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Evaluation of driver models for left turn across path manoeuvres 

Master’s Thesis in Master’s Thesis in Automotive Engineering  

PATRICK BARDINET DE HORNA 

FRANCESCO SECONDO 

Department of Applied Mechanics 

Division of Vehicle Safety 

Chalmers University of Technology 

 

ABSTRACT 

Accidents at intersections are one of the most common causes of fatalities on roads. 

Statistics from the EU and the USA show that fatalities at intersections represent more 

than one fifth of all traffic fatalities. In particular, the left turn across the path of a 

vehicle coming from the opposite direction (LTAP/OD) is one of the riskiest 

situations at intersections. The goal of the thesis is to develop driver models 

describing human behaviour during left-turn-across path scenarios, for future use in 

active safety systems development for intersections. Video and vehicle dynamics data 

during daily driving were retrieved from the EuroFOT project database in order to 

find LTAP/OD scenarios suitable for the scope of the thesis. For the description of 

driver’s behaviour during the LTAP/OD scenario, two different driver modelling 

approaches have been considered: the Salvucci and Gray’s, which focuses on steering 

behaviour, and Nobukawa’s, which is based on vehicle acceleration. The work has 

been performed using MATLAB
®
, exploiting also genetic algorithms for model 

parameter optimization. The models describe the steering and speed behaviour 

reasonably well for the specific LTAP/OD events used in the model optimization and 

validation. However, generalization cannot be made across LTAP/OD as a scenario. 

Further efforts are required, e.g., to increase of number of intersections and number of 

drivers in the validation, to verify the reliability of the two models and develop it 

further. Once reliability has been established, the models may be used as part of the 

design of Intersection Driver Support Systems. 

 

Keywords: Driver behaviour, Driver models, Human Factors, Intersection, 

Naturalistic data, Post Encroachment Time, Road Safety. 
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1  Introduction 

 

1.1 Background 
 

Car crashes often occur at intersections because these locations, where two or more 

roads cross each other, lead to the management of complex manoeuvres. Examples of 

such manoeuvres are turning left, crossing over, and turning right, and have the 

potential for causing accidents. The American Fatality Analysis Reporting System 

(FARS) and the National Automotive Sampling System-General Estimates System 

(NASS-GES) data show that about 40 percent of the estimated 5,811,000 crashes that 

occurred in the United States in 2008 were intersection-related crashes (National 

Highway Traffic Safety Administration, 2010). Characteristics of intersection-related 

crashes (traffic control devices, critical pre-crash event, and atmospheric conditions) 

as well as of the drivers (age, sex, and driving behaviour) can provide useful 

guidelines for crash prevention. This brief introduction only considers the main 

assigned critical reasons related to specific scenarios.  

In the National Motor Vehicle Crash Causation Survey (NMVCCS), the variable 

“critical pre-crash event” is defined as an event that  ade the crash i  inent or 

inevitable (National Highway Traffic Safety Administration, 2008). It is coded for 

each vehicle in the crash and docu ents the circu stances leading to this vehicle’s 

first impact in the crash sequence. Figure 1.1 shows the distribution of crashes over 

critical pre-crash events. Out of an estimated 2,188,969 NMVCCS crashes, about 36% 

(787,236) are critical pre-crash events related to turning or crossing at intersections. In 

22.2% of these intersection-related crashes, the critical event was turning left, while 

passing straight through the intersection (crossing-over) constituted 12.6% of such 

critical pre-crash events and turning right at the intersection accounted for a very 

small percentage (1.2%) of vehicles. Due to the multiple choice nature of this variable 

and of the following ones, the percentages in some of the figures and the total sum in 

some of the tables may not be completely in line. 

 

 
Figure 1.1: Distribution of critical pre-crash events 
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In the NMVCCS, the variable “traffic control device” includes all traffic control 

devices that regulate vehicular traffic on the roadway on which a vehicle is travelling 

just prior to a critical pre-crash event. This excludes devices that solely regulate 

pedestrians, such as walk signals. Note that the coding of this variable is based on 

multiple choices per vehicle. Intersections in this sample (from the US) are often 

controlled by traffic signals or stop signs but some have neither. Figure 1.2 shows the 

distribution of intersection-related crashes per traffic control device. In an estimated 

787,236 intersection-related crashes, 52.5% (413,140) of the vehicles were travelling 

on roadways that were controlled by at least one traffic signal and 31.3% (246,385) by 

at least one stop sign. About 15.9% (125,022) of vehicles were travelling on the 

roadways with no traffic control device. 

 
Figure 1.2: Distribution of traffic control devices  

 

In more recent years, statistics from the EU and the USA show that fatalities at 

junctions represent more than 20% of all traffic fatalities. In the European Union, 

fatalities at intersections have remained relatively constant between 2000 and 2009, 

where this percentage has only fluctuated between 20% and 22% (ERSO, 2008). 

These numbers are comparable to the USA, where in 2011, as shown in Table 1.1 

(National Highway Traffic Safety Administration, 2011), 9525 fatalities over 43945 

(that is, 21.63%) happened at intersections. In 2010, the percentage of fatalities at 

intersection was 22.31%.  

 
Table 1.1: Vehicles involved by relation to junction and traffic control device 

Relation to junction 

Traffic Control Device 

None 
Traffic 

signal 

Stop 

sign 
Other/Unknown Total 

Non-Junction 26495 58 16 1812 28381 

Junction – Intersection 3772 3389 2078 286 9525 

Junction – Intersection 

related 
1143 880 260 118 2401 

Other/Unknown 3108 97 79 354 3638 

Total 34518 4424 2433 2570 43945 
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The causes of accidents at junctions are numerous, but research suggest that in Europe 

around 60% of the incidents are related to an inappropriate timing from the driver 

(e.g. premature, late, or no action) (ERSO, 2008). Inappropriate timing could be 

linked to several causes and the most common ones are faulty diagnosis, information 

failure, observation missed and inadequate plan.  

This study is focused on the left turn situations or, more specifically, the left-turn-

across-path opposite-direction (LTAP/OD) manoeuvres, since this scenario is likely to 

have more encroachments than other events and since the crashes for this situation 

represent a big part of the intersection-related crashes (Chan, 2005); thus, it turns out 

to be one of the riskiest situations at intersections (Preusser et al., 1998). The car 

which turns is hereafter called the Subject Vehicle (SV) while the vehicle that is 

oncoming (going straight or turning left or right) is called the Principal Other Vehicle 

(POV), as shown in Figure 1.3. That is, we focus our analysis in this thesis on the left 

turning vehicle and its driver. 

 

 
Figure 1.3: LTAP/OD scenario 

 

1.2 Advanced Driver Assistance Systems (ADAS) 
 

The best way to avoid crashes is to prevent the occurrence of a hazardous situation. 

When approaching an intersection, the SV driver must judge whether it is safe to cross 

the opposing traffic lane at both signalized and unsignalized intersections. If the 

intersection is signalized, the SV driver must also consider the signal status. If the SV 

has no possibility to complete the turning manoeuvre when opposing traffic is 

oncoming, a warning can be issued to the SV driver (for example, warnings to stop, to 

brake or to not steer) when a hazard exists. 

In recent years, the implementation of ADAS is having an increasing trend. The main 

reason of that is safety but also comfort to the driver together with environmental 

aspects play an important role (Brookhuis et al., 2001). In Europe, USA and Japan, 

combined ergonomic and engineering approaches to both hazard assessment and the 

indication of drivers’ perfor ance li its have developed into research and 

implementation of new ADAS to improve driving safety and comfort (Brookhuis et 

al., 1992). Well-known examples of this type of applications are navigation or route 

guidance systems and adaptive cruise control systems. Though expensive, prototypes 

of such systems passed a number of tests (and improvements) and were successfully 

placed on the consumer market. Marketing research has been indispensable to 

understand customer needs, but also studies on devices acceptance and certain safety 
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effects are still required after implementation. Finally, environmental issues are not 

decisive in this area yet, but it is forecast it will gain weight in the future. 

ADAS concepts include blind spot detectors (Congress, 1994), Adaptive Cruise 

Control (Rosengren, 1995), Forward Collision Warning Systems (Rumar, 1988), 

Automatic Emergency Braking (Verwey et al., 1996) and Intersection Decision 

Support Systems (IDSS) (Bekiaris et al.,1997). Some of these technologies are 

available on the market, or ready to be marketed, while others are still in a developing 

stage or ready to be evaluated as prototypes.  

 

1.2.1 Benefits and drawbacks of ADAS 
 

The main purpose of ADAS is that driver error consequences will be reduced or even 

eliminated, because the system will support the driver in getting attention back, and 

overall vehicle performance is enhanced. The benefits of ADAS implementations are 

potentially great because of a significant decrease in human mental and physical 

suffering, in economical cost and in pollution, since:  

 

 driving safety would be considerably enhanced, as human errors, which are 

responsible or concurrent for about 95% of overall accidents (Treat et al., 

1979), would be identified and their consequences would be prevented, or at 

least mitigated; 

 high-performance driving can be conducted without regard to visual obstacles, 

weather and environmental conditions; 

 drivers using ADAS can be safe and efficient drivers. 

 

Primary functionality of ADAS is to facilitate the task performance of drivers by 

providing real-time advice, instruction, warnings and event interventions (e.g. 

braking). ADAS may operate in advisory, semi-automatic or automatic mode, all of 

which may have different consequences for the driving task, and with that on traffic 

safety.  

Although the purpose of an ADAS is to have a positive effect on traffic safety, it has 

been shown they can also have some unwanted secondary negative effects  

(Brookhuis et al., 2001). Firstly, such a great amount of information potentially leads 

to a situation where the driver's attention is diverted from traffic. Secondly, drivers’ 

negative behavioural adaptation to such systems could prevent the driver to be aware 

in time of a sudden hazard, or to be ready for an adequate reaction. Thirdly, the driver 

could over-trust the ADAS. Before introducing any ADAS, the consequences of 

system implementation in this sense should be identified.  

A specific source of problems with the development of ADAS that are intended to 

reduce accidents is that it is very difficult to forecast the savings in terms of fatalities 

and injuries that might result from the introduction of such systems. Although there is 

an urgent need to know what the effects of a specific system are before it enters the 

market, no actual data about system benefits and risks exist until it is operative on 

real-world environment. One type of effects which can be studied before marketing 

are those related to the behavioural aspects of the driving task, in order to pinpoint 

both beneficial and unwanted side effects at the driver level. 
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1.2.2 Acceptance/attitude towards ADAS 
 

A basic question in ADAS implementations is whether it will be accepted or not, i.e. 

giving up parts of the direct control over the vehicle or receive warnings (Brookhuis 

et al., 2001). It is important to understand which are the decisions or the situations 

which the driver prefers to be handled by the vehicle. In some cases, although drivers 

expect a positive safety effect by ADAS, they have at the same time reservations 

against them. Handing over control to a device and the automated braking function, 

for instance, are evaluated as negative aspects of ADAS systems for some people. An 

international questionnaire survey has been carried out during the SAVE project (EU 

DG XIII TR1047, 1999) and it has indicated that the driver population is reluctant to 

totally release vehicle control, but is willing to accept it in emergency situations. 

Another obstacle to ADAS acceptance is given by system supervision and 

adjustments from the human operator: normal operations are, indeed, performed 

automatically, while if something goes wrong with the system, unusual actions are 

required to the driver (Bainbridge, 1983). Such situations are rare, but also dangerous, 

and driver experience in this field is very limited; moreover, human problem solving 

is not optimal if the situation requires a quick reaction. 

All in all, the potential of ADAS is great, provided ADAS will be accepted and 

widely introduced. Acceptance of ADAS is highly dependent upon solid 

demonstration of the systems themselves are reliable in both ordinary and critical 

situations. For the end-user the benefits should be clear and preferably directly 

noticeable; false alarms are not acceptable for end-users particularly. 

 

1.2.3 Criteria in Intersection Decision Support Systems 
 

In intersection situations, as well as in most of road safety scenarios, the driver 

behaviour and the vehicle dynamics should be taken into account. Intersection 

Decision Support Systems (IDSS) is meant to provide a driver the information needed 

to make correct decisions regarding the available gap while dealing with an 

intersection. The system is designed to provide the safety benefits of a signalized 

intersection (fewer crashes, opportunities for all drivers to enter/cross the traffic 

stream), while minimizing the drawbacks (installation expenses, disruption of traffic 

flow). IDSS, however, do not provide additional opportunities for drivers to 

enter/cross the traffic strea , since it doesn’t create gaps that were not present. When 

developing an IDSS, it is necessary to identify and quantify in what situations drivers 

would accept its interventions. In general, for many ADAS, it is necessary to define 

some setting parameters, called safety thresholds (Cody, 2011), in order to evaluate if 

the system timely warns the driver or intervenes, without creating false 

interventions/alarms or late warnings; safety thresholds can differ from one IDSS 

design to another and must suit to the different driving behaviours. These safety 

thresholds are measured in terms of gap between vehicles and can be expressed as a 

distance or as a time. As an example (Figure 1.4), the safety threshold chosen for the 

IDS design can be the temporal gap between two vehicles on the major-road to 

determine when it is safe for an opponent car to turn at the intersection  (Laberge et 

al., 2006 and Ragland et al., 2006). Another safety threshold can be the trailing buffer 

(Chan, 2006), which corresponds to the time measured from the moment when the SV 

passes the point of conflict to the moment when the POV (Principal Other Vehicle) 

reaches the same point. Finally, the PET (Post-Encroachment Time) criterion is 

commonly used to characterize a posteriori how risky the encroachment was. PET is 
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however a post-hoc measure, defined as the time measured from the moment in which 

the SV leaves the encroachment zone (Figure 1.5 - t1) to the moment in which the 

POV enters this zone (Figure 1.5 - t2) (Allen, al.,1978). 

