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Abstract—The Macro Basis Functions (MBFs) approach is a small neighborhoods. Such a divide and conquer concept
form of_ domain-decomposition meth_od applied to_radiation_ and \was already present in earlier works such as [2]-[4] and
scattering problems solved by using integral-equation techniques. has been developed more systematically by Suter and Mosig

It enables a systematic reduction of the number of degrees of 5 ho introd d th ion “M Basis Function”
freedom, from that imposed by the discretization of the surfaces [5], who introduce € expression acro baslis Function

to that associated with the physical limits of field distributions. (MBF). Quite a few other methods based on aggregation
This paper reviews different variants of this approach, including of low-level basis functions, such as [6], [7] appeared in

the techniques for determining the MBFs and for fast calculation the computational electromagnetics (CEM) literature amo
of their interactions. The link with Krylov-subspace iterative contemporaneously, or soon thereafter. The main attribfite

methods is described, the relationship between the surface ofth d in d iti h is that it bl ¢
subdomains and the number of physical degrees of freedom is € domain decomposition approach is that it enables us 1o

discussed and multi-level schemes are revisited. Finally, avenueshandle considerably larger problems, in terms of number of
for further research are outlined in the Conclusions section of Degrees of Freedom (DoFs) than is possible by using the

this paper. conventional Method of Moments (MoM).

Index Terms—macro basis functions, integral equations,  Our objectives in this paper are to review some of the
method of moments, characteristic basis functions, synthetic earlier works, present the latest developments in this anela
functions provide new perspectives on this class of methods. In oder t
facilitate the understanding of the following sectionsct®m
Il briefly describes what may be viewed as an elementary MBF
approach, while Section Il provides a summary of assodiate

Efficient and accurate solution of electromagnetic-fiel@in methods. Section IV explains how MBFs can be generated,
gral equations has been an important research topic for mawlyile Section V describes different techniques for fastgkl-
years. Despite the availability of computers with fast CPU#on of interactions between the MBFs. Following this, $@tt
and abundant as well as affordable memory resources, ewér-reviews the link between MBF approaches and modern
increasing demand for solving larger problems still ougsaciterative techniques and Section VII addresses the impbrta
the rapid advances in numerical techniques. The challengdsllenges encountered when attempting to solve multesca
faced almost a decade ago were described in a review papeblems. Finally, Section VIII briefly summarizes this \wor
[1] and the domain-decomposition approach was introducadd presents some perspectives on the future directions.
around the same time frame to solve large problems by using
the “divide and conquer” approach. One such methodology
is based on expressing the solutions in the subdomains in
terms of high-level basis functions that are linear combina This section summarizes what may be regarded as the
tions of a number of pre-computed solutions for the isolatesimplest possible MBF approach. For reasons that will be
subdomains, or for those domains surrounded by relativedpparent later, it may not be the most effective numerical

I. INTRODUCTION

Il. ELEMENTARY MBF APPROACH
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approach, but it will be used to introduce the terminologied Galerkin testing, the MBFs defined on a given subdomain are
notations, while laying the foundations of what is to followorthogonal to the segment of the residual correspondingeto t
We will assume that the reader is already familiar with theame subdomain.
Method of Moments (MoM).

Let us write the original MoM system of equationszas = I1l. HISTORICAL PERSPECTIVE

v in which Z is the MoM impedance matrix is the column o o4 i the introduction, MBF-type methods

vector containing the expansion coefficients to be detechin, ly on a divide-and-conquer approach to solve, through an

andv is the excitation vector, which corresponds to the teste egral-equation formulation, radiation or scatteringtyems

!nC|dent fields. Next, we divide the computatlonal SUbdc"ma|nvolving structures that either have large electrical elisions
Into a nl,!mber of contiguous s.ub-domams, anq postulate t%?tfine features. The characterizing key features of thedd CE
the solution on each subdomain can be found in the Sprsﬁ%%eworks are twofold:

spanned by a number of precomputed subdomain solutions,, . ] . ) )
referred to as the Macro Basis Functions and denoted by th&) Compression of the original MoM matrix equation by
column vectory,,, wherei is the index of the subdomain akd gmploymg reIaﬂngy few macro basis functions (MBFs)
in the index of an MBF defined on that subdomain. The above M order to e>_<pI0|t the low Qegrees-of-freedom .(DOFS)
MBFs need to be carefully chosen, and how to do this will be ~ hat the physics-based equivalent current effectively at-
discussed in detail in Section IV. For the sake of simpljcity tains, and reducmg bOFh 'Fh_e memory storage require-
we will assume that the indices of all basis functions in a__ MeNts and solve-time significantly. ,

given subdomain are consecutive. It is then easy to identiffil) Computation of the coupling between spatially (or spec
blocksof the MoM impedance matrix associated with testing ~ ally) distant MBFs in order to construct the reduced
and basis functions on specific pairs of subdomains. One can MOM matrix in a time-efficient manner.

also identify segmentsof the excitation vector, residual, or The objective of these CEM frameworks is to retain the
solution vector; those segments describe tested fieldsremtu low-order basis functions of high spatial resolution foe th
distributions on specific subdomains.Qf denotes the matrix current (with minimum cell size\/10) to be able to conform
whose columns are comprised of the MBdg, then, for the 10 arbitrarily shaped geometries, while reducing the Daits f
ith segment ofx, we assume that; = Q,y;, for the i-th the current by employing MBFs. They present the additional
segment of. The reduction of unknowns arises from the facddvantage that existing MoM codes can be reused with only
that Vectoryi contains much fewer unknowns than Vecmr minor modifications. Within the MBF-type class of methOdS,
(typically by one to two orders of magnitude). By applyin®n€ can recognize three widely-published CEM modeling
Galerkin testing, i.e., by choosing the set of macro testidggmeworks. These are:

functions identical to the set of macro basis functions, wee The Characteristic Basis Function Method

obtain [6]: (CBFM, [6]) which has been successfully applied

" " " to a large class of scattering [8], radiation [9],
Q' ZuQ ... QU ZivQw Y1 Q'v: absorbing [10], as well as to waveguide and transmission

: : : = : line problems [11], [12]. Applications to planar antenna
QlzviQ: ... Q¥ zynQy YN Qllvy and microwave circuits have been described in [13].
This has been done typically by employing plane-
where Q' denotes the transposed conjugateQfIn many wave-spectrum (PWS) generated CBFs for scattering
implementations, just the transpose operation is appéed, problems (Sec. IV-A, and [14]), and primary, secondary

it is difficult to say which one of these two options yields a ~ or tertiary CBFs for radiation problems (Sec. IV-
better result. Since the matric& have much fewer columns C), or a combination thereof [15]. CBFs partially
than lines, a very strong compression of the original system overlap to preserve the continuity between electrically

of equations is achieved. interconnected subdomains [16], and subdomain
One should note that the original MBF approach [5] also ~ extension and windowing techniques are used to
employs elementary basis functions that “bridge” conseeut mitigate edge-truncation effects when generating CBFs

subdomains and that the real and imaginary parts of the MBFs ©on the interconnected subdomains (Sec. IV-A). CBF
are treated separately. These two refinements have either no interactions for widely spaced subdomains have been
been retained, or they have been integrated in differemagor computed rapidly, either using the Adaptive Cross

in subsequent MBF developments. Approximation (ACA) Algorithm (Sec. V-A, and [16]),
It is interesting to note that theth block-line of (1) can be an MBF-field interpolation technique (Sec. V-B,
written as: and [17]), or the Multilevel Fast Multipole Algorithm
Qfl ([ZX"™], — v;) = 0 ) (MLFMA, [18]). The CBFM has shown to be highly
! paralellizable [19], [20], and a multilevel version of the
where x® is the solution obtained by using MBFs, afgl; CBFM has been described in [21], [22] and will be
denotes the-th segment of a vectag (in the following, the revisited in Sec. VII.
brackets will in general be omitted). The expression betwee « The Synthetic-Functions Approach (SFX, [7])applies
parentheses is nothing else than the opposite of segirat the singular value decomposition (SVD) along with a

