].  

In addition to HI, TSA can also be applied to target increased co-generation. Electricity 

can be generated by expanding steam between different steam levels. TSA provides 

knowledge regarding the level at which steam can be recovered from the processes and 

used for process heating. This information can be used to target co-generation by 

applying Carnot efficiency curves, which is analogous to the approach described in 

section 4.3. 

4.3 Targeting for decreasing exergy losses 

Traditional pinch analysis and TSA primarily focus on targeting HI potential and related 

fuel savings. Primary energy savings achieved by HI measures that reduce the cooling 

capacity in refrigeration systems cannot be directly evaluated using regular tools. 

Therefore, the exergy concept using curves based on Carnot efficiency can be applied in 

combination with pinch analysis, which enables the targeting of shaft power savings in 

low-temperature processes.  

Exergy is defined as the maximum theoretical useful work (shaft work or electrical work) 

that can be obtained as two systems interact to equilibrium or the minimum theoretical 

useful work required to bring matter to a specified state [72]. The main difference 

between conventional and combined exergy pinch analysis/TSA is that the y-axis of the 

CC, GCC, TSP and TSC exhibit Carnot efficiencies using corrected temperatures instead 

of the actual temperatures. Carnot efficiency is defined as ηc = 1 – Tref / T (Tref = reference 

temperature). An example of such a diagram is presented in Figure 12, which shows the 

interaction of hot process streams with a cold utility system below the ambient 

temperature.  

 
Figure 12 A schematic example of an exergy CC showing the CC of the process (solid line), the 

CC of the utility system (dashed line), and the resulting exergy flow rate difference between the 

process streams and utility. 

ηc

= 1 − Tref/T

ΔExu

ΔExp

Tref = Reference temperature (e.g. ambient, cooling water)

Exergy losses caused by heat 

transfer between the utility 

system and the process

ΔExp = Exergy difference of the process streams

ΔExu = Exergy difference of the 

utility/refrigeration system
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Using Carnot efficiencies with corrected temperatures instead of the actual temperatures 

is advantageous because sources of exergy flow rate losses can be easily identified in a 

graphical manner and quantified by integrating the areas between the curves without the 

need for time-consuming process simulations of the given case.  

The following procedure is applied to construct the profiles shown in Figure 12:  

 Collection of relevant stream data (e.g., Tstart, Ttarget, Q, and the type of utility); 

 The process stream profile can be plotted using Tstart, Ttarget and Q for each stream 

according to the description provided by Kemp [62]; 

 The utility profile is plotted in the same manner using T and Q of the utilities used 

for heating/cooling the plotted process streams; 

 A suitable Tref, e.g., the CW temperature, is defined; and 

 The process stream and utility profiles are plotted in the exergy ηc – Q – CC (TSC 

and TSP) diagram. 

The area between the respective curve and reference temperature line in the exergy CC 

represents the exergy flow rate that must be supplied to achieve the desired target 

temperature. The area between the upper solid line and reference temperature line 

represents the exergy flow rate difference between the process streams ΔExp, which is the 

minimum exergy input necessary to cool the process streams to their target temperature. 

A utility system that is able to reach this minimum exergy input requires an infinite 

number of utility levels and that ΔTmin between the process and utility system be infinitely 

small. The area between the lower dashed line and reference temperature line represents 

the exergy input to a real utility system designed to cool the given process. The area 

between the process (solid) line and utility system (dashed) line can be considered as 

exergy flow rate losses caused by the utility systems’ design (e.g., cooling temperature 

levels or temperature differences). The presented curves can be used to target reductions 

in exergy flow rate losses by identifying changes in the design of the utility system that 

result in a decrease in exergy flow rate losses, which is achieved by modifying the curves 

to decrease the area between the utility and process curves. 

In this work, the curves are applied to target decreased exergy flow rate losses by 

optimizing refrigerant use and decreasing exergy flow rate losses using site-wide 

recovery of refrigeration. 

Estimating shaft power targets based on exergy savings targets 

The methodology for targeting decreased exergy flow rate losses is described above. To 

establish a target value, it is necessary to translate the exergy savings into shaft power 

savings using an appropriate exergetic efficiency (ηex) for the utility/refrigeration cycle. 

The exergetic efficiency is defined as follows:  

,       Eq. (2) P
Exu

ex
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where P represents the actual shaft power for the investigated process at a certain 

operating point. Changes in ηex caused by deviation from the operating point are not 

accounted for by this approach. The actual shaft power is obtained by measurements or 

process simulation if measurements are not available. ΔExu is the exergy flow rate 

difference in the utility/refrigeration system, which is obtained from exergy pinch curves 

of the real refrigeration system operating at the same conditions used to determine P. 

Once determined for the investigated system, ηex can be used to estimate effects on the 

shaft power demand due to changes in the process, HX network and refrigeration 

systems. ηex accounts for friction and other losses in the refrigeration system.  

4.4 Economic and GHG emission evaluation 

To evaluate the economic status and GHG emission reductions caused by introducing the 

process changes and new technologies identified in this work, measures of economic and 

GHG emission reduction performance are determined as follows. 

4.4.1 Economic evaluation 

A simple Pay-Back Period (PBP) is used to select promising heat recovery system 

designs:   

,

       Eq. (3) 

where PBP is the time until the invested capital is recovered. Projects with shorter PBPs 

are more attractive in terms of limited risk. For retrofit projects, the PBP represents the 

ratio between the total investment costs (Costinv) and the annual average cash flow 

(CFavg), which corresponds to the improvement in the annual mean operating costs.  

The Net Present Value (NPV) can be calculated for selected designs according to the 

following relationship:  

.

       Eq. (4) 

Table 1 shows data and assumptions for the economic evaluation. NPV is a measure of 

the profitability of a project that represents the sum of the present values of each 

individual annual cash flow. Time is accounted for by applying a discount rate to the 

annual cash flow CFn. Economically more attractive projects have a larger positive NPV. 

Projects with a negative NPV are not profitable. 

The ratio of NPV to Costinv is used to provide a more complete picture of the economic 

performance of the different selected heat recovery measures. 

In the case of heat recovery investments, CFn represents the operating cost savings in 

each year over the project’s economic lifetime. Cash flows in the beginning of a project 

typically include investment costs. 
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The Discounted Cash Flow Rate Of Return (DCFROR) is another economic indicator that 

is used to compare the performance of investments. The DCFROR represents the interest 

rate at which the NPV of an investment is equal to 0 over its economic lifetime. The 

DCFROR is particularly suitable for comparing investments of different sizes because it 

indicates how efficient the invested capital is used. 

Table 1 Data for economic evaluation. 

Economic lifetime 15 y* 

Discount rate, i 11%* 

HP steam price 400 SEK/MWh** 

Electricity price 600 SEK/MWh*** 

Maintenance + Operation 
2% of the total fixed capital, HW pump power; 2% of the 

total heat savings 

Additional operation cost savings CW pumping; 2.5% of the CW savings 

*According to discussions with company experts for EE investments. 

**The steam produced from natural gas in boilers (ƞboiler=0.9); the natural gas import price for Europe in 

2020 (IEA, 2013) is 292 SEK/MWhLHV; the distribution cost is 12%; the tax is 25 SEK/MWhLHV; and the 

charge for GHG emissions is 44 SEK/t. 

***Expected price according to plant energy experts. 

In this work, a DCFROR of at least 10% is assumed as the investment criteria to 

determine economically feasible systems delivering DH from a chemical cluster to a 

regional DH network. 

4.4.2 Evaluation of reductions in GHG emissions 

To give an indication of how improved EE impacts emissions and resource consumption 

of chemicals production GHG emissions savings by EE measures and overall efficiency 

of biorefinery processes under different integration scenarios are calculated using 

procedures and assumptions described below. 

4.4.2.1 Reductions in GHG emissions due to EE measures 

Reductions in GHG emissions due to EE measures are estimated assuming that increased 

heat recovery leads to reduced firing of natural gas in utility boilers (lifecycle GHG 

emissions are assumed to be 248 kgCO2equ/MWh) assuming a boiler efficiency of 0.9 and 

an annual operating time of 8,000 h/year. GHG emissions associated with 

avoided/additional electric power usage are accounted for by assuming a combined cycle 

with natural gas as a power producer, 394 kgCO2equ/MWh. [73] 

4.4.2.2 Performance indicator for biorefinery HI opportunities 

To compare different biorefinery process integration alternatives, the overall EE (ƞoverall) 

of the processes is calculated as follows: 
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.

     Eq. (5) 

This equation provides a method for investigating the performance of bio-based processes 

integrated with an existing energy system on a primary energy basis. Electricity ( ) 

and other energy carriers and feedstocks used as by-products and/or input to the processes 

are considered. 

Only net energy flows are considered, which means that  can only be part of the 

numerator or denominator.  denotes the net electricity generated, whereas 
 
is the 

net electricity consumed by the processes. Distribution losses when exporting/importing 

electricity are not considered [74].  is the conversion efficiency of the reference 

energy system, which is used to estimate the primary energy demands of the processes or 

the amount of primary energy replaced in the reference system. Estimating the 

efficiencies of the reference system in a future scenario is extremely complex. A tool 

developed at the division of Heat and Power Technology at Chalmers is used for this 

estimation [75]. In this case, the marginal technology for electricity generation is assumed 

to be coal combustion with an efficiency of 0.46
3
 by 2020 [77] based on the Higher 

Heating Value (HHV) of coal. The HHVs for the different energy carriers are used for all 

combustible flows in the system. The HHVs are given in Paper III. The HHV of yeast is 

estimated to be 21.6 MJ/kg in Aspen Plus
4
. 