 

 

 
Figure 1.4: Temporal gap definition  

 

        
Figure 1.5: Post Encroachment Time definition; PET = t2-t1  

 

1.3 Naturalistic driving data 
 

Naturalistic driving data collected during real crashes and near-crashes situations 

constitute a reliable method to evaluate the performance of IDSS before marketing 

them. Data describing vehicle speeds, ranges, driver decelerations, and even driver 

reaction time have been estimated and used as inputs into models to guide alert design 

or to predict IDSS benefits. 

Naturalistic driving data are information collected from a large number of drivers and 

vehicles over an extended period of time. Data are classified by pre-event manoeuvre, 

precipitating factor, event type, contributing factors and the avoidance manoeuvre. 
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The first large study conducted in this particular field was the 100-Car Naturalistic 

Driving Study, where 100 ordinary cars were equipped with instruments and sensors 

which started gathering data as soon as the engine was switched on (Dingus, 2006). 

Data collection system was unobtrusive, and drivers were asked to drive their cars as 

usual (everyday driving). Sensors were able to collect both data related to vehicle 

performance and human behaviour, also detecting driver drowsiness, impairments, 

judgment errors and risk takings. It was also considered an important study because 

from available data detailed and high-accuracy information on near-crash events were 

collected. Near-crash situations, indeed, present a couple of benefits with respect to 

crash events: firstly, they occur more frequently, secondly, they show a successful 

driver evasive manoeuvre. A major advantage of naturalistic driving study is that 

video recording allows to view and take into account all of the pre-event and during-

event parameters. Another type of studies consists of Field Operational Tests (FOTs): 

they are testing programmes whose purpose is to get a comprehensive assessment of 

the efficiency, quality, reliability and acceptance level of Information and 

Communication Technology (ICT) systems. These, in turn, can be used for smarter, 

safer, cleaner and more comfortable transport solutions, such as navigation, traffic 

information and ADAS (FOT-Net, 2010). This includes stand-alone in-car systems as 

well as cooperative systems. FOTs are a well-known method for manufacturers to 

look into the way their products are used by the consumer. FOTs are also a step 

towards the market deployment of mature systems that have proven their functional 

effectiveness in validation tests with a limited number of test drivers and often on 

closed test tracks. Over the last decades, a large number of ICT-based transport 

applications have been successfully developed in research projects throughout 

Europe. Scenario-based studies have indicated the potential societal benefits of the 

applications in terms of increased traffic safety, reduced environmental impact and 

better traffic flow and have discussed the cost-benefit aspects. In general, FOTs can 

be structured according to the main type of applications tested: 

 

 ADAS – Advanced Driver Assistance Systems (Autonomous Systems) 

 Cooperative (Vehicle – Infrastructure) Systems 

 

EuroFOT coordinated a European in-the-field test of driver assistance systems 

(Kessler et al., 2012). The study focused in particular on eight ADAS that assist the 

driver in detecting hazards, preventing accidents and making driving more efficient, 

including: 

 

 Longitudinal control functions (Adaptive Cruise Control, Forward Collision 

Warning, Speed Regulation System); 

 Lateral control functions (Blind Spot Information System, Lane Departure 

Warning); 

 Advanced applications (Curve Speed Warning, Fuel Efficiency Advisor, Safe 

HMI). 

 

EuroFOT purpose was to quantify the impact of in-vehicle active safety systems on 

safety, environment, usage and acceptance, and efficiency. Each specific safety 

system is designed to work in a determined situation, also called use case. Use cases 

were therefore identified to translate the technical features and specifications of each 

system into the traffic environment. Participants either owned their test vehicles, 

leased them during the experiment or took part as professional drivers employed by 
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freight companies. Data acquisition techniques ranged from questionnaires to 

continuous recording of vehicle signals, and also, in some cases, additional 

instrumentation with video and extra sensors. The project started in May 2008 and 

ended in June 2012. Several hundreds of Terabyte of data have been collected from 

around 1200 drivers driving for more than 35 million km. The analysis first focused 

on system performance and user aspects, especially in dangerous situations which 

could potentially lead to accidents (which have been defined as ‘incidents’). This was 

followed by impact studies on traffic safety, efficiency and environment.  

 

1.4 Driver models 
 

The driver-specific data available from naturalistic driving studies provide a unique 

perspective from which to test and calibrate driver models. As data storage costs are 

having a declining trend, collection of data through in-situ vehicles is becoming more 

and more popular; this leads to a growing need to assess the feasibility of these data 

for the modelling of driver behaviour. Collected events can be used to calibrate the 

different developed models, and a comparative analysis to establish which model 

works best in matching individual drivers and in matching aggregate results can be 

performed.  

Adaptation is one of the most basic survival skills that humans possess that have 

allowed them to overcome successfully dangerous situations over time (Damasio, 

1994). Development of new technologies increases the need of human adaptation 

constantly: the ability to adapt to such technologies is not trivial as the organism may 

have limitations regarding the new situation the technology originates. Adaptation and 

gain compensation by human subjects are related to the complexity of the system to 

be controlled; the more the complexity, the more the difficulty to control it, the 

greater the workload and the lower the overall performance. Thus the need of 

studying how people interact and use the new technology is fundamental for the future 

success and acceptance of the technology. Cars, in particular, are regarded as one of 

the biggest mismatches between humans and technology (Vaa, 2001), since they 

introduced drivers into situations they have never confronted before and that they 

would have never been exposed without it. Car and driver constitute a complex 

feedback system. The behaviour of the car results in a certain reaction by the driver. 

Inversely, the behaviour of the driver affects the behaviour of the car. This “ an-

machine” syste  cannot be separated into a purely “ echanical” and a purely 

“hu an” co ponent, but  ust be treated as a whole.  hen dealing with “hu an-

 achine” interfaces, it beco es clear that hu ans cannot be treated as “linear” 

elements because they exhibit time delays due to the reaction to stimuli. Other human 

physical limitations are: 

 

 required processing time for sensed information; 

 information transmission time; 

 cognitive requirements to anticipate or predict ahead; 

 perception of higher derivative information (auditory and haptic information). 

 

The concept of hu an drivers possessing an “internal  odel” is linked to the 

willingness to describe human driver skills in order to estimate the current and future 

vehicle state, supposing the driver has a basic understanding of the controlled vehicle 

dynamics. 
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Understanding the  echanis s and the li itations behind the “hu an- achine” 

interface is essential to provide a minimal representation of the human driver. 

Together with that, an additional set of features may be desirable, even if it is not 

essential, including: 

 

 neural delays while providing information through sensory channels; 

 neuromuscular filtering elements for output channels, such as braking or 

steering; 

 path adjustment strategies to account for driver-related skills in selecting 

alternative paths; 

 adjust speed to facilitate lane keeping along curves, road intersections and 

driving around obstacles; 

 provision of both exceptional and ordinary manoeuvres, in order to 

discriminate between control responses provided by highly practiced scenarios 

versus less familiar ones. 

 

1.5 Thesis objectives 
 

Understanding driver’s behaviour in intersection is critical for the develop ent of 

active safety systems for intersections, such as the IDSS. In a project with Volvo Cars, 

Autoliv and Chalmers, so-called comfort zone boundaries and go/no-go decision 

timing are to be identified and quantified in order to be used in driver modelling. 

Some work has been put into identification of such models, but additional efforts are 

needed. Further identification and implementation of models and evaluation of vehicle 

parameters to be used in left turn across path driver models are the next steps.  

The goal of the thesis is to develop and document an understanding of driver models 

for left-turn-across path scenarios, including an analysis of human-vehicle 

interactions. Data recorded during the EuroFOT project were filtered, in order not to 

include critical manoeuvres for the above stated scenario, and investigated. The work 

also presumed calibration and tool development for being able to apply and evaluate 

implemented models on the collected data.  

More in detail, two driver models have been examined, with the attempt of finding a 

link, in one case, between driver behaviour and vehicle dynamics, while in the other 

one attention has been paid to the relationship between driver behaviour and vehicle 

speed and acceleration profiles. 
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2 Literature review 

 

In this chapter, a close look to how researchers investigated the “car-driver” syste  

will be given. A brief introduction about vehicle dynamics and vehicle models will 

open this chapter, then attention will be paid on two specific driver models: Salvucci 

and Gray’s (Salvucci and Gray, 2004), where driver behaviour is related to the 

steering wheel angle and the steering wheel angle rate, and Nobukawa’s (Nobukawa 

et al., 2012), which compares speed and acceleration profiles of the vehicle with 

driver actions/reactions on the gas (or brake) pedal.  

 

2.1 Vehicle dynamics 
 

Vehicle dynamics in its broadest sense encompasses all forms of conveyance, but this 

report will only refer to road vehicles, paying particular attention to the automobiles. 

Primary forces by which a high-speed motor vehicle is controlled are developed in 

four patches where the tyres contact the road. Thus, it becomes important to develop a 

deep understanding of the behaviour of tyres, characterized by the forces and 

moments generated over the broad range of conditions over which they operate.  

A motor vehicle is made up of many components distributed within its exterior 

envelope. Anyway, for many elementary analyses, the vehicle can be regarded as one 

lumped mass concentrated at its centre of gravity (CG) with appropriate mass and 

inertia properties, as shown in figure 2.1. If the hypothesis of a vehicle as a rigid body 

can be assumed, the point mass at the CG is dynamically equivalent to the vehicle 

itself for all motions. 

 

 
Figure 2.1: SAE Vehicle Axis System 

 

Today, with the computational power available, more complex analyses than the 

lumped-mass model can be performed: it is possible, indeed, to assemble models for 

the behaviour of individual components of a vehicle that can be integrated in larger, 

comprehensive models of the overall vehicle, allowing simulation and evaluation of 

its behaviour. Such models can provide engineers with a new, powerful tool to test the 

understanding of a complex system and to solve problems which could not be 

analysed in the past. 
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2.1.1 Longitudinal vehicle dynamics 
 

The two major elements of the longitudinal vehicle model are the vehicle dynamics 

and the powertrain dynamics. The vehicle dynamics is influenced by longitudinal tyre 

forces, aerodynamic drag forces, rolling resistance forces and gravitational forces 

(Rajamani, 2005).  

 
Figure 2.2: Longitudinal forces acting on a vehicle moving on an inclined road 

 

Considering a vehicle moving on an inclined road, as shown in Figure 2.2, a force 

balance along the vehicle longitudinal axis yields: 

 

 sin gmRRFFFxm xrxfaeroxrxf
     (2.1) 

 

where Fxf is the longitudinal tyre force at front tyres, Fxr is the longitudinal tyre force 

at rear tyres, Faero is the equivalent longitudinal aerodynamic drag force, Rxf is the 

force due to the rolling resistance at front tyres, Rxr is the force due to the rolling 

resistance at the rear tyres, m is the mass of the vehicle, g is the acceleration due to 

gravity and θ is the angle of inclination of the road on which the vehicle is travelling. 

The longitudinal tyre forces Fxf and Fxr are friction forces from the ground that act on 

the tyres and they depend on: 

 

 Slip ratio 

 Normal load on the tyre 

 Friction coefficient of tyre-road interface. 

 

The difference between the actual longitudinal velocity at the axle of the wheel Vx and 

the equivalent rotational velocity reff ωw of the tyre is called longitudinal slip. The 

equivalent rotational velocity is given by the product between the effective tyre radius 

(which is different from the nominal one due to tyre deformation in the contact area 
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with the road) and the wheel angular speed. Longitudinal slip ratio is therefore 

defined as: 

 

x

xweff

x
V

Vr 



   during braking     (2.2) 

weff

xweff

x
r

Vr









   during acceleration    (2.3) 

 

A rough explanation of why the longitudinal tyre force depends on slip ratio can be 

seen from Figure 2.3. The upper portion of Figure 2.3 describes the interaction 

between longitudinal speed and equivalent rotational velocity, while the lower one 

shows a schematic representation of deformation of the tread elements of the tyre. The 

tread elements are modelled as a series of independent springs that undergo 

longitudinal deformation and resist with a constant longitudinal stiffness. Such a 

model of the tyre is called "brush" model or "elastic foundation" model (Pacejka et al., 

1991). 