the residual { = v — Zx). This means that, as a result of  thresholding procedure on the singular values to the
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initially generated set of MBFs in order to orthonormalizéunctions in them-th domain; Z,,,,, is the impedance ma-
and to retain only a minimum number of MBFs [23]trix comprised of the reaction terms between low-level $asi
The SFX typically generates MBFs using point sourcdanctions in them-th domain.
that surround the subdomain under excitation (Sec. IV-In general, equation (3) is modified to considetended
B). Furthermore, the SFX employs a separate and isdbdomains[14], [38]. The purpose of this extension is
dependent set of low-order subsectional basis functiotvgofold. First, the edge effect due to the domain truncation
across the subdomain interfaces to electrically intercois- moved away and, second, it enables us to include the near-
nect subdomains [24]. Far MBF interactions have bedield contributions of the region closest to the domain.
computed rapidly through an AIM approach (Sec. V-D,
and [25]). It has primarily been applied to solve radiation
problems [24], [26] and has also been hybridized with a
multi-resolution approach [27].

o The Macro Basis Function Method [5] which employs
MBFs obtained from both spectral (Sec. IV-D, and [28]) N
and spatial domain analyses. Both domains are also
exploited for efficient computation of reaction integrals
between distant MBFs (see for instance the multipole ap-
proach both in Sec. V-C and [29], or the spectral domain
approach in [30]). The method has been applied to both
regular and irregular antenna arrays [31]. As mentioned
in Sec. VI, closer inspection of iterative and MBF-based
formulation has revealed an equivalence between specific
types of MBF generation procedures and Krylov subspace
iterative techniques, such as the Full Orthogonalization
Method (FOM) [32]. Besides, a relationship has been
established between the use of a block-diagonal pl%g' 1. MBFs generation based on the plane-wave expansion.

conditioner and the use of partially overlapping MBFs Fig. 1 illustrates this approach. The continuous thickdrac
in iterative and iteration-free approaches [33]. ) C X
Pp [33] hows the boundary of the domain in which the MBFs are

Other more or less related subdomain-decomposition meEé%’ing generated whereas the dotted thick trace delimits the

ods are the Sub-Entire-Domain Basis Function Methqg - . .
. . ) tended domain wherein the currents induced by each plane
(SED) [34], the Linear Embedding via Green'’s Opera\,—vave are calculated 4 P

tors (LEGO) technique combined with the eigencurrent ap- After discarding the currents in the extension, the congbute

{oror?c_h [35], [3;5]' an_g ?js_pegi;ic MBF domain OIeCOm|OOSitiOE'urrents are filtered using th@ngular value decomposition
echnique, as described in [37]. which yields the final set of MBFs and guarantees the orthogo-

nality between the MBFs. Thus, the SVD entails the following
IV. MBF GENERATION matrix factorization:

MBF-type approaches rely, for different subdomains, on ~ I
an a priori choice of the subpsace in which the solution dn = QuEnVp, (4)
is expected to reside. This subspace is described by thBere the diagonal of the matriX,, contains the singular

MBFs, whose choice is therefore crucial to obtaining adeurayalue of the decomposition. The final MBFs coefficieflts,
solutions. We describe below different methods that haembeare calculated by retaining only the columns@), whose

"__,-j-..__..
. L28

developed toward this end. normalized singular value is above a prescribed threshold
Hence, the-th column is only retained if; /o1 > 7. Typical
A. Plane-wave spectrum values for this threshold ranges from—3 to 10~°.

The plane-wave spectrumpproach [14], [38] calculates the The plane-wave spectrum approach typical_ly yields a higher
current induced on each subdomain due to any electromagn8ffmpPer of MBFs as compared to the previous approaches.
field radiated by a source external to the domain. Ifférefield Owever, the computed MBFs do not depend on the excitation.
conditionis assumed, then the external field can be expandeg@nseauently, it is usually preferable to analyze problems
in terms of a series of plane waves in the visible spectruff@t involve multiple excitation sources, as for example in
Thus, according to theuperposition principleany induced monostatlc RCSomp_utatlons. A modlflcanon of this approach
current can be represented as a linear combination of {fef® €mploy spherical waves instead of plane waves, as
currents induced by the set of plane waves. For #ia¢h Suggested in [10].
domain, the procedure can be mathematically expressed as

. B. Point sources
Jn=2Z_. P, 3 . .
mm Another approach for generating the MBFs consists of
whereP,,, is a matrix whose columns are the coefficients akplacing plane waves by a number of point sources distibut
the incident plane-wave field tested by the low-level basts/er a given surface that surrounds the subdomain of iriteres
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[39]. This approach may be regarded as relying on the surfan&oduced in [44]. In a nutshell, an extensiSp is associated
equivalence principle, according to which the sourcesreate with each subdomait$; in this approach (see Fig. 1). In the
to the surface can be replaced by equivalent electric afudlowing, segments of vectors and blocks of matrices will
magnetic currents on the surface [40]. In addition, for sighé be associated with different subdomains and their extessio
surfaces, the equivalent current can be limited to eletridoy using indicesi and i, respectively. The preconditioned
currents only. Such equivalent currents, in principleyeashe system of equations then readsx = w, with the following
completeness of the MBF basis formed in this way. The madtefinitions:

reason why the base may not be truly complete in practice w; =Y; (v; — P;va) (5)

is the limited sampling of the equivalence surface. This may. . -
Pling d ith v; and v;« corresponding to segments of the original

become an issue when the surface very closely wraps t ecitation vector. and
subdomain of interest, and the approach becomes virtua‘ﬁ)fl '

impractical when the subdomains are connected, sincerit the P, = Z, Z;,lia (6)
becomes difficult to let the equivalence surface partitioa t Y, = (Zi,— P;- Zi0 )L @
subdomains, unless the equivalence surface entirelydaslu '

the extended subdomain introduced in the previous section. Zij=Yi(Zij—PiZaj) 8)

There are two reasons for doing this. First, the preconutio
C. Primary and secondary MBFs system of equations ensures faster convergence of Krylov-

Another wav of generating the MBEs uses primar anb sed iterative techniques. Second, MBFs of orderan be
way 9 ing u primary tained simply through multiplication to the left of a pany

