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Efficiency of a Wood-fired Bakery Oven – Improvement by Theoretical and 

Practical 

Fabião Armando Manhiça 

Forest Products and Chemical Engineering 

Department of Chemical and Biological Engineering 

Chalmers University of Technology 

Abstract 

Combustion of biomass in small-scale furnaces is widely used in many countries and in different applications. The 
technology used is often “fixed grate” combustion in small batch furnaces. The efficiency of such furnaces is often 
low, which results in high environmental impact due to the poorly controlled combustion of the wood logs that are 
largely used as the heat source for baking bread in wood-fired bakery ovens. This work has been undertaken in order 
to develop an efficient and environmentally friendly bakery oven furnace fired by biomass. The work was performed in 
Mozambique, and a survey was used to evaluate the consumption of wood and the technology used in the process of 
bread baking in two selected townships. The data collected from the 104 bakeries consisted of the dimensions of the 
oven, the temperature profiles of the combustion chamber and baking oven, the baking time and the bread quality.  

The circulation of hot gases within a baking oven was used to describe and predict the behaviour of the heat 
exchange and the quality of the products produced. A bi-dimensional cold flow model and a CFD model were used to 
estimate the flow pattern inside the oven by varying the velocity of the air flow in order to simulate changes in the 
combustion chamber.  

Experimental measurements to support improvements in the design and performance of the oven were performed on 
in situ wood-fired bakery ovens in Mozambique in order to evaluate the dependence of the quality of bread produced 
on different process conditions that originated from design of oven, the temperature profile and the wood used in 
combustion. 3D CFD model was also used to study the heat transfer process during the baking process to predict the 
causes of the differences in quality of the bread baked in same batch. The effects of the design of the oven were 
analysed concerning velocity, temperature distribution and heat transfer during the baking process.  

As much as 60 tonnes/day of green wood are consumed in the bread baking process in the areas investigated. Two 
types of bakery ovens are used most commonly: indirect and semi-direct. The specific consumption was found to be 
0.55 and 0.90 kg of wood per kg of wheat flour baked for the indirect and semi-direct, respectively. The inlet velocity, 
the geometry and the mode of the feeding dough into the oven affect the flow pattern in the baking oven. The 
temperature becomes non-uniform, the velocity varies according to the inlet velocity and consequently the quality of 
the bread baked in WFBO is not uniform. 

The analyses of heat transfer from in situ bakery oven shows the dependence on distribution of heat and intensity 
inside the baking chamber due to the temperature being non-uniform, even with steady temperature conditions in the 
oven. The heat intensity is affected by burning different wood species. The differences in layers of sand under the 
oven base give rise to variations of the condition during the baking process. 

A mathematical model of the transient heat transfer in a wood-fired bakery oven shows a high accuracy with earlier 
experimental results. Furthermore, it describes the differences in the distribution of heat in the oven. Fifty per cent of 
hot gases cross the oven without releasing any heat. The variations in the heat distribution are the cause of the 
differences in the quality of the bread baked in this device. An example of optimisation using CFD model shows good 
approximation of the optimal geometry of the oven with reasonable heat distribution. However, the number of the 
samples must be increased to get the realistic heat distribution, which also requires substantial computing resources.  
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 INTRODUCTION AND OBJECTIVES 
 

1. INTRODUCTION 

Strategies for the sustainable development of renewable forms of energy (wind, solar, 
wave and biomass) in the world typically involve three major technological aspects: 
making energy savings on the demand side, improving efficiency in the conversion of 
energy and replacing fossil fuels by various sources of renewable energy. 
Consequently, plans for implementing the use of renewable energy on a large-scale 
must include strategies for integrating renewable sources in energy systems that are 
influenced by energy savings and efficiency measures.  
 
The use of biomass can play an important role since it can be an important source of 
energy. Deforestation, predominantly in Africa and South America, is very high and is 
estimated to occur at a rate of about 13 million hectares per year worldwide. Forest 
plantations and natural expansion have, nevertheless, reduced the net loss of forest 
area significantly (Cuvilas, 2009). According to “Global Forest Resource Assessment 
2005”, the amount of land covered by forest has been reduced in Mozambique; it has 
been estimated that, on average, 3.7% of productive forest (the equivalent of 740,000 
ha) was lost during the last 15 years. This deforestation was motivated by the need to 
exploit timber, creation of new agricultural and residential areas, production of coal, and 
to provide wood for domestic usage. It is estimated that 17 million m3 per year is 
extracted from the forest for cooking purposes alone (Sal and Caldeira, 2008). 
 
Mozambique is a country with considerable forest resources; the main source of energy 
for different activities is based on biomass, as shown in Figure 1.1. These resources are 
of particular importance to the country, given its social, economic and environmental 
impact. Perreira et al. (2001) estimated that about 70% of the population depends on 
energy derived from the forest. A recent estimation by GRNB (2008) showed that the 
demand for wood fuel has continually increased over the last two decades. At present, 
80% of the energy used comes from biomass, which represents an annual average 
consumption of wood fuel per capita in urban areas, estimated at 1.2 m3 and 1.0 m3 in 
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rural areas (GRNB, 2008). A study by Vasco et al. (2009) concluded that forest fires 
afflicted about 58,393 ha in Mozambique: 561 ha were in the province of Maputo, and 
mainly in the districts of Magude, Moamba and Manhiça. The total growth of forest 
biomass, in Maputo province alone, is estimated to be 1,233,000 tonne/year, with the 
corresponding amount of available energy being 17,268,000 GJ/year (Vasco et al. 
2009), assuming an average heating value for the biomass of 20 MJ/kg (Duke, 1983) 
using 70% energy efficiency. Table 1 shows the biomass energy potential of the districts 
in the province of Maputo. 

 

Figure 1.1: Balance of energy demanded in Mozambique in 2006 (ME, 2006) 

 

Table1 – The energy potential of each district in the province of Maputo (data from Vasco et al., 2009) 

District Available biomass 
(tonnes/year) 

Estimated energy 
potential 
(GJ/year) 

Boane  18,444 258,209 
Maputo city 8971 125,599 
Magude 450,416 6,305,825 
Manhiça 135,048 1,890,667 
Marracuene 20,139 281,942 
Matutuine 325,126 4,551,767 
Matola 4110 57,546 
Moamba 225,936 3,163,099 
Namaacha 45,223 633.116 
Total 1,233,412 17,267,771 

 

1.2. The Use of Biomass  

Energy based on wood is used by households, industries, commercial enterprises and 
institutions mostly in rural zones, but also in urban areas such as Maputo city. Although wood 
fuels are gathered mostly by individuals for personal use, wood and charcoal have become 
trade goods in many places, particularly so in urban areas. Both urban and rural households at 
almost every income level buy wood fuels. The industries and enterprises also buy wood to 

81%	  

9%	  
6%	   4%	  

Wood	  fuel	  

Hydro	  electric	  power	  

Fossil-‐based	  fuel	  

Other	  
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meet their energy requirements. An estimation of the wood demand for Maputo city and Matola 
indicates a consumption of forest biomass residues by the population of about 650,000 
tonne/year (Vasco et al. 2009).   
 
Industries using wood fuel contribute significantly to the generation of income and socio-
economic development in rural and urban zones. In recent years, wood fuels have been used 
increasingly for industrial applications, mainly in the bread baking process. However, the 
technology and the energy conversion devices employed are generally poor as well as 
inefficient, so the scope for improving them both is large.  
  
 

1.1. The Wood-Fired Bakery Oven (WFBO) and the Bread Baking Process 

Wood-fired bakery ovens are the type commonly used in Mozambique. The oven, which is 
heated by combusting biomass, is made of a refractory ceramic material. The combustion 
chamber is a parallelepiped with a circular top, the end of which is funnel-shaped to lead the 
duct that joins the chambers out via the furnace grid. A typical baking chamber has an arched 
roof with a circular or elliptical base and is connected to a chimney at the top that allows the 
gases to exit. These kinds of bakery ovens are constructed by the colonial government to 
produce bread for minor groups of residents as a result of the general scarcity of electrical 
power in Mozambique. The large-scale bakeries are, on average, more than 35 years old. 
 
New technology is available that utilises the forced combustion of biomass. The high cost of 
electricity and maintenance, however, mean that this is not cost-effective for the majority of 
enterprises interested in, or even considering, increasing the efficiency of traditional wood-fired 
bakery ovens.  
 
The main characteristic of wood-fired bakery ovens (also known as semi-direct bakery ovens) is 
the two chambers: the combustion chamber and the baking chamber (baking oven). The former 
is where the combustion of wood occurs. Heat is then transferred via the combustion gases to 
the latter, i.e. the baking oven. Figure 1.3.1 shows the technical design of such a bakery oven. 
  
 

 
Figure 1.3.1: A longitudinal cross-section of a semi-direct bakery oven (a type of wood-fired bakery oven). 
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Most of the bread consumed in Mozambique is produced by the following sequence of 
events: weighing the ingredients, mixing, fermenting, scaling, rounding, bench proving, 
moulding, panning and pan proving, baking and, finally, cooling. The bread used in this 
study, was leavened, and made according to the following recipe for one batch: 50 kg wheat 
flour, 0.750 kg coarse white salt, 0.5 kg composed yeast, 0.125 kg improver (VITA M7 1%) 
and 33–36 litres of water. The baking method used is as follows: 

1. The raw materials (wheat flour, water, salt and ferment, i.e. yeast) are mixed 
together to create a high degree of homogeneity. This incorporates the fermented 
cells and ferments the dough: this reduces the fermentation time considerably and 
increases the quality of the bread with respect to softness and size.   
 

2. The dough is weighed, divided and moulded before being allowed to rest (i.e. prove) 
in order to rise to an optimal size in preparation for baking.  

 

3. The dough is then placed into the furnace for baking at temperatures of 200–250ºC. 
The baking time, which depends on the size of the loaves and the kind of oven used, 
is usually between 15 and 30 min. When removed from the oven, a loaf crust has 
moisture content of 1–2% and an inner temperature of around 99ºC. The moisture 
content of the crust increases rapidly once the bread is removed from the oven due 
to moisture transport from the crumb.  

 

4. The loaves are cooled. At the beginning of the cooling process, heat and mass are 
transferred by an evaporation-condensation mechanism inside the crumb and the 
high vapour pressure gradient that exists between the centre of the crumb and the 
surface crust. The mass transfer increases the apparent thermal conductivity of the 
crumb. The cooling rate also depends on the temperature and relative humidity of 
the air. According to Mahassa (1995), Lucas (1995) and Tsamba (1994), increasing 
the cooling rate by decreasing the temperature of the air may cause the intense 
mass transfer to move towards the crust surface by slowing down the rate of 
evaporation. This may, however, cause condensation to form below the crust layer 
and create a higher degree of water activity. This, in turn, would have the negative 
impact of encouraging microbial growth during storage. 

 
1.3. Characteristics of Wood and the Efficiency of Wood-Fired Devices 

The most important properties of wood used as fuel are its heating value, moisture content, 
density, size and content of ash; physical characteristics, chemical composition and the 
conversion method used define its quality. An important factor affecting the way in which 
firewood burns is its condition. Hardwood is preferred in most cases, as it tends to produce a 
longer-lasting burn: Acaceas Sp (Red and White Micaia), Unknown (Nkonola and Xihoho) wood 
are preferred by most bakeries (Tsamba, 1994; Cuvilas, 2009). 
 