 

 
Figure 2.3: Longitudinal force in a driving wheel 

 

As said before, both the tyre and the road are subject to deformation in the contact 

patch, due to the third law of dynamics (action-reaction principle). While the road 

deformation can be neglected, the tyre is elastic and so it undergoes deformation. As 

the tyre rotates, its elastic material is deflected as it goes through the contact patch 

(compression state) and then springs back to its original shape after it leaves the 

contact patch itself (extension state). When the tyres are static, then the distribution of 
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the normal load F, in the contact patch is symmetric with respect to the centre of the 

contact patch (and of the wheel). However, when the tyres are rotating, the normal 

load distribution is asymmetric, as shown in Figure 2.4. 

 

 
Figure 2.4: Asymmetric normal load distribution on the contact patch 

 

The equivalent aerodynamic drag force on a vehicle can be represented as: 

 

 2

2

1
windxfdaero VVACF         (2.4) 

 

where ρ is the mass density of air, Cd is the aerodynamic drag coefficient, Af is the 

frontal area of the vehicle (projected area of the vehicle in the direction of travel), Vx 

is the longitudinal vehicle velocity and Vwind is the wind velocity (positive for 

headwind and negative for tailwind). 

According to Wang (2004), the frontal area Af is about 79-84% of the area calculated 

from the vehicle width and height for passenger cars. As well, the following 

relationship between vehicle mass m and frontal area Af can be used for passenger cars 

with mass in the range 800-2000 kg: 

 

 76500056.06.1  mA f       (2.5) 

 

Finally, the aerodynamic drag coefficient Cd can be roughly determined from a coast-

down test (White et al., 1972). In a coast-down test, the vehicle is launched at an 

initial speed, the throttle angle is kept at zero and the vehicle is allowed to slow under 

the effects of aerodynamic drag and rolling resistance. 

Due to the internal damping of the tyre material, after the tyre section, which has 

undergone the contact patch forces, has left the contact area, rubber material is not 

able to completely recover to its original state and shape. This loss of energy can be 

represented by a force on the tyres called the rolling resistance that acts to oppose the 

motion of the vehicle. The loss of energy in tyre deformation also results in a non-

symmetric distribution of the normal tyre load over the contact patch (which explains 

the asymmetric load distribution in Figure 2.4). 
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The rolling resistances Rxf and Rxr are typically modelled as being roughly 

proportional to the normal force on each set of tyres i.e.: 

 

 zrzfxrxf FFfRR         (2.6) 

 

where f is the rolling resistance coefficient. To see why this approximation is made for 

the rolling resistance force, the action of the normal load and rolling resistance force 

shown in Figure 2.5 has to be considered. The value of the rolling resistance 

coefficient f varies in the range 0.01 to 0.04. A value of 0.015 is typical for passenger 

cars with radial tyres (Wang, 2004). 

 

 
Figure 2.5: Description of rolling resistance for not rotating (left) and rotating (right) wheel  

 

2.1.2 Lateral vehicle dynamics and bicycle model 
 

When a vehicle drives through a curve, lateral forces are needed for course holding 

and lateral slips occur at the wheels. When dealing with slowly-moving vehicles, such 

lateral forces can be neglected as their value is very low and, in that case, the most 

appropriate and simple model to use is the one-Degree-Of-Freedom (one-DOF) 

bicycle model: the front and rear wheels are represented, respectively, by one central 

front and rear wheel and the vehicle is assumed to have planar motion with only 

vehicle kinematics involved. The necessary steering angle of the front wheels can be 

constructed via given momentary turning centre through the Ackermann geometry 

(Rill, 2003). The major assumption used in the development of such kinematic model 

is that the slip angles at both wheels must be equal to 0 that is a reasonable 

assumption only for low-speed motion of the vehicle (less than 5 m/s). 

Since the entire report is dealing with urban speeds (therefore, higher speeds than 5 

m/s), such  odel can’t be representative for the conducted analysis (Rajamani, 2005). 

Instead, a more complex “bicycle”  odel of the vehicle with two DOF can be 

considered, as shown in Figure 2.6. The two degrees of freedom are represented by 

the vehicle lateral position y and the vehicle yaw angle ψ. The vehicle lateral position 
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is measured along the lateral axis of the vehicle to the point O which is the centre of 

rotation of the vehicle. The vehicle yaw angle ψ is measured with respect to the global 

axis X. The longitudinal velocity of the vehicle at the CG is denoted by Vx. 

 
Figure 2.6: Lateral vehicle dynamics  

 

Ignoring road bank angle that is not the primary aim of this study, by applying 

Newton’s second law for  otion along the y-axis: 

 

yryfy FFam          (2.7) 

 

where ay is the inertial acceleration of the vehicle at the CG in the y-direction and Fyf 

and Fyr are the lateral tyre forces of the front and rear wheels respectively. Two terms 

contribute to ay value: the acceleration ÿ which is due to motion along y-axis and the 

centripetal acceleration Vx . Hence 

 

  xy Vya         (2.8) 

 

Substituting from equation (2.8) into equation (2.7), the equation for the lateral 

translational motion is obtained as 

 

  yryfx FFVym          (2.9) 

 

Moment balance about the z-axis yields the equation for the yaw dynamics as 

 

yrryffz FlFlI         (2.10) 

 

where lf and lr are the distances of the front tyre and the rear tyre respectively from the 

CG of the vehicle. The next step is to model lateral tyre forces Fyf and Fyr that act on 

the vehicle. From experimental results (Rajamani, 2005), which show that there is a 

direct proportionality between the lateral tyre force and the slip angle for small slip 

angles, it has been possible to establish the parameters which affect such values: 
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 Vffffyf CCF    22       (2.11) 

 Vrrrryr CCF    22       (2.12) 

 

where Cαf and Cαr are, respectively, the cornering stiffness of each front and rear tyre, 

αf and αr are the slip angles for the front and rear wheels, δ is the front wheel steering 

angle and θVf and θVr the front and rear tyre velocity angle. The factor 2 accounts for 

the fact that this model takes into account two front and rear wheels. With respect to 

the slip angle, it is defined as the angle between the orientation of the tyre and the 

orientation of the velocity vector of the wheel, as depicted in Figure 2.7. 

 

 
Figure 2.7: Front tyre slip angle  

  

Using small angle approximations, it is possible to define θVf and θVr through the 

following equations: 

 

x

f

Vf
V

ly 


 
         (2.13) 

x

r

Vr
V

ly 


 
         (2.14) 

2.1.3 Other vehicle dynamics models 
 

Most of reference models for chassis controls usually have low level DOF like the 

bicycle model and, in some cases, these models can be not accurate enough. Then, 

models with higher level DOF (like multi-body dynamic models) were created but 

they present long solving times and, therefore, are not appropriate for real time 

analysis to use (Lee et al., 2008). However, as a reference, those complex models will 

be introduced in the next sections. 

 

2.1.3.1 Horizontal vehicle model 

 

The horizontal vehicle model considers 3 DOF and it consists of longitudinal, lateral 

translation, and rotation of vehicle mass centre, as shown in figure 2.8. 
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Figure 2.8: 3 DOF horizontal vehicle model  

 

The equations which perfectly describe the system are the following ones: 

 

RRxRLxFRxFLx FFFFxm ,,,,         (2.15) 

RRyRLyFRyFLy FFFFym ,,,,         (2.16) 

   RRyRLyRFRyFLyFZZ FFLFFLI ,,,,      (2.17) 

 

The meaning of each symbol of the formulas is described in table 2.1. The subscripts 

FL, FR, RL and RR indicate respectively front-left, front-right, rear-left and rear-

right.  

 
Table 2.1: Horizontal vehicle model symbols 

Symbol Parameter 

M Vehicle total mass 

x , y  Longitudinal axis acceleration, Lateral axis acceleration 

Fx, Fy Longitudinal and Lateral force at each tyre 

LF, LR Front and Rear wheel base 

IZZ Vertical axis moment of inertia 

  Yaw angular acceleration 

 

2.1.3.2 Vertical vehicle model 

 

The vertical vehicle model is made of 7 DOF, as represented in Figure 2.9. This 

model takes into account two dimensions for vertical dynamics, one track half car 

model for pitch dynamic and two track half car models for roll dynamic. Overall, the 

model has 3 DOF at mass centre (vertical, roll, pitch dynamics) and 1 vertical DOF at 

each wheel. 
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Figure 2.9: 7 DOF vertical vehicle model  

 

The vertical dynamic equations which represent the system are: 

 

R

R

F

F

RRZRLZFRZFLZS
L

M

L

M
FFFFzm

,,

,,,,


     (2.18) 

RFRRZRRLZRFRZFFLZFyy MMFLFLFLFLI ,,,,,,     (2.19) 

RLRRZTRLZTFRZTFLZTxx MMFLFLFLFLI ,,,,,, 5.05.05.05.0     (2.20) 

  FLT

T

R

RF

R

FLZFLUU F
L

M

LL

M
Fzm ,

,,

,, 5.05.0 



     (2.21) 

  FRT

T

L

RF

R

FRZFRUU F
L

M

LL

M
Fzm ,

,,

,, 5.05.0 



     (2.22) 

  RLT

T

R

RF

F

RLZRLUU F
L

M

LL

M
Fzm ,

,,

,, 5.05.0 



     (2.23) 

  RRT

T

L

RF

F

RRZFLUU F
L

M

LL

M
Fzm ,

,,

,, 5.05.0 



     (2.24) 

 

Table 2.2 collects all the symbols used in the previous equations. 
 

Table 2.2: Vertical vehicle model symbols 

Symbol Parameter 

mS, mU Sprung and Unsprung mass 

z , z U Vertical acceleration at sprung mass and unsprung mass 

Ixx, Iyy Longitudinal and Lateral axis moment of inertia 

 ,   Pitch and Roll axis angular acceleration 

FZ,FL, FZ,FR,FZ,RL, FZ,RR Vertical force at each suspension 

FT,FL, FT,FR, FT,RL, FT,RR Vertical force at each tyre 
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2.2 Driver models 
 

During the driving task, vehicle dynamics and road environment are relevant aspects, 

but also the drivers’ e otional and  otivational factors play an i portant role. Then, 

in order to  odel driver’s manoeuvres, it is important to have reliable drivers’  odels 

that can take into account human behaviour during the driving task, although this is 

not simple. A lot of research has been conducted during the last decades on driver 

models, but most existing models just work in very particular scenarios and with 

specific limitations. Most driver models also only include a subset of all possible 

variables that can influence drivers’ behaviour, in a  ajority excluding explicit 

motivational and driver internal state factors, while representing the effect of such 

factors through data driven models   (Cacciabue , 2007). 

 hen dealing with drivers’  odelling, it is i portant to consider that driving is a self-

paced task in which drivers’ actions are influenced by different hu an characteristics 

such as emotions, feelings, concentration and experience (Naatanen and Summala, 

1974). Hence, driver’s behaviour should be included in manoeuvres modelling in 

order to make them and the overall driving task more accurate and realistic. An 

essential property of drivers’  odels is its easiness to use and the possibility of its 

further implementation and integration within ADAS or part of evaluation of other 

parts of system designs.  

Over the years, different theories on human behaviour led to different drivers’  odels. 

Some researchers argued that drivers seek some specific target feelings during the 

driving task and, in order to reach them, they adapt their way of driving. A link 

between driving and tension or anxiety has been found by Taylor who related the 

galvanic skin response (GSR) measured on 20 drivers to the level of tension or 

anxiety that the driver was willing to accept (Taylor, 1964). Several researchers 

developed theories to describe the factors that affect hu ans’ choice to drive in a 

specific way. For example, Wilde’s “Risk ho eostasis” theory (RTH) states that the 

driver seeks a certain constant level of risk while driving and that this level of risk 

should be perceived as a number (Wilde, 1982), as shown in the block diagram of 

Figure 2.10.  
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Figure 2.10: Wilde’s model of risk homeostasis 

 

Wilde introduced a comparator where the targeted level of risk, b, is compared with 

the individual estimate of the intrinsic effect of a new non-motivational road safety 

measure, c, and the individual level of perceived road accident risk, d. The output of 

the comparator, e, corresponds to the desired adaptation that satisfies the formula of 

the RHT and its value is assumed to be equal to 0 (Wilde, 1982): 

 

0 dcb          (2.25) 

 

It has been criticized those parameters don’t exist in reality, as there is no evidence or 

study supporting this theory; moreover, even though they existed, drivers would 

calculate them unconsciously and there would be no possibility to test the hypotheses 

related to the model (Cacciabue, 2007). 

On the other hand, the ‘zero risk  odel’, proposed by Naatanen and Summala (1974), 

posits that the driver acts in order to reach a zero risk level.  

Safety  argins are also  entioned to be vital in driver’s task control and decision 

making and they can be seen, whether the car is in motion or not, as comfort zone, 

with no threat, risk, or discomfort felt by the driver (Naatanen &Summala, 1974; 

Summala 1988). 