?;Stoﬂg?rﬁ/mﬁfer;nttod;ﬁ:'t:ﬁzn:igg(]);f ';;\Ste%iglcsrlglﬁtamgee BF by a number of consecutive matrices. By “consecutive”
Y ys- e mean that a matrix with first indek must be multiplied

for the analysis of mutual coupling in arrays, it is geneyrallto the left by a matrix with second index In Section VI, it

sufficient to prov!de all the embgdded element patt.e.rns \ia\l/ﬁl be shown how such MBFs can be combined to construct
well as the array impedance matrix. The above quantities

n . . . L. .
. . : » “@Rlov subs aces, in which solutions are sought in iteeativ
be obtained from the solutions derived by exciting the ar y P 9

r
at each of the individual ports. The construction of MBF%s)éhemes'

may then be obtained from the excitation of the antenna in
isolation, followed by the excitation of the other element®- ASM-MBF
by the fields radiated by the first element. From the MoM The ASM-MBF approach is limited to regular arrays of
point of view, this solution is obtained by multiplying bk& antennas or scatterers [45]. For array problems, one skeks t
of the MoM impedance matrix. More precisely, the primargolutions (current or field distributions) over the entireag
MBF on domaini corresponds td,; = z;.l v;, wherev; When an arbitrary element is excited. Therefore, it makasese
is the excitation vector on antenna (or subdomajnyhile a to obtain the MBFs from the field or current distribution in an
secondary MBF on antennais obtained from the equationinfinite array when a single element is excited. As explained
fs; = zj—j1 Z;;f,;. In order to enrich the set of MBFs, itin [46], this problem can be solved as the superposition of
is logical to employ the primary and secondary MBFs on alhfinite-array problems (with all elements excited) by scan
antennas, by considering every possible excitation, ogastl ning through every possible inter-element phase shift.ne o
secondary MBFs created from primaries on every neighboridgnension, this is expressed as:
subdomain. This approach usually provides excellent tesul . 12 A
on arrays of disconnected elements. For arrays of connected Im = o J® () eI ™Y dip 9)
elements, combining this idea with the use of extended sub- T Jo
domains, has proven to be very efficient and accurate, as hdgere .J,, is the current on element: when element 0 is
been explained in Sec. IVA. excited, andJ>°(v) is the infinite-array current at the same
The idea of primary and secondary MBFs can be extendpdsition within the unit cell, for an inter-element phaséftsh
to higher multiple-scattering orders, by including thetisey equal toy. By superposition, the current distributions obtained
MBFs as done for instance in [41], [42] and [43]. There isn successive elements when a single element is excited form
virtually no limit to the orders that can be considered, &lbean excellent basis for an arbitrary excitation law. Even the
at an increased computational cost. As explained in Sedlipn effects of array truncation can be well represented in this
the completeness of MBFs bases can, in principle, be adhiewmsis, since currents “reflected” by the edges of the array
by considering virtually unlimited orders (i.e., only lited by may form current distributions that are very similar to thos
the number of unknowns in the problem), though this is nobtained from “direct” waves launched by a single element
a viable option in practice. Fortunately, very high accyradn the infinite array. This might not hold true for elements
can be achieved with orders limited to 2 or 3, especially whéocated right at the edges (or corners) of the array, in @agi
extended subdomains are used. In [33], the somewhat complhen the elements are complex and connected with each other.
process of domain extension has been made implicit by fifEtherefore, to improve the accuracy, a few current distiiing,
pre-conditioning the system of equations. The preconuiio obtained in a 22 array, are added to the set of MBFs.
utilized is a nearest-interaction preconditioner, whiem de It has been found that this approach leads to a very fast
regarded as an extension of the shield-block preconditiormnvergence of the solution w.r.t. the number of points used

4
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to discretize the ASM integration, and excellent accuraay hvalue, one can observe howdecreases as a function df
been realized using about 20 MBFs per element. More impdcf. yellowish region in Fig. 2(a)]. Fod = 10, the effective
tantly, for the reasons explained above, the MBFs obtainethk isr ~ 10, which is less thar).5% of an equally large
in this manner are excitation-independent. An open-sourftdl-rank matrix. It is also observed that the effective kan
Matlab software for the example of linear dipole arrays hakecreases even faster for plates that are placed sidedby-si
been described in [47]. An extension of this methodology fdtor instance, forl = 10\, we find thatr ~ 4, which is smaller

arrays of plasmonic rods has been detailed in [48]. than 0.1% of an equally large full-rank matrix. Clearly, both
the subdomain sizes and orientation play an important role i
V. FAST MBF INTERACTIONS the degree of rank-deficiency &,,,, and, consequently, on
The construction of the reduced matrix equation in (1t51e computation time of the reduced matrix elements in (1).
requires us to compute many blocks of the form A. The Adaptive Cross Approximation (ACA) algorithm
QTHn Zn Qy, (10) The Adaptive Cross Approximation (ACA) algorithm, origi-

o ) ) o . nally developed by Bebendorf [49], approximates ¥jg x N,
and it is desirable to perform this computation in a timé&xny_deficient matrix blockZ,,,,, through the low-rank block
efficient manner. From a physics point-of-view, the factogiorized matrixZ,,,, = U, Ym*"y, "N This is advan-
Z,,, Q, represents the excitation matri,,, due to the (5460ys because (10) can then be computed rapidly using a
source MBFs on theth subdomain, whose radiatégHields 1 inimum number of multiplications as
are tested on thenth subdomain. As the source and obser- P
vation subdomains become electrically well-separatedésn f (Qm Um)(vn Qn)' (11)

space, the DoFs of any such subdomain excitation vector (cAl very important feature of the ACA algorithm is that the
umn of V,,,,,) reduces. In fact, for extremely large separatiopatricesU,,, and V,, are constructed on-the-fly, withowt
distances, each excitation vector practically represestagle priori knowledge of the entire original matrix block,,,,;
incident plane wave field (thus only one DOF, or one modehe iterative ACA algorithm dynamically selects certainvso
One can exploit this phenomenon to rapidly compute (1dpnd columns ofZ,,, and, in conjunction with a normaliza-
either through a field expansion method employing only th@yn procedure, these normalized vectors form the rows and
first few dominant modes, or by using an algebraic methe@|umns of the matrice¥,, andU,,,, respectively. Indeed, for
exploiting the low-rank nature o,,,,. well-separated groups of RWGs (Rao-Wilton-Glisson double-
triangle basis functions), the electric field at the obstoma
group m produced by any source RWG can be expressed
as a linear combination of the fields produced by only a
few of these source RWGs (source sampling). Likewise, the
electric field tested at the observation grouwpproduced by
» any source RWG can be expressed as a linear combination
U of the fields tested by only a few of these observation RWGs
0 03 (field sampling). Hence, a cross-approximation technicare c
be used to adaptively construct the subsets of relevantsour
X mi and observation RWGs.
wacle fle)) wa(la, o)) ) The ACA algorithm is purely algebraic in nature, easy

. i to implement, and can be used irrespectively of the kernel
- 25

of the integral equation, basis functions or type of integra
dlfA]

Geometry

Geometry

z [m]

x [m]

o
y [m] 05 05

equation formulation. The ACA algorithm has not only been
applied to solve low-frequency EMC problems [50], but also t
solve electrodynamic antenna problems involving oscitlat
kernels using an MBF approach [16]. Since the ACA algo-
rithm approximatesZ,,,, through the producU,,V,,, most
of the non-selected elements @&f,,,, are predicted through
(@) (b) linear interpolation, i.e., from the produtt,,V,,; hence, the
Fig. 2. Normalized singular value spectriog (| |/|o1]) of the coupling  time-harmonic nature of the fields is not accounted for. The
s . on o s e 3 g, ACA algoritam may therefore require more iterations than
each other, and; (b) in a side-by-side configuration. a more physics-based approximation technique, such as the
multipole approach as explained below. Also, the compu-
As regards the rank-deficiency &,,,, Fig. 2(a) and (b) tational overhead of the ACA algorithm becomes excessive
show how the singular value spectrum 2f,,, depends on for a relatively large numerical rank &,,, (e.g., for small
the separation distancé between a pair o2\ x 2\ plates. subdomain separation distances), so that a direct elebyent-
Note that, when defining the effective numerical rank-as ~€lement computation d,,, is more efficient. The interested
rank(Z,,») = |o|/|o1| = 1072, i.e., whenr is the number of reader may refer to [50], where a pseudo-code of the ACA
singular values that are withith—2 from the largest singular algorithm in Matlab notation can be found.
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Fig. 3 shows the matrix fill-time of the ACA algorithm Interpolation g”d’_\'f’de"dfji;?: ration
for building the matricedJ,, andV,, — when applied to the
case shown in Fig. 2(a) — relative to the time needed wher
direct matrix filling approach is used for building,,,,. It is 3

100
9ol —— ACA Threshold = 10 * |
- = = ACA Threshold = 10 2
—6— ACA Threshold = 10 3|

701

Geometry

Fig. 4. Interpolation grid for fast computation of the reddiceatrix.

| by an infinitesimal dipole at the spatial pointand oriented
s along thep-axis; and,fmj is the j-th low-level basis function
| in the n-th MBF domain. Once these matrices have been
computed, the field in the sampling grid can be calculated by

Relative Fill Time  [%]

ST == post-multiplying with the MBF coefficient&?"" = V/,,,,, Q...
3 4 5 Thus, the need for computationally expensive integrations

the source domain is obviated. It is remarkable to note that
Fig. 3. Fill time of the ACA constructed matrix blocks,, andU,,, relative this approach 1S compatlble with mor? advanced mt_ermnatl
to a full element-by-element filling approach ..., as a function of the SChemes such as those proposed in [52] wherein a phase
separation distance for a pair of plates facing each othesf[Fig. 2(a)]. extraction is carried out first to further reduce the DoFs.