Typical problems associated with a wood-fired bakery oven can easily be described through 
observation of the chimney outlet. If the plume of smoke rising from the top of the chimney is 
blue or grey instead of clear or white, it is an indication of smouldering, poor combustion, air 
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pollution and (probably) operating temperatures that are too low. The normal action of the oven 
operator is to position the combustion chamber door in such a way as to increase the intake of 
air so the smouldering fire soon turns into a flame. Rearranging the position of the firewood is 
another method of improving combustion in the combustion chamber. Pieces of wood laying 
loosely in a criss-cross pattern burn quickly, regardless of their size, as the combustion air can 
easily reach all of the pieces (i.e. there is a large active surface). The larger pieces in a compact 
pile burn more slowly than the smaller pieces because there are fewer spaces for the air to 
penetrate the load. 
 
The wood fires burn in cycles. A cycle starts when a new load of wood is ignited by a charcoal 
bed and ends when that load is consumed and, thereby becomes the bed for the next fire. Each 
cycle provides three to eight hours of heating depending on the amount of wood loaded, the 
amount of heat that is needed and the size of the combustion chamber. The efficiency and 
convenience of a wood-heated system depend greatly on the quality of the fuel wood burned. 
The four main factors that influence the way in which firewood burns are: the tree species, along 
with the moisture content, size of the individual pieces and the condition of the wood.  
 
The geometrical design of a bakery oven is not standardised, but instead reflects local 
conditions. Differences in the configuration and size of baking ovens result in every wood-fired 
oven behaving differently, with each having its own heating time (i.e. baking time). It is therefore 
not possible to give the exact temperatures prevalent inside a typical baking oven. However, as 
a guideline, the bakery oven operator never allows the bread surface (crust) to become dark 
brown in colour.  
 
 

1.4. Aims and Objectives  

The main objective of this research is to improve the aerodynamics and heat transfer in existing 
wood-fired ovens in order to increase the efficiency of the oven and to increase the quality of the 
bread, as well as to design a prototype, wood-fired, small-scale furnace (i.e. bakery oven). 
 

To achieve this objective, measurements were performed in a variety of ovens, including in situ 
WFBO to be used as references to build up theoretical models. A bi-dimensional cold model 
and mathematical models will be used, based on parameters such as the aerodynamics, mixing, 
residence time and recirculation of the gases; kinetic, physical and chemical processes of wood 
combustion; and the environmental impact of the combustion of different species of wood on the 
technology actually applied in the baking process to improve the geometry of oven.	  	  
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	   BACKGROUND	  
 

2. BAKGROUND 

The baking process is a key step when making bread; it is where a lump of dough is 
transformed into a light, porous, readily digestible and tasty product under the influence of heat. 
The production of bread presumes a carefully controlled baking process in order to meet these 
requisite quality attributes. Factors influencing the final quality of the product include: the rate 
and amount of heat applied, the humidity level in the baking chamber and the baking time. The 
most important stages during the baking are: volume expansion, crust formation, inactivation of 
yeast and enzymatic activities, and protein coagulation and partial gelatinisation of starch in the 
dough and moisture levels. It is highly desirable that optimal temperature profiles and baking 
times are established in order to produce bread with low levels of moisture loss at consistent 
and acceptable levels of quality (Therdthai et al., 2002). 

 

2.1. Dough and Bread 

Bread requires flour, mostly wheat flour, and water to form gluten. Gluten network hinders the 
gas produced by the added yeast from leaving the dough during the baking process. The gas 
formation causes an expansion in volume, thereby increasing the bread porosity. Water is not 
only important for the formation of gluten, but also for changing the properties of the bread such 
as texture, colour and taste.  

Dough 

The dough, which is mainly composed of starch and gluten, consists of a continuous phase and 
a dispersed gas phase with a foam structure. The structure of the bread crumb has both fibrous 
and sheet-like gluten layers. After appropriate mixing of the raw materials, the fermentation 
process starts in which the yeast forms carbon dioxide gas continuously. As the temperature 
increases, the starch granules absorb water, gelatinise and swell thereby removing water from 
the gluten. Consequently, the chemical composition change from dough to a crumb; just before 
the dough becomes semi-rigid bread, the pore structure opens up (Thorvaldsson et al., 1998).  
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Bread 

Bread is composed of crust and crumb, the proportions of which depend on the conditions in the 
oven. Crumb has a porous structure; it consists of a monomolecular lipid with a few, 
polymerised, protein units of high molecular weight dispersed within it. The walls of the pores 
are composed of dried gelatinised starch. According to Therdthai et al. (2004), the curvature of 
pores has three functional aspects that affect: 

1. The structure of the bread. 
2. The mechanism of heat transfer, particularly the evaporation and condensation of water 

vapour through/within the pore system. 
3. The adsorption of the flavour compounds formed during baking. 

The crust is a hard, vitreous layer formed of dried and collapsed pore walls of crumb; crust is 
formed when the temperature increases and more water evaporates from the surface, which, in 
turn, activates non-enzymatic browning reactions. The thickness of the crust follows the 100ºC 
isotherm inside the product (Therdthai and Zhou, 2003). 

A typical baking process can be divided into three stages: in the first, the temperature of the 
outer crumb increases at an average rate of 4.7ºC per min up to 60ºC. This increase enhances 
enzymatic activity and growth of yeast, resulting in an increase in volume of the crumb inside 
the oven, an expansion in the order of one-third of the original volume. Furthermore, the surface 
loses elasticity, thickens and starts to take on a brown appearance. According to Swortfiguer 
(1968) and Therdthai et al. (2002), this stage takes one-quarter of the total baking time. In the 
second stage, the temperature of the crumb increases at a rate of 5.4ºC per min to 98.4–98.9ºC 
before it remains constant. At this temperature, all reactions are maximised, including the 
evaporation of moisture, gelatinisation of starch and the coagulation of protein. The dough turns 
into crumb from the outside in, i.e. towards the inner parts, when heat is transferred inwards. A 
typical browning crust can be observed when the temperature at the crust reaches 150–205ºC. 
According to Pyler (1973), this period takes about half of the baking time. The final stage is the 
volatilisation of organic substances and is designated the “bake-out loss”. This stage takes 
about one-quarter of the total baking time. Wong et al. (2006) use the same classification, with 
the exception that they divide the second stage into two subgroups: the gelatinisation of starch 
followed by the coagulation and denaturalisation of protein. 

 

2.2. Heat and Mass Transfer Mechanisms during Baking 

Heat is transferred during the baking process via a combination of conduction, radiation and 
convection.  

Conduction is the transfer of heat from one part to another of the same body, or from one body 
to another, where a physical contact exists. The Fourier’s Law equation describes the 
mechanism (Eq 2.1): 
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         Eq 2.1 

where q is the heat flux (W/m2), k is the thermal conductivity (W/mºC), x is the distance (m) and 
T is the temperature (ºC). 

Radiation. The quantity of heat transmitted between two bodies by radiation, is in direct 
proportion to the difference between the fourth powers of the absolute temperatures between 
the bodies. Heat transferred via radiation is described by (Eq 2.2) 

 q = σε(Th 4 – Tb 4)       Eq 2.2 

where q = Q/A is the heat flux (W/m2), Q is the rate of heat energy transfer (W), A is the surface 
(m2), σ is the Steffan-Boltzman constant (5.67x10-8 W/m2.K-4), ε is the emissivity of the body, Th 
is the temperature of the heat source (K) and Tb is the temperature of the heat-absorbing body 
(K). 

Convection is the term used to describe the heat transfer that occurs when one part of a volume 
of gas or liquid is physically mixed with another part. In the case of air, its density decreases as 
it is heated, causing it to move upwards; cooler air, with a higher density, moves downwards. 
This natural mechanism of convection can also be found in wood-fired bakery ovens. Assuming 
that the body has a large thermal conductivity compared to the fluid, and the temperature 
difference is low in the body compared to that of the fluid, then Eq. 2.3, the first law of 
thermodynamics, describes the equivalence between the body temperature and internal energy 
variation per unit time and the heat transfer by convection with the fluid: 

      Eq. 2.3 

where V is the volume and A is the surface of the body. Using the initial condition of the body 
temperature, T0 , the temperature change can be expressed as Eq. 2.4: 

  Eq. 2.4 

where L=V/A is a characteristic dimension that depends on the geometry of the body. The group 
represented by hL/k is called the Biot number (Bi) and represents the relationship between the 
external and internal transfers of heat. The variable αt/L2 is known as the Fourier number (Fo) 
and is a measure of the thermal diffusivity. 

In case of forced convection (i.e. air is forced to move by measures other than differences 
density, e.g. by using fans) in the oven, the convection can be described as Eq 2.5. 

q = h(Ta – Tb)     or Q = hA(Ta – Tb)    Eq 2.5 

where q  is the heat flux (W/m2), h is the heat transfer coefficient (W/m2.ºC), Ta is the air 
temperature (ºC), and Tb is the body temperature (ºC). 

According to De Vries et al. (1989) and Wagner et al. (2007), the heat transport inside the 
dough occurs by four mechanisms. Water evaporates at the warmer side of a gas cell. The 
water vapour produced then moves through the gas phase and, when it meets the cooler side of 
the gas cell, condenses and becomes water once again as it releases energy. Finally, heat and 
water are transported by conduction and diffusion through the gluten gel to the next cell. The 
principle of the evaporation-condensation model that was developed to explain heat transport 
during baking could not alone explain the actual heating rates, which are faster. The thermal 
diffusivity in the foam is lower than that of a continuous phase, due to the presence of insulating 
elements such as gas bubbles (Gori, 2004). 

dx
dTkq =
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Zanoni et al. (1993) proposed a mechanistic model to describe the heat and mass transfer 
phenomena that cause a series of physical, chemical and structural transformations in bread. 
The model is able to determine the temperature, moisture, crust thickness and increase in 
volume. Initially, convective evaporation of water occurs at the surface of the loaf, where it is 
exposed to air; the temperature of the crumb increases linearly with time until it reaches 100ºC. 
Unbound water evaporates at this temperature and boiling occurs. Studying the proposed 
model, it is assumed that the temperature at the evaporation front is 100ºC during whole 
process. In the crust, above the evaporation front, all of the bound water was evaporated. As a 
result, the temperature of the crust increases and approaches that of the oven. The crust 
becomes thicker when the evaporation-front advances progressively inwards. 

Tong and Lund (1993) developed a one-dimensional mathematical model of heat diffusion using 
the internal generation of heat. The principal model involves the transfer of water in the vapour 
phase, the content of water in the hygroscopic range and content of moisture at equilibrium at 
the surface of the product during baking. Similar parameters were used when Zanoni et al. 
(1994) developed a two-dimensional axi-symmetrical heat diffusion model. The phenomena 
were separated into upper (crust) and lower (crumb) sections. In general, the model combined 
the temperature of the crust, determined by equations including heat supply via convective 
mass transfer towards the outside, and the temperature of the crumb, determined using 
Fourier’s law.  

Thorvadsson and Skjoldebrand (1998) concluded that the water contained in the centre of the 
loaf rises during the baking process. This water moves towards the centre as water vapour is 
evaporated near the surface, where the temperature is higher, and condenses closer to the 
centre, where the temperature is lower.  

