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Abstract—The Macro Basis Functions (MBFs) approach is a
form of domain-decomposition method applied to radiation and
scattering problems solved by using integral-equation techniques.
It enables a systematic reduction of the number of degrees of
freedom, from that imposed by the discretization of the surfaces
to that associated with the physical limits of field distributions.
This paper reviews different variants of this approach, including
the techniques for determining the MBFs and for fast calculation
of their interactions. The link with Krylov-subspace iterative
methods is described, the relationship between the surface of
subdomains and the number of physical degrees of freedom is
discussed and multi-level schemes are revisited. Finally, avenues
for further research are outlined in the Conclusions section of
this paper.

Index Terms—macro basis functions, integral equations,
method of moments, characteristic basis functions, synthetic
functions

I. I NTRODUCTION

Efficient and accurate solution of electromagnetic-field inte-
gral equations has been an important research topic for many
years. Despite the availability of computers with fast CPUs
and abundant as well as affordable memory resources, ever-
increasing demand for solving larger problems still outpaces
the rapid advances in numerical techniques. The challenges
faced almost a decade ago were described in a review paper
[1] and the domain-decomposition approach was introduced
around the same time frame to solve large problems by using
the “divide and conquer” approach. One such methodology
is based on expressing the solutions in the subdomains in
terms of high-level basis functions that are linear combina-
tions of a number of pre-computed solutions for the isolated
subdomains, or for those domains surrounded by relatively

small neighborhoods. Such a divide and conquer concept
was already present in earlier works such as [2]–[4] and
has been developed more systematically by Suter and Mosig
[5], who introduced the expression “Macro Basis Function”
(MBF). Quite a few other methods based on aggregation
of low-level basis functions, such as [6], [7] appeared in
the computational electromagnetics (CEM) literature almost
contemporaneously, or soon thereafter. The main attributeof
the domain decomposition approach is that it enables us to
handle considerably larger problems, in terms of number of
Degrees of Freedom (DoFs) than is possible by using the
conventional Method of Moments (MoM).

Our objectives in this paper are to review some of the
earlier works, present the latest developments in this areaand
provide new perspectives on this class of methods. In order to
facilitate the understanding of the following sections, Section
II briefly describes what may be viewed as an elementary MBF
approach, while Section III provides a summary of associated
methods. Section IV explains how MBFs can be generated,
while Section V describes different techniques for fast calcula-
tion of interactions between the MBFs. Following this, Section
VI reviews the link between MBF approaches and modern
iterative techniques and Section VII addresses the important
challenges encountered when attempting to solve multi-scale
problems. Finally, Section VIII briefly summarizes this work
and presents some perspectives on the future directions.

II. ELEMENTARY MBF APPROACH

This section summarizes what may be regarded as the
simplest possible MBF approach. For reasons that will be
apparent later, it may not be the most effective numerical
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approach, but it will be used to introduce the terminologiesand
notations, while laying the foundations of what is to follow.
We will assume that the reader is already familiar with the
Method of Moments (MoM).

Let us write the original MoM system of equations asZx =
v in which Z is the MoM impedance matrix,x is the column
vector containing the expansion coefficients to be determined
andv is the excitation vector, which corresponds to the tested
incident fields. Next, we divide the computational subdomain
into a number of contiguous sub-domains, and postulate that
the solution on each subdomain can be found in the subpsace
spanned by a number of precomputed subdomain solutions,
referred to as the Macro Basis Functions and denoted by the
column vectorqik, wherei is the index of the subdomain andk
in the index of an MBF defined on that subdomain. The above
MBFs need to be carefully chosen, and how to do this will be
discussed in detail in Section IV. For the sake of simplicity,
we will assume that the indices of all basis functions in a
given subdomain are consecutive. It is then easy to identify
blocksof the MoM impedance matrix associated with testing
and basis functions on specific pairs of subdomains. One can
also identify segmentsof the excitation vector, residual, or
solution vector; those segments describe tested fields or current
distributions on specific subdomains. IfQi denotes the matrix
whose columns are comprised of the MBFsqik, then, for the
ith segment ofx, we assume thatxi = Qi yi, for the i-th
segment ofx. The reduction of unknowns arises from the fact
that vectoryi contains much fewer unknowns than vectorxi
(typically by one to two orders of magnitude). By applying
Galerkin testing, i.e., by choosing the set of macro testing
functions identical to the set of macro basis functions, we
obtain [6]:



QH
1 Z11 Q1 . . . QH

1 Z1N QN

...
. . .

...
QH
N ZN1 Q1 . . . QH

N ZNN QN







y1
...

yN


 =




QH
1 v1
...

QH
NvN




(1)
whereQH denotes the transposed conjugate ofQ. In many
implementations, just the transpose operation is applied,and
it is difficult to say which one of these two options yields a
better result. Since the matricesQi have much fewer columns
than lines, a very strong compression of the original system
of equations is achieved.

One should note that the original MBF approach [5] also
employs elementary basis functions that “bridge” consecutive
subdomains and that the real and imaginary parts of the MBFs
are treated separately. These two refinements have either not
been retained, or they have been integrated in different forms
in subsequent MBF developments.

It is interesting to note that thei-th block-line of (1) can be
written as:

QH
i ([ZxMBF]i − vi) = 0 (2)

wherexMBF is the solution obtained by using MBFs, and[g]i
denotes thei-th segment of a vectorg (in the following, the
brackets will in general be omitted). The expression between
parentheses is nothing else than the opposite of segmenti of
the residual (r = v − Zx). This means that, as a result of

Galerkin testing, the MBFs defined on a given subdomain are
orthogonal to the segment of the residual corresponding to the
same subdomain.

III. H ISTORICAL PERSPECTIVE

As mentioned in the introduction, MBF-type methods
rely on a divide-and-conquer approach to solve, through an
integral-equation formulation, radiation or scattering problems
involving structures that either have large electrical dimensions
or fine features. The characterizing key features of these CEM
frameworks are twofold:

(i) Compression of the original MoM matrix equation by
employing relatively few macro basis functions (MBFs)
in order to exploit the low degrees-of-freedom (DoFs)
that the physics-based equivalent current effectively at-
tains, and reducing both the memory storage require-
ments and solve-time significantly.

(ii) Computation of the coupling between spatially (or spec-
trally) distant MBFs in order to construct the reduced
MoM matrix in a time-efficient manner.

The objective of these CEM frameworks is to retain the
low-order basis functions of high spatial resolution for the
current (with minimum cell sizeλ/10) to be able to conform
to arbitrarily shaped geometries, while reducing the DoFs for
the current by employing MBFs. They present the additional
advantage that existing MoM codes can be reused with only
minor modifications. Within the MBF-type class of methods,
one can recognize three widely-published CEM modeling
frameworks. These are:

• The Characteristic Basis Function Method
(CBFM, [6]) which has been successfully applied
to a large class of scattering [8], radiation [9],
absorbing [10], as well as to waveguide and transmission
line problems [11], [12]. Applications to planar antenna
and microwave circuits have been described in [13].
This has been done typically by employing plane-
wave-spectrum (PWS) generated CBFs for scattering
problems (Sec. IV-A, and [14]), and primary, secondary
or tertiary CBFs for radiation problems (Sec. IV-
C), or a combination thereof [15]. CBFs partially
overlap to preserve the continuity between electrically
interconnected subdomains [16], and subdomain
extension and windowing techniques are used to
mitigate edge-truncation effects when generating CBFs
on the interconnected subdomains (Sec. IV-A). CBF
interactions for widely spaced subdomains have been
computed rapidly, either using the Adaptive Cross
Approximation (ACA) Algorithm (Sec. V-A, and [16]),
an MBF-field interpolation technique (Sec. V-B,
and [17]), or the Multilevel Fast Multipole Algorithm
(MLFMA, [18]). The CBFM has shown to be highly
paralellizable [19], [20], and a multilevel version of the
CBFM has been described in [21], [22] and will be
revisited in Sec. VII.