] ) The interpolation scheme is illustrated by means of the
evident from Fig. 3 that the speed advantage of the ACA OVgkample shown in Fig. 4 where the bistatic analysis of two
a direct matrix filling technique is significant. For instanc square plates with edge lengths ok & considered. Both
for d > 0.5, the ACA algorithm requires less than 15% Opjates lie in the same plane and the distance between them is
the time needed to fill a full MoM block on an element-byq 5\ The frequency is chosen to be 300MHz. For this case,
ele_rgent basis. This is true even for ACA thresholds as low @ interaction between both blocks is calculated by using a
107", which means that the relﬂve ACA approximation errixg interpolation grid, which enables one to reduce the time
IVaUnm = Znllg/|Zmnl[g < 1077, where|| - || denotes the 5 compute the reaction term between the MBFs of both plates

Frobenius norm. Hence, for electrically large problems throm 4.28s to 0.37s. We note an excellent agreement in the
average ACA matrix fill time typically takes only a few pertengptire dynamic range of the bistatic RCS.

of that needed in a direct matrix filling approach. As an
alternative to the ACA technique, matrix compression based

on the incomplete QR decomposition [51] has been used in 5| Conventional CBFM ||
[33]. ‘ .=~ = Interpolation scheme

101 b
B. Tested field interpolation
Another technique, which also exploits the DoF of thg

field radiated by the MBFs, is based on the conventiorh_é’l -10f ‘ E; ‘ ‘ 1
interpolation of the radiated field [17]. Thus, the testeddfie
can be computed by calculating the field in a small grid ovg} —20 ‘ k( 1
the observation domain and, then, retrieving the field in the _30t i
low-level basis functions via interpolation. Fig. 4 shovsst
interpolation scheme for a planar geometry. -40+

In order to rapidly compute the field radiated by each MBF
in the n-th source domain over the-th observation domain,  —30r
the matrixV,,,,, relating the coefficients of the source domain 0 2'0 4'0 6'0 8'0
MBFs and thep-component of the field(= z,y or z) in the 8 [deg]

interpolation grid are computed. By invoking the reciptgci
theorem, the entries of this matrix can be expressed as [LFg. 5. Bistatic RCS between two square plates with a distafid.5) and

edges equal t@\.
Upnlisi) = [ Fog- Brlrnds. @2 o | -
Another approach involving interpolation for estimating
whereinr,, ; is thei-th observation point in the interpolationMBF interactions is described in [53]. It has been developed
grid for the m-th MBF domain; E(r) is the field radiated for the analysis of irregular arrays of identical antennas (
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scatterers) and it produces a very simple model for tlad larger for finer meshes. Such time-saving has been demon-
interactions between MBFs versus relative position. Itéisddl strated in the case of arrays of broadband conducting aasenn
on three physical transformations: far-field extractiohage in [29], and has been extended in [32] to subdomains made
removal and change of the distance variable. In this way,0& penetrable bodies. An extension to printed antennas is
harmonic-polynomial model is obtained, valid for any refat described in [54]. In the latter case, the Green’s function
position in the plane, through the explicit calculation ofs decomposed into a spherical wave, related to an average-

interactions at a few tens of relative positions. medium term, as well as into cylindrical waves [55]. In both
cases, the MBF interactions are computed using multipoles.
C. Spectral approaches The treatment of the terms related to the cylindrical waves

Interactions between subdomains can be speeded up byge?(?hbeen described above. For the multipole-based treatmen

ploiting integral representations of the scalar Green'gfion. . e terf‘"'s rleI:]t\?ltj/zto ;he %“.n drrllcal wa\l;es, tfhel compjexit
This is particularly fast when, in such representationg S Proportional t where/V Is the number of elementary

dependence on source and observation coordinates is s@ﬁa’f-is functions per antenna, gnd to'the number of cylindrica
rable. In practice, the separable form is generally idexttifi waves needed, which IS typlcally n _the order of 10. For
with a plane wave, expressed by a complex exponentim.IS case, the computation t|r_ne_ for printed structures_ls on
Two categories of spectral approaches have been develo gmglly ]ar?er than what it is when the subdomains are
in the literature. The first one is associated with multipol teracting in free space.

decompositions, while the second one is associated witlesvav

0.5

radiated from a given reference plane. oa
a) Multipole approach: The derivation of this approach 03
is provided in [29]. The final result reads as follows.Hf is 02
the radiation pattern of a conjugated Macro Testing Functio . o1
and F,, is the radiation pattern of a conjugated Macro Basis °_0‘;
Function, the interaction between them can be written: oz
1= / / Fr By T(k, 7 0)dU (13) o
-05 - -
whereT' (@) is the translation function appearing in multipole R T

decompositions, within a constant factaér,s the free-space _ ) o ) ) ) )
wavenumber and’ is the vector distance between referencggély%is 0?}?5;?227&‘"0” of the bowtie antenna consideredhe multipole
points of the source and observation domains. The integrati '
domainU corresponds to the unit sphere, to which the unit
vector o points. This approach allows the computation of
the interactions between subdomains without computing t
interaction matrixZ;;. The only constraint is that the distancelo_s | \ |
between subdomains should exceed a certain minimum, wh S
value is of the order of half wavelength. Fig. 7 illustrate Seol
the accuracy of the multipole-based method withx40 P R e LT TR ~oo
integration points over the unit sphere, for the antennaveho®® | -
in Fig. 6. The MBF considered is a primary (direct excitatio
of one antenna); the solid line provides the magnitude of tl " Distance in wavelengths

interaction versus distance in wavelengths, while the eldst

line povides, on the same log-scale, the magnitude of t
difference between results obtained using the MoM maitr 107 \‘\ |
approach described in Section 2 on one side, and the mudtip '

\

\

approach on the other side. It can be seen that the qua

suddenly degrades for very small distances. However, tl S

sudden change happens when the antennas are nearly touc ‘ ‘ ‘ o "' T TTTTTmmeeal
each other. More precisely, if the acceptable threshold 10 0 05 1 15 2 25 3 35 4
defined at a 1 % error level, then for the 5 cm wavelength, tl Distance in wavelengths

tip-to-tip distance between antennas should be at leastr9,5

; ; ; ig. 7. Interactions (solid) between primary MBFs defined opa& of
while that distance is onIy 0.2 cm for the 2.5 cm Waveleng@ntennas versus center-to-center distance (vertical ishifig. 6). Dashed:

case. error incurred by multipole-based approach. Top: 5 cm wanghe Bottom:
If N is the number of elementary basis functions on a givexp cm wavelength.