Thorvadsson and Janestad (1999) developed a model with heat, water and vapour diffusion. 
The model is based on Fourier’s and Fick’s law and divided into two parts: the diffusion of liquid 
water and the diffusion of water vapour. De Vries et al. (1989) also established a one-
dimensional, cylindrical, co-ordinate model. Zhang et al. (2007) applied combined mechanisms, 
leading to the expansion of gas cells (CO2) and the dough/crumb transition, to all typical baking 
processes. Lucas et al. (2007) continued to study the effect of CO2 and proposed an 
experimental method to correlate release of CO2 with baking parameters. They used infrared 
detection and gas chromatography, and investigated the effects of two process parameters on 
the release of CO2 on the proving time and temperature of the oven. The concentration of CO2 
measured by infrared detection, which showed little difference to the gas chromatography 
method, was judged to be the more convenient of the two; it also provided more stable 
measurements. 

Jefferson et al. (2007) discussed the model and the numerical method based on changes in the 
dough during baking. The dough can be considered as being a bubbly liquid when it is placed in 
an oven. The model assumes that the setting and fracturing occur at the precise temperature 
when fracturing reaches a bubble; the part of the bubble adjacent to the liquid dough collapses 
instantaneously. This collapsing mechanism, with a change in density fixed by the temperature 
gradient, is coupled to a non-linear heat equation, with an experimentally defined thermal 
conductivity and an evaporation boundary at 100ºC. It also allows for convection due to the 
expansion of the inner (unset) part of the dough. The method identifies how qualities of the 
crust, namely its size, thickness and mass, depend on various physical properties (such as the 
water content of the dough) and might be determined by the quantity of the flour used.  
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2.3. Heat Transfer within an Oven Chamber 

In an oven chamber, molecules of air, water and/or combustion gases circulate throughout, 
transferring heat by convection. Radiant heat, which originates mainly from the burner flames 
and all hot metal parts in the oven, has two characteristics that are different from other heat 
transfer mechanisms, which are important in bakery ovens. First, it is hindered by shadowing or 
blocking by intervening layers that are opaque and, secondly, it is responsive to changes in the 
absorptive capacity of the responding media, i.e. the dough (Therdthai et al., 2003).  

Carvalho and Martins (1991) developed a three-dimensional mathematical model for heat and 
mass diffusion, using the “finite difference” method, to study the evaporation and condensation 
of water in the product. They also considered the conservation equation for mass, momentum, 
enthalpy, moisture and the turbulence model (k-ε) together with the radiation heat transfer of the 
turbulent flow in the baking chamber. The variables used in the model were effective physical 
properties such as thermal conductivity, specific heat, density (as a function of temperature) and 
volume expansion. 

Carvalho and Nogueira (1997) showed that, for bread, the velocity of the airflow in an oven 
chamber influences the heat flux and the bread properties, as well as gives possibilities of 
optimising the distribution of the flux. Radiation was also confirmed as being the most important 
mode of heat transfer in the baking process for the highest layer of loaves in the ovens, and 
particularly so for natural convection ovens. This coincides with the results of a CFD model 
developed by Velthusis et al. (1993).  

CFD modelling has been used to deal with the complex heat distribution, product geometry and 
configuration of ovens. In order to prevent the leakage of gas in a heating duct leading to an 
oven chamber, Fuhrman et al. (1984) used CFD to simulate the fluid mechanical and thermo 
dynamical state within the oven to ensure that the system could maintain the pressure in the 
heating ducts lower than the ambient pressure. Carvalho and Martins (1991) also used the CFD 
modelling technique to investigate the proportion of the heat transfer mode that included 
radiation and convection within natural convection and forced convection ovens. The CFD 
approach was applied to study the effect of a perforated plate on improving the homogeneity of 
an assumed velocity field and the pressure drop across the baking chamber in a laboratory 
batch oven (De Vries et al., 1995). Verboven et al. (2003) used CFD simulation to find a way of 
increasing the mass transfer coefficient and the uniformity of heat coefficient at the surface of 
the product. 

Gupta (2001) developed a model for estimating the fraction of heat transfer modes applicable 
when making Indian flat bread (i.e. chapatti) in a continuous baking oven; it was found that 
conduction was the most important mode of transferring heat from the oven chamber to the 
product. This is not in contradiction with previous studies, due to the geometrical characteristics 
of a chapatti; it is thin (1.0–1.5 cm in thickness) and has a short baking time (about 40 s). 
However, the model neither considered the direction of the heat and its flow to the product nor 
the dynamic change of the oven load during continuous baking. 

 

2.4. Mass Transfer during Baking 

Tong and Lund (1993), Zanoni et al. (1993), Zanoni et al. (1994) and Thorvaldsson and 
Janestad (1999) assumed that the mechanisms of mass transfer within the dough could be 
described using the mechanisms of evaporation and condensation. The experimental results of 
Thorvaldsson and Janestad (1999) showed that the concentration of water measured, at the 
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centre of the bread, decreased until the temperature at the centre reached 70±5ºC due to the 
expansion in volume. The total water content of the bread is constant because the dough does 
not have a continuous pore system, which obstructs the transport of water severely. When the 
temperature reaches 70ºC, structural changes begin to take place and, as a result, the discrete 
pores become connected, allowing water to thus move more freely. 

In an attempt to reduce the pressure of the water vapour due to the temperature gradient, water 
moves towards the centre of the loaf of bread as well as to its surface by means of evaporation 
and condensation. As a result, the increase in temperature at the crumb accelerates. At the 
surface, the surrounding gases are not saturated; the evaporated vapour is transported through 
the diffusion layer and exits the loaf. The movement of moisture in the crumb and crust can be 
described by Fick’s law, as shown, for example, by Sablani et al. (1998) and Thorvaldsson and 
Janestad (1999). 

Sablani et al., (1998) describe a general equation for the distribution of both temperature and 
moisture within bakery products that defines the boundary conditions in a form different to that 
of Therdthai and Zhou (2003). Their model for the combined transfer of heat and mass in dough 
during the baking process can be presented as follows:

  

    Eq 2.6 

      Eq 2.7 

with the boundary conditions: 

     Eq 2.8 

       Eq 2.9  

dCs

dT
= k(Cg −CsK(T ))       Eq 2.10 

where ρb is the apparent density, cpb is the bulk specific heat, T is the temperature, t is the time, 
kp is the thermal conductivity, λv is the latent heat, D is the water diffusivity, ht is the convective 
heat transfer coefficient, hm is convective mass transfer coefficient, k is the rate constant for the 
phase transport from gas to liquid, C is the absolute moisture content, ε is the emissivity and σ 
is the Stefan-Boltzmann constant. The following subscripts apply: a for air, s for surface, g gas 
phase, and w for walls. K(T) is the equilibrium constant of the evaporation which can be 
expressed by Eq.2.11. 

K(T ) = Ae
−λν
RT        Eq 2.11 

where A is called the pre-exponential constant. 
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Thorvaldsson and Janestad (1999) divided the moisture content, C, further into liquid water and 
water vapour, which diffused separately and simultaneously within the dough. Saturation 
equilibrium was assumed to be reached between the liquid water and the water vapour. 

 
2.5. Physical Changes during Baking 

Structural Changes 

According to Chevallier et al. (2002), the macroscopic modifications that occur during the baking 
process can be divided into three stages: (i) the development of a partially open and porous 
structure associated with the decrease in density, (ii) drying and (iii) colouring of the surface. 
Structural changes are the result of water vaporisation and the gas bubbles that are produced 
when the chemical leavening agents decompose. The bread stops expanding in size when the 
chemical leavening agents becomes depleted and there is no more percolation of water vapour 
at the appropriate temperature.  
Therdthai et al. (2003) considered two major structural phenomena during the baking process: 
the first is the transformation of semi-fluid dough into a predominantly solid, baked product that 
is characterised by certain rheological properties. Changes in the rheological properties are, 
naturally, affected by the baking conditions. The second is the expansion of the dough in the 
oven until the structure becomes fixed. The main physical change occurring during the baking 
process is the loss of moisture, since it is related to the transfer of both heat and mass. Almost 
all moisture lost during the baking process is due to evaporation; variations in such losses are 
caused by the nature of the dough and the baking conditions. According to a model based on 
water evaporation and diffusion (Therdthai and Zhou, 2003), it was found that the water content 
in the crumb after baking was the same as the initial water content of the dough. Almost no 
water was predicted to be present in the crust, so the total loss of moisture occurred basically 
from the surface. Based on a total moisture loss of 53 g per loaf, Thorvaldsson and 
Skjoldebrand (1998) found that 29 g was lost from the top crust, 12 g from the layer below the 
top crust and 12 g from the side crust. Figure 2.5.1 illustrates typical changes in the content of 
water in the top crust, centre and base of the loaf, respectively, during the baking process, 
(Thorvaldsson and Skjoldebrand, 1998). 
 

 
Figure 2.5.1: a) Water content and temperature profile in the top crust (from Thorvaldsson and 
Skjoldebrand 1998) 
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Figure 2.5.1: b) Water content and temperature profile in the centre (from Thorvaldsson and Skjoldebrand 
1998) 
 

 
Figure 2.5.1: c) Water content and temperature profile in the bottom surface (from Thorvaldsson and 
Skjoldebrand 1998). 
 
 
2.6. Effects of Baking Parameters on the Quality of the Product  

The quality of the loaves produced depends largely on the heat treatment received by the 
pieces of dough during the whole of their residence time in the oven. The common industrial 
practice employed to achieve optimal results is to bake the bread at a constant temperature. 
Uneven distribution of temperature and random disturbances in the oven often result in the 
dough being subjected to inconsistent heat treatment (Wong et al., 2007). Hadiyanto et al. 
(2007) presented a systematic approach that captures the most dominant physical phenomena 
and the transformation in the product during baking; they developed a model based on 
interconnections between input, heat and mass transfer, product transformation and attributes 
of product quality which represents the total behaviour of the product. The simulation describes 
how product attributes can be modified by changing the initial composition and process 
variables during baking, and allows the various processing alternatives to be ranked. 
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Temperature 

The baking temperature dominates the quality of the product during baking. The increased 
temperature creates a pressure gradient in the product; causing the lattice of the gluten threads 
to dilate from the centre of the loaf outwards, i.e. towards the surface, see Figure 2.5.1. Figure 
2.5.1:b) shows a typical graph of the changes in temperature and water content in the centre of 
a loaf during baking. Near the base, 1 cm into the loaf, the water content first decreases as 
drying occurs (this corresponds to a water loss of about 9 g water / 100 g bread). When the 
temperature has reached 70 ± 5°C, there is an increase of water content due to increased 
temperature in the whole loaf which leads to that water being transported from the inside and 
out. This increase is rapid and equals approximately 2 g water/100 g bread. Thereafter, it slowly 
decreases and the total loss of water during this period is 4 g water/100 g bread (Figure 2.5.1: 
c). At 1 cm underneath the top surface, the changes in the measured water content are similar, 
although the initial rise is approximately 3 g water/100 g bread and the decrease is 
approximately 13 g water/100 g bread (Figure 2.5.1: a). At the top and absolute bottom, the 
decrease in water content commences immediately and a crust is formed.  
 
Not only is it important to know what temperature is necessary to bake the bread but also when 
it should be applied; the optimum temperature must be reached at the right time, otherwise, the 
quality of the product may be degraded. 
 