An alternative (or complementary) approach exists based on Da asio’s somatic 

marker hypothesis which focuses more on physiological and neurological aspects 

(Damasio, 1994). In his “Monitor Model”, Da asio sees drivers as persons whose 

most basic instinct is survival and acting according to that instinct. The monitor model 

he proposes contemplates the body as the monitor and states that its main objective is 

to survive using specialized skills that he masters for that purpose. In this case the 

main objective of the monitor (body) is to achieve a target feeling while driving. 

Driver emotions and feelings are in this model separated and trigger monitor actions 

in order to achieve a target feeling desired by the driver. Emotions are unconscious 

responses activated by external factors and feelings can be described as the conscious 

perception of body states, also activated by external stimuli. 
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The  odels described up to now give a general overview on drivers’  otivations and 

feelings but do not describe in detail drivers’ behaviour with respect to  anoeuvring 

(e.g., steering, turning). Other models have been developed for this scope during last 

decades. Regarding steering behaviour, it is acknowledged that the drivers require 

visual inputs fro  the environ ent or the road in front of the vehicle’s present 

heading, at so e “preview” distance (Salvucci & Gray, 2004).   

Donges introduced a two-level model of steering in which he contemplates two 

co ple entary loops, an “anticipatory closed-loop control”  echanis  co bined 

with a "compensatory closed-loop control" sub-model (Donges, 1978). The first level 

anticipates the desired path curvature with the information provided by visual 

information obtained from the road and the second one reacts to the different error 

outputs and compensates the trajectory. The final output of the model is the resulting 

steering wheel angle of the car. 

A further study (Land & Lee, 1994) showed clearly that drivers mainly looked at the 

tangent point inside of each bend (being the tangent point the visual point on the 

inside lane edge or road shoulder where the apparent orientation of the curve is 

reversed), during normal driving in winding roads (Land & Lee, 1994). Later, an 

experiment was conducted (Land & Horwood, 1995) to illustrate that drivers do not 

use as input only one visual region of the road but, instead, different parts of the road. 

In their driving simulator based research, Land and Horwood showed to the drivers 

only some small slices of the road, from far and near regions in front of the car. As a 

result, they found that the driver steering accuracy was higher when both segments 

from the near and far point were visible at the same time and, in this situation, the best 

steering performance was achieved (Land & Horwood, 1995). 

Human estimations accuracy and capabilities also was a researched topic. Fildes and 

Triggs conducted an experiment in order to study the effects of independent curve 

variables, such as curve radius, curve angle and so on, on subjects’  agnitude 

predictions of road curvature using perspective computer generated line drawings 

(Fildes & Triggs, 1995). Subjects were found to underestimate road curvature and 

predictions made where found to be estimated using the curve deflection angle which 

is not a good estimator for road curvatures, as for the same deflection angle we can 

obtain different road curvatures depending on the radius.  

Driver models for intersection traversing have different approaches; some are based 

on modelling the speed as the model from Liebner et al. (2013) that focuses on the 

velocity profile of the vehicle approaching an intersection. Also, the Nobukawa et al. 

approach proposes an anticipatory speed control model (Nobukawa et al., 2012) that 

does not only includes the approach stage but also the turning stage and targets both 

the vehicle speed and the lateral and longitudinal accelerations. However, in this 

model, the main objective is to obtain the moment in which the driver decides to turn 

by calculating the desired accelerations the driver seeks. Another model is the one 

proposed by Asano et al. (2010) in which they model the vehicle trajectory during the 

left turn considering the geometry of the intersection. On the other side, models 

regarding drivers’ behaviour during the turn are few and don’t include the full turn or 

just emphasises on the approach stage or the actions undertaken by the driver when 

facing the manoeuvre. Akamatsu et al. (2003) studied the driver behaviour when 

approaching the intersection applying the Bayesian network, which consists of a 

probabilistic graphical model, to the variables of the behavioural event. Furthermore, 

Aoude et al. (2011) research on driver behaviour classification by developing 

algorithms estimating driver behaviour at road intersections based on two models: 

support vector machines and hidden Markov models. As its possible to notice more 
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research is needed in that field and for our thesis purpose the intention of 

implementing both driver behaviour and vehicle dynamics models would be 

addressed during the left turn stage. 
 

2.2.1 Salvucci and Gray: a two-point visual control model for 

steering 
 

In their steering control model study, Salvucci and Gray remarked that previous 

presented models had some limitations (Salvucci and Gray, 2004). For example, they 

found incoherence between the work of Land and Lee (1994) and the work of Fildes 

and Triggs (1995). In the former, it was stated that the driver estimates the road 

curvature using the tangent point whereas, in the latter, the authors point out that this 

humans-made estimation is inaccurate. 

As a result, Salvucci and Grey presented a straightforward computational two-level 

(two points) model that was validated using the data acquired by Land and Horwood 

(1995). Those data were acquired in a simulator study where drivers were performing 

a normal driving task in a single lane road with no other vehicles and, thus, the model 

was only evaluated for this case scenario. Further, the model was tested with only 3 

different drivers been driver differences and characteristics not taken in account when 

evaluating the results. As a model including driver behaviour their characteristics 

should be included in it somehow. For that matter, as explained in the next section, 

the model implemented by Salvucci and Gray considers different parameters 

describing the drivers’ characteristics. 

 

2.2.1.1 Near and far points 

 

The principal novelty of the model developed by Salvucci and Grey is that it 

explicitly includes two particular points, na ed “near point” and “far point” that are 

stated to be used by the driver during steering (Salvucci & Gray, 2004). The “near 

point” is a fixed point in front of the heading of the vehicle at a distance “near enough 

to monitor lateral position and far enough that the driver can comfortably see the 

region through the windshield”. In turn, the “far point” is represented by “so e salient 

distant point with which the model can monitor lateral stability and given the distance 

maintain a predictive steering angle that compensates for the upcoming road profile”. 

From the definition, the near point and the far point play different roles when steering: 

the near point is used by the driver to monitor lateral position while the far point 

monitors lateral stability. The different near and far regions where the points are 

located complement each other and their combination allows the driver to perform a 

good steering while driving (Land & Horwood, 1995). It is relevant to highlight that 

the near point remains at a fixed distance while the far point can vary depending on 

the situation, road characteristics and surroundings (a distant point in the horizon, a 

tangent point in a curve or a leading car are some common options to represent the far 

point), as it can be seen in Figure 2.11. 
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Figure 2.11: Near and far points for three scenarios (a) straight roadway with vanishing point,  

(b) curved roadway with tangent point, (c) presence of lead car 

 

2.2.1.2 Model equations and definition of parameters 

 

Starting from a standard proportional integral controller, Salvucci and Gray (2004) 

proposed a steering control law based on the existence of the near and far points:  

 

 dtkk Ip          (2.26) 

       

In the above equation (2.26), φ represents the steering wheel angle of the vehicle 

which is the parameter desired to be calculated. θ is the angle between drivers heading 

direction and the direction of the desired target point which in our case will represent 

the error that the driver constantly tries to minimize. The coefficients kp and kI 

correspond to the constants that scale the proportional and integral terms respectively. 

The derivative form, which is easier to use, is given by: 

 

  Ip kk          (2.27) 

   

The equation is then reformulated including the near and far visual points represented 

in the equation (2.28) by θn and θf,, the visual direction to the near  and far points 

correspondingly. The following equation calculates the steering wheel angle rate at 

each time interval: 

 

nInnff kkk           (2.28) 

       

In this case, the proportional variation of θ is divided in two terms. In the new terms, 

 n and  f represent the variation in, respectively, the near and far points visual 

directions, in which they are regulated by the coefficients kn and kf. Also the second 

term in equation (2.27), corresponding to the integral term of the visual direction of 

the desired target, is modified to represent only the visual direction of the near point 

as it reflects better the current lateral position error of the vehicle. The model then 

tries to constantly adjust the stability of the near and far point  n and  f, the near 

point to maintain the car in the middle of the lane and the far point to ensure a good 

predictive steering angle, as shown in Figure 2.12. 

 

a) b) c) 
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Figure 2.12: D, n and f represent respectively the driver and the near and far points located in the 

front of the car. θn and θf represents the angle between drivers heading direction and the  

direction of the desired target point respectively 

  

The three coefficients (kn, kf, kI) will vary depending on the driver and the situation. If 

the driver has a more or less aggressive style, his/her behaviour will be reflected in 

those parameters. The model was then tested to check if it steered as expected and it 

was compared to empirical data. In particular, three different steering validation 

studies were conducted: “curve negotiation”, “corrective steering” and “lane-

changing”, in which the model obtained major drivers behaviours pretty accurately as 

a result.  

Following up Salvucci and Gray work, Benderius (2013) adapted the steering model 

to a new scenario. This new situation differed from the one proposed by Salvucci and 

Gray in one main feature: the driver was not involved in a normal driving situation but 

instead the manoeuvre consisted of a corrective steering action in a critical situation. 

The car initial position was located outside the desired lane path (some deviation 

existed initially on the y axis) with the heading of the car not aligned with the road 

direction and, therefore, the heading angle (angle between the heading of the vehicle 

and the road direction) differed from zero (Figure 2.13). The driver faced a critical 

situation and was required to steer drastically to get back to the normal, expected 

position, which belongs to the desired comfort zone he is seeking.   

 

 
Figure 2.13: The car starts on the opposite lane at a positive value y with a specific heading angle Ψ 

and then steers back until the desired normal lane position, trajectory represented by the dotted line 

 

The model implemented by Benderius (2013) demonstrated to have a relatively high 

correlation with the empirical data and, therefore, it seemed to perform quite well in 

this scenario. 

In this thesis work, starting from the Salvucci and Gray approach and the further work 

performed by Benderius, a model will be implemented for a particular scenario, which 
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already has been described in the “Introduction”: the left turn across path/opposite 

direction (LTAP/OD).  

 

2.2.2 Nobukawa’s model 
 

Driver’s perception of vehicle acceleration is a pri ary factor which directly 

influences vehicle speed control. With respect to that, in an ordinary manoeuvre like 

turning left, the driver can choose between two possible outcomes: braking to stop 

before passing the intersection if there is no sufficient gap (due to an oncoming 

vehicle) or reducing the speed to ensure a comfortable left turn. Many researchers 

consider drivers to have mental model of the driving situation, which is continuously 

updated based on current vehicle speed and distance from the intersection, that are 

created inside driver’s  ind as part of the driving task and decision making process 

(Nobukawa et al., 2012). Nobukawa bases his longitudinal control model on this 

assumption, but what distinguishes his work from his is that he also included 

additional consideration due to lateral control. In this way, the driver has to 

simultaneously address multiple potential outcomes, once a set of stimuli through the 

five senses has been perceived.  

The overall left turn manoeuvre can be divided into three stages: an approach stage, 

where speed is reduced and lateral acceleration is small, a turning stage, where lateral 

acceleration is dominant respect to the longitudinal one, and an exit stage, which 

corresponds to the vehicle accelerating again and leaving the intersection. 

In a left turn intersection, the dominant factor during the straight-line approach is 

supposed to be the mental anticipation of the accelerations required to either make the 

turn or stop before  aking the turn itself. According to Nobukawa’s approach, the 

longitudinal control of the vehicle, during the left turn, can be modelled through the 

human-vehicle model represented in the block diagram of Figure 2.14. The vehicle is 

represented by two boxes, where longitudinal vehicle dynamics is able to provide the 

real longitudinal acceleration ax and the speed U, while the lateral dynamics, together 

with a speed control model, provides the desired longitudinal acceleration ax
des

 as 

output. The difference in value between the desired acceleration ax
des

 and the real 

longitudinal acceleration ax is perceived (with a ti e delay τ) by the driver, who acts 

on the gas or brake pedal (ux) in order to, respectively, increase or decrease the 

longitudinal acceleration, getting its value closer to the desired one. 

 

  
 

Figure 2.14: Nobukawa’s driver-vehicle model  

 

The most relevant aspect of Nobukawa’s  odel is that the driver’s control of speed 

during a left turn is based on the anticipation of the longitudinal and lateral 
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accelerations. Those longitudinal and lateral anticipated acceleration references 

(AAR), respectively named âx and ây, play an important role to evaluate the desired 

longitudinal acceleration ax
des

. The expression used to calculate âx and ây includes s to 

represent the longitudinal position of the vehicle on its path. The severity of the turn is 

represented by the change in heading angle, ∆ψ, approximately 90° for left turns, as it 

is given from the difference between the current value ψ and a future value ψQ, where 

Q is the target point chosen by the driver (located at the end of the turning stage), also 

called gaze point (Figure 2.15). 

 

 
Figure 2.15: Geometry for the calculation of â based on circular path and constant speed  

 

Based on an assumed constant rate of turn, it is possible to obtain the reference 

anticipated lateral acceleration with on the following equation: 

d

U

R

U
a y










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ˆ

2

2



      (2.29) 

 

where d is the distance between the actual vehicle position and the target point and R 

is the curvature radius. Even if d (and R as a consequence) can change over time, it 

can be assumed for simplicity that the selection of point Q is done so that a constant 

radius path is feasible. Nobukawa hypothesises that there is no expectation the driver 

computes this formula in his mind, but instead that, based on his/her experience, the 

driver will build a corresponding associative map between the visual stimulus derived 

from U, ∆ψ, d and the response ây. 