                                                 

3
 The reference gives the efficiency based on a lower heating value (LHV) (0.48); therefore, the 

efficiency is adjusted for the difference between the HHV (23.968 MJ/kg) and LHV (22.732 

MJ/kg) for coal [76]. 

4
 Aspen Technology, Inc., Burlington, Massachusetts, USA 
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5 5 Results – Developed methodologies 

and case study application 
In this chapter, the methodologies developed to target, identify, design and evaluate site-

wide EE measures via cluster internal integration and the export of excess process heat 

and the integration of new bio-based processes with existing industrial clusters are 

described. In combination with the established tools presented in Chapter 4, a framework 

methodology is developed that is illustrated using an industrial case study. 

5.1 Case study overview 

In this section, an overview of the chemical cluster and the biorefinery used as a case 

study to illustrate the framework methodology is presented.  

5.1.1 The chemical cluster in Stenungsund 

The chemical cluster used as a case study is located in Stenungsund, which is on the west 

coast of Sweden. The cluster is Sweden’s largest agglomeration of its kind. The 

companies involved and their main products include AGA Gas AB (producing industrial 

gases), Akzo Nobel Sverige AB (producing amines and surfactants), Borealis AB 

(producing ethylene, propylene and polyethylene), INEOS Sverige AB (producing 

polyvinyl chloride) and Perstorp Oxo AB (producing specialty chemicals). At the heart of 

the cluster is a steam cracker plant that is run by Borealis. This plant delivers both 

feedstock and fuel gas to most of the other plants.  

Each plant has its own utility system. Currently, there is only a minor collaboration in 

terms of heat exchange between the different plants. Therefore, there is no coordination 

between plant sites regarding the choice of utility levels. The cluster is a representative 

example of industry agglomerations that operate independently and have not tapped the 

efficiency gains offered by site-wide heat integration. Therefore, the cluster is highly 

suitable to illustrate the framework methodology developed in this work. 

An overview of the locations of the individual companies, including material and energy 

flows across the cluster, is provided in Figure 13. 
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Figure 13 The chemical cluster in Stenungsund, including material and energy flows 

between the individual plants [78]. 

 

Thirteen different steam levels (ranging from gauge pressure of 85 bar to 1 bar), 3 

different hot water systems, hot oil and flue gas heating together with water, air and 

refrigerant cooling are operated within the cluster. Table 2 shows the utilities used for 

process heating/cooling and heating and cooling recovery; the corresponding heat loads 

and amounts of heat that must be covered by external heat/cooling from the boilers and 

refrigeration systems are also presented. The total external heating demand of the cluster 

is Qgen − Qconsumed = 122.1 MW; the external cooling demand is 632.8 MW. 

Approximately 10 MW of excess heat from two plant sites is currently dedicated for 

delivering heat to a local DH system. 

The companies have recently announced a common vision called “Sustainable Chemistry 

2030”, which intends to increased collaboration regarding energy savings, increased use 

of renewable resources and decreased overall emissions. 
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Table 2 Utilities currently used for heat/cooling recovery and process 

heaters/coolers. 

Utility T [°C] Qgen [MW]
1
 Qconsumed [MW]

2
 

Qgen− 

Qconsumed [MW] 

Steam 85 bar 300 50.8 1 49.8 

Steam 40 bar 250 42 43.2 −1.2 

Steam 28 bar 230  6.3 −6.3 

Steam 20 bar 215 29 38.5 −9.5 

Steam 14 bar 200 15.2 12.7 2.5 

Steam 10 bar 184 22.1 21 1.1 

Steam 8.8 bar 178 27.3 91 −63.7 

Steam 7 bar 168  15.3 −15.3 

Steam 6 bar 163  14.2 −14.2 

Steam 4 bar 150 26.1 2.2 23.9 

Steam 2.7 bar 140 13 4.7 8.3 

Steam 2 bar 131 55.3 128.4 −73.1 

Steam 1 bar 119 0.6 8.4 −7.8 

Hot oil 277  1.9 −1.9 

Hot water 160-50 9 13.3 −4.3 

Flue gas 1400  10.4 −10.4 

Sum of hot utility  290.4 412.5 −122.1 

Chilled water 4-7  5 −5 

Refrigerant C3/9 °C 9 27.7 32.5 −4.8 

Refrigerant C3/–21 °C –21 1.2 20.5 −19.3 

Refrigerant C3/–40 °C –40  38.3 −38.3 

Refrigerant C2/–62 °C –62  0.9 −0.9 

Refrigerant C2/–84 °C –84  7.3 −7.3 

Refrigerant C2/–100 °C –100  1 −1.1 

Sum of refrigerant  29 100.6 −76.7 

CW   472.8 −467.8 

Air   88.2 −88.2 

Sum of cold utility  29 662 −632.8 
1
 Heating/cooling generated from hot/cold process streams 

2
 Heating/cooling consumed in process heaters/coolers 

5.1.1.1 Plant and process data collection for process integration studies 

Plant data were collected in close collaboration with plant experts. The data are chosen to 

represent the current processes, including already scheduled process modifications at 

expected average capacity operations, to determine a representative picture of the plant 

operations. Real-time and historical process data, documented process and design data 

and process simulations are used. For the analysis illustrated in this work, it is important 

to include all utility consumption in the processes. 360 process streams with a heat load 

exceeding 300 kW and requiring utility heating and cooling are included in the case study 

(grey box approach). These limitations were determined after discussions with plant 

energy experts. It is deemed unlikely that HXs with a load of less than 300 kW would be 

included in a retrofit. Moreover, streams that are currently involved in direct heat 
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exchange to recover process heat are regarded as being unlikely to be changed in the 

future. 

To account for utility consumption of all process streams, the current utility consumption 

at each utility level is determined; moreover, the difference between the current 

consumption and the sum of the utility consumption found from process streams is 

included in the data (black box approach).  

Utilities and corresponding process streams that cannot be changed due to process 

restrictions, such as extremely high temperatures achieved using flue gases in direct-fired 

cracking furnaces, are not included in the stream data.  

Some major compressors at the cracker plant are driven by steam turbines that co-

generate mechanical power. After discussions with plant experts, the turbine steam 

consumption and the current turbine back-pressure are regarded as process requirements. 

All steam consumption must be included in the TSA. Therefore, in the stream/utility data, 

the steam consumption of the turbines is included as the heat load difference between the 

steam entering and leaving the turbine at the temperature level of the turbine back-

pressure. 

5.1.1.2 Refrigeration systems 

Most of the refrigeration within the cluster is performed via two interconnected vapor-

compression refrigeration systems, i.e., propylene (C3) and ethylene (C2) compression 

refrigeration systems, both of which are located at the steam cracker site (see Figure 14). 

The propylene system’s four-stage compressor is driven by a steam turbine (steam 

expansion from a gauge pressure of 85 to 8.8 bar) and delivers refrigeration cooling at 

three levels (i.e., 9 °C, –21 °C, and –40 °C). The shaft power requirement of the 

propylene refrigeration system is approximately 21 MW, depending on the production 

capacity, the feedstock mix and other process parameters of the cracker plant. 



Chapter 5. Results – Developed methodologies and case study application 

 

41 

 

Figure 14 Process flow diagram of the propylene and ethylene refrigeration systems 

at the cracker plant. 

The compressor of the ethylene refrigeration system is driven by an electrical motor. The 

typical electric power requirement of the system is approximately 4 MW, which accounts 

for approximately 10% of the total electricity consumption of the cracker plant. Cooling 

is delivered at three levels (i.e., –62 °C, –84 °C, and –100 °C).  
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a first step in decreasing the dependence of the cluster on fossil feedstock, the imported 
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Figure 15 illustrates different possible conversion routes for the production of ethylene 

(and olefins) from biomass. To illustrate the suggested design strategy, one production 

route, namely, the catalytic dehydration of bio-ethanol, is used as a case study in this 

work.  

 

Figure 15 An overview of possible biomass-to-ethylene production routes adapted 

from Ref. [80–83]. 

This work investigates the potential heat savings that can be achieved by integrating an 

ethanol production plant based on the fermentation of lignocellulosic feedstock and an 

ethanol dehydration plant producing ethylene with an existing chemical cluster. 

5.2 Overview of the framework methodology 

The framework methodology is based on a holistic representation of the energy system of 

the overall cluster. Figure 16 shows an overview of how several process integration tools 

are combined in the framework methodology.  

 

Figure 16 Illustration of the framework methodology. 
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(i.e., black, grey or white box approach) [70]. Pinch analysis provides HI targets for 

single processes and input to further analysis stages. 

In the second step, the collected data are analyzed using TSA tools. Total site heating and 

cooling profile curves are produced to provide an overview of heat flows within the total 

site’s energy system. Opportunities for the exchange of utility flows between plants can 

be identified using these curves. A detailed analysis of the TSA curves allows the user to 

identify potential HI improvements that require a common site-wide utility system. 

Therefore, the theoretical minimum overall hot and cold utility demands can be 

determined. Several practical measures to approach this minimum can be subsequently 

designed according to the algorithm developed in this work. Changes in heating and 

cooling demands or utility levels are often coupled to the shaft power demand/production 

(e.g., reduced refrigeration requirements decrease the shaft power required to drive the 

refrigeration system compressors, whereas reduced hot utility demand decreases the co-

generation potential). A combination of pinch analysis and exergy analysis should be 

used to assess the total savings of hot and cold utilities and the effects on shaft power 

consumption/generation. 