Patel et al. (2005) compared the characteristic of products produced at different heating profiles 
during baking. Moisture and water activity, firmness, thermal properties of starch and other 
properties were found to be dependent on the heating rate during the baking process. The 
development of browning during baking is a dynamic process mainly influenced by temperature 
and water activity of the system (Purlis, 2010). Browning occurs from the accumulation of 
coloured compounds produced by the Maillard reaction and by caramelisation. It affects the 
overall quantity of food and is partly responsible for changes in sensorial attributes such as 
colour, flavour and aroma. The development of browning depends on the dough formulation (i.e. 
amino compounds, sugars and leavening agents) and the operating conditions (i.e. temperature 
and water activity) (Purlis, 2010). Variations in temperature affect water activity (aw) directly 
which, in turn, determines the level of microbial activity. The water content and its distribution 
determine textural properties such as softness of the crumb, crispness of the crust and shelf life 
(Wagner et al., 2007). Thorvaldsson and Skjoldebrand (1998) showed that the temperature 
profile during the baking process influences the quality of the bread produced. 
 
Thorvaldsson and Skjoldebrand (1998) used the surface temperatures of the product instead of 
the temperature of the air to study the quality of the outermost layer of the loaf. It was noticed 
that the temperature at the bottom surface increased slightly faster than at the side surface. An 
alternative way of measuring the combined influence of the baking temperature and other 
parameters is to measure the heat flux. Therdthai et al. (2002) and Wong et al. (2006) 
developed a CFD model that was used to combine the temperatures measured by the top, side 
and bottom heat sensors to obtain an average, weighted, temperature for each of the zones in 
the oven to predict the quality of the product. The heat flux is defined as the rate of heat transfer 
per unit area required by the product. It is claimed that it is more useful to measure the heat flux 
than the gas temperatures when controlling the quality of bakery products, (Fahloul et al., 1995; 
Carvalho e Nogueira, 1997). Figure 2.6.1 shows a typical temperature profile during the baking 
process in a forced convectional oven at 225ºC (Thorvaldsson and Skjoldebrand 1998). 
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Figure 2.6.1:  
a) Top surface, b) Bottom surface, c) Side surface, d) 1 cm from the bottom surface, e) 6.8 cm from 
the bottom surface; f) Centre, 4.6 cm from the bottom surface, g) 3.5 cm from the bottom surface. 
Total height 9.0 cm (from Thorvaldsson and Skjoldebrand 1998). 
 

Airflow Velocity  

The CFD models clearly show that increasing the velocity of the airflow in the oven chamber 
increases the heat flux to the product; a change in the composition of the gas in the chamber 
during baking also affects the heat flux (Carvalho and Mertins, 1991; Velthuis et al., 1993; De 
Vries et al., 1989; Mirade et al., 2004). When the oven chamber was filled with radiation 
absorbing gases (i.e. water vapour and carbon dioxide), the average temperature was 
estimated to have increased by 5ºC (Velthuis et al., 1993).  

 
The velocity of the gas flow also affects the quality of the baking process. Lack of uniformity in 
the end product is possibly due to the non-uniformity of the flow of gas around the product 
during baking. Temperature on the bread surface was increased by increasing the velocity of 
the gas flow (Velthuis et al., 1993; Carvalho and Nogueira, 1997). Experience from the baking 
process showed that an increase in the velocity of the gas flow results in greater weight loss, 
less softness and darker surface. It is, therefore, concluded that either the baking time or the 
baking temperature should be reduced with respect to increasing the transfer rate of heat. The 
baking process does, however, require a minimum temperature to produce an adequate colour. 
When bread is baked at a very low temperature, a very high velocity of the gas flow is required 
in order to increase the drying rate and produce an acceptable crust colour.  
 
Therdthai and Zhou (2003) simulated, in two-dimensions, the temperature profile and gas flow 
pattern throughout the baking chamber of an industrial, continuous, baking oven (16.5 m long, 
3.65 m wide and 3.75 m high). The CFD results provided enough information to establish the 
optimum baking temperature profile and where to position the control sensors. Verboven et al. 
(2003) increased the gas flow velocity to overcome the problem but, as a result, the heat and 
mass transfer coefficient were not increased enough to remove the accumulation of moisture 
effectively. When the mass transfer coefficient was sufficiently high to reduce the water content 
on the surface significantly, the colour and development of flavour could be enhanced at the 
same time as the texture improved. Mirade et al. (2004) used a two-dimensional CFD model to 
predict the velocity of the gas and the temperature fields necessary in the baking chamber of an 
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industrial, gas-fired, tunnel oven used for baking biscuits. Whilst comparing calculations with 
measurements revealed a fairly close agreement in the temperature profile of the gas in the 
baking chamber of the tunnel oven, a fairly large discrepancy was found in the velocity profiles 
of the gas.  
 
 Baking time  

The kinetic reactions, including the gelatinisation of starch and the browning reaction, depend 
not only on temperature but also on baking time. It must be ensured that the gelatinisation and 
browning reactions have been completed if the baking time is to be reduced by either increasing 
the airflow velocity or the baking temperature; otherwise, the quality of the product may be 
degraded (Therdthai et al., 2002). Even if the gelatinisation and browning reactions are 
complete, the quality of a product baked for a short time can differ significantly from one baked 
for a longer period. Longer baking times can, in fact, result in caving as well as reduced 
softness. It is necessary for the baking temperature and baking time to be synchronised for 
optimal production of the product desired (Therdthai et al., 2002).  
 
Humidity 

An increase in the humidity of the gas, created either by injecting water vapour into the oven or 
the migration of water vapour from the product, increases the flow of heat. According to a CFD 
model, the average temperature of an oven composed of pure water vapour can be 5ºC higher 
than that of an oven containing only dry air (Velthuis et al., 1993) due to water vapour having a 
greater ability to absorb radiated heat. Water vapour, on the other hand, may limit the formation 
of crust (Chevallier et al., 2002) and is therefore normally only applied to an oven at the 
beginning of a baking process for bread products. Insufficient control of water vapour could, 
however, render too low a level of humidity in the oven chamber, with the result that the baking 
loss may increase (Therdthai and Zhou, 2003). 
 

2.7. Specific Characteristics and Design of Baking Ovens 

The manner in which heat is supplied and then transmitted to the baking product, the control of 
the amount and intensity of heat required for the baking process and the cost of construction, 
operation and maintenance of the baking unit are all important parameters pertaining to the 
design and development of modern baking ovens. An oven is basically composed of a baking 
chamber and a heating system. The baking chamber is normally designed as a rectangular box 
comprised of a steel-lined sheet supported by a steel frame. The oven walls are insulated on the 
top, bottom and sides. According to Pyler (1973), the ovens can be divided into four types: reel, 
tray, tunnel and spiral.  
 
A reel oven consists of a relatively high baking chamber that houses a vertically-revolving reel 
on which the baking trays are suspended in a ferris-wheel fashion between the two side 
members of the reel, see Figure 2.7.1. This oven can be either fired directly, when electricity or 
gas is employed, or indirectly, when oil is the fuel used. 
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Figure 2.7.1: Cross-section of a reel oven (redrawn from Pyler 1973) 
 
A travelling tray oven, of either single or double lap design, is essentially a modification of the 
reel oven; it differs in that it has a much lower horizontal baking chamber in which the rotating 
reel is replaced by endless chains that support the baking trays, see Figure 2.7.2. In a single lap 
tray oven, the baking trays move back and forth once during the baking process whereas in a 
double lap tray oven, they travel back and forth twice. 
 

 
Figure 2.7.2:  Schematic diagram of a single lap and a double lap oven (redrawn from Pyler 1973) 
 
A tunnel oven, or travelling hearth oven, is designed primarily for large volume, continuous 
operation. Here, the hearth is comprised of a motor-driven conveyor, which passes through a 
series of heat zones, see Figure 2.7.3. The oven is loaded at one end and unloaded at the 
opposite end. The long flat hearth has thus unlimited flexibility in respect to the size of the 
baking pans used; the heat in the oven can be controlled easily and accurately at both top and 
bottom; there is no problem with the stability of the trays and the steam conditions are close to 
ideal. 

 
Figure 2.7.3:   Schematic diagram of a tunnel-type (redrawn from Pyler 1973) 
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A spiral oven consists of a final steam proofer and oven, both of which allow a continuous wire-
grid pan conveyor to pass through them for a specified period of time. The basic design of the 
proof box and the oven is quite similar, comprising a boxlike structure into which the conveyor 
enters via an opening near the top; it then descends in a series of spiralling loops around the 
interior periphery and exits in the lower section. 
 
The three common systems of providing a bakery oven with heat are:  
 

a) Indirect heating by combustion gases either conducted through flues and 
radiators, or flowing past surfaces (e.g. floor and back) of the baking chamber.  

b) Semi-direct heating in which part of the combustion gases are forced into the 
baking chamber to create distinct convection currents.  

c) Direct heating using electricity or gas with ribbon-type burners.  
 

A fourth, indirect, method that utilises high-pressure steam tubes is also used but only to a very 
limited extent. 
 
The tunnel oven has, according to Mirade et al. (2004), two main types of design: direct-fired 
and indirect-fired. 
 

Direct-fired Oven 

Heat is produced inside the baking chamber using wood, gas burners or electric heating 
elements located above and below the conveyor band. An example of a direct-fired oven is the 
reel oven, shown in Figure 2.7.1. The heating elements are positioned centrally across the floor 
of the baking chamber. A baffle placed above the gas burner changes part of the convection 
heat into radial heat, thereby providing a suitable balance between these two types of heat 
transfer within the oven. 
 
Indirect-fired Oven 

The combustion and baking chambers are separated by steel/fire-brick walls. The baking 
chamber is usually divided into several zones along the length of the oven and fitted with a 
chimney. The system requires a burner, combustion tunnel, heater body, radiator tubes and 
duct recirculation fan. It operates at a negative pressure, to prevent contamination if leakage 
should occur in the duct. An indirect gas-fired burner system requires 20% more energy than a 
direct-fired oven. In a typical indirect-heating continuous baking oven, the dough/bread 
effectively experiences four major heating zones. According to Pyler (1973), the optimum 
chamber temperature profile is 217, 227, 238 and 232ºC, respectively, along the four zones. 
Therdthai et al. (2002) reported an optimum tin-surface temperature profile of 115, 130, 156 and 
179 ºC, respectively, for one particular kind of white sandwich bread. 
 
Semi-direct-fired Oven 

A wood-fired bakery oven has a separate baking chamber, which has only one large area in 
which the dough is placed for baking. A typical wood-fired oven is illustrated in Figure 1.3.1 and 
described in Section 1.3.  
 
The heating value of a fuel (i.e. biomass) can be defined either by the higher heating value 
(HHV), which is basically its energy content on a dry basis, or by the lower heating value (LHV), 
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which subtracts the energy needed to evaporate water from the HHV. Generally, the solid 
biomass has a higher heating value on a dry basis: 15.6-20.0 MJ/kg, depending on the species, 
Klass (2004). The lower heating value is calculated by Eq. 2.12: 
 

    Eq. 2.12 
 
HHV is the amount of energy released during complete combustion of dry biomass, Ew is the 
energy required to evaporate the water contained (2.26 MJ/kg), W is the moisture content, H is 
the hydrogen content (weight per cent of wet fuel) and mH2O is the water created per unit of 
hydrogen (8.94 kg/kg) (Faaij, 2004). 
 
The different heating values of the fuels originate from differences in the chemical composition 
of their basic components, i.e. cellulose (C6H10O5)n,	   hemicelluloses (C5H8O4)	   and lignin	  
(C9H10O3)(0.9-1.7)m.	  Sulphur, nitrogen and ash are also present in the fuel but to a lesser extent. 
The content of moisture is usually 50–60% in green wood and 20–35% in dry wood (Tsamba, 
1994 and Klass, 2004). The elementary composition of micaia, the wood most commonly used 
in Mozambique, is shown in Table 2. 