• The Synthetic-Functions Approach (SFX, [7])applies
the singular value decomposition (SVD) along with a
thresholding procedure on the singular values to the
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initially generated set of MBFs in order to orthonormalize
and to retain only a minimum number of MBFs [23].
The SFX typically generates MBFs using point sources
that surround the subdomain under excitation (Sec. IV-
B). Furthermore, the SFX employs a separate and in-
dependent set of low-order subsectional basis functions
across the subdomain interfaces to electrically intercon-
nect subdomains [24]. Far MBF interactions have been
computed rapidly through an AIM approach (Sec. V-D,
and [25]). It has primarily been applied to solve radiation
problems [24], [26] and has also been hybridized with a
multi-resolution approach [27].

• The Macro Basis Function Method [5], which employs
MBFs obtained from both spectral (Sec. IV-D, and [28])
and spatial domain analyses. Both domains are also
exploited for efficient computation of reaction integrals
between distant MBFs (see for instance the multipole ap-
proach both in Sec. V-C and [29], or the spectral domain
approach in [30]). The method has been applied to both
regular and irregular antenna arrays [31]. As mentioned
in Sec. VI, closer inspection of iterative and MBF-based
formulation has revealed an equivalence between specific
types of MBF generation procedures and Krylov subspace
iterative techniques, such as the Full Orthogonalization
Method (FOM) [32]. Besides, a relationship has been
established between the use of a block-diagonal pre-
conditioner and the use of partially overlapping MBFs
in iterative and iteration-free approaches [33].

Other more or less related subdomain-decomposition meth-
ods are the Sub-Entire-Domain Basis Function Method
(SED) [34], the Linear Embedding via Green’s Opera-
tors (LEGO) technique combined with the eigencurrent ap-
proach [35], [36], and a specific MBF domain decomposition
technique, as described in [37].

IV. MBF GENERATION

MBF-type approaches rely, for different subdomains, on
an a priori choice of the subpsace in which the solution
is expected to reside. This subspace is described by the
MBFs, whose choice is therefore crucial to obtaining accurate
solutions. We describe below different methods that have been
developed toward this end.

A. Plane-wave spectrum

Theplane-wave spectrumapproach [14], [38] calculates the
current induced on each subdomain due to any electromagnetic
field radiated by a source external to the domain. If thefar-field
condition is assumed, then the external field can be expanded
in terms of a series of plane waves in the visible spectrum.
Thus, according to thesuperposition principle, any induced
current can be represented as a linear combination of the
currents induced by the set of plane waves. For them-th
domain, the procedure can be mathematically expressed as

Jm = Z−1
mmPm, (3)

wherePm is a matrix whose columns are the coefficients of
the incident plane-wave field tested by the low-level basis

functions in them-th domain;Zmm is the impedance ma-
trix comprised of the reaction terms between low-level basis
functions in them-th domain.

In general, equation (3) is modified to considerextended
subdomains[14], [38]. The purpose of this extension is
twofold. First, the edge effect due to the domain truncation
is moved away and, second, it enables us to include the near-
field contributions of the region closest to the domain.

Fig. 1. MBFs generation based on the plane-wave expansion.

Fig. 1 illustrates this approach. The continuous thick trace
shows the boundary of the domain in which the MBFs are
being generated whereas the dotted thick trace delimits the
extended domain wherein the currents induced by each plane
wave are calculated.

After discarding the currents in the extension, the computed
currents are filtered using thesingular value decomposition,
which yields the final set of MBFs and guarantees the orthogo-
nality between the MBFs. Thus, the SVD entails the following
matrix factorization:

Jm = Q̃mΣmVHm, (4)

where the diagonal of the matrixΣm contains the singular
value of the decomposition. The final MBFs coefficientsQm

are calculated by retaining only the columns iñQm whose
normalized singular value is above a prescribed thresholdτ .
Hence, thei-th column is only retained ifσi/σ1 > τ . Typical
values for this threshold ranges from10−3 to 10−5.

The plane-wave spectrum approach typically yields a higher
number of MBFs as compared to the previous approaches.
However, the computed MBFs do not depend on the excitation.
Consequently, it is usually preferable to analyze problems
that involve multiple excitation sources, as for example in
monostatic RCScomputations. A modification of this approach
is to employ spherical waves instead of plane waves, as
suggested in [10].

B. Point sources

Another approach for generating the MBFs consists of
replacing plane waves by a number of point sources distributed
over a given surface that surrounds the subdomain of interest
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[39]. This approach may be regarded as relying on the surface
equivalence principle, according to which the sources external
to the surface can be replaced by equivalent electric and
magnetic currents on the surface [40]. In addition, for spherical
surfaces, the equivalent current can be limited to electrical
currents only. Such equivalent currents, in principle, ensure the
completeness of the MBF basis formed in this way. The main
reason why the base may not be truly complete in practice
is the limited sampling of the equivalence surface. This may
become an issue when the surface very closely wraps the
subdomain of interest, and the approach becomes virtually
impractical when the subdomains are connected, since it then
becomes difficult to let the equivalence surface partition the
subdomains, unless the equivalence surface entirely includes
the extended subdomain introduced in the previous section.

C. Primary and secondary MBFs

Another way of generating the MBFs uses primary and
secondary current distributions [9]; it is particularly suitable
(but not limited) to the analysis of antenna arrays. Indeed,
for the analysis of mutual coupling in arrays, it is generally
sufficient to provide all the embedded element patterns as
well as the array impedance matrix. The above quantities can
be obtained from the solutions derived by exciting the array
at each of the individual ports. The construction of MBFs
may then be obtained from the excitation of the antenna in
isolation, followed by the excitation of the other elements
by the fields radiated by the first element. From the MoM
point of view, this solution is obtained by multiplying blocks
of the MoM impedance matrix. More precisely, the primary
MBF on domaini corresponds tofp,i = Z−1

ii vi, where vi
is the excitation vector on antenna (or subdomain)i, while a
secondary MBF on antennaj is obtained from the equation
fs,j = Z−1

jj Zji fp,i. In order to enrich the set of MBFs, it
is logical to employ the primary and secondary MBFs on all
antennas, by considering every possible excitation, or at least
secondary MBFs created from primaries on every neighboring
subdomain. This approach usually provides excellent results
on arrays of disconnected elements. For arrays of connected
elements, combining this idea with the use of extended sub-
domains, has proven to be very efficient and accurate, as has
been explained in Sec. IV.A.