subdomain, the complexity of computing interactions betwe

the MBFs is typically reduced fromiVZ to N. Assuming b) Waves from a reference plan&ssuming a reference
sudomains of the order of one wavelength and a relativgiyane XY, the scalar Green’s function can be written as a
coarse mesh; the time saving is smaller for larger domaiosntinuous spectrum of plane waves, characterized by their
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lateral wavenumbers, and k,. If k2 + kg < k2, then the First, let us assume a relatively well preconditioned syste
plane wave is propagating along otherwise it is evanescent.of equationsA x = b, with A sufficiently close to a unit matrix.
Using such a decomposition, the interactions between MBThke reader is referred to [58] for more precise figures of ieri
can be written as of preconditioning and to [60] for recent advances regaydin
) preconditioning in the framework of integral-equationutimn
I=K // fy e (he Bothy 80) €2 G(ky, ky ) ds dky,  (14)  in high-frequency electromagnetics. For the above system o
’ equations, withxy, as an initial guess, the first residual is
wheref, andf, are the Fourier transforms, or “patterns”, o}, — b — Ax, and the simplest possible iteration [58] is
MTFs and MBFs in direction(k,, ky, k.)/k, which becomes obtained by considering at iteratigna correction equal to the
complex outside the unit circle in thé,., k,) /% plane;A, and  residualr,_;; hencex, = x;_; +b — Ax,_;. As compared
A, are distances between reference points of the subdomatg, _,, x,. has high chances to be closer to the exact solution
in the XY plane; G is the spectral-domain representatiog, , + Afl(b — Ax;_1), because is relatively close to a
of the dyadic Green's function and is a constant. Such ynit matrix, as a result of preconditioning. The convergenc
an approach, specialized to analytically-derived CBFss haf this procedure is dictated by the eigenvalues of thetitmra
been presented in [56]. Since the MBFs are defined ov@atrix (1 — A), which are unfortunately not knowa priori.
domains that are substantially larger than those of eleangntAs has been very well summarized in [61], Krylov iteration
basis functions, their pattern is relatively narrow; hetite essentially consists of keeping all the approximants abthi
integration domain in wavenumber space can be strongly to the stepk and to recombine them to obtain a more
reduced. Examples of this approach are given in [30] in th@curate solution. This is equivalent to searchifg= x — xo

case of printed antennas. in the subspace spanned by the successive residyals etc.
Based on the above, it is easy to prove that this subspace can
D. FFT-based approach also be written as Sp%mo,ArmA2 ro, ..., A" ! ro}, which

In [57], the interactions between MBFs are obtained using )the f%lov subs_pqce O.f ordek. Each .Of the vgctors
= A% " ry describing this subspace, which we will name

;2; As”\gc];(r)arll [;rlntrt.aodacsr':ru;t#(r;s.th'(l;hls 2;?_/ dssm\i/:]evg:i?\vgiltﬁm generating vectorsmay be regarded as MBFs spanning
P pp ' P e whole computational domain. In the following, we will

between MBFs, MTFs and the Green’s function are written . .
. . denote byQ the matrix whose columns are formed by using
as products in spectral domain. In that approach, forwacd

. he consecutive generating vectors.
backward 3D FFTs are exploited to compute the space- O'Sec:ond, one needs to establish a set of conditions which will

spectral and spectral-to-space domain tr_ansforms_. Thip Mfetermine the scalar coefficiengs...yx—1 that multiply each
be regarded as one of the most effective MBF-interaction ) . : g :

. generating vector in the final estimatexofo that we can write
approaches to date. Reference [57] also provides expnesssi

Y ) . ) . -
for the complexities of the different interactions techreq X' = x—xp =~ Qy. In passing, to avoid dealing with the initial

o essx, the system of equations may be rewrittenfas’ =
as well as validations for large problems, such as arrays . - -
. ro. A simple approach for finding the vector of coefficiegts
printed antennas.

consists of testing the original system of equations with th
generating vectors, i.e by using

VI. RELATION WITH KRYLOV SUB-SPACE ITERATION " "
Q"AQy=Q"rg (15)

A. Reformulation of Krylov iterations

As reminded in Section I, the concept of Macro Basis FundiS 1S mathematically equivalent to the Full Orthogonal-

tions can be expressed in a relatively compact form. Kryldg@tion method (FOM, [59]), which imposes the residual to
the Krylov subpsace, and hence to each

subspace techniques, essentially developed in the sesenff® ©orthogonal to _ _
(@) composingQ. This also has the same

are also based on a few key ideas, some of which also appdgfperating vectos _ _
in MBE methods. form as an MBF approach performed over a single domain.

However, the use of specific tools, as for instance tﬁré]e reduced system of equations obtained in this way will in

properties of Hessenberg matrices resulting from the Atinoldeneral be ill-conditioned, because of quasi-linear depeoe

orthogonalization process [58], may somewhat obscure {Rgtween generating vectors. This is why it is necessary to

basic ideas behind Krylov methods. In this section, we psepoP'thogonalize the generating vectors composihgThis can

an alternative —or perhaps simplistic— formulation for twg€ achieved using the Amoldi procedure, inspired from the

popular Krylov-based methods, namely the FOM (Full ofram-Schmidt method. As compared to (15), an alternative
thogonalization Method) and GMRES (Generalized MinimaﬁpproaCh consists of testing the initial system of equation
Residual), both of which are described in the seminal paper W't_h the generayng vectors, each left-multiplied by mai.
Saad and Schulz [59], published in 1986. As explained farthENiS may be written as

below,_that alter_ngtive formulation may incur a very maagjin (AQ) (AQ)y = (AQ)" r, (16)
reduction of efficiency. However, the formulation proposed

here should further clarify the relationship between Kvylowhich may be viewed as the normal equation which minimizes
subspace iterative techniques and the MBF approach. This whe residualAx’ — ry in the least-squares sense. This is
be explained below in two steps. equivalent to the GMRES approach [59].



Forum for Electromagnetic Research Methods and ApplicationTechnologies (FERMAT)

In practice, the above methods can be implemented general solution orb;:
follows. As the consecutive generating vectohd r, are
created, they are orthogonalized and placed into ma@rix .
At every step, the following system of equations is solved: xi=Z5' | vi— D aZix
BYAQy = B”r,, with B = Q for FOM andB = AQ 7

for GMRES. The solution is then given by = xo + QY. \yhere thez;! Z,; x; terms are the secondary MBFs and the

The A Q vectors can be computed at very low cost, based 9n ¢qefficients are yet to be determined. It is also obvious

operations already carried out to build the Krylov subspacgsn the j-th block-line of the system of equations that an
This observation makes it possible to use only one matrixs -t sojution fow; can be obtained with; = 1 for all j's if

vector product per iteratior_1 instead _Of two. The simpli(m_fy the x;’s are knowna priori. Of course, this condition sounds
this new formulation may incur a s!lght extra computationg|igicyit to satisfy; however, in common with the Krylov-ke
cost. Indeed, standard implementations of FOM and GMREg 5 qaches; the fact of keeping free all the coefficients tha
make use of the Hessenberg matrix [S9] resulting from thg,,inly the generated MBFs provides important degrees of
Ar_noldl procedl_Jre used to o_rtho_gonallze the Krylov Su_bEpaq‘reedom (DoFs). To a large extent, those DoFs may compen-
Itis an upper-_tnar_lgular matrix with an extra non-zero d'a@ sate for the deficiency of working with MBFs generated from
below the main diagonal (it is related to tRematrix resulting ;o -~curate current distributions on the subdomains;. More

from. the modified Gram-Schmidt pro.cedure). Congecuti@ol:s are obtained by adding higher-order multiple-scatier
solutions of the larger problems obtained at each iteratiqigrs a5 explained in Sec. IV.C.