 

Table 2. The Elementary composition of micaia wood (Tsamba, 1994) 

Components (%m/m) Moisture Base Dry Base 

Moisture (W) 9.5 - 

Ash (A) 1.72 1.9 

Sulphur (S) 0.02 0.02 

Carbon (C) 44.62 49.3 

Hydrogen (H) 5.34 5.90 

Nitrogen (N) 0.36 0.40 

Oxygen (O) 38.44 42.48 

HHV (MJ/kg) 17.36 19.18 

LHV (MJ/kg) 15.96 17.88 

 

In general, the moisture content represents the amount of the water in relation to total weight.  

Density is defined as the mass per unit volume of a substance. Knowledge of the density of 
wood, which varies with moisture content and specific gravity, is useful for estimating shipping 
weights. The water content can affect both mass and volume; the specific gravity is the density 
of the substance relative to the density of water (Cuvilas, 2009). 
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Ash is an inorganic residue remaining after wood has been combusted at high temperature. The 
amount is usually <1% for wood from temperate zones and >1% for wood from tropical zones 
such as Mozambique, (Petterson, 1984), where it can reach up to 14% (Tietema et al., 1991). 
 
Biomass is preferred over fossil fuels with respect to contributing to a sustainable society, 
although its utilisation in small scale applications undeniably causes some pollution, e.g. by the 
formation of particles. Combustion can ideally be defined as being a complete oxidation of the 
fuel characterised by a two-step process, consisting of an initial conversion of the solid fuel to 
gaseous compounds (also known as gasification products), which is followed by gas phase 
reactions. Optimisation of the fuel being used and the rates of air flow in the combustion 
process, together with mass and energy balances are necessary to minimise the amount of 
fuels consumed and to satisfy the process and environmental constraints (Mancuhan and 
Kucukada, 2006). The oxidation of biomass consists of several basic steps: drying, pyrolysis, 
gasification and, finally, full combustion. Biomass is never totally dry; any water in the fuel will 
be evaporated. The higher the moisture content, the more energy required for its evaporation. 
This is an important parameter in the overall performance of the system. 
 
Pyrolysis: Devolatilisation and pyrolysis are two of the major decomposition processes that can 
affect a particle of wood. Their detailed kinetics remains unknown due to their complexity in both 
the reaction paths and generation of products. Therefore, the interpretations of experimental 
investigations are restricted to global mechanisms. Several, and quite varying, modes of 
pyrolysis have been presented in the literature, as shown by e.g. Faaij (2004), Bruch et al. 
(2003), Peters and Bruch (2001) and Oman et al. (1999). Pyrolysis models for wood can be 
arranged into different groups, according to their complexity: a one-step model, models with 
competing reactions and models with secondary reactions. 
 
Gasification and combustion: Conversion due to the gasification and combustion of a solid 
particle involves a heterogeneous reaction which, apart from the chemical kinetics, always 
includes the transport of at least one species. Hence, the process of a heterogeneous reaction 
may be divided into the following steps: 
 

i) Transport of one or more reaction parameters 
ii) Adsorption at active sites 
iii) Chemical reaction 
iv) Desorption of the products of the chemical reaction 
v) Transport of one or more products 

 
In this sequence, the overall rate of the entire process is determined by the slowest of these 
steps, which usually involves a strong temperature dependence (Peters and Bruch, 2001). 
 
Biomass is a highly reactive fuel compared to coal and has a much higher content of oxygen, a 
higher hydrogen-to-carbon ratio and a higher content of volatile substances. The bulk 
composition of biomass in terms of carbon, hydrogen and oxygen (CHO) does not differ much 
between various sources of biomass: typical (dry) weight percentages for C, H and O are 45–
50%, 5–6% and 38–45%, respectively. The content of the products (lighter components that are 
released during the pyrolysis stage in particular) can vary between 70 and 85%. The latter is 
typically higher for non-woody and “younger” greener sources of biomass - (Faaij, 2004 and 
Klass, 2004).  
 
The air-to-fuel ratio is expressed as the mass of air (kg) used to burn a unit of fuel (kg). It is 
important for achieving efficient combustion. In general, the overall air-to-fuel ratios in virtually 
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all combustion applications are higher than the theoretical chemical-reactant (stoichiometric) 
ratios needed. The stoichiometric air-fuel ratio  in kmol/kg wood for the complete 
combustion of fuel having the average composition of carbon, xc, hydrogen, xh and oxygen, xo 
can be found in Eq. 2.13. 
 

      Eq. 2.13 

 
In order to guarantee the complete combustion of solid fuels, an excess of 50% air is 
recommended (Ghojel, 1998). This amount can be reduced depending on the type and 
characteristics of the fuel and the design of the combustion equipment. For industrial boilers, the 
amount of excess air required to burn natural gas efficiently is about 5%, for oil around 10–15% 
and for pulverised coal around 20–25%. These amounts represent the amount of excess air 
required to ensure that all of the fuel molecules are able to find oxygen molecules with which to 
react. For small-scale industrial wood burners, on the other hand, the recommended amount of 
excess air is not well defined; well-engineered systems are nevertheless found to operate in the 
range of 50–100% excess air. Normally, the amount of excess air necessary for practical use 
can be identified by the rapid decrease of the slope in a graph of the exhaust emissions of 
carbon monoxide versus the air-to-fuel ratio. 
 
 
The thermal efficiency of a device can be based on steady or unsteady state operations or on 
the specific consumption of energy, the latter being defined as the amount of energy input 
required performing a given task. Equation 2.12 expresses the specific coefficient (SC): 
 

      Eq. 2.14  

 
The relationship between SC and cooking efficiency is shown in Eq. 2.15: 
 

       Eq. 2.15 

 
where Cpf is the heat capacity of the specific food and HHV is the higher heating value. Due to 
the fact that the evaporated water is not condensed in these types of combustion units, it is, 
however, recommended that the lower heating value (LHV) be used rather than the HHV. 
 
A compromise has to be reached between the control and the performance of the entire 
combustion process (which includes costs, efficiency and emissions). On the one hand, there 
are various technical variables, such as the design of the equipment, the materials used, the 
methods of feeding in both air and fuel and strategies of control; on the other hand, a number of 
process variables, such as the transfer of heat, the residence times, the insulation of excess air 
and the properties of the fuel (i.e. moisture, mineral fraction and composition) must all be 
balanced to obtain the desired performance (Faaij, 2004).  
 
There are several fuels that are suitable for use in these ovens, including fuel oil, natural gas, 
softwood and hardwood, as shown in Table 4. The energy released during combustion is 
indicated by the heating value of the fuel, which is the energy per unit of the fuel.   
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Table 4: Theoretical volumetric energy density heat values of different heat sources (Pyler, 
1973)  

Supply Heat generated Units (SI) 
Fuel Oil (heavy) 44 592.0 MJ/m3 

Fuel Oil (light) 39 000.0 MJ/m3 

Natural Gas 39.0 MJ/m3 

Propane-Butane 21.5 MJ/m3 

Manufactured Gas 1 100.0 MJ/m3 

Hardwood (air dried) 8 854.0  MJ/m3 
Softwood (air dried) 5 411.0  MJ/m3 
Mixed Hardwood (air dried) 7 234.0  MJ/m3 

 
 
Electricity, although cleaner and easier for maintenance, is expensive. Generally, 1 kg of bread 
requires 359–475 kJ to complete a baking cycle. In additional, approximately 95 kJ/kg is needed 
to heat the tins and to compensate for heat lost via the walls of the oven. 
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	   METHODOLOGY	  
 
3.  METHODOLOGY 

3.1. Analysis of Bakeries in Mozambique 

The methodology was divided into two different parts: the survey consisted of pre-audit and 
detailed audit and laboratorial analyses to perform the same quality parameters of the bread 
produced in wood-fired bakeries that are directly influenced by baking temperature. 

3.1.1. Pre-Audit 

The review of the available literature pertaining to the demand of biomass in the townships of 
Maputo and Matola was taken. An inventory, (i.e. pre-audit) and detailed audit, was used to 
collect specific information regarding the equipment and bread baking process including the 
overview of wood consumption in the wood-fired bakeries. The information was collected from a 
production manager and/or from a shift team leader.  

3.1.2. Detailed Audit 

The detailed audit ovens were selected randomly among ovens with average size (3m 
diameter), assuming 95% confidence interval, 99% of the response and 5% margin of error. 
Eleven semi-direct bakeries were found to be the minimum sample in a universe of 46 (number 
of ovens with 3 m diameter). To increase the precision, the detailed audit consisted of 15 semi-
direct ovens. In addition to this, three indirect bakery ovens (one with three and two with four 
drawers) were used as a reference in this research. The following parameters were determined: 
the dimension of the bakery furnaces, the weight of the wood and its combustion time, the 
temperature profile of the bread during the baking process, the temperature in the combustion 
and baking chamber and, finally, the temperature profile of the chimneys. The temperature was 
measured every 3-seconds in the fire-grate, mixing box and three different points in the 
combustion ducts in semi-direct wood-fired bakery ovens (labelled fire-grate, mixing box, 
position 2, 3 and 4 in Figure 3.1.1A) during the 4 h period using N-type thermocouples. The 
thermocouples were placed in the conducts that connect the wood combustion chamber and the 
main conduct to measure the temperature of the flow. This procedure reduces the impact of 
radiation during the measurement. A K-type thermocouple was used to measure the fire-grate 
and baking temperature, the temperature at the top, bottom and centre (crumb) of the sample of 
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bread and in position P1 and P2 to evaluate the temperature distribution in the oven as 
illustrated in Figure 3.1B. The thermocouples, which had first been calibrated with boiling water, 
were connected to a data logger (DATA LOGGER T3000) and recorded measurements every 2 
min during the allocated time. Their displacement during the expansion of the bread in the 
baking process meant that the exact position of each thermocouple had to be measured after 
the bread had cooled down.  

The thermal efficiency of the oven is calculated by the equation 2.14 and 2.15 described in 
section 2.7. 

 

Figure 3.1.1.A: Schematic representation of the position in which the combustion temperatures were 
measured. 

 

3.1.3. Analysis of the temperature of the baked bread 

The analysis of the final product, including the colour of the crust, the temperature of the crumb 
and the moisture content, was undertaken to study the influence of baking temperature and 
time. The weight loss (change in moisture content) was determined by weighing samples before 
and after water evaporation at 105°C immediately after the baking process was completed 
(technical scale B-3000 ±o.5 g). Water activity (aw) or water stability was evaluated by 
measuring the water content of the bread when it was newly baked and again after a number of 
days conservation under external conditions (Aqua lab equipment). 

With the aim of predicting and controlling the development of the browning during the baking, it 
is necessary to quantify the advance of the underlying reactions. The formation of colour can be 
measured by different techniques. They can be divided into two main categories: direct and 
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indirect techniques. The direct methods aim to measure the concentration of browning reaction 
products and the indirect approach is focused on registering the variation of colour (Purlis, 
2010). In this work, the colour of the crust was determined using a Colour Reader Minolta CR 
with an L-a-b system; the response was expressed as the lightness (L) of colour. The 
measuring area is 8 mm. All measurements were taken under the conditions of standard 
illuminate D65 and 10° observer. 