Regarding the longitudinal acceleration, Levison presented a stopping distance model 

where the driver is assumed to predict the constant acceleration required to brake to 

rest (Levison et al., 1998). As such, the longitudinal acceleration computed by 

Levison can be considered as the anticipated longitudinal acceleration and calculated 

by using the following equation: 
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d

U
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         (2.30) 

 

Comparing equations (2.29) and (2.30), the two anticipated accelerations become 

equal for a particular change in heading angle: 
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 which, simplifying, leads to   29  (2.31) 

 

The point where, during the intersection approach stage, âx = ây, is called crossover 

point. Before such point the driver has not decided yet if to stop before the 

intersection or to pass through it and therefore he/she controls the longitudinal 

acceleration (âx dominant over ây). After such point the decision has been taken and, 

assuming that the driver has decided to turn (no obstacles at the intersection), ây 

provides the unique reference for the speed control (ây dominant over âx). 

The value of the desired longitudinal acceleration ax
des

 is computed through the 

control function g(.), as shown in Figure 2.14. During the approach and turn stage, 

g(.) becomes a piecewise-linear control function that describes ax
des

 as a function of 

the anticipated accelerations (Figure 2.16). At the beginning of the approach stage, it 

is assumed the driver is not pushing on the gas pedal, generating a gentle coast-down 

deceleration a0. Coast-down deceleration is obtained from the following equation: 

 

  2

3210 UcUccUa         (2.32) 

 

When a certain â threshold, called lb1 in Figure 2.16, is reached, the driver presses on 

the brake pedal and a deeper deceleration is applied. Therefore, in the approach stage, 

the ax
des

 is a function of the longitudinal anticipated acceleration, whereas during the 

turning stage the ax
des

 is a function of the lateral acceleration (anticipated ây or actual 

│ây│). Finally, during the exit stage, the ax
des

 is considered equal to a constant a3. 

In order to calculate the desired longitudinal acceleration of the vehicle in the 

different stages (approach, turn and exit), the Nobukawa’s approach requires to 

estimate the four parameters which describe ax
des

 in the three different stages (a0 and 

a1 for the approach stage, a2 for the turn stage and a3 for the exit stage), together with 

the lower and upper boundaries (lb1 and ub1 for the approach stage and lb2 and ub2 for 

the turn stage). The procedure used to obtain the parameters for the turning stage will 

be outlined later in chapter 3. 
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Figure 2.16: Nonlinear control function g(.) for (a) approach stage (b) turn stage  

 

Comparison between measurements and fitted model must be performed, and the root 

mean square error for both speed and longitudinal acceleration is calculated. As 

indicated by Nobukawa et al. (2012), the RMSE should rarely exceed the value of 1 

m/s and 1 m/s
2
, respectively for speed RMSE and longitudinal RMSE. RMSE values 

higher than 1 indicate, indeed, that the left turn manoeuvre has not been performed in 

an ordinary way: extraneous factors, like visual distractions or driver impediments 

have affected the overall event. 
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3 Method 
 

In this section it is explained what kind of parameters were extracted from Naturalistic 

Driving Studies in order to perform the thesis purpose. Attention will also be paid to 

describe how, in the MATLAB
®
 script, the time subdivision into three stages 

(approach, turn and exit) was implemented. For both the driver models investigated, a 

bicycle model of the vehicle, like the one presented in Figure 2.6, was the reference 

vehicle model, since it was supposed to provide good results even if the complexity 

level was lower with respect to the other vehicle  odels described in the “Literature 

review” section (horizontal and vertical vehicle  odels). 

 

3.1 Data retrieval 
 

Since unprotected LTAP is the studied scenario in this thesis work, through video data 

available from EuroFOT project, it was necessary to identify suitable events. The 

extraction of unprotected left turns from the data was conducted manually from 

available recorded video, based on an initial categorisation of left turns using GPS. In 

order to simplify the thesis work, only “perfect” 90 degrees left turns were used in the 

analysis: 90 degrees left turn determination was based on video observation for each 

considered left turn manoeuvre. Primary analyses have been carried out on a single 

left turn event, a “sa ple” event, and then, in order to test MATLAB
®
 code 

reliability, other events have been used as well.  

All the suitable events was collected in an excel table; each of them characterized by 

different sets of parameters, which described the left turn manoeuvre. These 

parameters were Annotation ID, Trip ID, Driver ID, Start time, Time of 45° passage 

and End time of the selected manoeuvre. Few examples of collected data are 

represented in Table 3.1.  

 
Table 3.1: List of some left turn events (no POV)  

Annotation 

ID 

Trip 

ID 

Start time 

index [ms] 

End time 

index [ms] 

Time of 45° 

passage [ms] 

POV 

type 

78681 364199 124100 174100 153700 No POV 

78687 331193 779000 829000 807700 No POV 

78730 312929 121100 171100 143800 No POV 

78743 96565 818700 868700 847300 No POV 

77465 11215 192200 218900 209800 No POV 

77466 65991 429300 454000 446000 No POV 

77236 158833 386400 413500 403700 No POV 

77302 158905 363500 389700 380700 No POV 

77317 228095 616400 642700 633800 No POV 

 

Start time and End time were measured in milliseconds; the time gap between the 

Start time and the End time covers the approach, turn and exit stages. The Time of 45° 

passage is the time when the front video shows an equal amount of the main road and 

the road the vehicle is turning into, as coded in the forward video. The gathered 

parameters were divided into two sets: the former contained trips in which drivers 

performed left turns at intersections with only one vehicle (POV) oncoming from 

ahead, the latter included left turn events in which no other road users were present at 
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all at or around the intersection. At a first stage of the study, no POV events were 

selected. Among the retrieved data belonging to each event, the GPS coordinates 

played an important role in order to reconstruct the SV trajectories. Dynamic 

parameters, such as speed, steering wheel angle and yaw rate, were collected in a 

vectorial form, and the sampling frequency was 10 Hz. 

 

3.2 Study scenario 
 

The present study scenario is made of three components: the location, the actors and 

the objectives. The scenario takes place at intersections, and, more precisely, at 

intersections where one driver is turning left without any other traffic around, as 

already described in the “Introduction” section. The actor is the driver, who is 

handling the left turn, whose relation both with vehicle and with environment is 

deeply analysed. The objective of this scenario consists of understanding the 

interaction between the driver behaviour, his/her decision making and the vehicle 

dynamics related to this kind of manoeuvre. 

 

3.3 Variable selection 
 

Once a specific 90 degrees left turn was chosen, a close look to all the collected 

physical variables, which characterize the event, was taken. To perform the thesis 

work, only some of them were really useful; these variables, listed in Table 3.2, were 

extracted for further implementation in both the vehicle and driver behaviour models. 

 
Table 3.2: List of main variables for left turn analysis 

Variable name Description Unit 

Steering angle 
Variable containing the steering wheel angle of the 

vehicle at each time step 
[degrees] 

Steering angle rate 
Variable containing the steering wheel angle rate of 

the vehicle at each time step 
[degrees/s] 

Vehicle speed 
Variable containing  the speed information of the 

vehicle at each time step 
[m/s] 

Yaw rate 
Variable containing  the yaw rate information of the 

vehicle at each time step 
[degrees/s] 

Time index 
Variable storing the time elapsed since the beginning 

of the trip 
[ms] 

GPS position 
Variable containing the GPS coordinates of the 

vehicle at each time step 
[m] 

Lateral acceleration 
Variable containing lateral acceleration of the vehicle 

at each time step 
[m/s

2
] 

Longitudinal 

acceleration 

Variable containing longitudinal acceleration of the 

vehicle at each time step 
[m/s2] 

Distance travelled 
Variable storing the distance travelled since the 

beginning of the trip 
[m] 
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3.4 Data overview 
 

For a better understanding of the raw variables, MATLAB
®
 was used to generate 

plots in order to get a better idea of the measured parameters values. As depicted in 

Figure 3.1, the vehicle trajectory of the trip chosen as sample (Trip ID: 11215) for the 

entire thesis work was plotted; the red circle points out the exact left turn event 

analysed, which corresponds to a perfect 90 degrees left turn across path with no 

POV, as stated before. Throughout the entire Method chapter, all the figures will refer 

to such trip; evaluation of driver parameters, like the desired longitudinal acceleration, 

from other left turn events will be collected and properly explained in the “Results” 

section. In addition, real driving data regarding the steering wheel angle rate and the 

steering wheel angle are shown, respectively, in Figures 3.2 and 3.3. 

 

 
Figure 3.1: Vehicle GPS trajectory for sample trip (Trip ID: 11215) with indication of left turn event 
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Figure 3.2: Steering wheel angle rate for sample trip (Trip ID: 11215) during left turn event 

 

 
Figure 3.3: Steering wheel angle for sample trip (Trip ID: 11215) during left turn event 

 

3.5 Left turn delimitation and trajectory reconstruction 
 

The first aim of the work, once the main useful variables were identified, consisted of 

setting the time boundaries among the three stages: approach, turn and exit. In the 

Salvucci and Gray’s  odel the thesis work only dealt with the turning stage; it was 

therefore i portant to  ove backward and forward with respect to the “Ti e of 45° 

passage”, in order only to include the  ost interesting stage; running the si ulation 

from the Start time to the End time, indeed, would have been useless, as it would have 

contained all the three stages of a left turn manoeuvre. A script was prepared in 

MATLAB
®
 to consider driving data from the left turn only once a certain steering 

wheel angle had been reached. A steering wheel angle of 8 degrees had been chosen 
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to divide the approach stage from the turn stage, because, after few trials, it was 

discovered that it was a good compromise between two opposite trends: if the steering 

wheel angle is too low, the MATLAB
®
 code begins extracting data well before the 

turn stage starts; on the other hand, high values of steering wheel angle are reached 

once the turning stage has already started, and this would lead to a significant loss of 

important data. 

Once reached the first threshold for the steering wheel angle, the MATLAB
®
 script 

kept on saving vehicle data until another predetermined steering wheel angle has been 

encountered. For the same reason explained before, it was found that a good time 

threshold between turning and exit stage could have been established when a steering 

wheel angle of 2 degrees was reached. In this way it was feasible to filter available 

data without losing important information about the turning stage. 

 

3.6 Salvucci and Gray’s model: evaluation of driver 

behaviour 
 

After having evaluated the period of time covered by the turning stage, an analysis on 

driver behaviour and other dynamics parameters according to Salvucci and Gray 

theory has been conducted. 

During the approach stage the driver is assumed to look and use the near and far 

points as described in Salvucci and Gray (2004), but when the turning stage starts a 

new position of the near and far point is defined. This switching point becomes a very 

important moment that is very difficult to model as there is no study that exactly states 

when this action takes place, then remaining unknown, and the driver switches the 

gaze point unconsciously. Regarding the turning stage, it was decided to position the 

near and far points in the exit road and only move on the x-axis direction (Figures 3.4 

and 3.5). The new positions of the near point “n” and the far point “f” stand in the 

middle of the lane the driver is aiming to enter, at a certain distance from the y-axis, 

being the far point always further than the near point. In other words, at the beginning 

of the turning stage both near and far points are close together or even at the same 

location and change over time with the position of the car.  

 



CHALMERS, Applied Mechanics, Master’s Thesis 2014: 34 

 
Figure 3.4: Generic near and far point position at the beginning of the left turn. “n” and “f” in the  

figure correspond to the near and far points location, θn and θf their respective  

angles and “d” the driver position. 

 

 
Figure 3.5: New near and far along the left turn: a) approach stage, b) turning stage,  

c) exit stage 
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Furthermore, dn and df evaluation can be made, based on the following system of 

equations: 

 












xdfdeltadd

ddeltakd

nf

nysn min
       (3.1) 

 
Table 3.3: Near and far points parameter definition 

Variable  Description 

d_n near point distance 

d_n_min minimun near point distance 

k_s near point proportional coefficient 

delta_y distance traveled by the car on the y-axis 

d_f far point distance 

X x-axis position of the car 

Dfdelta far point proportional coefficient 

 

As regards parameters collected in Table 3.3, d_n corresponds to the distance on the 

x-axis of the near point, as seen in the system equation (3.1); its value increases 

alongside the distance between the car and the intersection, delta_y. k_s represents the 

coefficient in charge of controlling the variation of d_n, starting from its minimal 

distance d_n_min, calculated by the genetic algorithm in order to obtain the optimal 

proportional ratio during the left turn. On the other hand, d_n and x, the near point 

distance and the position of the car on the x-axis respectively, are the two variables 

needed to calculate the position of the far point d_f; hence the far point distance 

increases constantly together with the distance from the car to the y-axis, x. (see 

Figure 3.5) 

The coordinates system was located in a way in which the x-axis would correspond to 

the centre line (dash-dotted vertical line in Figure 3.4) of the exit road and the y-axis 

would be located in the approach road at the position of the passenger to be as close as 

possible with the existing model (see Figure 3.4). 