In the third step, opportunities for integrating biorefinery processes are investigated. The 

knowledge of the current energy system of the cluster and the potential for further site-

wide integration (determined in steps one and two) are the basis for identifying 

opportunities for energy-efficient biorefinery integration. Process simulation is used to 

obtain mass and energy balances for the biorefinery process. The efficiency gain that 

could be achieved by integrating a biorefinery with the existing cluster is quantified by 

first conducting a pinch analysis for the single biorefinery process. Then, a total site 

analysis is performed for the integration with the cluster. This procedure should be 

performed for several promising biorefinery concepts to identify the most suitable 

concept for integration with the existing cluster. However, due to the large amount of data 

necessary to perform this analysis, the integration of only one biorefinery concept is 

presented in this work to illustrate the procedure. 

Regardless of the level of HI, there is always some excess heat rejected from the 

processes that cannot be utilized within the cluster. Therefore, the external utilization of 

excess heat is investigated in the fourth step. In this work, DH is assumed to be a 

potential consumer of excess process heat. Thermal streams that currently and after site-

wide HI discharge heat to the atmosphere (via CW or air cooling) are regarded as 

potential sources for delivering DH to a local DH system. Because the best use of 

industrial excess heat depends on the economic value of DH and the environmental 

performance of reference DH production technology, it is necessary to assess the 

competition between the uses of excess heat. In this framework, the competition between 

internal/site-wide HI and the export of excess process heat is investigated. The economic 

feasibility and environmental viability of delivering DH are evaluated by considering 

different levels of internal HI. 

5.3 Heat integration targeting of single process units 

The pinch analysis results for each of the six individual constituent plants within the 

chemical cluster are shown in Table 3. 
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Table 3 Minimum heating and cooling demands of the constituent plants within the 

chemical cluster assuming a global ΔTmin of 10 K. 

Plant/Site Minimum heating 

demand [MW] 

Plant A 1 

Plant B 17.3 

Plant C 5.5 

Plant D 0 

Plant E 20.6 

Plant F 27.6 

Sum 72 

Current sum 122 

Potential savings  50 

 

Comparing the sum of the minimum heating demands for the plants based on current 

common hot utility consumption (Table 2) indicates a potential saving of approximately 

50 MW of hot utility. This potential can be used as a benchmark and should be compared 

with the site-wide heat recovery target to determine the added value of introducing site-

wide heat recovery systems instead of separately improving EE in each plant. 

5.4 Heat integration targeting in industrial clusters without a 

common utility infrastructure 

In this section, the TSA methodology is applied to the chemical cluster in Stenungsund. 

The first part of this section describes how heat recovery measures are identified and a 

maximum heat recovery utility system is designed. The first part of this section is based 

on Paper I. Then, in section 5.4.4, a practical design methodology is introduced to define 

heat recovery projects that can utilize the potential for site-wide heat recovery in the 

cluster. The latter part of this section is based on Paper VI. 

5.4.1 Methodology development 

An overview of the overall methodology for site-wide HI is shown in Figure 17. In the 

first stage, a TSA is conducted for the cluster using both TSPs and TSCs. Matching 

process stream profiles yields the largest potential for heat recovery. However, direct heat 

exchange between separate plants is difficult to achieve when site-wide heat recovery is 

targeted. Therefore, the current utility systems in the cluster are represented by TSPs and 

TSCs. Based on this representation, modifications to the utility systems are identified to 

target the maximum heat recovery within the cluster. This stage yields information 

suggesting that changes to the clusters’ utility systems and process/utility interface are 

necessary to realize the MER at the total site scale. 
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Figure 17 Overview of the methodology. 

Achieving the maximum heat recovery target across an entire cluster with no or limited 

existing common utility infrastructure would demand a nearly complete reconstruction of 

the utility systems and HX networks. To obtain a starting point for the design of common 

heat recovery measures in the second stage of the procedure, plant experts are consulted 

with the results of the first stage. A list of HXs that potentially are affected by the 

construction of the utility system identified in the first stage is presented to plant process 

and energy experts. The experts are asked to consider several aspects, including the 

expected costs, space issues, location, process control for replacing each HX. This is used 

for categorizing the HXs. In the following, design phase changes to the process/utility 

interface that are deemed easier than other changes are prioritized when designing heat 

recovery systems.  

5.4.2 Analysis of the current utility system 

Figure 18 shows TSCs for the chemical cluster. The TSCs represent cold and hot process 

streams (solid lines) and cold and hot utility curves (dashed lines). 

 

Figure 18 TSCs for the chemical cluster in Stenungsund based on the utility system. 
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As described previously, the minimum heating and cooling requirements for the total site 

can be determined from the TSCs, i.e., Qheating=122 MW and Qcooling=633 MW. Figure 18 

also shows the site pinch, which limits further heat exchange through the utility system. 

In this case, the site pinch is located at 133 °C at the LP steam level. The overlap of the 

source and sink profiles (and the respective utility profiles) represents the amount of heat 

recovery by the utility system (320 MW).  

5.4.3 Improvements to the total site utility system 

In this section, the systematic procedure applied to increase site-wide HI via a common 

utility system is presented using TSPs and TSCs: 

 The TSCs of the current utility system (Figure 18) exhibit a large temperature 

difference between the hot utility curve and sink profile (especially at 

temperatures below the site pinch). 

 This leads to high exergy losses because the process streams are heated 

with utility at higher temperatures than necessary.  

 The source profile indicates that there is heat available (currently discharged) at 

suitable temperatures to supply heat to the cold process streams. Heat from hot 

process streams can be recovered in the circulating hot water system and delivered 

to cold process streams (between 50 °C and 100 °C).  

 A detailed analysis indicates that 2 bar (g) steam that is used for process 

heating could be replaced by hot water. 

Implementation of such a circuit results in modified curves (see Figure 19) in which the 

resulting site pinch is shifted and the overlap of the TSCs is increased. These changes can 

be seen by comparing Qheating in Figure 18 and Figure 19. Introducing a hot water circuit 

results in the following changes: 

 Increased recovery of process heat to generate hot water between 50 °C and 

100 °C; and 

 Savings of 51 MW steam at 2 bar (g). 

A new site pinch is created, which indicates that no further HI is possible. Figure 19 

shows that there remain hot and cold process streams available that are at a suitable 

temperature for heat recovery using a hot water circuit. However, in practice, the new site 

pinch implies that if more than 51 MW of 2 bar (g) steam is replaced with hot water, there 

will be an overall excess of 2 bar (g) steam. This is because there will still be the same 

amount of 2 bar(g) steam recovered from process heat, but there is less demand since 

steam for heating purposes is replaced by hot water. 
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Figure 19 TSCs after introducing a new hot water heat recovery circuit. 

 

Further increases in heat recovery require additional shifts in the site pinch, which can be 

achieved as follows: 

 Modify the operating conditions of certain heat exchangers. In this work, the focus 

is on heat exchangers that do not require steam at a level higher than 2 bar (g) (see 

sink profile in Figure 19)  the steam level in these heat exchangers can be 

decreased  the demand for 2 bar (g) steam is increased;  

 Proceed as above until another site pinch is created, which makes it necessary to 

either lower the steam level in the heat exchangers using higher pressure steam or 

steam from excess process heat can be recovered at higher levels; 

 Both modifications make it possible to shift the site pinch and increase the overlap 

of the TSCs;  

 The TSCs in Figure 19 also indicate the possibility for increasing the generation 

of 2 bar (g) steam from recovered excess process heat (see Figure 20); and 

 The maximum theoretical HI is achieved when ΔT between the source profile/cold 

utility and hot utility/sink profiles approaches ΔTmin (here, ΔTmin=10 K).  

The TSPs corresponding to the maximum energy recovery achieved using the 

aforementioned modifications are shown in Figure 20. The dotted lines show the current 

hot and cold utility profiles, whereas the dashed lines show the suggested utility system. 
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Figure 20 TSPs after introducing a utility system for maximum heat recovery. 

 

Figure 21 TSCs after introducing a utility system for maximum heat recovery. 
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utility system. Additionally 7 MW of excess steam would be available as illustrated by 

Qsurplus in Figure 21.  

5.4.4 Design for implementing site-wide heat recovery measures 

The design procedure developed and the case study results presented in this section are 

based on Paper VI. 

5.4.4.1 Design procedure 

The overall design procedure can be divided into a preparatory phase and the design 

algorithm. The preparatory phase consists of the following steps: 

1. Target TSHI using TSPs and TSCs to identify utility systems that achieve the 

MER of the cluster; 

2. Screen for practical options by consulting plant experts to discard those that are 

considered to be highly expensive and/or technically infeasible; 

3. Apply TSA using the options that remain after the screening phase to determine 

temperature levels of utilities used for heat recovery and to target the amount of 

heat recovery that can be achieved when considering the remaining process 

streams after the screening phase; 

4. Identify limitations and all necessary investments to realize the heat recovery 

target; 

5. Calculate fixed capital costs for HXs that are included in the common heat 

recovery systems; and 

6. Rank the new HXs according to their costs per unit of heat. 

After these steps, the heat recovery systems are designed based on the following 

algorithm presented in Figure 22. 
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Figure 22 Illustration of the overall design procedure. 