 

    

Figure 3.1.1.B: Schematic representation of the positions of the loaves in the baking chamber and the 
techniques used to study the temperature profile in the bread baking process (dough and bread, 
respectively) 

  

3.2. 2D Physical Model 

A two dimensional model was constructed to visualise flows in various equipment, including the 
baking chamber of a wood-fired bakery oven. It was performed to achieve qualitative 
information and measurements of the flow characteristics (Figure 3.2.1). The first step was to 
design a physical model relative to the real equipment (scale 1:10). An aluminium plate with a 
thickness of two millimetres and width of five millimetres was used for the two-dimensional 
model arranged on a horizontal plate in a water table. Three valves controlled the velocity of the 
recirculation water in the model, and aluminium powder (with a diameter of about 40 µm) was 
used to visualise the flow pattern. The material does not dissolve in water and it has a high 
reflective factor and colour; therefore, it can be reused almost indefinitely. The disadvantage of 
the powder is that it tends to sink at long running times. It was possible to obtain the streamline 
pattern by allowing fairly long exposures time, on ASA 100 films, as shown in Table 5. If the 
primary aim of the model is flow visualisation, it is important that there is clear access to the 
areas of interest. 
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Figure 3.2.1:  The bi-dimensional water table used in the physical simulation studies. 

Table 5: The experimental parameters employed in the bi-dimensional experiments 

Water velocity 
[m/s] at the 
model inlet  

0.020 0.023 0.030 0.038 

Regulation of 
light 

5.6 8 11 5.6 8.0 11 5.6 8 11 5.6 8.0 11 

 

Exposure time 
(s) 

1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 

1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 

1/15 1/15 1/15 1/15 1/15 1/15 1/15 1/15 1/15 1/15 1/15 1/15 

	  
The velocities were calculated from a typical wood consumption in wood-fired bakery ovens (18 
kg/h); the amount of excess air varied between 2 and 4, which is common in poor combustion 
conditions (Lucas et al., 2000 and Nussbaumer, 2003). In the velocity calculations, it was 
assumed that the combustion of wood was complete and that atmospheric air entered by 
natural convection to the combustion chamber. 
 

 

	    

Model	   Output	  of	  the	  
water	  controlled	  
by	  valves	  

Flow	  straighteners	  
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3.4. Construction and Experiments on In-Situ Bakery Oven 

3.4.1. Construction of In-Situ Bakery Oven 

An in-situ bakery oven has been built at the Eduardo Mondlane University in Mozambique. It is 
equipped with the points that permit the following measurements to be taken: the temperature 
distribution along the whole oven, the composition of the gases in the middle (i.e. the inlet of the 
baking oven) and the outlet of the chimneys and the distribution of heat during the baking 
process. Figure 3.4.1 shows the complete oven as it was built as well as the positions prepared 
for the thermocouples. 

1) The temperature in the oven can be measured by inserting copper tubes with a diameter 
5 mm in the previous position of the probes, as shown in Figure 3.4.1 b). The aim is to 
insert thermocouples of K and N types to measure the temperature and then compare 
the measurements with the CFD model.  
 

2) An arrangement of probes in the main outlet through which the hot gases leave the 
combustion chamber on the way to the baking oven as well as at the bottom of the 
chimneys in order to analyse the composition and temperature of the gas.  
 

3) Thermocouples on the bottom of the baking oven are distributed in such a way as to 
measure the temperature along the base. 
 

4) Appropriate equipment allows the heat flux to be measured. 
 

 

  

Figure: 3.4.1:a) General view of the in-situ 
bakery oven. 

Figure: 3.4.1:b) The distribution of the probes along the 
baking chamber. 

   

3.4.2. Measurements in the in situ Bakery Oven 

Experimental measurements were done during the baking process. Specific emphasis was paid 
to the temperature distribution in the different parts in the oven, the air flow rate and the wood 

Thermocouples probes points Bottom of the chimney 
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that was used. Five types of wood were burnt and was done in two parts: the first used just one 
species, Red Mikaya (Acaceas Sp.), whilst the second used Mikaya, Mbeswu and Nala (Albizia 
Versicolour, Moprus S and Acaceas) and one local species known as Xihoho. 

Temperature Measurement 

The temperature was measured every 10 seconds during 24 h at several points in a WFBO to 
obtain a realistic idea of the temperature distribution within it. Twelve N-type thermocouples 
were used to measure the temperature in the combustion chamber and the ducts between the 
combustion chamber and the baking oven; eight K-type thermocouples were used to measure 
the temperature in the baking oven and the chimneys, Figure 3.4.2A and B. Thermocouples 
were connected to the Data logger K2700. 

 

Figure 3.4.2: A. The technical design of the wood-fired bakery oven by taking a longitudinal cut at the 
central section of the WFBO. 
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Figure 3.4.2: B. Location of the thermocouples in the WFBO.  

Thermocouples 1, 2 and 3 were placed at top of the combustion chamber, 4 and 5 were placed 
at the entrance of heat distribution pipes that are connected to the junction, 7 was placed at the 
hole that led to the duct and 6 and 8 were located at the junction of the duct (mixing box) that 
leads out of the combustion chamber with main duct (grid). Thermocouples 9, 10, 11 and 12 
were placed around the grid, at the base of the baking oven; 13, 14 and 15 below the brick layer 
of the oven base; 16, 18 and 19 were placed in the oven chimney and 17 in the grid chimney 
and 20 was placed on the roof of the baking oven.  

An energy balance performed at a thermocouple junction at temperature Tc exposed to gas at 
temperature Tg and surrounding walls at Tw yields the following relationship: 

𝑇! −   𝑇! =
!!!"!!
!"

!"!
!"
+ !!!

!"
!!!!
!!!!

+ 𝜎𝜀 𝑇!! − 𝑇!!   Eq. 3.1 

The difference between the temperature of the gas and the thermocouple reading is due to the 
transient response of the thermocouple (first term on the right hand side of the equation), the 
transfer of conduction heat along the thermocouple (second term) and the radiation heat 
transfer with the surroundings (third term). In the present case, the fresh blank thermocouples 
with low emissivity was used to minimise the effect of radiation and also due to the more and 
less high flow rate of the hot gases from the combustion chamber to the outlet grid that leads to 
the baking oven. Four thermocouples were placed 5 cm below the fire-grid leading into the 
baking oven to measure the temperature of the incoming hot gases. The temperature profiles 
with the mass flow rate of the hot gases represent the total energy that is useful in the baking 
process and were used to validate the computational model. 

Parameters of the wood  

The moisture content, ash, density and heat values of the five different species of wood were 
determined. The moisture content was found by weighing each sample before and after they 
were placed in the oven (Oven Model-295) for a 5 h period at 105°C. The heat values were 
determined using a bomb calorimeter (IKA C200). The ash content was obtained by examining 
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the difference in the weight of the samples after combustion in a muffle furnace (Cabolite S336 
RB) for 5.5 h at 550°C. The densities were based on the volume and weight measurements of 
the samples. The volume was determined using a known amount of fine sand. The amount of 
wood used was determined by weight.  

 

Velocity  

The inlet velocity into the combustion chamber was estimated using a flow meter (Flow Meter 
AB 2050) inserted in a hole with diameter of 0.065 m placed 0.70 m from the combustion 
chambers door to avoid high temperature, as shown in Figure 3.4.3.  

 

 

Figure 3.4.3: Measurement of the airflow entering the combustion chamber. Left: a photograph. 
Right: the arrangement. 

Parameters of the bread quality  

The analysis of the bread quality is based on comparison of the different parameters (moisture 
content, colour of the crust and the crumb, water activity and the mould) that were evaluated 
during the bread baking process. The comparisons are made between the breads baked at 
different positions of the same or different batches. 

The analyses were done with respect to moisture content, colour, water activity, and mould 
evaluation during the shelf life. The moisture content was evaluated using an oven at 105°C 
during 5 hr. The colour was evaluated via Colour Reader Minolta CR10 with an L-a-b system. 
The water activity was evaluated with Aqualab Serie 3 TE made in USA. The mould was 
evaluated by visual inspection of the area affected compared with non-affected bread. The 
procedures used to evaluate these parameters were described in detail earlier (Manhica et al., 
2012a). Figure 3.4.4 shows the different positions that were used for the various bread samples. 



 
 

33 

 

Figure 3.4.4: Location of the samples within the oven. 

 

3.5. Mathematical Models 

The governing, fundamental, equations are the conservation laws of mass, momentum, energy 
and species (e.g. Thunman et al. (2002), Bruch et al. (2004), Bruch et al. (2003), Miltner et al. 
(2006), Hostikka et al. (2001), MacGrattan et al. (2004), and Wang et al. (2008)). 
 
!"
!"
+ ∇ · 𝜌𝑢 =   0                                                                                         Eq. 3.2 

!
!"

𝜌𝑍 +   ∇ · 𝜌𝑍𝑢 =   ∇ · 𝜌𝐷∇Z                                                                   Eq. 3.3 
!"
!"
+   !

!
∇ u !   + ∇𝑝 =    𝜌 − 𝜌∞ 𝑔 + ∇ · 𝜏                                               Eq. 3.4 

𝜌𝑐!
!"
!"
+ 𝑢 · ∇T =   𝑞′′′ − ∇ · q! + ∇ · 𝑘∇𝑇                                                 Eq. 3.5 

 
where ρ, u, Z and T are the density, velocity vector, mixture fraction and temperature, 
respectively. D is the diffusivity, 𝑝 the perturbation pressure, 𝜏 the viscous stress tensor and k 
the thermal conductivity. 𝑞′′′ and −∇ · q!  are the source terms due to the chemical reactions and 
radiation, respectively. These equations are supplemented by an equation of state, namely:  
 
𝑝! =   𝜌𝑹𝑇 𝑌!! /𝑀!                                                                                   Eq. 3.6 
 
where the pressure is replaced by an average pressure p0 to filter out the acoustic waves. R is 
the ideal gas constant and Yi and Mi are the species mass fraction and moles mass. 𝑝! is 
constant unless the domain is tightly sealed, in which case it depends only on time. 
 
Turbulent flow without any chemical reaction was assumed in order to approximate the flow of 
hot gases from the combustion chamber to the baking section in the oven. The turbulent flows 
are characterised by fluctuating velocity fields primarily due to the complex geometry and/or 
high flow rates. The Navier-Stokes equations can be solved directly for laminar flows but, for 
turbulent flows, the direct numerical simulation (DNS) with full solution of the transport equations 
at all lengths and time scales is too computationally demanding, since the fluctuations can be of 
small scale and with a high frequency, i.e. the Re number is below 5000, (Andersson, et al., 
2009). An alternative is, therefore, to transform the Navier-Stoker equations on the small eddies 
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instead of directly simulating the Reynolds averaging and filtering processes (Wang et al., 
2008). The Reynolds-averaged Navier-Stokers (RANS) equations represent transport equations 
for the mean flow quantities only and are developed by dividing the instantaneous properties in 
the conservation equations into the mean and fluctuating components, as shown by: 
 

𝜙 =   𝜙 + 𝜙 ′         Eq. 3.7 
 
The most common RANS models employ the Boussinesq (eddy viscosity concept, EDC) to 
model the terms of Reynolds stresses (Andersson et al., 2009 and TorII et al., 1989). The 
hypothesis states that an increase in turbulence can be represented by an increase in effective 
fluid viscosity, and that the Reynolds stresses are proportional to the mean velocity gradient by 
this viscosity. Models based on this hypothesis include e.g. Spalart-Allmaras, standard k-ε, RNG 
k-ε, Realizable k-ε, k-ω and its variants (Fluent 6.1 User's Guide, (2004)). 
 