can be accelerated by keeping in memory previous pivotingTWO challenges appear when implementing the above pro-

operations on the growing Hessenberg matrix. HOWeVer, asqy re First, in a multiple-scattering process, the nunolbe
long as the number of iterations is much smaller than theyorateq MBFs increases exponentially. Second, corthecte
number of unknowns (say by at least one order of magnitud Lbdomains may lead to non-physical MBFs 6p with

the solution time of the reduced system of equations is NoLay singular current distributions along the contofirSe.

the Iimiting fagtor. Thg dominant part of the compgtationa{-o circumvent the latter problem, several authors [62],] [63
effort is associated with the product between ma#ixand opted to extend subdomaif; (see also Sec. IV.A), with

consecutive generating vectors. Under those circumsﬂ;ancg connected auxiliary subdomaifi® and to retain as an
3

the simple procedure proposed here is, in practice, eqqu]\BF the current induced only on subdomath (see Figs.

efficient. 1 and 2). As already mentioned in Section IV, in [33], it is
When the number of iterations becomes large, the gengroven that this approach is equivalent to the classical MBF
ating vectors may require too much memory and their ospproach (i.e., without subdomain extensions), provided t
thogonalization may become too expensive (linear growth pe system of equations is modified using a nearest-interect
iteration). Also, they may lead to poor conditioning be@usreconditioner, which may be viewed as an extension of the
they are only marginally linearly independent, a problewt thshielded-block preconditionner proposed in [44] for disco
can get exacerbated by numerical roundoff. Then, the iterat nected periodic structures. We will denote Byx = w the
may be restarted, considering the solution obtained aftersgstem of equations preconditioned in this manner. Details
number of iterations as the new first guess. about the combination of this preconditioning with compres
sion techniques (based on ACA or QR) have been provided in
[48]. Given such preconditioning, the extension of subdosa
becomes implicit, and multiple-scattering MBFs are simply
generated via multiplication to the left by consecutiveckk
of the preconditioned system of equations. In [33], it isvero
) ) _ that, if for a given excitation all multiple-scattering MBRre
Regarding MBF construction, a particularly well-posed a jenerated up to orde, then the Krylov subspace of order

proach consists of using "primary” and "secondary” MBF§ _ a1 he constructed with the exclusive help of the MBFs.
[9], extended to higher orders in [41]. In a nutshell, therent Mathematically, this reads

distribution obtained on a given subdomain impresses fiahds

another subdomain, in which currents are induced when that 51(,‘1) — QE”) fpy (18)
other subdomain is taken in isolation; this process is coeti

in a multiple-scattering approach. Let us denote $ythe where sE‘” is segment; (corresponding to currents in the
subdomain of interest and by, all the other subdomains. If subdomain) of generating vector of order < p (i.e., theg-th

the currents on other subdomains are known exactly, then tteetor defining the Krylov subpsace, Sec. VI.A); the columns
MBFs they induce on subdomaly) form a complete set, with of ng are the MBFs onS; up to orderp; andf, , contains
known coefficients. This can be proven from théh block- coefficients that can be unambiguously determined. Besides
line of the system of equations, which represents the ggstithe mathematical proof given in [33], an intuitive argument
of fields onS;. If the Z;; matrix denotes blocks of the systenmay be advanced to justify the above statement, namely if the
matrix, x; denotes solutions ot¥; and v, the segment of generating vectors of the Krylov subspace are created ghrou
the excitation vector standing for testing of incident feelth consecutive left-multiplications by the entire mat, then

Si, then the multiple-scattering process produces the fatigw they can only involve series of “consecutive” blocks Bf,

17)

B. Relation between Krylov iteration and MBF approach
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left-multiplying a segmeniv; of the excitation vector. As a a truncated multiple-scattering process, only up to order t
reminder “consecutive” means here that, if blogk; left- (with the nearest-neighbor preconditioner the higher ierde
multiplies blockZ;, thenj = k. If the preconditioned system not seem to significantly improve the accuracy). Numerical
of equations is used, the segmamt actually corresponds experiments have led to the following (albeit preliminary)
to a primary MBF, while the products that appear in theonclusion: for equal cost in terms of computation time and
formation of the generating vectors simply correspond tmemory, the accuracy of both methods is similar when the
multiple-scattering MBFs. Hence, the segments of thediffe  number of iterations of the FOM approach is equal to the
generating vectors are linear combinations of MBFs, and asmber of MBFs per subdomain. This just appears to be a rule
far as the Krylov subspace is considered as a meaning@ilthumb and needs to be further tested with other examples.
basis for the entire solution, the above property indic#tas We provide below one more example, involving a connected
the multiple-scattering MBFs are going to form an equallgirray of bowtie antennas, also studied in [64]. Theb5array
meaningful basis, when used on their respective subdomaiissshown in Fig. 8. In the preconditioning step, all of the
This alleviates the problem with the issue of completendss meighboring elements are included in the auxiliary subdoma
the MBF subspace. However, as mentioned above, the numbgy. 9 shows the port currents obtained when only the element
of MBFs generated in this way rapidly becomes prohibitiee, sl is excited (top line). The ports do not contain a series
much so that higher-order MBFs or MBFs generated througihpedance; simulations are carried out for a frequency of 10
interaction between very distant subdomains in generall ne@Hz. It can be seen that the port currents on the other elesment
to be discarded. If deemed necessary, they can be replaceal®ynot very low as compared to the one in the excited element,
MBFs generated by using a different approach. For instanes, a result of extremely strong coupling. Thus, this strpngl
it is clear that MBFs generated via distant interactionsloan coupled array forms a good test case for numerical methods.
very well represented by MBFs generated using plane waveé®) the same plot in log scale, the differences between exact
such that MBFs of orders larger than two may be created basadl approximate solutions are shown for the MBF approach,
only on interactions between contiguous subdomains. with 9 MBFs per subdomain (corresponding here to one
Regarding the condition imposed by the MBF approadntenna) for the preconditoned system of equations, and the
to obtain the solution ofZx = w, another link can be errors obtained for the FOM approach with also 9 iterations.
established with the FOM Krylov iteration [33], which welt can be seen that a comparable error level is achieved,awith
have re-formulated in Sec. VI.A. Using the definitions islight advantage for the MBF approach. Quasi-identicabrerr
Section Il, we provide here a derivation of that propertyt tha levels, within 1.7 dB on the average, were obtained with 11
more direct in comparison to that given in [33]. Let us denoieerations for FOM, instead of 9. This new example supports
by rgp) the i-th segment of the residual vector, obtained frorthe rule of thumb referred to above. Further tests are now
the multiple-scattering approach up to the orgemhile all being carried out in the field of metamaterials.
MBFs are retained. By construction, the MBF solution is such Given this rule of thumb, one may wonder about the real
thatr(p) is orthogonal to the MBFs defined ) (see (2) and advantage of using MBFs, as compared to iterative techajque
comment below), i. eQ(”> H (P) = 0. Hence, using (18), we and we offer at least four. First, it is obviously advantageo

have, forg < p, S(q)H (p) _ fH Q(p) H (p) — 0. The same 0 reduce the number of DoFs when, because of the level

reasoning can be held for all subdomaﬁ}s such that: of geometrical_detail, the discretization of th_e_structm_a@d_s
@.H @) to be much finer than the usual/10 condition. This is
Z s; ) = s H ) = o (19) particularly true for antenna applications, where the rofte

complex feeding region needs to be modeled with many
because each term of the sum is zero, which proves tleé¢mentary basis functions. Second, when appropriaterglene
the entire generating vectaf? is orthogonal to the entire purpose MBFs can be found, the efficient solution for mugtipl
residualr(®). In other words, the MBF approach satisfies théght-hand sides offers an important advantage. An example
orthogonality conditions that characterize the FOM solutef where such MBFs can be easily found is non-periodic arrays
orderq equal to or smaller than the multiple-scattering proces$ antennas; though more challenging structures involeongy
p (for the FOM condition, see (15) and its interpretationected elements may also belong to that category. Thirdgbei
below.) This however supposes that all multiple-scatterimon-iterative, the MBF approach is much easier to para#eli
MBFs are kept up to ordep, which is not truly practical Finally, we also observed for the case of scattering by gsher
(see above). Also, the MBF solution of ordesatisfies more that the rule of thumb referred to above tends to break down
conditions, at the cost of having to work with a larger systefior resonant structures, with an important advantage,ringe
of equations, with more unknowns to be determined than @$ accuracy versus computational resources, in favor of the
needed in the FOM approach of same order. MBF approach. This seems also to be the case for extremely