The idea of primary and secondary MBFs can be extended
to higher multiple-scattering orders, by including the tertiary
MBFs as done for instance in [41], [42] and [43]. There is
virtually no limit to the orders that can be considered, albeit
at an increased computational cost. As explained in SectionVI,
the completeness of MBFs bases can, in principle, be achieved
by considering virtually unlimited orders (i.e., only limited by
the number of unknowns in the problem), though this is not
a viable option in practice. Fortunately, very high accuracy
can be achieved with orders limited to 2 or 3, especially when
extended subdomains are used. In [33], the somewhat complex
process of domain extension has been made implicit by first
pre-conditioning the system of equations. The preconditioner
utilized is a nearest-interaction preconditioner, which can be
regarded as an extension of the shield-block preconditioner

introduced in [44]. In a nutshell, an extensionSia is associated
with each subdomainSi in this approach (see Fig. 1). In the
following, segments of vectors and blocks of matrices will
be associated with different subdomains and their extensions
by using indicesi and ia, respectively. The preconditioned
system of equations then readsZ x = w, with the following
definitions:

wi = Yi (vi − Pi via) (5)

with vi and via corresponding to segments of the original
excitation vector, and

Pi = Zi,ia Z−1
ia,ia (6)

Yi = (Zi,i − Pi Zia,i)
−1 (7)

Zi,j = Yi (Zi,j − Pi Zia,j) (8)

There are two reasons for doing this. First, the preconditioned
system of equations ensures faster convergence of Krylov-
based iterative techniques. Second, MBFs of ordern can be
obtained simply through multiplication to the left of a primary
MBF by a number of consecutive matrices. By “consecutive”
we mean that a matrix with first indexk must be multiplied
to the left by a matrix with second indexk. In Section VI, it
will be shown how such MBFs can be combined to construct
Krylov subspaces, in which solutions are sought in iterative
schemes.

D. ASM-MBF

The ASM-MBF approach is limited to regular arrays of
antennas or scatterers [45]. For array problems, one seeks the
solutions (current or field distributions) over the entire array
when an arbitrary element is excited. Therefore, it makes sense
to obtain the MBFs from the field or current distribution in an
infinite array when a single element is excited. As explained
in [46], this problem can be solved as the superposition of
infinite-array problems (with all elements excited) by scan-
ning through every possible inter-element phase shift. In one
dimension, this is expressed as:

~Jm =
1

2π

∫ 2π

0

~J∞(ψ) e−j mψ dψ (9)

where ~Jm is the current on elementm when element 0 is
excited, and~J∞

m (ψ) is the infinite-array current at the same
position within the unit cell, for an inter-element phase shift
equal toψ. By superposition, the current distributions obtained
on successive elements when a single element is excited forms
an excellent basis for an arbitrary excitation law. Even the
effects of array truncation can be well represented in this
basis, since currents “reflected” by the edges of the array
may form current distributions that are very similar to those
obtained from “direct” waves launched by a single element
in the infinite array. This might not hold true for elements
located right at the edges (or corners) of the array, in particular
when the elements are complex and connected with each other.
Therefore, to improve the accuracy, a few current distributions,
obtained in a 2×2 array, are added to the set of MBFs.

It has been found that this approach leads to a very fast
convergence of the solution w.r.t. the number of points used
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to discretize the ASM integration, and excellent accuracy has
been realized using about 20 MBFs per element. More impor-
tantly, for the reasons explained above, the MBFs obtained
in this manner are excitation-independent. An open-source
Matlab software for the example of linear dipole arrays has
been described in [47]. An extension of this methodology for
arrays of plasmonic rods has been detailed in [48].

V. FAST MBF INTERACTIONS

The construction of the reduced matrix equation in (1)
requires us to compute many blocks of the form

QH
m ZmnQn (10)

and it is desirable to perform this computation in a time-
efficient manner. From a physics point-of-view, the factor
ZmnQn represents the excitation matrixVmn due to the
source MBFs on thenth subdomain, whose radiatedE-fields
are tested on themth subdomain. As the source and obser-
vation subdomains become electrically well-separated in free
space, the DoFs of any such subdomain excitation vector (col-
umn ofVmn) reduces. In fact, for extremely large separation
distances, each excitation vector practically representsa single
incident plane wave field (thus only one DOF, or one mode).
One can exploit this phenomenon to rapidly compute (10),
either through a field expansion method employing only the
first few dominant modes, or by using an algebraic method
exploiting the low-rank nature ofZmn.
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Fig. 2. Normalized singular value spectrumlog10(|σn|/|σ1|) of the coupling
matrix blockZmn between a pair of2λ × 2λ plates (λ/10 meshing, 2320
RWGs in total), as a function of their separation distanced when (a) facing
each other, and; (b) in a side-by-side configuration.

As regards the rank-deficiency ofZmn, Fig. 2(a) and (b)
show how the singular value spectrum ofZmn depends on
the separation distanced between a pair of2λ × 2λ plates.
Note that, when defining the effective numerical rank asr =
rank(Zmn) = |σr|/|σ1| = 10−2, i.e., whenr is the number of
singular values that are within10−2 from the largest singular

value, one can observe howr decreases as a function ofd
[cf. yellowish region in Fig. 2(a)]. Ford = 10λ, the effective
rank is r ≈ 10, which is less than0.5% of an equally large
full-rank matrix. It is also observed that the effective rank
decreases even faster for plates that are placed side-by-side.
For instance, ford = 10λ, we find thatr ≈ 4, which is smaller
than 0.1% of an equally large full-rank matrix. Clearly, both
the subdomain sizes and orientation play an important role in
the degree of rank-deficiency ofZmn and, consequently, on
the computation time of the reduced matrix elements in (1).

A. The Adaptive Cross Approximation (ACA) algorithm

The Adaptive Cross Approximation (ACA) algorithm, origi-
nally developed by Bebendorf [49], approximates theNm×Nn
rank-deficient matrix blockZmn through the low-rank block
factorized matrixZ̃mn = Um

Nm×rVn
r×Nn . This is advan-

tageous because (10) can then be computed rapidly using a
minimum number of multiplications as

(QH
m Um)(Vn Qn). (11)

A very important feature of the ACA algorithm is that the
matricesUm and Vn are constructed on-the-fly, withouta
priori knowledge of the entire original matrix blockZmn;
the iterative ACA algorithm dynamically selects certain rows
and columns ofZmn and, in conjunction with a normaliza-
tion procedure, these normalized vectors form the rows and
columns of the matricesVn andUm, respectively. Indeed, for
well-separated groups of RWGs (Rao-Wilton-Glisson double-
triangle basis functions), the electric field at the observation
group m produced by any source RWG can be expressed
as a linear combination of the fields produced by only a
few of these source RWGs (source sampling). Likewise, the
electric field tested at the observation groupm produced by
any source RWG can be expressed as a linear combination
of the fields tested by only a few of these observation RWGs
(field sampling). Hence, a cross-approximation technique can
be used to adaptively construct the subsets of relevant source
and observation RWGs.