 

Detailed assumptions and background data on the cost estimation for heat recovery 

systems can be found in Paper VI. 
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obtain a starting point for the design process. The measures are sorted into three 

categories: 

 Possible, with moderate changes: Only new HXs with increased areas must be 

modified. No changes to other equipment are necessary. There is sufficient 

available space to conduct the modifications; no additional pipe racks are needed. 

 Technically feasible: Changes to other process equipment must be conducted in 

addition to modifying the heat exchangers because, e.g., there is a lack of space, 

additional pipe racks must be installed, or heat exchangers are difficult to reach 

(e.g., top condensers or heat exchangers placed high above ground level). 

 Not feasible: The suggested measures are not possible for other process reasons. 

This evaluation indicates that 60 MW of the targeted savings can be achieved with 

moderate changes, although 110 MW of savings are technically feasible. These values 

should be compared with the theoretical heat recovery target of 129 MW identified in the 

TSA targeting study. 

Based on the outcomes of this initial screening stage, several heat recovery systems are 

designed for different levels of heat recovery following the algorithm suggested in Figure 

22. 

Necessary equipment, practical limitations and constraints that are important for the 

design and final costs of common heat recovery systems are illustrated in Figure 23 and 

described below. 

 

Figure 23 Example of two plants and the components necessary for implementing a 

common site-wide heat recovery system. 
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Practical limitations and assumptions: 

 To achieve primary energy savings, it is necessary that recovered heat replaces 

utilities that are generated by fuel combustion in boilers; utility replaced by 

recovered heat that does not directly decrease the fuel demand must be 

redistributed to a plant where it can replace boiler utility; 

 Once demand for excess utility is met at all plants, further heat recovery does not 

lead to primary energy savings; in this case, the maximum demand for excess 

utility is 53.8 MW; 

 By-products that must be incinerated must be redistributed if the boiler steam 

demand falls below a certain level due to heat recovery, preferably to a plant with 

existing co-generation potential; 

 10% heat losses in the HW circuits are compensated for by adding process heat 

[84]; and 

 HW piping is assumed to collect and distribute HW in parallel. 

 

Necessary investments: 

 HXs delivering heat (heat sources) to a common utility (HW) system; 

 HXs receiving heat (heat sinks) from a common utility (HW) system; 

 Backup HXs that supply and extract heat to and from the common utility (HW) 

circuit (in case of temperature and/or load fluctuations caused by, e.g., production 

capacity changes or plant shut-downs in the common HW systems); 

 HW pipe circuit between the different plants to transfer heat; 

 Steam piping between the plants to transfer excess steam between plants; 

 Fuel piping to transfer excess by-product fuel between the plants;  

 New HXs that can utilize excess hot utility created when process heat recovery is 

increased (in case utility generation cannot be directly controlled by decreasing 

the boiler load, e.g., due to safety regulations, i.e., boiler at stand-by of minimum 

boiler load, or excess process heat); and 

 HW pumps. 

 

Selection of site-wide heat recovery systems for a detailed economic evaluation 

Figure 24 shows the estimated PBP for several heat recovery systems identified by 

applying the procedure illustrated in Figure 22. Large investments are necessary because 

there is nearly no existing common utility infrastructure within the cluster. The fixed 

costs for this infrastructure are rather high, which explains why the PBP decreases rapidly 

from approximately 7.6 to 2.4 years when increasing the amount of heat recovery from 

1.4 to 20.7 MW. Thereafter, the PBP is rather stable when the amount of heat recovery is 

increased further. A sudden increase in the PBP occurs above 23.8 MW of heat recovery 

because it is necessary to invest in a fuel pipe between Plants F and D. The estimated PBP 

is then relatively constant between 3 to 4 years; a minimum PBP (3.2 years) occurs at 
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30.6 MW of heat recovery. The PBP increases slightly up to 3.9 years for a heat recovery 

of 53.8 MW due to the increased complexity of the systems.  

 

Figure 24 PBP for different heat recovery systems. 

 

Once a certain heat recovery threshold is reached, HXs that currently use MP or HP steam 

must be converted to LP steam to increase the demand for excess LP steam. Above 40.3 

MW of heat recovery, the demand for low-pressure steam at plant F is met, and an 

additional steam pipe between Plants D and E is required.  

Several systems are chosen for more detailed analysis based on their PBPs. Promising 

heat recovery systems (i.e., Systems 20, 30, 40, 50 and 54) are indicated in Figure 24. The 

numbering reflects the amount of heat recovered. The PBPs for these systems are the 

shortest for their corresponding heat recovery rates. Therefore, these systems are 

investigated in more detail with respect to economic performance and the potential for 

reducing GHG emissions. 

Increased complexity 

Figure 25 illustrates the number of new HXs that must be installed depending on the 

amount of heat recovery. Each data point represents a heat recovery system. Systems with 

the shortest PBP are considered at each heat recovery level. At low levels of heat 

recovery, the number of new heat exchangers is relatively constant between 3 and 6 HXs; 

however, the number of new HXs increases rapidly when the amount of heat recovery is 

increased. Moreover, the number of plants participating in the heat recovery systems 

increases with the targeted amount of heat recovery. 
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Figure 25 Amount of heat recovery as a function of the number of new HXs for 

systems with the shortest estimated PBPs.  

 

Increased complexity and interdependency often represents a barrier for heat recovery 

projects. A roadmap of projects is suggested to overcome this issue. Here, one system is 

selected as a starting point, e.g., System 20. If proven successful, this system can be 

extended toward more complex systems that recover more heat. 

 

Figure 26 Example of a heat recovery system (System 20) as a result of the 

suggested methodology; see Figure 23 for the legend. 
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Figure 27 Example of a heat recovery system (System 54) as a result of the 

suggested methodology; see Figure 23 for the legend. 

 

Economic evaluation 
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This result means that System 54 is less profitable and bears larger risk (i.e., lower 

NPV15-to-total investment ratio), which makes it unattractive compared with System 50. 

However, this result can change depending on several facts, including changes in GHG 

emissions and fuel costs, which are investigated in a sensitivity analysis described in 

Paper VI. 
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Table 4 Economic performance and reductions in GHG emissions for site-wide heat 

recovery systems. 

TSHI 

system 

Heat 

savings 

[MW] 

Total 

investment 

[MSEK] 

No. of 

collaborating 

companies 

PBP 

[y] 

NPV15 

[MSEK] 

NPV15/total 

investment 

Avoided 

GHG 

emissions 

[kt/y] 

% of total 

cluster CO2 

emissions 

System 20 20.7 153 2 2.4 312 2.04 47 5.2 

System 30 30.6 289 2 3.1 392 1.36 70 7.7 

System 40 40.3 425 2 3.5 469 1.10 92 10.2 

System 50 50.8 549 3 3.6 575 1.05 116 12.9 

System 54 53.6 620 4 3.9 564 0.91 122 13.6 

 

Based on the data presented in Table 4, it is advantageous to begin energy collaboration 

throughout the cluster by first implementing a smaller system with both a low NPV15 and 

low risk, such as System 20, which can be expanded to a larger system with a higher 

NPV15 in the future. In this case, some additional investment (approximately 41 MSEK) 

is necessary to make System 20 ready for further expansion, namely, larger HXs, larger 

pipes (HW and steam) to transfer the future amount of heat across the plants and larger 

HW pumps to provide the capacity for future expansion.  

The decision regarding which project to invest in must be based on the companies’ short- 

and long-term strategies and their ambitions to decrease GHG emissions. 

5.5 Combined shaft work and HI targeting of industrial 

refrigeration systems in industrial clusters 

The methodology and case study presented in this section are based on Paper II.  

5.5.1 Methodology development 

The methodology for targeting reduced exergy losses (see section 4.3) is extended and 

applied to estimate a target for site-wide recovery of cooling capacity and the associated 

consequences for shaft power consumption in the refrigeration systems.  

The following procedure is applied: 

 Stream data collection for cold process streams below the ambient temperature 

from the different plants (e.g., Tstart, Ttarget, Q, and the type of hot utility); and 

 The process stream and current hot utility profile are plotted using an exergy CC 

diagram (see section 4.3).  
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Figure 28 Illustration of the targeting procedure for site-wide recovery of cooling 

capacity from cold process streams (solid line) below the ambient temperature; 

current hot utility (dashed line) and the utility system when recovering cooling 

capacity (dotted line). 

 

Figure 28 illustrates the process for estimating the recovered cooling capacity. The figure 

can be explained as follows: 

 The area between the current hot utility (dashed line) and the process stream 

profile (solid line) represents the exergy flow rate loss caused by the current utility 

system; 

 Because only streams below the ambient temperature are included in the process 

stream profile, it is possible to recover cooling capacity; 

 The temperature levels of the refrigeration utility system present at the site are 

retained (dotted lines in Figure 28); and 

 An improved refrigeration recovery utility system is designed; the system’s 

potential for recovering cold utility is determined by activating a utility pinch 

against the cold process profile at each utility level. 

Therefore, a target for the recovery of cooling capacity can be determined as follows:  

 The recovered cooling capacity replaces refrigerant from the refrigeration 

systems; and  

 The corresponding decrease in exergy flow rate losses can be calculated because 

this decrease corresponds to the exergy necessary to generate the recovered 

cooling capacity. 

ηc

Q

Current hot utility profile

Hot utility profile for improved

cooling recovery

Cold process stream profile

of streams below ambient-T
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5.5.2 Case study application 

In this section, the results for applying the tools described in sections 4.3 and 5.5.1 to the 

chemical cluster in Stenungsund are discussed. Shaft power savings are targeted by the 

improved utilization of refrigerant and site-wide recovery of cooling capacity. 