 

3.6.1 Evaluation of driver behaviour model 
 

Previous research and particularly previous work from Benderius, on Salvucci and 

Gray’s  odel, established a starting point for this thesis as the basic code, describing 

the model and the car variables, was provided for its implementation. This initial 

code, composed of 3 main MATLAB
®

 files (car dynamics, driver model and the code 

for running it), previously adapted by Benderius for his specific scenario mentioned in 

the literature part, was analysed. The decision made, after getting the code, was to 

implement it for a specific driver, a specific trip and a specific event (LTAP/OD). In 

particular, the same trip used in the Nobukawa’s  odel implementation was chosen. 

Then the second step was to scale the model up using different events from the same 

driver. Finally a larger number of drivers and events would have been analyzed with 

the model and its performance and accuracy would have been evaluated. In this thesis 

only the first step was carried out. The initial trials were conducted directly with the 

provided code and then a new one was built since a new approach was necessary 

given that the conditions were different. The car dynamics and the equations to 
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calculate them were re-evaluated and made suitable for the geometry of the new 

scenario with new initial conditions and parameters. The MATLAB
®
 code used is 

composed of the following files that enable the model to calculate the parameters and 

run the simulation: 

 

 dataAnalysis: file that extract the input data from the database and saves it for 

its further use; 

 realDataGA: file where the input data is loaded, the initial conditions set and 

that is in charge of running the whole model; 

 realDataGAWrapper: file that runs the genetic algorithm and generates the 

parameters. 

 realDataDM: file containing the driver model implementation; 

 stepLinearVehicle: file containing the equations for calculating the position, 

speed and heading angle of the car; 

 Optimplot: file that contains the complementary code to observe the GA 

generation process if wanted (not crucial for the model). 

 

Loading the required data is the first thing the code does when running it and after the 

options for the Genetic Algorithm (GA) are established the GA iteration process 

starts. The best parameters are then calculated and extracted from it for finally being 

used as inputs variables for the driver model. Subsequently last outputs plots and 

parameters values are finally obtained and plotted for their further analysis (see Figure 

3.6). 

 

 
Figure 3.6: MATLAB

®
 files process flow chart 

 

Note that the initial conditions set for the model are the ones extracted from the real 

data, while the others are calculated by the model itself. Concerning them, for the new 

situation the car heading angle was considered to be 90 degrees, as it is the angle 

between the approach road and the exit road, and the initial offset position of the car 

when the tuning stage started was set at 44 meters, corresponding to the initial 

distance between the vehicle and the intersection when the left turn starts. This 

distance was evaluated from the trip data analysis previously performed. The option 

of using the real data at each time step was envisaged but as the model was required to 

work independently the decision of letting the program feed itself was chosen.  

 

3.6.2 Genetic algorithm and cost value functions 
 

Two optimization functions incorporated in MATLAB
®
 are fminsearch and the GA. 

For this thesis work the GA was the option chosen for the optimization as it suited 

best the requirements needed. The main utility of the mentioned function is to 

generate a population of optimized parameters, specified by the user, in order to 
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obtain the minimum error and solve the optimization problem. For that purpose, a 

population of points, at each iteration, is generated and evaluated by the GA; different 

options are available for the user, allowing him the possibility to set constraints to this 

generation and decide the population size and generation size among others. At the 

end the best parameters generated are saved as a variable. Another important factor to 

take into account when using the genetic algorithm is the cost value function, which is 

the function that the GA will minimize at each iteration in order to obtain the best 

parameters for the optimization. It has to be defined properly to minimize the error as 

the output could be highly affected by it and thus having a good cost value function is 

essential. Different outputs are obtained every time the program files are executed as 

the parameter generation of the GA varies every time hence the simulation could 

differ one from another depending on this generation. Seven parameters were chosen 

to be generated and optimized by the GA (parameters detailed description is included 

in the Results section) letting a high level of freedom to the model. Furthermore, the 

only constraints imposed to the GA were the initially set up of the number of 

iterations, that corresponded to 1000, the cost value function and finally the 

boundaries of each parameter (also described in Results section). 

 

3.6.3 GA parameters and cost function evaluation 
 

The GA was added and was in charge of obtaining the best values for the coefficients 

in the respective driver  odels. For the Salvucci and Gray’s  odel, initially seven 

parameters where chosen to be evaluated and optimized by the genetic algorithm: the 

three coefficients of the Salvucci and Gray’s model (kn, kf, kI), the near and far points 

coefficients (k_s, dfdelta), the car steering wheel relation (G) and the cost value 

function coefficient (x(7)) and alongside those parameters their boundaries were 

defined as constraints inside the options of the GA, as it is shown in Table 3.4. 

 
Table 3.4: The seven parameters optimized by the GA function and their relative boundaries 

Parameter Boundaries [lower boundary, upper boundary] 

Kn [0,30] 

Kf [-3,30] 

Ki [-3,30] 

G [15,25] 

Ks [0,1] 

Dfdelta [0,2] 

X(7) [0,1] 

 

The cost function below was the one used by the model to minimize the error: 
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This cost value function implies the intention of obtaining optimal parameters 

minimizing both the calculated steering wheel angle rate (swar) and the steering 

wheel angle (swa) errors at the same time. The x(7) was only used to evaluate the 

appropriateness of including both the steering wheel angle rate (swar) and the steering 

wheel angle (swa), and not only the swa cost value. 

 

3.6.4 Output plots and results 
 

The final step consisted on checking the optimization and the new code well-

functioning. For that purpose, every time the model was executed, plots where 

generated and then compared. Plots of the desired variables calculated by the model 

such as the steering wheel angle rate and the steering wheel angle were plotted 

alongside the real data of the event and then checked to confirm that the code was 

achieving properly what was expected. Error functions to have a complementary 

visual output of the level of fit obtained where also included subsequently. Finally, in 

addition to those plots, secondary plots showing the near and far point distances 

evolution, the heading angle of the vehicle and the left turn trajectory were added to 

help detect errors when the output was not the desired one and to monitor the effect of 

the GA generated parameters on the final result. 

 

3.7 Nobukawa’s model: evaluation of speed and 

acceleration profiles 
 

Once a real vehicle trajectory had been defined and target point Q (refer to Figure 

2.15) had been set at the end of the turning stage, it was possible, at each time step, to 

calculate the length of the distance d between the actual vehicle position and the target 

point Q. Similarly, setting the heading angle at Q equal to 90 degrees, it was possible 

to evaluate the change in heading angle ∆ψ at each time interval by simply making the 

difference between the heading angle at the current vehicle position (easy to get from 

GPS position) and the heading angle in Q. By using the equations (2.29) and (2.30), 

already discussed in the “Literature review” section (Paragraph 2.2.2), the value of the 

“hat” lateral acceleration ây, the “hat” longitudinal acceleration âx and the curvature 

radius R have been defined. It is reasonable to expect that all these values change with 

time, since the distance d is defined by Nobukawa et al. (2012) as the segment which 

links the target point of the turning stage (fixed) with the actual vehicle position point 

(not-fixed) and all other values depend on d itself. Figure 3.7 shows the behaviour of 

the two “hat” accelerations during the turning stage, co pared with the  easured 

longitudinal and lateral accelerations, respectively ax and ay. 
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Figure 3.7: Measured and anticipated accelerations (both lateral and longitudinal) (Trip ID:11215) 

 

Once vehicle parameters have been stated, an initial value for driver parameters for 

left turn has been manually provided in order to start the genetic algorithm 

optimization; initial values, close to the final ones found by Nobukawa et al. (2012) in 

order not to alter too much final results, are collected in Table 3.5. Boundary 

conditions have been fixed to driver parameters for the genetic algorithm in order to 

obtain reasonable values parameters. 
 

Table 3.5: Initial driver parameter values 

Symbol Quantity Initial value 

K [Hz] Proportional gain 2 

lb2 [m/s
2
] Lower bound of desired ây range 2 

a2 [m/s
2
] Saturation value for turn stage 0.5 

ub2 [m/s
2
] Upper bound of desired ây range 3 

 

In this specific case, for the genetic algorithm, the optimization objective consists of 

having a speed model profile as close as possible to the measured speed, as evidenced 

in Figure 3.8. In order to work, the genetic algorithm requires a cost value function, 

that has to be minimized in an optimization problem. A cost value function, given by 

the difference between the speed of the model and the measured speed at each time 

step, has been used.  
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Figure 3.8: Speed model compared to measured vehicle speed (Trip ID: 11215) 

 

The knowledge, over time, of the values of the anticipated acceleration reference and 

of the speed model were then used to obtain, through a step-wise linear function like 

the one highlighted in Figure 2.16b, the curvature of the desired longitudinal 

acceleration. From the optimization, the parameters K, lb2, a2 and ub2 were obtained 

and the desired longitudinal acceleration was computed and plotted, following the 

instructions given by Nobukawa et al. (2012) for the turning stage. This desired 

longitudinal acceleration has been compared to the real one and their difference 

(error) was calculated. Figure 3.9 represents the desired longitudinal acceleration for 

the sample trip taken into account, while Figure 3.10 shows the comparison between 

the two accelerations (desired and measured) and the generated error, which is 

perceived by the driver, who acts on the gas or brake pedal if, respectively, ax
des

 is 

higher or lower than measured ax.  
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Figure 3.9: Desired longitudinal acceleration (Trip ID: 11215) 
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Figure 3.10: Error estimation (Trip ID: 11215) 
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Once the speed model has been computed and the analysis of the longitudinal and 

lateral accelerations has been performed, reliability tests have been sustained 

considering three new intersections dealt by the same driver. The simulation results 

are shown in the “Results” section. 

Starting from the plot in Figure 3.8, it was manifest that a high fitness level had been 

reached between measured speed and speed model for the considered left turn. A 

deeper analysis, therefore, was conducted to investigate if the simulation also 

provided an appropriate fitness between measured speed and speed model in other 

types of left turn events. It was therefore chosen to find left turn events similar to the 

one investigated above through the use of SQL Developer. Other intersections, always 

dealt by the same driver, were found and, among them, a new one was chosen as a 

new case to analyse. The GPS trajectory of the vehicle in the considered intersection 

is reported in Figure 3.11, whereas the relationship between the measured speed and 

the speed obtained from the model is shown in Figure 3.12.  
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Figure 3.11: Vehicle trajectory for a second left turn intersection  
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Figure 3.12: Speed model for a second left turn intersection 
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4 Results 
 

4.1 Salvucci and Gray’s model 
 

After running the model several times, an anomaly was observed: The steering wheel 

angle value at the end of the turn was negative, the left turn performed by the driver 

was not a perfect 90º left turn and the heading angle at the end of the manoeuvre was 

positive; values that did not represented the reality of the event. Further analysis was 

performed to understand the effect of the cost function parameter x(7), and thus the 

cost function itself, in the output of the model. The analysis consisted of executing a 

MATLAB
®
 script 20 times and after each run, the parameter value was extracted into 

an excel file and sorted out based on a visual observation of the values obtained of all 

the different outputs. The objective of this analysis was twofold: 

 

1) to find out what values of x(7) conducted to the an undesired output and which 

ones allowed the best optimization results; 

2) to observe if any of the other parameter converged to a constant value, so that 

it could be replaced or even removed from the GA, simplifying the code.  

 

The main result of this analysis was that bad fitting results were obtained when the 

cost value parameter value, corresponding to x(7) in equation 3.4, was equal to 1,  

which means that the cost function used for the optimisation only minimized the 

steering wheel angle and not the steering wheel angle rate, and the opposite results 

when it was close to 0. 

Considering that the output obtained was not regularly satisfactory, the cost function 

reported in equation 3.4, which combines the errors of the steering wheel angle rate 

and the steering wheel angle (measured and calculated), was changed. A new cost 

value function was considered only minimizing the error between the steering wheel 

angle rate measured and the one calculated.  This new cost function was derived from 

the previous one, setting the parameter x(7) equal to 0: 

 

swartvaluetvalue _coscos        (4.1) 

 

The new cost function allowed to obtain stable results every time the code was 

executed. 

 

4.1.1 List and description of results 

 

The results described in this section are divided into four parts: 

 

 steering wheel angle rate; 

 steering wheel angle; 

 vehicle heading angle; 

 left turn trajectory. 
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Steering wheel angle rate:  Real data, driver model and error 

 

Figure 4.1 shows the steering wheel angle rate from the real data and the one 

calculated by the driver model, blue and red lines in the figure respectively. As well, 

the error between the real data and the model at each point is shown in green in Figure 

4.1. Constant corrections of the steering wheel angle by the driver, observed in the 

real data, shape the aspect of the steering wheel angle rate and of the error, explaining 

the sudden peaks. Overall, the model follows quite accurately the shape of the real 

data excluding the beginning of it, in which we can notice an initial error of about 20 

degree/s. This difference between the measured and real steering wheel angle rate is 

probably due to the switch from the approach stage to the turn stage: during this 

switch, the near and far point positions change instantly and the model seems not to 

adapt as fast as human does. The r-squared error obtained for the steering wheel angle 

rate, in this case, is 0.8509 which is a good indicator that the fit is good. 