The ACA algorithm is purely algebraic in nature, easy
to implement, and can be used irrespectively of the kernel
of the integral equation, basis functions or type of integral
equation formulation. The ACA algorithm has not only been
applied to solve low-frequency EMC problems [50], but also to
solve electrodynamic antenna problems involving oscillatory
kernels using an MBF approach [16]. Since the ACA algo-
rithm approximatesZmn through the productUmVn, most
of the non-selected elements ofZmn are predicted through
linear interpolation, i.e., from the productUmVn; hence, the
time-harmonic nature of the fields is not accounted for. The
ACA algorithm may therefore require more iterations than
a more physics-based approximation technique, such as the
multipole approach as explained below. Also, the compu-
tational overhead of the ACA algorithm becomes excessive
for a relatively large numerical rank ofZmn (e.g., for small
subdomain separation distances), so that a direct element-by-
element computation ofZmn is more efficient. The interested
reader may refer to [50], where a pseudo-code of the ACA
algorithm in Matlab notation can be found.
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Fig. 3 shows the matrix fill-time of the ACA algorithm
for building the matricesUm andVn – when applied to the
case shown in Fig. 2(a) – relative to the time needed when a
direct matrix filling approach is used for buildingZmn. It is
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Fig. 3. Fill time of the ACA constructed matrix blocksVn andUm, relative
to a full element-by-element filling approach ofZmn, as a function of the
separation distanced for a pair of plates facing each other [cf. Fig. 2(a)].

evident from Fig. 3 that the speed advantage of the ACA over
a direct matrix filling technique is significant. For instance,
for d > 0.5λ, the ACA algorithm requires less than 15% of
the time needed to fill a full MoM block on an element-by-
element basis. This is true even for ACA thresholds as low as
10−3, which means that the relative ACA approximation error
‖VnUm − Zmn‖F/‖Zmn‖F < 10−3, where‖ · ‖F denotes the
Frobenius norm. Hence, for electrically large problems, the
average ACA matrix fill time typically takes only a few percent
of that needed in a direct matrix filling approach. As an
alternative to the ACA technique, matrix compression based
on the incomplete QR decomposition [51] has been used in
[33].

B. Tested field interpolation

Another technique, which also exploits the DoF of the
field radiated by the MBFs, is based on the conventional
interpolation of the radiated field [17]. Thus, the tested field
can be computed by calculating the field in a small grid over
the observation domain and, then, retrieving the field in the
low-level basis functions via interpolation. Fig. 4 shows this
interpolation scheme for a planar geometry.

In order to rapidly compute the field radiated by each MBF
in then-th source domain over them-th observation domain,
the matrixṼmn relating the coefficients of the source domain
MBFs and thep-component of the field (p = x, y or z) in the
interpolation grid are computed. By invoking the reciprocity
theorem, the entries of this matrix can be expressed as [17]:

Ṽmn[i, j] =

∫
fn,j ·ET (rm,i)dS, (12)

whereinrm,i is the i-th observation point in the interpolation
grid for them-th MBF domain;ET (r) is the field radiated

Fig. 4. Interpolation grid for fast computation of the reduced matrix.

by an infinitesimal dipole at the spatial pointr and oriented
along thep-axis; and,fn,j is thej-th low-level basis function
in the n-th MBF domain. Once these matrices have been
computed, the field in the sampling grid can be calculated by
post-multiplying with the MBF coefficientsEgridmn = ṼmnQn.
Thus, the need for computationally expensive integrationsin
the source domain is obviated. It is remarkable to note that
this approach is compatible with more advanced interpolation
schemes such as those proposed in [52] wherein a phase
extraction is carried out first to further reduce the DoFs.

The interpolation scheme is illustrated by means of the
example shown in Fig. 4 where the bistatic analysis of two
square plates with edge lengths of 2λ is considered. Both
plates lie in the same plane and the distance between them is
1.5λ. The frequency is chosen to be 300MHz. For this case,
the interaction between both blocks is calculated by using a
9x9 interpolation grid, which enables one to reduce the time
to compute the reaction term between the MBFs of both plates
from 4.28s to 0.37s. We note an excellent agreement in the
entire dynamic range of the bistatic RCS.
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Fig. 5. Bistatic RCS between two square plates with a distance of 1.5λ and
edges equal to2λ.

Another approach involving interpolation for estimating
MBF interactions is described in [53]. It has been developed
for the analysis of irregular arrays of identical antennas (or
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scatterers) and it produces a very simple model for the
interactions between MBFs versus relative position. It is based
on three physical transformations: far-field extraction, phase
removal and change of the distance variable. In this way, a
harmonic-polynomial model is obtained, valid for any relative
position in the plane, through the explicit calculation of
interactions at a few tens of relative positions.

C. Spectral approaches

Interactions between subdomains can be speeded up by ex-
ploiting integral representations of the scalar Green’s function.
This is particularly fast when, in such representations, the
dependence on source and observation coordinates is sepa-
rable. In practice, the separable form is generally identified
with a plane wave, expressed by a complex exponential.
Two categories of spectral approaches have been developed
in the literature. The first one is associated with multipole
decompositions, while the second one is associated with waves
radiated from a given reference plane.

a) Multipole approach:The derivation of this approach
is provided in [29]. The final result reads as follows. If~Ft is
the radiation pattern of a conjugated Macro Testing Function
and ~Fb is the radiation pattern of a conjugated Macro Basis
Function, the interaction between them can be written:

I =

∫ ∫
~F ⋆t .

~Fb T (k, ~r, û) dU (13)

whereT (û) is the translation function appearing in multipole
decompositions, within a constant factor,k is the free-space
wavenumber and~r is the vector distance between reference
points of the source and observation domains. The integration
domainU corresponds to the unit sphere, to which the unit
vector û points. This approach allows the computation of
the interactions between subdomains without computing the
interaction matrixZij . The only constraint is that the distance
between subdomains should exceed a certain minimum, whose
value is of the order of half wavelength. Fig. 7 illustrates
the accuracy of the multipole-based method with 40×40
integration points over the unit sphere, for the antenna shown
in Fig. 6. The MBF considered is a primary (direct excitation
of one antenna); the solid line provides the magnitude of the
interaction versus distance in wavelengths, while the dashed
line povides, on the same log-scale, the magnitude of the
difference between results obtained using the MoM matrix
approach described in Section 2 on one side, and the multipole
approach on the other side. It can be seen that the quality
suddenly degrades for very small distances. However, this
sudden change happens when the antennas are nearly touching
each other. More precisely, if the acceptable threshold is
defined at a 1 % error level, then for the 5 cm wavelength, the
tip-to-tip distance between antennas should be at least 0.5cm,
while that distance is only 0.2 cm for the 2.5 cm wavelength
case.

If N is the number of elementary basis functions on a given
subdomain, the complexity of computing interactions between
the MBFs is typically reduced fromN2 to N . Assuming
sudomains of the order of one wavelength and a relatively
coarse mesh; the time saving is smaller for larger domains

and larger for finer meshes. Such time-saving has been demon-
strated in the case of arrays of broadband conducting antennas
in [29], and has been extended in [32] to subdomains made
of penetrable bodies. An extension to printed antennas is
described in [54]. In the latter case, the Green’s function
is decomposed into a spherical wave, related to an average-
medium term, as well as into cylindrical waves [55]. In both
cases, the MBF interactions are computed using multipoles.
The treatment of the terms related to the cylindrical waves
has been described above. For the multipole-based treatment
of the terms related to the cylindrical waves, the complexity
is proportional toN1/2 whereN is the number of elementary
basis functions per antenna, and to the number of cylindrical
waves needed, which is typically in the order of 10. For
this case, the computation time for printed structures is only
marginally larger than what it is when the subdomains are
interacting in free space.