Now let us examine an important question regarding thimely meshed structures, such as those studied in [48].

comparison of performance, in terms of accuracy and compu-A further link between Krylov-based methods and the MBF
tational cost, between Krylov-based iteration and MBFedasapproach may lie in the “restart” procedure [59]. For Krylov
solution. In [33], an empirical comparison has been peratmbased iterations, this means that the solution at a givent poi
on different types of examples (arrays, spheres and aiycratan be considered as the new first guess for the iterative
This comparison is limited to the following conditions: theechnique. Similarly, the MBF-based solution obtained on a
MBFs are generated in an excitation-specific way and througlven subdomain can be transformed into just one MBF, while

10
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partitioning so that each subdomain corresponds to an eteme
of the array (e.g., [6]). However, there is nothing that pres

us from defining MBFs for a group of adjacent elements. For
the case of electrically large antennas or scatterers ikaro
straightforward strategy for the partitioning and the predd
choice is to select the subdomains by grouping basis fumstio
inside certain canonical geometries (e.g., cubes) [38]. [6

At this point, one might wonder how large thsize of
the subdomainsshould be to define the MBFs. From the
solve-time point of view, some criteria have been recently
proposed [67] based on minimizing the complexity. However,
it does not consider the reduction of the number of unknowns,
which is one of the key features of the MBF approach.
Although the number of degrees of freedom (DoFs) of radiated
and scattered fields is well-known [68], [69], to the best of
authors’ knowledge, that is not the case when consideriag th
Fig. 8. Mesh used for simulation o6& array of connected bowtie antennasnumber of DoFs (and so the number of MBFs) for the currents
Element spacing: 1.044 cm horizontally and 1.00 cm vergicall induced on an arbitrary surface.

To further examine this issue, connected with multilevel
MBF approaches, we will now present some numerical simu-
-10r , , 4 lations. Let us first consider a given geometry discretized b
means of low-level basis functions, i.e., RWG functions. The

0

-20f : SN . ) .
_ object is illuminated by a set of plane waves. As described in
_30L Exact solution | . . . L .
2 Section 1V, the current induced by any arbitrary incidenidfie
D _gof | can be calculated as a linear combination of these induced
= currents. Next, the singular value decomposition is cdroiet
c 50 FOM error . . . . . .
g and only those basis functions with a normalized singular
3 -60F 1 value abover = 10~* are retained. In other words, this
S _70 | procedure is equivalent to calculating the MBFs for a prable
with a single supporting domain so that any potential source
~80r MBF error 1 of error due to domain extensions is avoided.
-90r . In order to choose the number of plane waves, the number
—100L | of incident angles along is set toN = |ka] + 10, wherea
0 . 1 15 20 o5 is the radius of the minimum sphere enclosing the geometry.
Port index It is important to note that this choice, which is similar het

conventional rule for spherical wave truncation [70], figfi
Fig. 9. Exact solution for port currents (numbered left tditigop to bottom,  the Nyquist criterion [69]. A similar discretization of tipane
ﬁgfalt:ichQHSS), and errors obtained with 9 MBFs per subdomain addFOM  \yave spectrum is accomplished for each azimuthal circle for
a givend.

The number of surviving MBFs for different spheres and a
new MBFs are added, based either on plane-wave excitati@yénder is shown in Fig. 10. For the cylinder case, the heigh
or on higher-order multiple scattering. This enables one ®set equal to the radius and no caps are considered (s¢e inse
refine the solution without augmenting the dimension of tie Fig. 10). In order to check the accuracy of the generated
final system of equations. A preliminary study of this apptoa MBFs, the current induced by a linearly polarized plane wave
has been carried out in [64] and may lead to a new directitshcompared with the current computed using the MoM. For

of research on MBFs and CBFM. the cylinder case, the plane-wave is assumed to be polarized
parallel to the axis of the cylinder and the propagation mect
VII. M ULTI-SCALE MBE ANALYSIS is orthogonal to the aforementioned axis. The error is ddfine
as:
A. Degrees of freedom HXMBF _ XIVIOMH
Methods relying on MBFs benefit from a reduction in the €= XM : (20)

number of unknowns. This reduction offers a large number

of advantages such as the well-knowremory savingr the wherex™°M andx™ B are the coefficients of the low-level
use of conventional MoM techniques that have been typicalbasis functions using the MoM and the single-block MBF
limited in their application to electrically small problem approach. For the sphere case, the error rangesFrérm0—*
(e.g., [65]). As was previously detailed in Section II, MBFs$o 7.7 - 10~ whereas this error ranges froin3 - 10~* to
are defined over a set of contiguous low-level basis funstiori0-10~* for the cylinder. This verifies that the generated MBFs
In the analysis of antenna arrays, it becomes natural toyapplare good for modeling an arbitrary induced current.

11
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1500 B. Multilevel MBF approach

The aforementioned behavior of the DoFs versus the domain
size suggests that the best compression rates are ach@ved f
electrically large subdomains. Nevertheless, generdfiBfs
for these subdomains can be computationally expensiveeMor
over, the generation becomes more demanding when applying
the plane wave spectrum approach since the currents on each
subdomain has to be solved for multiple right hand sides. In
order to benefit from the reduction in number of unknowns,
while maintaining the computational burden at a reasonable
level, a multilevel scheme which is referred to Msiltilevel
—O— Sphere Characteristic Basis Function Methd@LCBFM) [21], [22]
—+— Cylinder has been proposed. This technique is based on a recursive gen
0 i i i i i i i eration of the macrobasis functions. A hierarchical partihg
0 1020 30 40 250 60 70 80 of the geometry is required before applying the multilevel

Surface [\'] approach. This step is illustrated in Fig. 11 for the NASA
almond in the context of a two-level scheme. In this figure,
a gap has been introduced between geometry partitions to
emphasize the domains. Next, the macrobasis functions are

gnerated from the bottom to the top level. At each level,

e basis functions are expressed as linear combinations of
the basis functions defined on the level underneath. Let us
consider a multilevel MBF at théth level, which is denoted
bg F® . The number of subdomains of levie 1 inside the

main is given byN while the number of MBFs for the
bdomain is given bg’'(n). Then, according to the multilevel
gfinition of the MBFs,F() can be expressed as:

1000 |

500

Macro basis functions

Fig. 10. DoFs for several canonical geometries.

The results presented in Fig. 10 reveal that the asympt
behavior for large domains is approximately linear. It i
interesting to note that the discretization of a geometrih wi
low-level basis functions also involved a linear increase
the number of unknowns versus the surface to be analyz
However, the slopes of the plots with MBFs are considerab
smaller than when we consider low-level basis functio
whose proportion is on the order of 100 basis functions p
square wavelength. For instance, a sphere with a radius of N C(n)

2 (i.e., surface50.27)2) can be modeled with 1056 MBFs F) Z Z 07D F=D 21)
whereas the number of low-level basis functions required m n
would be on the order of 5027.