5.5.2.1 Improved utilization of refrigerant for increased energy efficiency 

One approach to decreasing exergy losses caused by the current refrigeration system 

designs and thus increase their energy efficiencies is to improve the manner in which cold 

utility is used in the process.  

 
Figure 29 Exergy CCs showing the improved utility profile (dotted line) at the 

current cold utility levels and the current utility profile (dashed line). 

Figure 29 illustrates the design of an improved cold utility system (dotted line). The area 

between the current refrigeration system and the process curve corresponds to a total 

exergy loss of 5.4 MW due to the manner in which heat is transferred from the process 

streams to the cold utility system. The current cooling levels are maintained; however, the 

cold utility is used at the maximum possible temperature. Therefore, the area between the 

utility and process curves is decreased (ΔExr of the current refrigeration 

system = 18.1 MW; ΔExr, mod of the suggested refrigeration system = 17.1 MW), which 

corresponds to avoided exergy losses of approximately 1 MW (Figure 29). 

The exergetic efficiency (ηex) for the system investigated in this work is 0.66 based on the 

measured shaft power data obtained for the targeted refrigeration systems. Accounting for 

ηex, shaft power savings of approximately 1.5 MW can be achieved using the suggested 

changes to the utility system, which corresponds to approximately 5.4% of the total shaft 

work consumed in the refrigeration systems. Additional savings can be obtained by 

increasing the number of refrigerant levels and changing the temperature levels of the 

existing refrigerant levels, which is considered a more unlikely measure because it 

involves extensive changes to the compressors and to a numerous heat exchangers; these 

components must be redesigned for new utility temperature levels. 
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5.5.2.2 Increased recovery of low-temperature utility 

The left side of Figure 30 shows the hot process streams (solid line) and cold utility 

profile (dashed line). The right side of Figure 31 shows the cold process streams (solid 

line) and current hot utility (dashed line) used for process heating. The area between the 

curves (striped) represents the total exergy loss caused by the transfer of heat between the 

utility system and process streams.  

 
Figure 30 Exergy TSPs showing the process streams at the steam cracker plant 

cooled by refrigerants and the cold utility profile (left). The cold streams below the 

ambient temperature and the respective hot utility profile for the total site are also 

shown (right). 

 
Figure 31 Exergy TSPs showing the process streams at the steam cracker plant 

cooled by refrigerants and the cold utility profile (left). The cold streams below the 

ambient temperature and a suggested improved hot utility profile are also shown 

(right). 
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On the right side of Figure 30, there is a large gap between the hot utility profile and cold 

process streams, which means that the exergy losses due to heat transfer are high and that 

there is a potential for the recovery of cooling capacity. Therefore, a utility system 

utilizing optimal (from an exergy point of view) cooling loads (retaining the cluster’s 

existing cold utility levels) is designed. This system is shown on the right side of Figure 

31. The area between the curves is decreased such that the sum of exergy losses is 

decreased from 7.5 to 3.5 MW. 

It is possible to decrease the exergy losses in the cooling system by 1.63 MW by 

changing the utility system to recover more cooling capacity from the cold process 

streams while maintaining the current utility levels. Accounting for ηex (which is 

equivalent to 0.66), this decrease corresponds to a shaft work of 2.5 MW, which 

represents approximately 10% of the total shaft work consumption of the cooling 

systems.  

In the improved hot utility system that uses several heat exchangers, the utility steam 

should be replaced with a refrigerant to recover cooling capacity. In addition to relieving 

the refrigeration systems, this measure results in an additional savings of approximately 

6.3 MW of utility steam at pressure levels between 1.8 and 28 bar (g).  

5.6 Process integration of advanced biorefinery processes 

with existing industrial clusters 

The process integration strategy and case study results presented in this section are based 

on Paper III. Detailed process descriptions, input data, assumptions for the process 

simulations and detailed process simulation results for the biorefinery processes can also 

be found in Paper III. 

The goals of studying the integration of a biorefinery with a chemical cluster are as 

follows: 

 Estimating the potential energy savings and resulting overall EE improvement that 

can be achieved through varying degrees of HI within the biorefinery processes 

and with the chemical cluster; and 

 Estimating the biomass feedstock requirements to produce the specified amount of 

ethylene. Results of this analysis are provided in Paper III. 

5.6.1 Integration strategy 

Process simulation and pinch technology tools are used to systematically investigate 

opportunities for improving EE improvement. Thus, the focus of this portion of the study 

is on a holistic approach to the entire process instead of improving single process steps. In 

this work, the approach illustrated in Figure 32 is adopted. 



Chapter 5. Results – Developed methodologies and case study application 

 

61 

 

Figure 32 Illustration of possible process integration options; upper left: base case 

with no integration between ethanol and ethylene process; upper right: heat and 

material integration between the two processes; and lower: heat and material 

integration and design of a utility system to enable site-wide process integration. 

 

Lignocellulosic ethylene production can be divided into two steps: 1) lignocellulosic 

ethanol production and 2) ethanol dehydration to ethylene production. To identify EE 

opportunities, pinch analysis is performed using HI at three different levels with 

increasing degrees of integration. On the first level (Case I), the two processing steps are 

investigated separately; no integration between the two processes is considered. In 

practice, this is the case if both processes are at different locations. This case represents 

the reference case to which the following cases are compared. At the second level (Case 

II), the material integration (i.e., ethanol is directly delivered in the gaseous phase from 

the production of lignocellulosic ethanol to the ethanol dehydration process) and HI of the 

two processes are investigated. In practice, this level requires that the two processes are 

co-located. At the third level (Case III), the integration potential of the combined 

lignocellulosic ethylene process with the existing chemical cluster through a common 

utility system is estimated using the results obtained in Paper I. The energy targets 

determined using pinch analysis assume that direct heat exchange is possible between all 

process streams across the entire site. The new plant must be integrated with the cluster’s 

utility system to transfer heat within the biorefinery and with the existing cluster. 

Currently, the cluster has no common utility system. In Paper I, several measures to 

increase the cluster’s EE via site-wide energy collaboration are identified; a common 

utility system is suggested in this publication. The suggested utility system is assumed to 

estimate the side-wide HI potential between the ethylene production plant and chemical 

cluster.  

For each case, the potential for exporting excess solid fuel, co-generation of electricity in 

a CHP plant and the electricity consumption are estimated based on process simulation; 

the results are presented in Table 5. 
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The different process integration levels are compared by quantifying the minimum 

process energy requirements (Qheating, min and Qcooling, min) for a plant with an annual 

ethylene production of 200 kt and by estimation of the overall EE at the different process 

integration level. 

5.6.2 Integration of separate ethanol and ethylene production processes (Case I) 

Direct steam injection in the pre-treatment steps of the ethanol production process 

(51.2 MW) and direct steam to the ethylene reactor (25.1 MW) are not included in the HI 

analysis because this steam usage is a process requirement and cannot be replaced by heat 

exchange with other process streams. These amounts of steam must be added to cover the 

total steam demand of the processes. 

  

Figure 33 GCC for the ethanol 

production process from 

lignocellulosic biomass; direct 

stream injection of 51 MW in the 

pre-treatment steps is considered a 

process requirement. Therefore, 

this stream is not included. 

Figure 34 GCC for the ethanol 

dehydration process; direct steam 

injection of 25 MW to the 

ethylene reactor is considered a 

process requirement. Therefore, 

this stream is not included. 

On the first integration level, lignocellulosic ethanol production and the ethanol 

dehydration process are investigated separately. Figure 33 shows the GCC for the ethanol 

production process. Assuming a global ΔTmin of 10 K, the minimum heating and cooling 

demands for the ethanol production process are 112 and 148 MW, respectively. The pinch 

temperature of the process is 96 °C. Moreover, a large fraction of the heating demand 

occurs at a temperature of at least 117 °C (i.e., for ethanol purification). Large sources of 

excess heat include the condensers used in the purification stage and the cooling demand 

of the hydrolysis and fermentation processes.  

The GCC for the ethanol dehydration process is shown in Figure 34. The minimum 

heating and cooling demands are 19 and 48 MW, respectively. The pinch temperature for 

the process is 174 °C, which is considerably higher than the pinch temperature for the 

ethanol production process (i.e., 96 °C). The GCC below the pinch point is relatively flat, 

indicating the presence of a large amount of excess heat. Therefore, excess heat from the 

dehydration process can likely be used to offset a portion of the heating demand of the 

ethanol production process.  
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The total minimum heating and cooling demands of the two processes are 131 and 

196 MW, respectively. 

5.6.3 Material and heat integration of the two processes (Case II) 

Material integration implies that ethanol is directly delivered to the ethanol dehydration 

plant in the vapor phase, which results in some changes in process and energy flows in 

both processes. Therefore, the cooling demand in the rectifier column in the ethanol 

process is decreased by approximately 14.3 MW, whereas the demand for preheating the 

ethanol feed to the dehydration reactor (approximately 4.3 MW) is eliminated; the heating 

demand in the furnace of the ethylene plant is decreased by approximately 8.7 MW.  

A background/foreground analysis of the two processes is performed to illustrate HI 

opportunities and estimate the potential utility saving. Figure 35 shows the analysis of the 

combined processes. There is an opportunity to recover 44.5 MW of excess heat in the 

ethanol dehydration process and deliver it to the ethanol production process.  

 

Figure 35 Background/foreground analyses of ethanol production and the ethanol 

dehydration process; direct delivery of ethanol between the processes is accounted 

for in the stream data. 