−0.4 −0.2 0 0.2 0.4 0.6
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

cm

cm

Fig. 6. Discretization of the bowtie antenna considered in the multipole
analysis of figure 7.
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Fig. 7. Interactions (solid) between primary MBFs defined on apair of
antennas versus center-to-center distance (vertical shift in Fig. 6). Dashed:
error incurred by multipole-based approach. Top: 5 cm wavelength. Bottom:
2.5 cm wavelength.

b) Waves from a reference plane:Assuming a reference
planeXY , the scalar Green’s function can be written as a
continuous spectrum of plane waves, characterized by their
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lateral wavenumberskx and ky. If k2x + k2y < k2, then the
plane wave is propagating alongz, otherwise it is evanescent.
Using such a decomposition, the interactions between MBFs
can be written as

I = K

∫ ∫
ft e

−j (kx ∆x+ky ∆y) f⋆b G(kx, ky) dkx dky (14)

where ft and fb are the Fourier transforms, or “patterns”, of
MTFs and MBFs in direction(kx, ky, kz)/k, which becomes
complex outside the unit circle in the(kx, ky)/k plane;∆x and
∆y are distances between reference points of the subdomains
in the XY plane; G is the spectral-domain representation
of the dyadic Green’s function andK is a constant. Such
an approach, specialized to analytically-derived CBFs, has
been presented in [56]. Since the MBFs are defined over
domains that are substantially larger than those of elementary
basis functions, their pattern is relatively narrow; hencethe
integration domain in wavenumber space can be strongly
reduced. Examples of this approach are given in [30] in the
case of printed antennas.

D. FFT-based approach

In [57], the interactions between MBFs are obtained using
the AIM for printed structures. This may be viewed as a
fast spectral approach, since the space-domain convolution
between MBFs, MTFs and the Green’s function are written
as products in spectral domain. In that approach, forward and
backward 3D FFTs are exploited to compute the space-to-
spectral and spectral-to-space domain transforms. This may
be regarded as one of the most effective MBF-interaction
approaches to date. Reference [57] also provides expressions
for the complexities of the different interactions techniques
as well as validations for large problems, such as arrays of
printed antennas.

VI. RELATION WITH KRYLOV SUB-SPACE ITERATION

A. Reformulation of Krylov iterations

As reminded in Section II, the concept of Macro Basis Func-
tions can be expressed in a relatively compact form. Krylov
subspace techniques, essentially developed in the seventies,
are also based on a few key ideas, some of which also appear
in MBF methods.

However, the use of specific tools, as for instance the
properties of Hessenberg matrices resulting from the Arnoldi
orthogonalization process [58], may somewhat obscure the
basic ideas behind Krylov methods. In this section, we propose
an alternative –or perhaps simplistic– formulation for two
popular Krylov-based methods, namely the FOM (Full Or-
thogonalization Method) and GMRES (Generalized Minimal
Residual), both of which are described in the seminal paper by
Saad and Schulz [59], published in 1986. As explained further
below, that alternative formulation may incur a very marginal
reduction of efficiency. However, the formulation proposed
here should further clarify the relationship between Krylov
subspace iterative techniques and the MBF approach. This will
be explained below in two steps.

First, let us assume a relatively well preconditioned system
of equationsAx = b, with A sufficiently close to a unit matrix.
The reader is referred to [58] for more precise figures of merit
of preconditioning and to [60] for recent advances regarding
preconditioning in the framework of integral-equation solution
in high-frequency electromagnetics. For the above system of
equations, withx0 as an initial guess, the first residual is
r0 = b − Ax0 and the simplest possible iteration [58] is
obtained by considering at iterationk a correction equal to the
residualrk−1; hencexk = xk−1 + b − Axk−1. As compared
to xk−1, xk has high chances to be closer to the exact solution
xk−1 + A−1(b − Axk−1), becauseA is relatively close to a
unit matrix, as a result of preconditioning. The convergence
of this procedure is dictated by the eigenvalues of the iteration
matrix (I − A), which are unfortunately not knowna priori.
As has been very well summarized in [61], Krylov iteration
essentially consists of keeping all the approximants obtained
up to the stepk and to recombine them to obtain a more
accurate solution. This is equivalent to searchingx′ = x− x0
in the subspace spanned by the successive residualsr0, r1, etc.
Based on the above, it is easy to prove that this subspace can
also be written as Span

{
r0,A r0,A

2 r0, ...,A
k−1 r0

}
, which

is the Krylov subspace of orderk. Each of the vectors
s(q) = Aq−1 r0 describing this subspace, which we will name
the generating vectors, may be regarded as MBFs spanning
the whole computational domain. In the following, we will
denote byQ the matrix whose columns are formed by using
the consecutive generating vectors.

Second, one needs to establish a set of conditions which will
determine the scalar coefficientsy0...yk−1 that multiply each
generating vector in the final estimate ofx, so that we can write
x′ = x−x0 ≃ Qy. In passing, to avoid dealing with the initial
guessx0, the system of equations may be rewritten asAx′ =
r0. A simple approach for finding the vector of coefficientsy

consists of testing the original system of equations with the
generating vectors, i.e by using

QH AQy = QH r0 (15)

This is mathematically equivalent to the Full Orthogonal-
ization method (FOM, [59]), which imposes the residual to
be orthogonal to the Krylov subpsace, and hence to each
generating vectors(q) composingQ. This also has the same
form as an MBF approach performed over a single domain.
The reduced system of equations obtained in this way will in
general be ill-conditioned, because of quasi-linear dependence
between generating vectors. This is why it is necessary to
orthogonalize the generating vectors composingQ. This can
be achieved using the Arnoldi procedure, inspired from the
Gram-Schmidt method. As compared to (15), an alternative
approach consists of testing the initial system of equations
with the generating vectors, each left-multiplied by matrix A.
This may be written as

(AQ)H (AQ) y = (AQ)H r0 (16)

which may be viewed as the normal equation which minimizes
the residualAx′ − r0 in the least-squares sense. This is
equivalent to the GMRES approach [59].
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In practice, the above methods can be implemented as
follows. As the consecutive generating vectorsAk r0 are
created, they are orthogonalized and placed into matrixQ.
At every step, the following system of equations is solved:
BH AQy = BH r0, with B = Q for FOM andB = AQ

for GMRES. The solution is then given byx = x0 + Qy,
TheAQ vectors can be computed at very low cost, based on
operations already carried out to build the Krylov subspace.
This observation makes it possible to use only one matrix-
vector product per iteration instead of two. The simplicityof
this new formulation may incur a slight extra computational
cost. Indeed, standard implementations of FOM and GMRES
make use of the Hessenberg matrix [59] resulting from the
Arnoldi procedure used to orthogonalize the Krylov subspace.
It is an upper-triangular matrix with an extra non-zero diagonal
below the main diagonal (it is related to theR matrix resulting
from the modified Gram-Schmidt procedure). Consecutive
solutions of the larger problems obtained at each iteration
can be accelerated by keeping in memory previous pivoting
operations on the growing Hessenberg matrix. However, as
long as the number of iterations is much smaller than the
number of unknowns (say by at least one order of magnitude),
the solution time of the reduced system of equations is not
the limiting factor. The dominant part of the computational
effort is associated with the product between matrixA and
consecutive generating vectors. Under those circumstances,
the simple procedure proposed here is, in practice, equally
efficient.

When the number of iterations becomes large, the gener-
ating vectors may require too much memory and their or-
thogonalization may become too expensive (linear growth per
iteration). Also, they may lead to poor conditioning because
they are only marginally linearly independent, a problem that
can get exacerbated by numerical roundoff. Then, the iteration
may be restarted, considering the solution obtained after a
number of iterations as the new first guess.