In order to mimic a wood-fired bakery oven, the selected model must be able to handle low Re 
numbers and still include the turbulence, which due to the complex geometry involved, causes 
fluctuation in the velocity fields. A mathematical model that can be used to describe the flow 
pattern in these conditions is the two-equation k-ω model, where the turbulence specific 
dissipation, ω, is used as a length-determining quantity. This quantity is defined by  𝜔 ∝ 𝜀 ∕ 𝜅, 
and it should be interpreted as the inverse of the time scale on which dissipation occurs. The 
model k-equation is: 
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and the modelled ω-equation is: 
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The heat balance is written as 

	   	  	  	  	  	  	  	  	   Eq.	  3.10	  

 
where the turbulent viscosity is calculated from 𝜈! =

!
!

 . 
 
One advantage this model has over the more commonly used k-ε model is that it can predict the 
viscous sub layer near the wall more reliably, thereby eliminating the need to use wall functions 
except for computational efficiency. However, the low Reynolds k-ω model requires a very fine 
mesh close to the wall, with the first grid below y+=5.  
 
 

2D Modelling Assumptions 

Two-dimensional flow: The computational time was reduced by taking a 2-D cross-section, 
vertically and longitudinally, with the centre of the oven as the calculation domain. Effective heat 
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conductivity was used to include both the brick layers and the covering sand in order to simplify 
the geometry further. 
 
Turbulent flow: The irregular, but natural convection of the air flow, coupled with the complex 
geometry, meant that turbulent flow was assumed, in spite of the low Re number (Hostikka et 
al., 2001 and Nussbaumer, 2003).  
 
Steady state: The system was assumed to be in a steady state so that the cold flow physical 
model could be compared with the mathematical model.  
 
 
Boundary Conditions 
 
At the combustion chamber: The combustion chamber was only included in the modelling to 
provide a realistic flow pattern in the bakery oven. A reaction was therefore not modelled in this 
chamber; the heat released during combustion was instead used to increase the temperature of 
the incoming atmospheric air. It was assumed that the incoming air had a temperature of 
1500K, which satisfies the temperature range of 770–850 K measured experimentally on the 
fire-grate leading into the baking chamber of the common bakery oven, when using an amount 
of excess air between 2 and 4 (Nussbaumer, 2003). The decreases of temperature is due to 
heat being lost through the walls and at the top side of the feeding door. The velocities were 
calculated from the stoichiometric amount of air required to combust the incoming wood (18 kg 
wood /h); the volume of air was based on the theoretical amount needed for combustion and the 
different ratios of excess air. The velocities used are shown in Table 6. 
 
The experimental temperature measurement was performance in one selected point (around 
0.1m of start point) in the fire-grate as described by Manhica et al., (2012a).  

 
At the wall surfaces: Convective and radiative heat transfer boundary conditions were applied to 
all outer walls and to the feeding door. Heat flux to the wall was computed as 
 

      Eq. 3.11 
 
hf is the local heat transfer coefficient of the fluid (W/m2K), Tw is the wall surface temperature 
(K), Tf is the local fluid temperature (K) and, qrad is the radiative heat flux (W/m2).  Air, which 
consists of nitrogen, oxygen, small amount of carbon dioxide and other gases, has been found 
as not showing absorption band in those wavelength regions of importance to radiant heat 
transfer. The walls are insulated with red bricks (0.22 m). The relative velocity between the wall 
and the fluid is set at zero, i.e. non-slip condition. The Reynolds number, velocity and shear 
close to the wall are modelled using a wall function, y+. The heat loss, which was calculated 
from the overall heat transfer coefficient that combines convection and conduction, was 
estimated as being approx. 13.0 W/m2K (Birds et al., 2001).  
 
 

q = hf Tw −Tf( )+ qrad
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Together with the initial boundary conditions (velocity, and temperature), the equations were 
solved with Fluent on ANSYS 12 Workbench. It was found that 1500 iterations were satisfactory 
to achieve low residuals for all of the equations. At the end of the iterations, the residuals were 
reduced to less than 10-3 of their initial values. Simulations were carried out to study how the 
airflow patterns were affected by air, that is, air that enters the combustion chamber in wood-
fired bakery ovens at different velocities. 

Table 6: The velocities used in the different experiments and the corresponding Re number.  
Density = 0.23 kg/m3, viscosity = 0.46·10-4 kg/mK, characteristic length of the inlet section of 
the combustion chamber = 0.54 m. 
Parameters 

/Units 
Simulation 

#1 
Simulation 

#2 
Simulation 

#3 
Simulation 

#4 
Simulation 

#5 
Simulation 

#6 
Velocity, vi 

[m/s] 0.30 0.40 0.45 0.59 0.63 0.74 
Re number 81·10 11·102 12·102 16·102 17·102 20·102 

 
The effect of the feeding door was calculated using a model that considers parallel simulation 
with an inlet-vent as a boundary condition. 
 

3D Mathematical Model  

Modelling Assumptions  

A full 3D model of the oven was used as calculation domain. A wall consisting of layers of brick-
sand-salt-brick was used in order to study the influence of heat, transferred from the top of the 
combustion chamber to the base of the baking oven. The heat transfer through the remaining 
outer walls of the oven was estimated by the brick thickness.   

The geometry was drawn and meshed with ANSYS 15. The irregular geometry, structured by 
curvilinear grid arrangements, meant that it was considered to be complex (Versteeg and 
Malalasekera, 2007). It was therefore sub-divided into blocks, and inflation was used to assist 
the adequate mesh of the geometry into a cylindrical structure.  
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a) 

 

b) 

Figure 3.4.5 – Illustration of sub-division (blocks) used to assist the adequate mesh in the model 

 

Turbulent flow: The irregular and natural convection of the air flow and the complex geometry 
meant that the flow can be considered turbulent, in spite of the low Reynolds number (Hostikka 
et al., 2001 and Nussbaumer, 2003).  

Steady state: Steady state modelling was used to achieve the conditions of an empty oven 
(Model 1). This was then used as the surrounding condition when bread was introduced (Model 
2), on which the transient calculation could be based. Even though there are fluctuations in the 
combustion chamber, the system in the oven was assumed to be steady state due to an almost 
constant temperature across the fire-grate to the baking oven.  

Transient: Transient condition is used to calculate the temperature variations in the bread to 
simulate the baking process (Model 2). The bread samples were located at exactly the same 
place as those studied in experiments carried out by Manhica et al. (2013), Figure 3.4.4. The 
baking process in Model 2 was simulated by assuming an identical flow pattern in the oven as in 
the steady state case  (Model 1). In the steady state condition of Model 2, the bread was placed 
inside the oven at an initial temperature of 300 K and a dynamic calculation was performed for 
20 minutes, which equals the average baking time. The average temperature of each loaf of 
bread was recorded every minute to evaluate the heat transfer process. The heat capacity and 
thermal conductivity of the dough/bread is dependent on temperature, and a piecewise first 
order polynomial was used according to Wong et al. (2007), Table 7. The scattering coefficient 
is of little relevance to the baking process and was thus assumed to be zero. 

The absorption coefficient: The absorption coefficient in the gas was evaluated, including water 
vapour released from the dough during the baking process. Due to the low temperature in the 
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oven walls, the radiation wavelength was above 2 µm and absorptions or emissions of radiative 
energy by the gas were neglected.   

Table 7. Dependence on bread properties with temperature.  

Source: Wong et al., 2007. 

Temperature (K) Heat Capacity (J/kg K) Thermal Conductivity 
(W/m K) 

301 3080.0 0.85 

333 2550.6 0.38 

393 1717.3 0.17 

500 1514.1 0.16 

 

Boundary conditions 

The combustion chamber was only included in the modelling to provide a realistic flow pattern in 
the bakery oven. Therefore, the heat released during combustion was modelled as a heat 
source in the combustion chamber to increase the temperature of the incoming atmospheric air 
(298 K). The temperature had a range of 600–700 K measured experimentally on the fire-grate 
leading into the baking chamber during the baking process of the in situ WFBO. The heat lost 
through the wall of the combustion chamber was evaluated using conduction by the brick wall 
with a thickness 0.16 and 0.22 m, respectively. The thickness of the chimney wall was 0.005 m 
whilst the thickness of the steel feeding door was 0.003 m.  

The inlet velocity was found to be 0.0123 m/s. This is an average of the experimental 
measurements of the air flow through the hole of diameter 0.065 m into the entire hydraulic 
diameter (0.695 m) of the combustion chamber (Manhica et al., 2013). 

At the wall surfaces, the heat flux to the wall was computed as: 

𝑞 = ℎ!𝐴 𝑇! − 𝑇! − 𝜎𝜀𝐴𝑇!! + 𝜎𝜀!! 𝐴!𝛼!𝑇!!                                                                                                      Eq. 3.12   
  

where hf is the local heat transfer coefficient of the fluid (W/m2K), A is the area of the wall, Tc is 
the surface temperature (K) of the wall, Tf is the local temperature (K) of the fluid, σ is the 
Boltzmann coefficient and ε is the emissivity coefficient. The relative velocity between the wall 
and the fluid is set at zero, i.e. non-slip condition. The Reynolds number, velocity and shear 
close to the wall are modelled using a wall function, y+. 
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Emissivity at the walls and surface of the bread: The emissivity of the brick walls was taken as 
being 0.75, which is accurate from 900 to 1200 K (Wong et al., 2007). The emissivity of the 
bread varies from 0.4 to 0.8, so 0.6 was used because, according with experimental results 
(Rek et al., 2012), no influence is exerted by the surface temperature of the bread during the 
baking process.  

Numerical Simulation 

The 3D CFD model was used to study the heat transfer during the baking process to predict the 
differences in the quality of bread baked in the same batch. The effects of the design of the 
oven with respect to velocity, temperature distribution and heat transfer during the baking 
process were analysed. This was used to find an improved geometry that satisfied the optimal 
temperature and velocity distribution (heat distribution) inside the baking oven as a way to 
minimise the differences in the bread baked and maximise the energy utilisation from wood 
combustion. The CFD code Fluent on ANSYS 15 Workbench was used for numerical 
simulation.  

This simulated case had several changes compared to the original design: 

1) Diameter of the grid chimney reduced to 6 cm. A smaller diameter of the grid chimney 
means that less of the hot gas will escape and thus provide more heat into the oven. 

2) Reducing 13 cm of the height of the baking oven. A lower height of the baking oven 
creates a more uniform flow pattern and increased heat transfer. 

3) Decreasing 5 cm of the location height of the oven chimneys. The change of location of 
the oven chimneys is made to get a more uniform flow pattern. 
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RESULTS	  AND	  DISCUSSION	  
	  

4. RESULTS AND DISCUSSION 

4.1. Characteristics of bakery ovens 

The bread baking process, wood usage, and combustion efficiency are important aspects of the 
WFBO. The pre-audit showed that 135 bakeries were located in the Maputo and Matola 
Townships and that the most common technologies employed to bake bread were indirect and 
semi-direct furnaces (Table 8). A total of 126 of these bakeries were validated: 96 were in 
Maputo, of which 33 used indirect and 37 semi-direct ovens, and 37 were in Matola, of which 19 
used indirect and 15 semi-direct ovens. A total of 22 bakeries used natural gas or electricity as 
the source of heat: 19 in Maputo and 3 in Matola. Bakeries using natural gas or electricity are 
uncommon mainly due to high investment and running costs.  