 

As a result, there is an opportunity to reduce the total minimum heating demand for the 

combined processes from 131 to 82 MW via both material integration and HI (i.e., a 

reduction of 49 MW compared with the case of two separate processes). Similarly, there 

is an opportunity to reduce the total minimum cooling demand from 196 to 141 MW 

(corresponding to a reduction of 55 MW) via both material integration and HI of the two 

processes. 

5.6.4 Integration opportunities with the existing chemical cluster (Case III) 

The GCCs shown in Figure 35 represent the minimum heating and cooling demands of 

the biomass to ethylene production plant. In this case, it is assumed that direct heat 

exchange between process streams is possible across the entire biorefinery plant. In 

practice this might not be entirely feasible. A large portion of process heating and cooling 

is performed via the utility system. TSA is applied to design a utility system for a process 
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that enables both a high amount of heat recovery within the process and HI with the 

existing chemical cluster.  

In Paper I, a common utility system for heat recovery and process heating is suggested 

that mainly consists of 4 steam levels [i.e., 85, 40, 8.8 and 2 bar (g)] and a hot water 

circuit (see Figure 20). By applying these utility levels to the new biomass-to-ethylene 

process, the TSCs depicted in Figure 36 are obtained. The TSCs show the amount of 

external hot and cold utility, i.e., Qheating=103 MW and Qcooling = 164 MW. External 

heating demands of 78.4 and 1.2 MW are covered by 2 and 8.8 bar (g) steam, 

respectively. 

 

Figure 36 TSC for the biomass-to-ethylene plant. 

 

The minimum heating and cooling demands are compared with the results from the pinch 

analysis study (see section 5.6.3) because pinch analysis assumes direct heat exchange 

between process streams with a constant ΔTmin of 10 K, whereas heat recovery through 

the utility system requires a higher temperature difference (i.e., ΔTmin accounts for the 

difference between the source profile and cold utility and between the hot utility and sink 

profile). Therefore, it is not possible to achieve the same amount of heat recovery that is 

attainable via direct heat exchange. Another reason for the lower heat recovery is related 

to the nature of the utility steam system. Because of the constant temperature of the 

condensing steam and the evaporating water used for process heating and cooling, a site 

pinch is created (see Figure 36) that hinders increased heat recovery. 

The dotted circle close to the site pinch in Figure 36 indicates a large gap between the hot 

utility curve and sink profile, which means that a utility with a lower temperature could 

be used for process heating. Figure 37 shows the temperature level and amount of excess 

-200

0

200

400

600

800

1000

1200

1400

0 100 200 300 400

T
 (

°C
)

Q (MW)

Sink Profile Source Profile

Hot Utility Profile Cold Utility Profile

Qheating= 103 MW

Qcooling= 164 MW

Qrec=119 MW

Site Pinch

Qheating= 103 MW

Qcooling= 164 MW

Qrec=119 MW

Site Pinch

Qexcess heat from cluster= 9 MW 

T=100 C
T=90 C

QLPsteam,deficit



Chapter 5. Results – Developed methodologies and case study application 

 

65 

process heat available after maximum HI within the cluster using an improved utility 

system. The GCC contains the hot process and the utility demands for process heating of 

the cluster’s improved common utility system. The graph provides an estimate of the 

amount of heat available from the processes after the maximum amount of process heat is 

recovered using the improved common utility system. Excess heat (23 MW) is available 

at temperatures exceeding 110 °C. As indicated in Figure 36, there is a heating demand of 

9 MW at temperatures between 90 °C and 100 °C in the biorefinery process, which means 

that a portion of the excess heat from the cluster can be used for heating streams in the 

biorefinery. The use of this excess heat results in savings of 9 MW of 2 bar (g) steam 

from the CHP plant, reducing the external hot utility demand of the ethylene process to 

94 MW. As indicated in Figure 36, the biorefinery has a deficit of LP steam of 

approximately 78 MW, which represents an important aspect of these results, especially 

for integrating this process with other petrochemical sites that have excess LP steam. In 

the latter case, the excess LP steam can be utilized in the biorefinery and increase EE. 

 

Figure 37 GCC representing the transfer of heat from hot process streams to an 

improved utility system in the chemical cluster, which is used to determine the 

amount of additional excess heat that can be delivered to the biorefinery. 

5.6.5 Performance assessment of heat integration opportunities 

Table 5 shows the flows of energy to and from the biomass-to-ethylene production 

processes considering the different levels of process integration. The level of HI has a 

strong effect on the amount of excess solid residues and electricity that can be exported 

from the processes, which consequentially influences the overall EE. The largest net 

amount of electricity that can be exported from the site occurs for Case 1 even though the 

amount of excess solid residues is smallest for this case.  
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Table 5 Energy inputs and outputs and the overall energy efficiencies for different 

levels of process integration. 

 

Case I 

Base case with 

separate processes 

Case II 

Integrated mass and 

heat processes 

Case III 

Integration with 

existing site 

Outputs: [MW] [MW] [MW] 

 307 307 307 

 56 46 51 

 86 123 103 

Inputs:    

 749 749 749 

 9 9 9 

 35 38 38 

 16 8 8 

 56.4% 58.3% 57.1% 

 

In this case, more heat is needed for process heating, resulting in a larger potential for co-

generating electricity. Meanwhile, a larger portion of the solid residues must be 

combusted to supply heat to the processes. Overall, this alternative exhibits the lowest 

overall EE. Case II exhibits the highest overall EE.  

Cases I and II assume the possibility for direct heat exchange throughout the respective 

site. Case III assumes that heat exchange occurs via a common utility system that enables 

heat exchange with the existing chemical cluster. Assuming heat transfer via a utility 

system increases the necessary temperature difference for heat recovery, which explains 

why the overall EE in Case III is slightly lower than for Case II, although Case III 

provides a more realistic target. 

Furthermore, Figure 33 to Figure 36 indicate that there is excess process heat available at 

temperatures suitable for delivery to a DH network. Finding use for the available excess 

process heat could further increase the overall EE of the processes. In the following, a 

targeting approach for DH delivery from industrial sources is presented. 

5.7 Targeting for export of excess heat from industrial 

clusters to a district heating network 

The methodology developed and the case study results presented in this section are based 

on Paper V. 

5.7.1 Methodology development 

Pinch technology tools are applied to determine the potential for delivering excess heat 

from the cluster to a regional DH network. Exporting excess heat from the cluster to a 

regional DH system must be evaluated with respect to the potential for internal HI within 
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the cluster. This competition is investigated by comparing the potential for DH delivery 

of the current non-integrated cluster with the case in which the identified heat recovery 

measures [85] (that achieve approximately 50% of the heat recovery target identified in 

Paper I; see section 5.4.3) are implemented. In the latter scenario, all heat sources selected 

as “possible with moderate changes” (determined according to the screening stage 

described in section 5.4.4.2 and presented in Ref. [85]) are not considered as being 

available for DH production. The detailed methodology and the results of this study are 

presented in Paper V. 

CO2 emissions from DH that are produced from industrial excess heat are calculated as 

follows: 

.

     Eq. (6) 

CO2 emissions from industrial excess heat must be allocated to account for the possibility 

of avoiding these emissions using internal HI. In a chemical cluster in which heat 

recovery is not maximized, an unnecessarily large amount of heat is cascaded from the 

boilers to the cold utility system; this heat is potentially available for DH. To account for 

these inefficiencies in the heat recovery systems, CO2 emissions are allocated to the share 

of the DH consisting of heat that could be internally recovered within the cluster. 

Natural gas is assumed to be fuel with specific emissions ( ) of approximately 217 

kg/MWh [75]. The “fuel demand avoidable by HI” considers the fuel that could be saved 

by implementing internal heat recovery measures within the chemical cluster 

(approximately 150 MWfuel if all possible TSHI measures are implemented). The “DH 

delivery capacity target” is the amount of DH delivered to the DH system in the specific 

cases investigated herein. 

To estimate the economic potential for DH delivery from the cluster, it is assumed that 

the heat is delivered to the clusters’ battery from the location at which the DH company 

receives the heat. Two levels of DH prices are assessed, a low value (i.e., 100 SEK/MWh) 

and a high value (i.e., 700 SEK/MWh), based on representative average sales price to DH 

consumers in Sweden. 

The calculation algorithm is as follows: 

1. Candidate excess heat streams, which are streams that are currently cooled by CW 

or air and not retained for internal heat recovery within the cluster, are identified; 

2. The DH capacity target is calculated by superimposing the DH water curve with 

the process cooling composite curve; 

3. Hot process streams are sorted based on the size of their potential contribution to 

DH delivery; and  

4. For each DH capacity value in the range, the following steps are executed: 

a. The cooling composite of hot process streams that should be used for DH 

delivery is constructed (following the order identified in point 3), which 

are then superimposed onto the DH hot water profile; 

b. Enthalpy intervals in the CC diagram are identified; 

argetcapacity tdelivery  DH

HIby  avoidable demand Fuel
 fuelehDH ee
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c. For each enthalpy interval, the total heat transfer area and estimated 

number of heat exchangers are determined; 

d. The total investment cost is calculated; and 

e. The annual DH delivery that satisfies the investment criteria is calculated 

(DCFROR of 10%). 

5.7.2 Case study results 

In the following, the main results of the case study performed for the chemical cluster in 

Stenungsund are presented and discussed. 

5.7.2.1 Potential for DH delivery 

Figure 38 shows the DH delivery potential from the cluster for the case in which current 

HI is accepted and no additional internal heat recovery measures are considered.  