B. Relation between Krylov iteration and MBF approach

Regarding MBF construction, a particularly well-posed ap-
proach consists of using ”primary” and ”secondary” MBFs
[9], extended to higher orders in [41]. In a nutshell, the current
distribution obtained on a given subdomain impresses fieldson
another subdomain, in which currents are induced when that
other subdomain is taken in isolation; this process is continued
in a multiple-scattering approach. Let us denote bySi the
subdomain of interest and bySj all the other subdomains. If
the currents on other subdomains are known exactly, then the
MBFs they induce on subdomainSi form a complete set, with
known coefficients. This can be proven from thei-th block-
line of the system of equations, which represents the testing
of fields onSi. If the Zij matrix denotes blocks of the system
matrix, xj denotes solutions onSj and vj the segment of
the excitation vector standing for testing of incident fields on
Si, then the multiple-scattering process produces the following

general solution onSi:

xi = Z−1
ii


vi −

∑

j 6=i

αjZij xj


 (17)

where theZ−1
ii Zij xj terms are the secondary MBFs and the

αj coefficients are yet to be determined. It is also obvious
from the i-th block-line of the system of equations that an
exact solution forxi can be obtained withαj = 1 for all j’s if
the xj ’s are knowna priori. Of course, this condition sounds
difficult to satisfy; however, in common with the Krylov-based
approaches, the fact of keeping free all the coefficients that
multiply the generated MBFs provides important degrees of
freedom (DoFs). To a large extent, those DoFs may compen-
sate for the deficiency of working with MBFs generated from
inaccurate current distributionsxj on the subdomainsSj . More
DoFs are obtained by adding higher-order multiple-scattering
MBFs, as explained in Sec. IV.C.

Two challenges appear when implementing the above pro-
cedure. First, in a multiple-scattering process, the number of
generated MBFs increases exponentially. Second, connected
subdomains may lead to non-physical MBFs onSi, with
nearly-singular current distributions along the contour of Si.
To circumvent the latter problem, several authors [62], [63]
opted to extend subdomainSi (see also Sec. IV.A), with
a connected auxiliary subdomainSai and to retain as an
MBF the current induced only on subdomainSi (see Figs.
1 and 2). As already mentioned in Section IV, in [33], it is
proven that this approach is equivalent to the classical MBF
approach (i.e., without subdomain extensions), provided that
the system of equations is modified using a nearest-interactions
preconditioner, which may be viewed as an extension of the
shielded-block preconditionner proposed in [44] for discon-
nected periodic structures. We will denote byZ x = w the
system of equations preconditioned in this manner. Details
about the combination of this preconditioning with compres-
sion techniques (based on ACA or QR) have been provided in
[48]. Given such preconditioning, the extension of subdomains
becomes implicit, and multiple-scattering MBFs are simply
generated via multiplication to the left by consecutive blocks
of the preconditioned system of equations. In [33], it is proven
that, if for a given excitation all multiple-scattering MBFs are
generated up to orderp, then the Krylov subspace of order
q ≤ p can be constructed with the exclusive help of the MBFs.
Mathematically, this reads

s
(q)
i = Q

(p)
i fp,q (18)

where s
(q)
i is segmenti (corresponding to currents in the

subdomaini) of generating vector of orderq ≤ p (i.e., theq-th
vector defining the Krylov subpsace, Sec. VI.A); the columns
of Q(p)

i are the MBFs onSi up to orderp; and fp,q contains
coefficients that can be unambiguously determined. Besides
the mathematical proof given in [33], an intuitive argument
may be advanced to justify the above statement, namely if the
generating vectors of the Krylov subspace are created through
consecutive left-multiplications by the entire matrixZ, then
they can only involve series of “consecutive” blocks ofZ,
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left-multiplying a segmentwi of the excitation vector. As a
reminder “consecutive” means here that, if blockZij left-
multiplies blockZkl, thenj = k. If the preconditioned system
of equations is used, the segmentwi actually corresponds
to a primary MBF, while the products that appear in the
formation of the generating vectors simply correspond to
multiple-scattering MBFs. Hence, the segments of the different
generating vectors are linear combinations of MBFs, and as
far as the Krylov subspace is considered as a meaningful
basis for the entire solution, the above property indicatesthat
the multiple-scattering MBFs are going to form an equally
meaningful basis, when used on their respective subdomains.
This alleviates the problem with the issue of completeness of
the MBF subspace. However, as mentioned above, the number
of MBFs generated in this way rapidly becomes prohibitive, so
much so that higher-order MBFs or MBFs generated through
interaction between very distant subdomains in general need
to be discarded. If deemed necessary, they can be replaced by
MBFs generated by using a different approach. For instance,
it is clear that MBFs generated via distant interactions canbe
very well represented by MBFs generated using plane waves,
such that MBFs of orders larger than two may be created based
only on interactions between contiguous subdomains.

Regarding the condition imposed by the MBF approach
to obtain the solution ofZ x = w, another link can be
established with the FOM Krylov iteration [33], which we
have re-formulated in Sec. VI.A. Using the definitions in
Section II, we provide here a derivation of that property that is
more direct in comparison to that given in [33]. Let us denote
by r

(p)
i the i-th segment of the residual vector, obtained from

the multiple-scattering approach up to the orderp, while all
MBFs are retained. By construction, the MBF solution is such
that r(p)i is orthogonal to the MBFs defined onSi (see (2) and
comment below), i.e.,Q(p),H

i r
(p)
i = 0. Hence, using (18), we

have, forq ≤ p, s(q),Hi r
(p)
i = fHp,q Q

(p),H
i r

(p)
i = 0. The same

reasoning can be held for all subdomainsSi, such that:
∑

i

s
(q),H
i r

(p)
i = s(q),H r(p) = 0 (19)

because each term of the sum is zero, which proves that
the entire generating vectors(q) is orthogonal to the entire
residualr(p). In other words, the MBF approach satisfies the
orthogonality conditions that characterize the FOM solution of
orderq equal to or smaller than the multiple-scattering process
p (for the FOM condition, see (15) and its interpretation
below.) This however supposes that all multiple-scattering
MBFs are kept up to orderp, which is not truly practical
(see above). Also, the MBF solution of orderp satisfies more
conditions, at the cost of having to work with a larger system
of equations, with more unknowns to be determined than is
needed in the FOM approach of same order.

Now let us examine an important question regarding the
comparison of performance, in terms of accuracy and compu-
tational cost, between Krylov-based iteration and MBF-based
solution. In [33], an empirical comparison has been performed
on different types of examples (arrays, spheres and aircraft).
This comparison is limited to the following conditions: the
MBFs are generated in an excitation-specific way and through

a truncated multiple-scattering process, only up to order two
(with the nearest-neighbor preconditioner the higher orders do
not seem to significantly improve the accuracy). Numerical
experiments have led to the following (albeit preliminary)
conclusion: for equal cost in terms of computation time and
memory, the accuracy of both methods is similar when the
number of iterations of the FOM approach is equal to the
number of MBFs per subdomain. This just appears to be a rule
of thumb and needs to be further tested with other examples.
We provide below one more example, involving a connected
array of bowtie antennas, also studied in [64]. The 5×5 array
is shown in Fig. 8. In the preconditioning step, all of the
neighboring elements are included in the auxiliary subdomain.
Fig. 9 shows the port currents obtained when only the element
1 is excited (top line). The ports do not contain a series
impedance; simulations are carried out for a frequency of 10
GHz. It can be seen that the port currents on the other elements
are not very low as compared to the one in the excited element,
as a result of extremely strong coupling. Thus, this strongly
coupled array forms a good test case for numerical methods.
On the same plot in log scale, the differences between exact
and approximate solutions are shown for the MBF approach,
with 9 MBFs per subdomain (corresponding here to one
antenna) for the preconditoned system of equations, and the
errors obtained for the FOM approach with also 9 iterations.
It can be seen that a comparable error level is achieved, witha
slight advantage for the MBF approach. Quasi-identical error
levels, within 1.7 dB on the average, were obtained with 11
iterations for FOM, instead of 9. This new example supports
the rule of thumb referred to above. Further tests are now
being carried out in the field of metamaterials.