 
Figure 4.1: Steering wheel angle rate (real data, driver model and error) 

 

Steering wheel angle: Real data and driver model  

 

Figure 4.2 shows the steering wheel angle corresponding to the real data (blue line) 

and the steering wheel angle calculated by the model (red line). The error is drawn in 

green in the same figure and, in this case, it fluctuates between 18 degrees and -11 

degrees approximately. The model describes the real data quite well as we can see in 

the figure supported by the r-square value which is 0.9839. In addition to that as in the 

chart of the steering wheel angle rate, there is an initial error due to the switch from 

the approach stage to the turn stage.  
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Figure 4.2: Steering wheel angle (real data, driver model and error) 

 

Vehicle heading angle 

 

As shown in figure 4.3 the car initial heading angle matches perfectly to -90 degrees 

corresponding to the initial conditions setup of the left turn, established as the initial 

condition due to the new coordinate system definition. Through the course of the turn 

the modelled vehicle heading angle evolves until he reaches 0 degrees approximately 

which indicates that the car is going straight on the exit road as it happens during the 

real event. 
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Figure 4.3: Heading angle 

 

Left turn trajectory from model  

 

Figure 4.4 shows the trajectory described by the SV, during the left turn, obtained 

with the model. Starting at the initial position of 44 meters on the y-axis, the model 

describes an almost perfect arc, similar to the real data, and the turn ends with the car 

heading straight on the exit road.  

 
Figure 4.4: Left turn trajectory from model 
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Near and far points distance 

 

Figure 4.5 shows the evolution of the distance of the near and far points from the SV 

on the exit road during the left turn. As the SV proceeds in the turning stage, both 

distances increase. Starting from the minimum distance (5 meters) the near point 

reaches a distance close to 15 meters in front of the car. The far point, located in the 

same position as the near point in the beginning of the turning stage, reaches a 

distance of about 350 meters, which is a reasonable distance considering no POV 

presence. 

 

 
Figure 4.5: Near and far points distances from the subject vehicle 

 

 

The GA optimised parameters values, obtained during this specific simulation, are 

collected in Table 4.2. These parameters correspond to the ones utilised, when 

generating the previous plots, as the final input when executing the driver model for 

the last time. 
 

Table 4.2: GA optimization parameters value 

Parameter kI kn kf G ks dfdelta 

Value 0.0136 2.9529 3.5002 24.3647 0.1700 5.2894 

 

4.2 Nobukawa’s model 
 

Once the model had been optimized for two trajectories (two left turn events) with 

respect to the speed profile, more attention was paid to the reproducibility of driver 

parameter values created by different runs of the genetic algorithm in order to fit the 

speed model to the real speed profile. For each of the two left turn events considered 

so far, two different factors could be varied: the number of driver parameters 

evaluated by the genetic algorithm and the lower and upper boundaries limits of the 

driver parameters. As regards the former factor, it was chosen to evaluate one solution 
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with three parameters (optimization of lb2, a2 and K, while ub2 is fixed equal to lb2+1) 

and one solution with four parameters (optimization of lb2, a2, K and ub2). The benefit 

of having a reduced number of parameters to optimize by the genetic algorithm 

consists of having a less time-consuming simulation; moreover, too many parameters 

can result in an over-fit of the model, not supporting any generalization. It is however 

also important to consider that a too small number of parameters could give worse 

results for the fitting. Similar could be done for the latter factor (boundaries for the 

parameters), which allowed to set the lower and upper boundaries by increasing or 

decreasing the gap between the . A “narrow”  anipulation supports model 

generalization and it is characterized by a smaller gap between lower and upper 

boundaries: this condition leads to increased speed to run the simulation, and also 

higher risk not to include the optimal value within the two boundaries for the 

parameter (and, therefore, higher risk not to have a close fit between model and 

 easure ents). Opposite reasoning is valid for the “expanded”  anipulation. The 

Table 4.3 shows the setting of the lower and upper boundaries used in the simulation, 

after taking into account results obtained by Nobukawa in his previous works.  
 

Table 4.3: Genetic algorithm boundaries for each parameter and manipulation type 

Manipulation Boundary conditions K Lb2 a2 ub2 

“Narrow”  anipulation 
Lower boundary 0 0 0 2 

Upper boundary 4 2 3 6 

“Expanded”  anipulation 
Lower boundary 0 0 0 3 

Upper boundary 6 3 4 6 

 

Since two different states are present for each varying factor, four combinations can 

be obtained (three parameters-narrow manipulation; three parameters-expanded 

manipulation; four parameters-narrow manipulation; four parameters-expanded 

manipulation). 

For both the events considered in this thesis, the simulation has been run 5 times for 

each combination. The root mean square errors of both the speed (RMSE_speed) and 

the longitudinal acceleration (RMSE_ax) profiles were also calculated: results are 

collected in Tables 4.4 – 4.11. Tables 4.4 - 4.7 refer to the first left turn event (the one 

analysed in the “Method” chapter), while Tables 4.8 - 4.11 are related to the second 

left turn event (described at the beginning of this paragraph). 

 
Table 4.4: Genetic algorithm optimization in “narrow” manipulation, ub2 fixed (ub2=lb2+1) – first left 

turn 

N° trials K lb2 a2 ub2 RMSE_speed RMSE_ax 

Trial 1 1.1074 1.2737 0.0155  0.8306 0.6770 

Trial 2 1.0810 0.1276 0.0170  0.8316 0.6857 

Trial 3 1.0906 0.3200 0.0111  0.8314 0.6822 

Trial 4 1.0755 0.0437 0.0168  0.8319 0.6862 

Trial 5 1.0990 0.6899 0.0145  0.8311 0.6801 

Mean 1.0907 0.4910 0.0150  0.8313 0.6822 

Std. deviation 0.0130 0.5034 0.0024  0.0005 0.0039 
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Table 4.5: Genetic algorithm optimization in “expanded” manipulation, ub2 fixed (ub2=lb2+1) – first 

left turn 

N° trials K lb2 a2 ub2 RMSE_speed RMSE_ax 

Trial 1 1.1059 1.1177 0.0136  0.8307 0.6778 

Trial 2 1.1145 1.4788 0.0171  0.8308 0.6759 

Trial 3 1.0796 0.0953 0.0171  0.8317 0.6859 

Trial 4 1.0732 0.0250 0.0195  0.8319 0.6875 

Trial 5 1.0789 0.0880 0.0178  0.8317 0.6863 

Mean 1.0904 0.5610 0.0170  0.8314 0.6827 

Std. deviation 0.0185 0.6856 0.0021  0.0006 0.0054 

 
Table 4.6: Genetic algorithm optimization in “narrow” manipulation, ub2 not fixed (ub2=x(4)) – first 

left turn 

N° trials K lb2 a2 ub2 RMSE_speed RMSE_ax 

Trial 1 1.0987 0.5431 0.0136 2.2951 0.8309 0.6792 

Trial 2 1.0962 0.0980 0.0151 2.5053 0.8309 0.6804 

Trial 3 1.1389 0.5143 0.0311 5.2764 0.8350 0.6722 

Trial 4 1.1958 1.9955 0.0472 5.6286 0.8490 0.6624 

Trial 5 1.1383 0.0040 0.0435 4.3077 0.8403 0.6756 

Mean 1.1336 0.6310 0.0301 4.0026 0.8372 0.6740 

Std. deviation 0.0404 0.8001 0.0156 1.5425 0.0076 0.0072 

 
Table 4.7: Genetic algorithm optimization in “expanded” manipulation, ub2 not fixed (ub2=x(4)) – first 

left turn 

N° trials K lb2 a2 ub2 RMSE_speed RMSE_ax 

Trial 1 1.1223 1.1875 0.0198 4.0487 0.8310 0.6738 

Trial 2 1.1070 0.3783 0.0154 3.5122 0.8307 0.6776 

Trial 3 1.1042 0.1911 0.0149 3.6292 0.8307 0.6780 

Trial 4 1.1147 2.9364 0.0125 5.8229 0.8312 0.6738 

Trial 5 1.1677 0.1020 0.0551 4.5845 0.8550 0.6732 

Mean 1.1232 0.9591 0.0235 4.3195 0.8357 0.6753 

Std. deviation 0.0259 1.1857 0.0178 0.9397 0.0108 0.0023 

 
Table 4.8: Genetic algorithm optimization in “narrow” manipulation, ub2 fixed (ub2=lb2+1) – second 

left turn 

N° trials K lb2 A2 ub2 RMSE_speed RMSE_ax 

Trial 1 0.6178 0.5767 0.1975  0.7602 0.2686 

Trial 2 0.9688 0.5580 0.0669  0.7405 0.2007 

Trial 3 1.3663 0.1137 0.0078  0.7338 0.1779 

Trial 4 1.3412 0.2492 0.0110  0.7338 0.1788 

Trial 5 1.3145 0.6175 0.0009  0.7344 0.1784 

Mean 1.1217 0.4230 0.0568  0.7405 0.2009 

Std. deviation 0.3250 0.2267 0.0083  0.0113 0.0039 
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Table 4.9: Genetic algorithm optimization in “expanded” manipulation, ub2 fixed (ub2=lb2+1) – 

second left turn 

N° trials K lb2 a2 ub2 RMSE_speed RMSE_ax 

Trial 1 1.3575 1.1867 0.0100  0.7338 0.1783 

Trial 2 1.0953 1.4968 0.0500  0.7372 0.1918 

Trial 3 1.2717 0.4402 0.0148  0.7340 0.1811 

Trial 4 1.3131 0.3368 0.0127  0.7338 0.1797 

Trial 5 1.1473 0.4980 0.0375  0.7357 0.1879 

Mean 1.2370 0.3917 0.0250  0.7349 0.1838 

Std. deviation 0.1114 0.1320 0.0178  0.0015 0.0058 

 
Table 4.10: Genetic algorithm optimization in “narrow” manipulation, ub2 not fixed (ub2=x(4)) – 

second left turn 

N° trials K lb2 a2 ub2 RMSE_speed RMSE_ax 

Trial 1 1.0543 0.7574 0.0272 2.3272 0.7397 0.1887 

Trial 2 0.9507 0.3086 0.0907 2.0226 0.7430 0.2025 

Trial 3 1.1049 0.7310 0.0215 2.0020 0.7374 0.1865 

Trial 4 0.8745 0.3817 0.1021 2.0059 0.7458 0.2094 

Trial 5 1.0498 0.1125 0.0599 2.4714 0.7393 0.1907 

Mean 1.0068 0.4582 0.0603 2.1658 0.7410 0.1956 

Std. deviation 0.0927 0.2791 0.0363 0.2193 0.0033 0.0099 

 
Table 4.11: Genetic algorithm optimization in “expanded” manipulation, ub2 not fixed (ub2=x(4)) – 

second left turn 

N° trials K lb2 a2 ub2 RMSE_speed RMSE_ax 

Trial 1 0.8817 0.0109 0.1019 3.0229 0.7472 0.2026 

Trial 2 0.7760 0.1980 0.0915 3.7021 0.7559 0.2054 

Trial 3 0.9350 0.1195 0.0714 3.0151 0.7444 0.1954 

Trial 4 0.6272 0.4838 0.1361 3.0029 0.7643 0.2341 

Trial 5 1.6974 0.0119 0.1418 3.7177 0.7603 0.2200 

Mean 0.7835 0.1648 0.1085 3.2921 0.7544 0.2115 

Std. deviation 0.1270 0.1949 0.0299 0.3815 0.0085 0.0155 

 

From the Tables listed above, if we consider the mean value of each driver parameter 

for each combination, it is possible to notice that it is important not to keep ub2 equal 

to lb2 + 1, since in the cases where ub2=x(4), the difference between ub2 and lb2 

oscillates from 1.71 (Table 4.10) to 3.37 (Table 4.6). Given such gap, it was supposed 

it was better to consider ub2 as one of the driver parameters to be optimized through 

the genetic algorith . Co paring the “expanded” and the “narrow”  anipulation, 

instead, it was  observed the difference between the mean values of each driver 

parameter was not so high; to increase the model generalization, the study proceeded 

by reducing more and more the gap between lower and upper boundaries, making the 

“narrow”  anipulation even “narrower”. 