Another interesting fact inferred from Fig. 10 pertains twhereqffj_l) are the weights of the linear combinations that
the number of MBFs needed for electrically small domainare computed in the process of generation of the MBFs.

In this case, the asymptotic behavior is not reached and thednce the coefficients of the MBFs have been computed at
number of MBFs grows much faster than in the case efch level, the matrix of the system of equations and the righ
electrically larger surfaces. In order to illustrate thdidity hand side can be recursively computed from bottom to top by
of the latter observation, let us consider the sphere gegmetarrying out pre- and post-multiplications by the coefiitge
once again. Furthermore, the relationship between the aumbf the matrices containing the coefficients of the MBFs at the
of MBFs and domain surface for any arbitrary surface isorresponding level.

considered to be equal to that for the sphere. This assumptio The above formulation can be applied to abitrary num-

is reasonable since the behavior of the curves in Fig. ber of levelsto benefit from the compression rate associated
has also been observed for other geometries such as plafith large blocks. Nevertheless, the number of MBFs for
or cubes. Under the previous hypotheses, an MBF metheely large blocks, which is assumed to be independent of
working with domains 0f28.9A? will require approximately the number of underlying levels, prevents us from handling
2.47 times fewer unknowns than needed using the same MBfxsremely large blocks. In other words, as long as the MBFs
method working with domains df.2\*. However, increasing are correctly generated at each level, the number of DoFs
the size of the domain surface requires the handling of mueah the top level is expected to depend only on the domain
larger blocks and, consequently, the computationally éurdextension. Consequently, very large domain extensiormiav

is significantly increased in this case. In the next sectioa,large number of DoFs and, therefore, upper levels cannot be
techniques to mitigate this computational burden are desttr efficiently handled because the number of underlying MBFs

Finally, it is worthwhile to remark that similar observato becomes very large.
have also been made by a number of different authors. For exOur experience is that @vo-level schemerovides a good
ample, this fact was observed in [71] and exploited to garerdrade-off between accuracy and compression rate withgut si
MBFs on large blocks by applying physical optics. Similarlynificantly increasing the computational burden. There appe
the analysis of some particular geometries for differentkl to be a consensus among other authors [21], [22], [72], [73]
sizes revealed that fewer MBFs are required when employiog this issue, since they also limited the implementation to
larger blocks to achieve the same prescribed error levédl [33wo levels.

n=1 i=1
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Fig. 12. Bistatic RCS for the helicopter. The inset shows firs level
partitioning.

In order to illustrate the multilevel approach, the bigtati
radar cross section (RCS) of leelicopter-type geometris
considered. The problem is discretized at 400 MHz by usinige Full Orthogonalization Method (FOM). Besides the direc
96844 RWG basis functions. Next, the surface is partitiomed solution aspect, the domain-decomposition nature of MBF-
that the low-level basis functions are grouped into 420 doma based methods allows one to enforce boundary-type conditio
for the first-level (i.e., conventional) MBFs (see Fig. 12)on each subdomain individually.
Generating the corresponding MBFs by using the plane-waveThis type of methods is particularly well-suited for appli-
spectrum approach, followed by an SVD thresholding witkation to geometries for which the characteristic dimemsio
7 = 107%, results in a problem with 13275 unknowns. Nextpf the mesh are very much finer than the wavelength, such
these first-level MBFs are grouped into three second-levtlt the number of physical degrees of freedom of the fields
domains which corresponds to splitting the geometry integh is much smaller than those implied by the complexity of
blocks along the:-axis. As a consequence, the final number ahe geometrical discretization. Such geometries are meie
unknowns (i.e., second-level MBFs) is reduced to only 3192ommon in industrial applications. MBFs can be applied to

The bistatic radar cross sectiofor the case of an incident preconditioned systems of equations, which can implicitly
field E; = exp(jkz)Z is shown in Fig. 12. The resultsaccount for the connectivity between subdomains without
obtained using the MLFMA implemented in the commerciadignificant loss of accuracy. Besides, beyond this preeondi
software FEKO [74] are also shown for comparison purposdmning, the MBF approach in itself seems to add its own
The agreement between the two methods is seen to be expetconditioning effect, such that practically no loss afiaacy
lent. is observed when solving scattering problems on objects nea
resonance. Being non-iterative in nature, the MBF approach
lends itself very well to parallelization, which means that
the MBF methodology is among the approaches that will at

Integral-equation approaches remain among the most cdoest benefit from the current strong trend toward largeescal
petitive methods for the solution of large radiation or se&rd@tg multiple-core calculation.
problems. Domain decomposition started to be applied tolt is expected that improved construction of MBFs, faster
this type of methods about fifteen years ago and has besteraction methods and multi-level approaches will reeei
introduced at about the same time by different labs, in sévemore attention in the coming years. As previously pointed
variants. They rely on thea priori determination of the out, the generation of MBFs yields a different number of
subspace in which current distributions (or equivalentents) unknowns, depending on the employed scheme. Problems
on a given subdomain can be found. Those subspaces r@guiring a restricted set of excitations can benefit from th
subtended by Macro Basis Functions (MBFs), defined in termigh compression provided by the primary-secondary agproa
of the original elementary basis functions. Their main adva(or its extension to higher orders) without a significanslo$
tage is that they allow the direct solution of large problemsaccuracy. On the other side, the plane-wave approach anable
thereby avoiding the uncertainty about the number of il@nat us to compute excitation-free MBFs at the cost of an incréamen
and enabling very quick solutions for multiple excitationsn the number of degrees of freedom. This fact suggests that
We reviewed different techniques for the determinationhef t a priori knowledge of the excitation can be employed to
MBFs, as well as methods for the very fast calculation afecrease the degrees of freedom in the problem.
their reactions. We also reviewed the similarities betwibésn Moreover, considering larger domains in the MBF genera-
class of methods and Krylov-based iterative techniqués, lition seems to (proportionally) require fewer unknownstiisgt

VIII. CONCLUSIONS ANDOUTLOOK
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the basis for the multilevel formulation. This probablyuks [9]
from the fact that more information is used during the MBFs
generation and, consequently, the achieved MBFs can beﬁgf
model the final currents. Thus, a rigorous study is still reed
regarding the minimum number of degrees of freedom to be
associated with a given problem, and regarding how to fulm]
exploit all thea priori information about optimum domain size
and excitation. Regarding the latter, for instance, eloita
dependent MBFs may remain valid when the primary sour
is moved over a finite domain. MBFs may also have a regular-
izing effect in the solution of radiation or scatering preiis.
Besides providing more stable solutions, their physicseda (13]
foundation can also serve purposes that are other thanypurel
computational. For instance, they have been exploited for
calibration purposes in [75]-[78]. They could also be eitphh [14]
with advantage in time-domain solution schemes, since MBF-
type basis functions in the time domain have been observed
to provide a better late-time stability [79]. (15]

To conclude, MBF methods and related techniques have
already proved quite powerful for the solution of Maxwell's
equations in surface integral-equation form. Over the pd&él
decade, they have been strongly accelerated and methaaolog
to produce more complete sets of MBFs have been developed.
Their direct-solution nature and their ease of parallétira [17]
make them preferable to iterative techniques for a widesais
problems. Nevertheless, it is expected that combined relsea
on MBF-based and iterative techniques will be beneficiah#o t [18]
development of both solution methodologies. Further msgr
in this area may also benefit from continued research on the
physical degrees of freedom of fields excited on arbitrarily19]
shaped structures, with possible applications beyondetios
computational methods.
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