Given this rule of thumb, one may wonder about the real
advantage of using MBFs, as compared to iterative techniques,
and we offer at least four. First, it is obviously advantageous
to reduce the number of DoFs when, because of the level
of geometrical detail, the discretization of the structureneeds
to be much finer than the usualλ/10 condition. This is
particularly true for antenna applications, where the often
complex feeding region needs to be modeled with many
elementary basis functions. Second, when appropriate general-
purpose MBFs can be found, the efficient solution for multiple
right-hand sides offers an important advantage. An example
where such MBFs can be easily found is non-periodic arrays
of antennas; though more challenging structures involvingcon-
nected elements may also belong to that category. Third, being
non-iterative, the MBF approach is much easier to parallelize.
Finally, we also observed for the case of scattering by spheres
that the rule of thumb referred to above tends to break down
for resonant structures, with an important advantage, in terms
of accuracy versus computational resources, in favor of the
MBF approach. This seems also to be the case for extremely
finely meshed structures, such as those studied in [48].

A further link between Krylov-based methods and the MBF
approach may lie in the “restart” procedure [59]. For Krylov-
based iterations, this means that the solution at a given point
can be considered as the new first guess for the iterative
technique. Similarly, the MBF-based solution obtained on a
given subdomain can be transformed into just one MBF, while
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Fig. 8. Mesh used for simulation of 5×5 array of connected bowtie antennas.
Element spacing: 1.044 cm horizontally and 1.00 cm vertically.
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Fig. 9. Exact solution for port currents (numbered left to right, top to bottom,
see Fig. 8), and errors obtained with 9 MBFs per subdomain and with 9 FOM
iterations.

new MBFs are added, based either on plane-wave excitations
or on higher-order multiple scattering. This enables one to
refine the solution without augmenting the dimension of the
final system of equations. A preliminary study of this approach
has been carried out in [64] and may lead to a new direction
of research on MBFs and CBFM.

VII. M ULTI -SCALE MBF ANALYSIS

A. Degrees of freedom

Methods relying on MBFs benefit from a reduction in the
number of unknowns. This reduction offers a large number
of advantages such as the well-knownmemory savingor the
use of conventional MoM techniques that have been typically
limited in their application to electrically small problems
(e.g., [65]). As was previously detailed in Section II, MBFs
are defined over a set of contiguous low-level basis functions.
In the analysis of antenna arrays, it becomes natural to apply a

partitioning so that each subdomain corresponds to an element
of the array (e.g., [6]). However, there is nothing that prevents
us from defining MBFs for a group of adjacent elements. For
the case of electrically large antennas or scatterers, there is no
straightforward strategy for the partitioning and the preferred
choice is to select the subdomains by grouping basis functions
inside certain canonical geometries (e.g., cubes) [38], [66].

At this point, one might wonder how large thesize of
the subdomainsshould be to define the MBFs. From the
solve-time point of view, some criteria have been recently
proposed [67] based on minimizing the complexity. However,
it does not consider the reduction of the number of unknowns,
which is one of the key features of the MBF approach.
Although the number of degrees of freedom (DoFs) of radiated
and scattered fields is well-known [68], [69], to the best of
authors’ knowledge, that is not the case when considering the
number of DoFs (and so the number of MBFs) for the currents
induced on an arbitrary surface.

To further examine this issue, connected with multilevel
MBF approaches, we will now present some numerical simu-
lations. Let us first consider a given geometry discretized by
means of low-level basis functions, i.e., RWG functions. The
object is illuminated by a set of plane waves. As described in
Section IV, the current induced by any arbitrary incident field
can be calculated as a linear combination of these induced
currents. Next, the singular value decomposition is carried out
and only those basis functions with a normalized singular
value aboveτ = 10−4 are retained. In other words, this
procedure is equivalent to calculating the MBFs for a problem
with a single supporting domain so that any potential source
of error due to domain extensions is avoided.

In order to choose the number of plane waves, the number
of incident angles alongθ is set toN = ⌊ka⌋+ 10, wherea
is the radius of the minimum sphere enclosing the geometry.
It is important to note that this choice, which is similar to the
conventional rule for spherical wave truncation [70], fulfills
the Nyquist criterion [69]. A similar discretization of theplane
wave spectrum is accomplished for each azimuthal circle for
a givenθ.

The number of surviving MBFs for different spheres and a
cylinder is shown in Fig. 10. For the cylinder case, the height
is set equal to the radius and no caps are considered (see inset
in Fig. 10). In order to check the accuracy of the generated
MBFs, the current induced by a linearly polarized plane wave
is compared with the current computed using the MoM. For
the cylinder case, the plane-wave is assumed to be polarized
parallel to the axis of the cylinder and the propagation vector
is orthogonal to the aforementioned axis. The error is defined
as:

e =

∥∥xMBF − xMoM
∥∥
2

‖xMoM‖2
(20)

wherexMoM andxMBF are the coefficients of the low-level
basis functions using the MoM and the single-block MBF
approach. For the sphere case, the error ranges from5.6 ·10−4

to 7.7 · 10−4 whereas this error ranges from1.3 · 10−4 to
10·10−4 for the cylinder. This verifies that the generated MBFs
are good for modeling an arbitrary induced current.
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The results presented in Fig. 10 reveal that the asymptotic
behavior for large domains is approximately linear. It is
interesting to note that the discretization of a geometry with
low-level basis functions also involved a linear increase in
the number of unknowns versus the surface to be analyzed.
However, the slopes of the plots with MBFs are considerably
smaller than when we consider low-level basis functions
whose proportion is on the order of 100 basis functions per
square wavelength. For instance, a sphere with a radius of
2λ (i.e., surface50.27λ2) can be modeled with 1056 MBFs
whereas the number of low-level basis functions required
would be on the order of 5027.

Another interesting fact inferred from Fig. 10 pertains to
the number of MBFs needed for electrically small domains.
In this case, the asymptotic behavior is not reached and the
number of MBFs grows much faster than in the case of
electrically larger surfaces. In order to illustrate the validity
of the latter observation, let us consider the sphere geometry
once again. Furthermore, the relationship between the number
of MBFs and domain surface for any arbitrary surface is
considered to be equal to that for the sphere. This assumption
is reasonable since the behavior of the curves in Fig. 10
has also been observed for other geometries such as plates
or cubes. Under the previous hypotheses, an MBF method
working with domains of28.9λ2 will require approximately
2.47 times fewer unknowns than needed using the same MBFs
method working with domains of3.2λ2. However, increasing
the size of the domain surface requires the handling of much
larger blocks and, consequently, the computationally burden
is significantly increased in this case. In the next section,
techniques to mitigate this computational burden are described.

Finally, it is worthwhile to remark that similar observations
have also been made by a number of different authors. For ex-
ample, this fact was observed in [71] and exploited to generate
MBFs on large blocks by applying physical optics. Similarly,
the analysis of some particular geometries for different block
sizes revealed that fewer MBFs are required when employing
larger blocks to achieve the same prescribed error level [33].