 

Figure 38 Cluster DH delivery potential considering current (black curves) and 

internally heat-integrated (gray curves) cases. 

The figure also shows the potential for a case in which site-wide HI (resulting in savings 

of approximately 50% of the cluster’s boiler fuel consumption for hot utility production) 

is assumed.  

The potential for delivering DH from the cluster assuming the current state of HI is 

approximately 235 MW (black dashed line). Assuming increased internal heat recovery, 

the potential decreases to approximately 110 MW (gray dashed line). Interestingly, the 

decrease in DH potential when comparing the current case with the integrated case is 

larger (approximately 125 MW) than the heat savings (approximately 75 MWfuel, 

corresponding to approximately 60 MWheat) that can be achieved by internal site-wide HI. 

This decrease is due to the change in shape of the cooling composite because many of the 

hot streams involved in site-wide heat recovery measures are at relatively high 

temperatures and are especially suitable for DH delivery. 
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Figure 39 illustrates the number of process streams delivering DH. With the exception of 

Plant A, the curves for the individual plants and the cluster are initially relatively steep, 

which means that using only a few streams can offset a large portion of the DH capacity 

target. The pinch point between the cooling composite and HW production profile is 

determined by only a few of the process streams; only a few of the other streams are used 

to preheat water from the DH return temperature to the pinch point.  

 

Figure 39 Number of process streams delivering DH.  

The contribution of other thermal streams to the increased capacity is small. For example, 

only 76 process streams out of the available 173 streams are used to deliver the entire DH 

potential of approximately 235 MW using the current HI. In this case, only 14 streams are 

required to deliver half of the potential amount. 

5.7.2.2 Allocation of CO2 emissions with DH delivery 

Table 6 shows the potential for delivering DH from the cluster, the fuel demand for hot 

utility generation and the resulting allocation of specific CO2 emissions for DH.  

Table 6 DH export potential, cluster’s fuel demand for hot utility generation and 

allocated specific CO2 emissions for DH in the two different internal integration 

cases. 

Local HI 0 50% 

Heat collection system site-wide site-wide 

Max DH export (MW) 235 110 

Cluster natural gas (MW) 150 75 

Specific DH CO2 emissions 

(kg/MWh) 
139 148 

 

The results show that the specific CO2 emissions from exporting DH are smaller for the 

case in which no HI of the cluster is assumed. This result is due to the large decrease in 

the potential for DH delivery in the integrated case compared with the non-integrated 

case. However, it is important to consider which type of DH generation technology is 

replaced by the industrial excess heat. If a natural gas boiler (specific emissions of 

approximately 217 kg/MWh) is replaced, it is advantageous to deliver industrial excess 

heat. If other CO2 lean technologies, such as natural gas or biomass-fired CHP, are used, 
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it is advantageous to use excess heat for internal heat recovery within the cluster, which 

will lead to reduced firing of natural gas boilers. Moreover, different technologies are 

replaced during different periods of the year in DH systems; therefore, it is important to 

consider the total reduction in CO2 emissions that can be achieved over the course of an 

entire year.  

5.7.2.3 Economic feasibility 

The results of the economic feasibility study are shown in Figure 40, Figure 41 and 

Figure 42. For each level of installed DH capacity (x-axis), the amount of annual DH 

delivery that must be guaranteed at a high and low price for DH to achieve a DCFROR of 

10% is shown. The range of conditions that fulfill the investment criteria is indicated by 

the shaded area between the curves.  

 

Figure 40 DH delivery capacity versus the yearly DH delivery needed to reach a 

DCFROR of 10% at different DH prices for different plants (color) and the entire 

chemical cluster (black) assuming no internal HI. 

 

Figure 40 shows the results for the case in which no site-wide HI is considered. DH 

delivery from Plant A suggest that larger yearly DH delivery is required for an equal DH 

price, which makes this a less interesting option than DH delivery from Plant E. The same 

holds when comparing DH delivery from Plant E with other plants in the cluster or with a 

site-wide heat collection system for capacities up to 2 MW. 
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Figure 41 DH delivery capacity versus the yearly DH delivery needed to reach a 

DCFROR of 10% at different DH prices for different plants (color) and the entire 

chemical cluster (black) assuming no internal HI.  

 

Figure 41 shows that the site-wide network exhibits the most favorable results. The 

lowest annual heat delivery needed to reach the investment criteria throughout the entire 

range of installed DH delivery capacities is indicated. Plants C, D and E exhibit 

comparable results. Plant D exhibits the most promising results up to an installed capacity 

of approximately 15 MW. At higher capacities, Plant C is found to be the most cost-

effective single plant for delivering DH. 

The curves become steeper with increased installed DH delivery capacity. For the case of 

a site-wide network, the annual revenues (i.e., yearly DH delivery) required to achieve a 

similar rate of return must increase substantially to counterbalance the large investment in 

heat exchangers for capacities exceeding 100 MW. This effect is even stronger above 200 

MW. As the installed capacity approaches the target DH capacity (approximately 

235 MW), it is necessary to utilize nearly all of the relevant cluster excess heat sources 

for DH delivery, including extremely small and expensive sources. 

Figure 42 shows the results in the case of site-wide HI. For most installed capacities, 

cluster-wide DH delivery is the least expensive option. Moreover, in this scenario, a 

higher annual DH delivery is required to achieve the target DCFROR of 10%, which is 

because site-wide HI and DH delivery utilize hot process streams within the same 

temperature range. Moreover, streams that are particularly suitable for both site-wide HI 

and DH delivery (due to their high heat contents and high temperatures) are assumed to 

be used for internal integration and are not available for DH. Therefore, more process 

streams are required to achieve the same DH capacities relative to the conditions without 

integration, which increases the investment costs. 
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Figure 42 DH delivery capacity versus the yearly DH delivery needed to reach a 

DCFROR of 10% at different DH prices for different plants (color) and the entire 

chemical cluster (black) assuming site-wide HI (which saves 50% of the current fuel 

used for hot utility demand). The thin lines represent DH delivery assuming no HI. 
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6 6 Conclusions and discussion of the 

main findings 
The transformation of existing industrial production sites and processes toward more 

energy-efficient production and less fossil feedstock dependence must be conducted in a 

systematic and efficient manner. The work presented herein describes how a set of 

process integration methods can be used to obtain a holistic assessment of the energy 

system in an industrial cluster and, based on this assessment, identify ways to achieve 

increased EE and transition from fossil toward renewable feedstocks.  

Pinch technology is used to target minimum heating and cooling demands of single 

process plants and identify specific measures to decrease the use of hot and cold plant 

utilities. The results from pinch analysis studies of individual processes provide guidance 

for efficiency improvement investments at one site and can be used as input for site-wide 

HI studies using TSA tools. The HI target can be largely increased if the system 

boundaries are expanded from single to total site integration.  

Based on a mapping of the energy systems within the existing cluster, suitable biorefinery 

concepts and feasible methods to deliver excess process heat for external use, e.g., as DH, 

can be identified following the procedures described in this work. 

The general conclusions from the presented work are as follows: 

 Investments in EE at one site are often not feasible because they result in an 

excess of low-quality utility at the specific site. Clusters often consist of several 

plants with different plant owners. Plant operators typically have no detailed 

knowledge of the energy and material flows in their neighboring plants. The 

approach used in this work is a method to make all plant operators aware of 

common HI opportunities and their associated efficiency gains. By considering 

the entire cluster, it is possible to determine a method for improving the 

redistribution of recovered utility, which leads to an overall increase in EE for the 

entire cluster. 

 The step-wise design approach for HI systems enables a roadmap of HI 

investments to be created that begins with less complex systems (recovering a 

small amount of the total heat recovery target) and moves toward strongly 

integrated, complex systems (recovering a larger amount of heat). Because 

collaboration among companies is not always simple, beginning with a simple 

system that can be expanded when proven successful can assist in initiating site-

wide HI opportunities. 
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 Exergy composite curves can be used for rapidly identifying and evaluating the 

consequences of local measures for decreasing shaft power in a compression 

refrigeration system. The methodology can be applied to determine optimal utility 

loads and evaluate the effects of demand changes between different utility levels 

on the refrigeration shaft power consumption. 

 Combining total site profiles and exergy analysis is shown to be a useful method 

of determining targets for recovering cooling capacity at a site-wide level and 

simultaneously evaluating the potential for refrigeration shaft power savings based 

on these measures. The methodology can be applied to all industries that operate 

refrigeration systems to target shaft power savings via the recovery of cooling 

capacity from cold process streams, e.g., cryogenic distillation reboilers and 

storage tanks. 

 There are many different biorefinery concepts available. Meanwhile, biogenic 

feedstock is limited and expensive. Biorefineries differ strongly with respect to 

their heating, cooling and electricity demands. The suggested holistic approach 

can be used to compare the integration of different biorefinery concepts with an 

existing industrial cluster and to identify the most suitable biorefinery from a 

process integration perspective. The approach also enables the identification of 

utility systems configurations that maximize opportunities for HI within the 

biorefinery and within the encompassing industrial cluster. 

 The suggested approach can be used to investigate the integration of advanced 

biorefinery concepts with a site-wide utility network that can lead to several 

advantages, such as economies of scale, because a biorefinery delivering 

feedstock to several plants can have a larger production volume. Also sharing 

large investments can decrease the risks involved in implementing new 

technology. 