The parameters ây and âx need additional attention. These two parameters have no 

physical meaning once the driver gets close to the end of the turning stage: when this 

situation occurs, indeed, they both go to infinite. During the approach/turning stage, 

instead, anticipated  accelerations represent an indication of the acceleration perceived 

by the driver. The anticipated accelerations are also useful in order to detect the 

crossover point, which is the point where the lateral acceleration becomes dominant 

with respect to the longitudinal acceleration. Before the crossover point the decision 
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to undertake the intersection (also called go/no go decision) must have been taken by 

the driver. By definition, this point is located before the turning stage starts: however, 

since the previous part of the results focused only on the turn stage, it has been 

necessary to take a closer look to the approach stage. Therefore, the time range has 

been extended in order to include also the final part of the approach stage and to 

identify the crossover point. Figure 4.6 shows the crossover point for the first left turn 

event. An oscillatory behaviour is presented by ây: an approximate evaluation of the 

change in heading angle ∆φ, reliant on GPS data, is the main responsible of that. For 

∆φ approaching values close to 29° (between 2.2·10
5
 and 2.25·10

5
 ms), ây becomes 

lower with respect to âx. Once the crossover point for the first analysed left turn event 

was found, optimized driver parameters have been fixed to understand if the crossover 

point was really independent from them. Parameter values have been established by 

calculating the mean throughout Tables 4.6 - 4.7, the two tables which refer to the 

first left turn and consider ub2 as a parameter to calculate through the genetic 

algorithm. Table 4.12 reports the optimized values of the parameters calculated by the 

genetic algorithm. 

 

 
Figure 4.6: Crossover point for the first left turn 

 
Table 4.12: Parameter values to find the crossover point (first left turn) 

Parameter K lb2 a2 ub2 

Value 1.1284 0.7951 0.0268 4.1611 

 

The same procedure has been performed for the second left turn event considered; 

also in this case the crossover point has been found for values of change in heading 

angle close to 29°. Result is shown in Figure 4.7. To conclude, the crossover points 

for other left turn events using the same parameter values collected in Table 4.12. The 

script was modified so that the upper and lower boundaries of the genetic algorithm 

coincided and were equal to the values in the above table. Results are shown in 

Figures 4.8 and 4.9. The oscillatory behaviour of ây has been damped through the use 

of “medfilt1” function in MATLAB. As expected, even if the parameters were kept 

fixed, both the two anticipated accelerations tended to infinite as soon as the vehicle 
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reached the target point at the end of the turning stage. Anyway, if Figure 4.6 is 

compared to Figures 4.7 and 4.9, a main difference arises: in the former case, the 

lateral anticipated acceleration goes to infinite after the longitudinal one, as 

underlined by Nobukawa’s work (which means, lateral acceleration grows in 

importance while turning with respect to longitudinal acceleration); in the latter cases, 

the opposite trend happens. The situation which occurs in Figures 4.7 and 4.9 should 

be further analysed, as it seems, in the two represented cases, that the driver pays 

more attention to the longitudinal than to the lateral acceleration. In Figure 4.8, 

instead, the same situation as in Figure 4.6 is present: the lateral acceleration, after an 

increasing trend, goes down to the level of the longitudinal one (crossover point) and 

then it rises again till it reaches infinite. Also in this case the oscillatory behaviour has 

been da ped, but it was not possible, through the only use of the function “ edfilt1” 

to dampen the steep oscillations present at the crossover point and at the end of the 

signal, when the vehicle was going to reach the target point. 

 

  
Figure 4.7: Crossover point for the second left turn event 
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Figure 4.8: Crossover point for a third left turn event 

 

  
Figure 4.9: Crossover point for a fourth event 
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5 Discussion 

 

5.1 Salvucci and Gray’s model 
 

The model presented in this thesis is an adaptation of the original model from 

Salvucci and Gray (2004), in which the authors utilize two different visual points 

(near and far points) that were also used in the driver behaviour model. However, 

co pared to the Salvucci and Gray’s  odel, the task perfor ed by the driver is 

different since a left turn across path manoeuvre has being investigated. Given the 

specificity of the manoeuvre, the position of the near and far point proved to be 

critical for the scope of the work and a new definition was required, taking into 

account a shift of the coordinate system.  

The model computed for a particular left turn intersection and for a specific driver 

show interesting results regarding the steering wheel angle rate and the steering wheel 

angle which models well the real data. The simulated trajectory of the vehicle shows a 

90 degrees turn, in agreement with the real path travelled by the vehicle. The near and 

far point distances from the subject vehicle, during the left turn, were also reported. 

However, with regards to those variables, it is required a comparison with the values 

found in other intersections.  

Looking at the results, the optimization procedure was successful for the left turn 

event considered but it is not possible to draw any conclusions about the 

generalization of the same optimization procedure to other intersection scenarios; 

changes in position of the near and far points and modifications to the script would be 

probably necessary to make the procedure suitable for other events.  

With regards to the GA optimization employed for generating the seven parameters it 

was observed, after the analysis, that the parameter related to the cost function, named 

x(7), was not useful and could, therefore, be removed from the cost function. The 

parameters used to compute the steering wheel angle rate and that depend on driver 

characteristics (kn, kf, kI) were, as well, generated by the GA. However, based on the 

work performed, it is not possible to know if the parameters describe well the driver 

under study and, also, if similar parameters could be employed to describe different 

drivers. In order to have a better understanding of the parameter values, a comparison 

was made with the values reported in Salvucci and Gray’s paper. In the last one, in 

some cases, they reached values of, for example, kI=36 which looks a bit far from the 

values the GA is generating in our case, in which values were normally in an interval 

of [-1;5] and hence the driver could not be really represented accurately by them. 

Nevertheless, the type of manoeuvre was different and it will be reasonable to have 

different values for the parameters even if the same driver performs both of them.   

In further work, the parameters kn, kf, kI would need to be included as an input of the 

model and not generated anymore by the GA. Also, it is relevant to mention that the 

upper and lower boundaries constraints of the parameters play an important role for 

the optimization; for example, if, despite the boundaries, the value of one parameter 

fluctuates around a constant number every time the model is executed the option of 

simplifying the model could also be possible; it could be replaced by this constant and 

the resulting model would then be simpler.  

By adding the near and far point coefficients in the GA optimization, there is the 

intention of finding the best position of both of them being always the far point 

located further ahead than the near point. This arrangement differs from the approach 
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of Salvucci and Gray in which the near point remains at a fixed distance in front of the 

car and the far point changes depending on the road characteristics. 

 

5.2 Nobukawa’s model 
 

The Nobukawa’s  odel was used in this thesis to derive the speed profile during the 

intersection and, also, to find the crossover point that is relevant for the performance 

of the manoeuvre. Using the speed gathered from the real data, the speed profile 

model fits well the measured data in the intersections considered so far. Good results 

have been obtained also for intersections that are not “perfect” 90 degrees left turns, 

even if the intersections of this kind were very few; one of these examples is 

highlighted in Figure 4.7. When applying several times the genetic algorithm to the 

same intersection, the results show similar values for the parameters. However, if 

another intersection is considered, the parameters vary a bit, probably due to their 

dependence on the specific driver as already  entioned for the Salvucci and Gray’s 

approach. Also, the results show that the parameter ub2 cannot be kept fixed with 

respect to lb2, as its value varies a lot when it is free to fluctuate as a parameter in the 

genetic algorithm. 

For each iteration of the genetic algorithm, the values of the RMSE_speed and the 

RMSE_ax were calculated. As indicated by Nobukawa, these values should rarely be 

higher than 1 (10% probability), and that is what effectively happened even if it 

should be underlined that only two intersections were considered. The main limitation 

of the work is represented by the fact that the model adopts the speed obtained from 

the real data to estimate the speed. A relevant progress in the implementation of the 

 odel would be the utilization of the speed calculated at the ti e “t-1” for esti ating 

the speed at ti e “t” instead of using the real data gathered fro  the Field Operational 

Test. This switch would mean passing from a static nature problem to a dynamic 

nature one. 

The thesis also aimed to find the crossover point in the approach stage. Similar to the 

results found by Nobukawa, the crossover point is located few moments before âx 

tends to go towards infinite, even if the values of ây and âx before the crossover point 

are quite different. Such difference, anyway, can be explained because Nobukawa’s 

work and this thesis refer to different drivers and intersections. A limitation in the 

MATLAB
®
 script arises if the same parameters are used to estimate the crossover 

point for different intersection events. Figures 4.9 and 4.11 are representative of such 

limitation: in these two cases, indeed, ây tends to infinite before âx, while the opposite 

situation would be expected. This contradicts with what equations 2.29 and 2.30 state, 

since the change in heading angle should be decreasing as the vehicle is moving 

toward the exit stage. Further research is then needed in this sense, in order to 

understand if it is allowable to have ây which tends to infinite before âx or if the 

calculation of the change in heading angle must be performed using more detailed 

data than the available GPS ones. 
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6 Conclusions 
 

Accident statistics show that intersections are a major cause of road fatalities because 

they require an accurate and timing decision making from the driver and, often, due to 

the presence of a Principal Other Vehicle (POV). Given that, this project focuses on 

intersections aiming to develop new models for the left-turn scenario. Considering the 

complexity of the topic, as a starting point, this thesis did not take into account the 

presence of the POV. 

The work presented here tried to capture the main aspects of vehicle dynamics and 

driver behaviour in the attempt to merge, in the future, the two approaches in a unique 

model. To be able to do that, the thesis based its effort starting from two main 

theories, described in the “Literature review” section: Nobukawa, who deals with the 

speed and acceleration profiles of the vehicle, and relates them to driver reactions on 

the gas or brake pedal, and Salvucci and Gray, where precious information about 

perception based control theory for humans were extracted. In both models, the left-

turn manoeuvre is described as divided in three stages, named respectively approach, 

turn and exit stage. At a first step, the work has only focused on the turning stage of 

the left turn event, in order to make analysis and code implementation simpler. Two 

models have been built based on the two theories above mentioned: they have been 

useful in modelling vehicle parameters such as the steering wheel angle rate, steering 

wheel angle, speed, vehicle trajectory and change in heading angle during the turning 

stage. Then, a deeper look to the other stages (especially the approach one) has been 

given, in order to identify the point, named crossover point, where the driver decides 

to either turn left or stop before performing the manoeuvre. It has been shown how to 

find such point and how to relate it to the target point located at the end of the turning 

stage, as described in Nobukawa’s work. A brief analysis on the reliability of the two 

models has then been conducted. 

The results reported in this thesis show that this work could be a first step towards the 

development of models to be used for future ADAS development. Of course, this 

work is characterised by some limitations; the main ones have been listed below: 

 

 the models were applied to few intersections; 

 few drivers have been considered; 

 for Nobukawa model, the speed is obtained from the data and not from the 

model.  
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7 Future work 
 

In the Nobukawa’s  odel, the speed and acceleration profiles have been estimated in 

two different intersections investigated using as input the measured speed obtained 

from the data. The next step would be to make the system more independent, with the 

model providing the value of the speed at a certain time t basing on the longitudinal 

acceleration at the same time and the speed value at time t-1. The model should then 

count on the measured speed only for the initial value. A further step would be the 

testing of the model for different intersections and different drivers. 

The driver behaviour model, derived from Salvucci and Gray, proved to work quite 

well in one specific left-turn event. The next step would consist in finding new left-

turn events, performed by the same driver with the same turning angle as the one 

studied in order to check the  odel‘s validity and reliability. Then, a further step 

would require to check its validity also for different drivers and different trips. It is 

i portant to ensure that the  odel doesn’t work only in a particular scenario and just 

describe a particular driver’s behaviour but it should be reliable for all users 

performing a left turn across path with no POV. One risk with having several 

parameters describing a relatively simple event is that it may always be possible to 

find a reasonable fit.  

The further work is not only focused on each model on its own. The merging of the 

two implemented models discussed in the thesis should be also performed. At the 

moment, it is not clear how this merging should be executed. One possibility would 

be representing by feeding the speed calculated by the Nobukawa’s  odel into the 

Salvucci and Gray’s  odel. However, other possibilities should also be taken into 

account.  

After the merging of the two models, the final step would be the inclusion of the POV 

in the left-turn manoeuvre. This operation would affect both models as the driver 

would, in some cases, need to stop or change the speed and also adjust his/her 

decision making process to take account of the acceptance gaps. 

An additional enhancement of the model would be represented by the inclusion of the 

approach stage and the exit stage during the left-turn. 
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9 Appendices 

 

9.1 Appendix A: Division of work 
 

Patrick Bardinet de Horna: 

 

 Literature review 

 EuroFOT data analysis and extraction 

 Matlab functions Research and study: Genetic Algorithm 

 Salvucci and Gray driver model analysis and implementation. 

o New scenario 

o Definition of near and far points 

 Previous model code analysis 

o Validity of code in new conditions 

o Adaptation for left turn scenario 

 Coding:  

o Matlab programming  

o Genetic  algorithm parameters and options decision 

o Code debugging  

 Analysis of results 

 Report writing 

 

Francesco Secondo: 

 

 Literature review 

 EuroFOT data analysis and extraction 

 Matlab functions Research and study: Genetic Algorithm 

 Nobukawa et al. vehicle model analysis 

o Simulation program coding and adaptation to left turn scenario 

o Code validation 

o Definition of vehicle speed and acceleration profiles 

o Definition of crossover point  

 Coding: 

o Matlab programming 

o Genetic algorithm parameters and options decision 

o Code debugging  

 Analysis of results 

 Report writing 

 

 

 