B. Multilevel MBF approach

The aforementioned behavior of the DoFs versus the domain
size suggests that the best compression rates are achieved for
electrically large subdomains. Nevertheless, generatingMBFs
for these subdomains can be computationally expensive. More-
over, the generation becomes more demanding when applying
the plane wave spectrum approach since the currents on each
subdomain has to be solved for multiple right hand sides. In
order to benefit from the reduction in number of unknowns,
while maintaining the computational burden at a reasonable
level, a multilevel scheme which is referred to asMultilevel
Characteristic Basis Function Method(MLCBFM) [21], [22]
has been proposed. This technique is based on a recursive gen-
eration of the macrobasis functions. A hierarchical partitioning
of the geometry is required before applying the multilevel
approach. This step is illustrated in Fig. 11 for the NASA
almond in the context of a two-level scheme. In this figure,
a gap has been introduced between geometry partitions to
emphasize the domains. Next, the macrobasis functions are
generated from the bottom to the top level. At each level,
the basis functions are expressed as linear combinations of
the basis functions defined on the level underneath. Let us
consider a multilevel MBF at thel-th level, which is denoted
by F (l). The number of subdomains of levell − 1 inside the
domain is given byN while the number of MBFs for then
subdomain is given byC(n). Then, according to the multilevel
definition of the MBFs,F (l) can be expressed as:

F (l) =
N∑

n=1

C(n)∑

i=1

q
(l−1)
ni F

(l−1)
ni (21)

whereq(l−1)
nj are the weights of the linear combinations that

are computed in the process of generation of the MBFs.
Once the coefficients of the MBFs have been computed at

each level, the matrix of the system of equations and the right
hand side can be recursively computed from bottom to top by
carrying out pre- and post-multiplications by the coefficients
of the matrices containing the coefficients of the MBFs at the
corresponding level.

The above formulation can be applied to anarbitrary num-
ber of levelsto benefit from the compression rate associated
with large blocks. Nevertheless, the number of MBFs for
very large blocks, which is assumed to be independent of
the number of underlying levels, prevents us from handling
extremely large blocks. In other words, as long as the MBFs
are correctly generated at each level, the number of DoFs
at the top level is expected to depend only on the domain
extension. Consequently, very large domain extensions involve
a large number of DoFs and, therefore, upper levels cannot be
efficiently handled because the number of underlying MBFs
becomes very large.

Our experience is that atwo-level schemeprovides a good
trade-off between accuracy and compression rate without sig-
nificantly increasing the computational burden. There appears
to be a consensus among other authors [21], [22], [72], [73]
on this issue, since they also limited the implementation to
two levels.
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Fig. 11. Multilevel partitioning of the NASA almond.

In order to illustrate the multilevel approach, the bistatic
radar cross section (RCS) of ahelicopter-type geometryis
considered. The problem is discretized at 400 MHz by using
96844 RWG basis functions. Next, the surface is partitioned so
that the low-level basis functions are grouped into 420 domains
for the first-level (i.e., conventional) MBFs (see Fig. 12).
Generating the corresponding MBFs by using the plane-wave
spectrum approach, followed by an SVD thresholding with
τ = 10−4, results in a problem with 13275 unknowns. Next,
these first-level MBFs are grouped into three second-level
domains which corresponds to splitting the geometry into three
blocks along thex-axis. As a consequence, the final number of
unknowns (i.e., second-level MBFs) is reduced to only 3192.

The bistatic radar cross sectionfor the case of an incident
field Ei = exp(j k x) ẑ is shown in Fig. 12. The results
obtained using the MLFMA implemented in the commercial
software FEKO [74] are also shown for comparison purposes.
The agreement between the two methods is seen to be excel-
lent.

VIII. C ONCLUSIONS ANDOUTLOOK

Integral-equation approaches remain among the most com-
petitive methods for the solution of large radiation or scattering
problems. Domain decomposition started to be applied to
this type of methods about fifteen years ago and has been
introduced at about the same time by different labs, in several
variants. They rely on thea priori determination of the
subspace in which current distributions (or equivalent currents)
on a given subdomain can be found. Those subspaces are
subtended by Macro Basis Functions (MBFs), defined in terms
of the original elementary basis functions. Their main advan-
tage is that they allow the direct solution of large problems,
thereby avoiding the uncertainty about the number of iterations
and enabling very quick solutions for multiple excitations.
We reviewed different techniques for the determination of the
MBFs, as well as methods for the very fast calculation of
their reactions. We also reviewed the similarities betweenthis
class of methods and Krylov-based iterative techniques, like
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Fig. 12. Bistatic RCS for the helicopter. The inset shows thefirst level
partitioning.

the Full Orthogonalization Method (FOM). Besides the direct-
solution aspect, the domain-decomposition nature of MBF-
based methods allows one to enforce boundary-type conditions
on each subdomain individually.

This type of methods is particularly well-suited for appli-
cation to geometries for which the characteristic dimensions
of the mesh are very much finer than the wavelength, such
that the number of physical degrees of freedom of the fields
is much smaller than those implied by the complexity of
the geometrical discretization. Such geometries are extremely
common in industrial applications. MBFs can be applied to
preconditioned systems of equations, which can implicitly
account for the connectivity between subdomains without
significant loss of accuracy. Besides, beyond this precondi-
tioning, the MBF approach in itself seems to add its own
preconditioning effect, such that practically no loss of accuracy
is observed when solving scattering problems on objects near
resonance. Being non-iterative in nature, the MBF approach
lends itself very well to parallelization, which means that
the MBF methodology is among the approaches that will at
best benefit from the current strong trend toward large-scale
multiple-core calculation.

It is expected that improved construction of MBFs, faster
interaction methods and multi-level approaches will receive
more attention in the coming years. As previously pointed
out, the generation of MBFs yields a different number of
unknowns, depending on the employed scheme. Problems
requiring a restricted set of excitations can benefit from the
high compression provided by the primary-secondary approach
(or its extension to higher orders) without a significant loss of
accuracy. On the other side, the plane-wave approach enables
us to compute excitation-free MBFs at the cost of an increment
in the number of degrees of freedom. This fact suggests that
a priori knowledge of the excitation can be employed to
decrease the degrees of freedom in the problem.

Moreover, considering larger domains in the MBF genera-
tion seems to (proportionally) require fewer unknowns, setting
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the basis for the multilevel formulation. This probably results
from the fact that more information is used during the MBFs
generation and, consequently, the achieved MBFs can better
model the final currents. Thus, a rigorous study is still needed
regarding the minimum number of degrees of freedom to be
associated with a given problem, and regarding how to fully
exploit all thea priori information about optimum domain size
and excitation. Regarding the latter, for instance, excitation-
dependent MBFs may remain valid when the primary source
is moved over a finite domain. MBFs may also have a regular-
izing effect in the solution of radiation or scatering problems.
Besides providing more stable solutions, their physics-based
foundation can also serve purposes that are other than purely
computational. For instance, they have been exploited for
calibration purposes in [75]–[78]. They could also be exploited
with advantage in time-domain solution schemes, since MBF-
type basis functions in the time domain have been observed
to provide a better late-time stability [79].

To conclude, MBF methods and related techniques have
already proved quite powerful for the solution of Maxwell’s
equations in surface integral-equation form. Over the past
decade, they have been strongly accelerated and methodologies
to produce more complete sets of MBFs have been developed.
Their direct-solution nature and their ease of parallelization
make them preferable to iterative techniques for a wide class of
problems. Nevertheless, it is expected that combined research
on MBF-based and iterative techniques will be beneficial to the
development of both solution methodologies. Further progress
in this area may also benefit from continued research on the
physical degrees of freedom of fields excited on arbitrarily-
shaped structures, with possible applications beyond those in
computational methods.
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