 In addition to HI, other potential synergies between the existing plants can be 

identified using the suggested approach. Excess capacity in the existing cluster 

(e.g., in boilers or refrigeration systems) can be identified. Moreover, possible 

uses for this capacity within the new process can be investigated. Alternatively, 

excess heat from the biorefinery can instead be used in the cluster, thereby 

avoiding expensive boiler capacity addition. 

 Regardless of the level of HI, there is always some excess heat rejected from the 

processes. If available, DH systems can act as sinks for excess process heat. As 

highlighted in this work, the current and future status of HI within an industrial 

cluster strongly affects the amount of DH available, its costs and CO2 emissions. 

The procedure applied in this work can be used to target economically feasible 

DH delivery from industrial clusters. 

 Targeting internal (site-wide) HI should be conducted simultaneously with 

targeting alternative options for utilizing excess process heat, as both strongly 

influence each other regarding economic feasibility and CO2 emissions 

consequences. 

This analysis is possible if a holistic approach is applied where energy and material flows 

throughout an entire site are considered; this knowledge can be used to integrate the most 
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suitable biorefinery process to minimize resource consumption and costs and export 

excess process heat, which will further increase the EE of the cluster. 

During this research project, other factors that are important for collaboration across 

company borders (beyond the technical feasibility) were identified. One of the challenges 

of using the proposed methodology is to investigate long-term development plans for 

such clusters. Each company within a cluster has more or less far-reaching plans for 

future development of its own plant; such plans should be included in the TSA effort. 

However, data collection is a complex process, especially if there are uncertainties in the 

data and potential future plant developments are not clearly defined. Other factors include 

the ownership structure of the companies, the design of business models that promote 

collaboration across company borders, and policies supporting the implementation of EE 

measures and renewable materials.  
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7 7 Discussion of sources of error and 

uncertainty 
Engineering assumptions and simplifications are necessary to limit the complexity and 

the scope of this work. The use of certain assumptions and simplifications is explained 

herein. The consequences on the methodology developed and the results obtained in this 

work are also discussed. 

The process stream data used in this work are based on the average steady-state operation 

of the processes within the cluster. Heating/cooling demand fluctuations and temperature 

changes might occur depending on several factors, including the production rate or 

product mix. It is also assumed that all processes run simultaneously at the given 

capacity. These uncertainties are considered acceptable in the targeting phase, which is 

the aim of the methodology presented in this work. Nevertheless, more detailed 

investigations must be performed when designing the suggested HI measures to provide 

suitable back-up heating and cooling capacity for guaranteeing stable process operations 

at all times. 

The processes included in the analysis might still be in the commissioning phase; 

therefore, process design data must be used, which do not necessarily reflect true 

operation conditions of the processes. Whether the design data reflect real process 

operating conditions must be considered when concrete heat recovery systems are 

designed. 

Considering certain process plants, streams or portions of individual processes with less 

detail (“black box”) when conducting TSA increases the uncertainty because some HI 

opportunities may not be identified. Data collection is critical and must be conducted with 

care to not disregard major improvements prior the analysis.  

Considering the design procedure developed in this work, there is no guarantee that a 

global optimum heat recovery system can be identified. This is not the main goal of the 

procedure. Instead, the objective of this work is to identify feasible, flexible and simple 

systems that can be expanded from small systems to systems achieving the MER. 

Based on the exergy targeting methodology presented herein, it is not directly possible to 

allocate the actual shaft power savings between the ethylene and propylene refrigeration 

cycles because these two systems are interconnected. Therefore, an evaluation of the 

actual potential for steam and electricity savings must be performed on a case-to-case 

basis and cannot be generalized. 
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In the case study of the biorefinery investigated in this work, the process design and data 

used for process simulation are based on literature data because no large-scale unit of this 

type has been constructed to date. Therefore, the stream data obtained for EE targeting are 

subject to uncertainty that may also affect the results presented for the overall efficiency 

of ethylene production via the suggested processes. 

In this work, a single cluster and one biorefinery concept were considered to illustrate the 

framework methodology. To obtain more general and comparable results, the framework 

methodology should be applied to other clusters; different biorefineries should be 

investigated to identify the most suitable scenario. 

When targeting DH delivery from the cluster, it is assumed that piping costs are 

proportional to the heat exchanger purchasing costs. Therefore, it is implied that the final 

arrangements of the heat exchanger units in the different solutions are equally complex. 

However, this assumption is not necessarily the case for all plant types and sizes, which 

introduces additional uncertainty in the results because piping costs of a large network are 

expected to increase exponentially when the maximum production target is pursued. 

Another uncertainty in the proposed targeting procedure is that the vertical heat transfer 

approach overestimates the number of heat exchanger units, while a smaller heat transfer 

area per unit is obtained. This error occurs because process streams typically belong to 

more than one enthalpy interval; therefore, one heat exchanger unit could be constructed 

to offset a larger load than a single enthalpy interval found in the composite curve 

diagram. As a result, the investment in heat exchangers is overestimated because the fixed 

cost of equipment per unit of heat becomes large for low heat transfer areas. The design 

of an optimal heat exchanger network should apply more advanced techniques than those 

used herein. 

When allocating CO2 emissions to industrial excess heat the maximum heat recovery 

target for TSHI is assumed as “fuel demand avoidable by HI”. Whether or not this 

assumption is realistic has to be discussed on a case-to-case basis. The case study 

presented in this work is a first step towards a more detailed study on the utilization of 

excess process heat from the cluster in Stenungsund. 
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8 8 Future research 
 

Until now, the framework presented assumes stable, simultaneous operations of all 

participating plants. To obtain a more realistic heat recovery target and to determine the 

necessary utility generation capacity in case of temporal variations in heat recovery, heat 

demand variations throughout the cluster should be included in future analyses. 

The framework methodology presented in this work should be applied to other industrial 

clusters/complexes to improve the general applicability and further refine the 

methodology.  

To identify suitable bio-based alternatives to current fossil-based products and production 

processes, different biorefinery processes should be investigated for integration with the 

chemical cluster in Stenungsund. As shown in Figure 15, there are several other 

production pathways for ethylene (olefins) production using biomass as feedstock. 

Moreover, increased end-product recycling and a potential method for integrating such 

recycling within the cluster should be investigated to improve the resource efficiency of 

chemical production. 

In future work, the framework methodology should be extended by applying a life cycle 

based approach to optimise emissions and resource consumption when aiming for HI, 

renewable feedstock integration and increased external utilisation of excess process heat. 

For HI investments, this means that emissions from construction of necessary 

infrastructure should be taken into account. For renewable feedstock integration (indirect) 

land-use change, emissions from biomass production and product use should be 

accounted for. When investigating export of excess process heat to a district heating 

network, it is necessary to further refine the methodology for allocating CO2 emissions 

from industrial excess heat used for district heating. Alternative uses of excess process 

heat should be investigated, such as electricity generation from low temperature heat or 

biomass drying, since district heating is not always a viable option. The influence of 

different aspects such as heat demand fluctuations and future internal heat demand/supply 

changes due to site modifications should also be considered in future investigations. 

This aforementioned issue can be addressed by developing more sophisticated methods to 

address long term process investment strategies and their effects on future process 

changes, plant retirement or site expansion in the data collection phase to obtain a 

representative set of data on which HI and biorefinery integration studies can be based.  

The approached applied in this work is advantageous because it facilitates interaction 

with stakeholders, which is a critical factor in achieving the actual implementation of 
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possible measures. However, there is also a need to further develop generic optimization 

tools that are able to scan many possible options once suitable superstructures are defined. 

Also a more detailed investigation of non-energy benefits of site-wide HI, such as 

increased production capacity without the need for new boilers should be conducted. 
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Nomenclature and Abbreviations 
 

Abbreviations 

CC  Composite Curves 

CEPCI  Chemical Engineering Plant Cost Index 

  Average Annual Cash Flow 

  Total Investment Cost 

CHP  Combined Heat and Power 

C2  Ethylene (Refrigeration System) 

C3  Propylene (Refrigeration System) 

DCFROR  Discounted Cash Flow Rate Of Return 

DH  District Heating 

EE  Energy Efficiency 

EU  European Union 

IEA  International Energy Agency 

GCC  Grand Composite Curve 

GHG  GreenHouse Gas 

HI  Heat Integration 

HW  Hot Water 

HX  Heat eXchanger 

MER  Minimum Energy Requirement 

NPV  Net Present Value 

avgCF

InvCost
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PBP  Simple Pay-Back Period  

SEK  Swedish Kronor 

TSA  Total Site Analysis 

TSC  Total Site Composites 

TSP  Total Site Profiles 

 

Symbols 

 

A  Area [m
2
] 

D  Diameter [m] 

ΔExp  Exergy Flow Rate Difference in the Process [W] 

ΔExr  Exergy Flow Rate Difference in the Refrigeration System [W] 

ΔExr,mod Exergy Flow Rate Difference in the Modified Refrigeration 

System [W] 

ΔExu  Exergy Flow Rate Difference in the Utility System [W] 

ΔH  Enthalpy Change [W] 

P  Actual Shaft power [W] 

Q  Heat Load [W] 

ΔTm  Logarithmic Mean Temperature Difference [K] 

ΔTmin  Minimum Temperature Difference [K] 

Tref  Reference Temperature [°C] 

Tstart  Starting Temperature [°C] 

Ttarget  Target Temperature [°C] 

U  Overall Heat Transfer Coefficient [kW/m
2
K] 

  Electric Power [W] 

ηex  Exergetic Efficiency [-] 

ηoverall  Overall Energy Efficiency [-] 

elW
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