Table 8: Pre-audit results obtained in the Maputo and Matola Townships  

Township 
Nº of bakeries polled Nº of valid 

replies 

Type of oven 

Operational Closed Indirect Semi-direct Other 

Maputo 96 27 89 33 37 19 

Matola 39 12 37 19 15 3 

Total 135 39 126 52 52 22 

 

The results of the questionnaire conducted during the pre-audit indicated that 1,902 bags of 
wheat flour (50 kg each), corresponding to 884,000 loaves, are processed in the two townships 
every day. In the Maputo Township, 816 bags of wheat (corresponding to 379,000 loaves) are 
processed in indirect ovens and 372 bags (corresponding to 173,000 loaves) in semi-direct 
ovens. In the Matola Township, 599 bags, (corresponding to 279,000 loaves) are processed in 
indirect ovens and 115 bags, (corresponding to 53,000 loaves) in semi-direct bakery ovens. 

According to the pre-audit, the total amount of wood consumed by bakeries alone in both of the 
townships was around 60 tonnes per day, (Figure 4.1.1). Normally, this is green wood. In 
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Maputo, 41 tonnes are consumed: 25 tonnes in indirect furnaces and 16 tonnes in semi-direct. 
In Matola, 19 tonnes are consumed: 14 tonnes in indirect furnaces and 5 tonnes in semi-direct.  

 

 

Figure 4.1.1: The amount of wood used daily in bread baking process in the townships of Maputo and 
Matola. 

Although the characteristics of indirect and semi-direct bakery ovens are described in Paper I, it 
should nevertheless be noted that one of the main differences between them is that indirect 
ovens require electricity. The temperature profile of the baking process measured on the 
shelves of an indirect bakery oven remains constant at about 230±10ºC. Its efficiency, 
calculated in terms of SC, averages 0.55 kg of wood/kg of wheat flour baked. Despite a high 
degree of efficiency, the pre-audit revealed that this type of oven is not largely used in 
Mozambique due to the absence of electricity (and especially so in the countryside). It is 
moreover associated with high investment costs, which also includes installation and running 
costs. 

A detailed audit was performed for 15 semi-direct bakery furnaces. The geometry and 
dimensions vary; this is mainly due to the furnaces being constructed with a high degree of 
empiricism, in that they depend on the experience of the constructor. The geometry of the 
combustion chamber, for example, can be either rectangular or round in shape. Measurements 
made in semi-direct bakery furnaces revealed that standard dimensions include a baking 
chamber having a diameter of 3 m. However, they varied between 2.6 and 3.55 m in diameter 
with standard deviation of 0.23.  

The hot gases entering the baking chamber are either sucked through the combustion chimney 
located above the inlet fire-grate or through the baking chimney located at the centre of the 
baking chamber. Circulation of these hot gases within the baking oven implies an efficient heat 
exchange with the products being baked. The technical design is shown in Figure 1.2 as well as 
in Figures 1 and 2 in Appendix I. The natural and uncontrolled combustion with excess air, λ = 
3±1 is predominant in this kind of bakery furnaces.  

Bread is baked in batches. The number of bread baked is dependent on the dimension of the 
oven and is between 230 and 425 loaves for a single batch. Each bread weighs around 200 to 
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250 g. The feeding door is opened three times during the baking cycle, corresponding to more 
than 1/3 of the baking time. The circulation of heat within the baking oven is disturbed at the 
moment of opening, which was verified by the CFD model in Paper II. This affects the baking 
temperature negatively. The detailed audit showed that the efficiency in terms of SC is 0.90 kg 
of wood/kg of wheat flour baked with a standard deviation of 0.55, confirming that a large 
amount of wood is consumed in the baking process.  

Characteristics of the wood burnt in the WFBO 

Characteristics of the wood burnt in the semi-direct bakery furnace are described in detail in 
Paper III. The properties used to analyse the combustion of wood can be divided into four 
groups: physical, thermal, chemical and mineral (Ragland et al., 1991). Thermal degradation 
products of wood consist of moisture, volatiles, char and ash. Some properties vary with 
species, position within the tree and growth conditions, while others depend on the combustion 
environment. The specific characteristics of the wood species used are shown in Table 9.  

Table 9:  Characteristics of the wood burnt in the WFBOs 

Vernacular 
Name 

Scientific 
Name 

Density 
as 

received 
(kg/m3) 

Moisture 
as 

received 

(%) 

Ash as 
received 

(%) 

HHV 
(kJ/kg) 

White Mikaya 
(1) 

Acaceas 886.98 35.21 0.56 20.38 

Xihoho (2) Unknown 862.99 25.99 1.91 18.78 

Mbeswu (3) 
Albizia 

Versicolour 
717.98 22.37 1.22 19.19 

Nala (4) Moprus Sp 1002.70 19.79 0.63 20.28 

Red Mikaya 
(5) 

Acaceas Sp 1172.46 16.32 2.4 19.58 

 

The wood species were analysed to determine their influence on the combustion process. The 
density represents the amount of wood material available in a certain volume during the 
combustion process; the moisture gives the amount of energy that will be spent in evaporating 
the water that is present before the combustion process starts; the heat value represents the 
energy that can be released per unit mass when the fuel reacts completely with oxygen. From 
visual observations of the flame (a yellow flame is the result of uncompleted combustion and 
blue flame indicates a near complete combustion), good performance in the combustion 
process is achieved with wood that has low moisture content and high heat value. In this 
respect, specie 4 is considered as being very good. The ash that is formed around the wood in 
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a WFBO tends to hinder the interaction between the air and the wood surface in the combustion 
process and thereby reduces the vivacity of the flame. Species 2, 3 and 5 showed such an ash 
layer resulting from combustion that impeded the process. To sustain the combustion process, 
this ash layer must be removed mechanically or the combustion rate must be increased by a 
higher intake of air. However, the latter alternative results in excess air, which decreases the 
temperature in the oven (Manhica et al., 2012b). From the characteristic of the flame it appears 
that specie 5 is the most suitable for use in a WFBO. Its high density seems to prolong the 
combustion process, so the heat is released more uniformly compared to the other species 
used. This characteristic allows for stable temperatures in the whole baking process.  

 
4.2. Air Flow 

Radial and axial pressure gradients are formed in the baking oven due to the incoming gases 
(mainly air) from the combustion chamber. In case of a strong swirl, the adverse axial pressure 
gradient is sufficiently large to create an internal recirculation zone along the oven’s axis and 
simultaneously reduce the outer recirculation zone near the wall. The baking quality is thereby 
affected; the uniformity of the product is affected negatively due to the non-uniformity of the air 
flow passing around it during the baking process (Manhica et al., 2012b). A velocity increase of 
the air flow results in a larger weight loss, lower softness and darker surface of the bread. 
Therefore, either the baking time or temperature should be reduced to compensate for the 
increased heat transfer (Therdthai and Zhou, 2003). Carvalho and Nogueira (1997) showed how 
the air flow velocity in an oven chamber influenced the heat flux to the bread, as well as how the 
heat flux could be optimised. There is lack of data available on the aerodynamics of flow fields 
in bakery ovens. Especially for wood-fired bakery ovens that utilise natural air draughts in the 
combustion chamber. In many cases, experimental work lacks accuracy due to difficulties in 
conducting measurements.  

A mathematical model (Paper II) was used to interpret variations in the inlet velocities of hot 
gases coming from the combustion chamber. Figure 4.2.1 shows the flow patterns of both the 
bi-dimensional cold flow model and the mathematical modelling. The upper row in the figure 
shows the differences in the flow with an inlet velocity of 0.015 m/s, 0.030 m/s and 0.0375 m/s, 
respectively, and the lower row shows the contours of the stream lines at inlet air velocities of 
between 0.3 m/s and 0.74 m/s, which corresponds to the same Re number as in the cold flow 
experiments.  
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Water velocity = 0.015 m/s at 
300K 

Water velocity = 0.030 m/s at 
300K 

Water velocity = 0.0375 m/s at 
300K 

   
Contours of stream lines 
 at 0.3 m/s and 1500K 

Contours of stream lines 
 at 0.59 m/s and 1500K 

Contours of stream lines  
at 0.74 m/s and 1500K 

Figure 4.2.1: Comparisons of the velocities field flows in the 2D cold flow and mathematical models.  

This flow pattern can be used to predict the conditions that will be produced in the oven. In this 
context, the analysis is based on the relationship between the vortices created by the flow and 
the heat exchange. The dynamic vortex that appears inside the baking oven varies with the 
velocity of the inlet air and determines the convective heat exchange between the dough and 
the hot air as a correlation of the Nusselt number and the absolute vortices flux (TorII and 
Yanagihara, 1989 and Momayez et al., 2004).  

When wood is consumed at a rate of 18 kg/h, the lowest velocity of the inlet air (valid for λ=2) in 
the cold flow model, i.e. 0.015 m/s, corresponds to 0.30 m/s in the mathematical model. It 
shows that the flow pattern is characterised by a uniform flow: from the grid inlet to the baking 
oven and then to the chimney, with only little formation of vortices. This characteristic is typical 
of poor heat transfer expressed in terms of effective thermal conductivity: 0.863 W/mK between 
the gases and the imagined dough (placed on the floor of the baking oven). An increase in the 
velocity (λ=4) corresponding to 0.59 m/s in the mathematical model implies that the gases can 
be circulated to a higher degree, without changing the flow pattern inside the baking oven, as 
shown in Figure 4.6. At the highest velocity, i.e. 0.74 m/s in the mathematical model (equals 
λ>4), the effective thermal conductivity is increased to 3.07 W/mK. In this stage, there is 
excessive heat inside the baking oven that affects the quality of the bread (Manhiça et al., 
2009). At the lowest velocity magnitude (0.3 m/s), the maximum quantity of hot gases circulating 
in the bakery oven is 0.0056 kg/s; this increases with increasing velocity magnitude to a value of 
0.011 kg/s at 0.59 m/s and 0.136 kg/s at 0.74 m/s. 



 
 

46 

The experimental measurement of the air flow rate to the combustion chamber of a WFBO is 
shown in Paper III. The measurement revealed that the inlet velocity varied significantly, and 
that the variation occurred within a matter of seconds, Figure 4.2.2. 

 

Figure 4.2.2. Variation of the rate of the air flow in the combustion chamber of a WFBO. 

Physical and 2D Mathematical Models  

Qualitative analysis of the flow patterns in the bi-dimensional water simulation was used to 
improve the geometry (i.e. shape) of the oven. Even with dimensional differences, the 
qualitative results clarify the differences in circulation of the gases from the combustion to the 
baking chamber. It is clear that the geometry influences the flow pattern inside the bakery 
furnace. In bakeries with a rectangular-shaped combustion chamber, it is evident that the dead 
zones influence the heat and mass transfer between the baked product and the hot gases 
negatively. The flow pattern of the gases in the round design is suitable but still not the most 
optimum alternative (Appendix II, Figures 3 and 4).   

 

4.3. Temperature Profile  

Temperature profile from detailed audit (Paper I) 

Temperature is the main factor for the physico-chemical changes that occur during the baking 
process. The operating conditions in the baking oven need to be optimised to reduce the 
consumption of fuel and to achieve a high quality of the product. The common industrial practice 
employed to achieve optimal baking is to ensure constant temperature within the baking oven. 
Predicting the baking performance of wheat dough is difficult, as mechanisms of baking are not 
fully understood (Mondal and Datta 2008). Temperature measurements made in different parts 
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of a wood-fired bakery oven showed that the temperature is stabilised along the main duct that 
leads to the grid. This stabilisation in temperature does not occur inside the baking chamber; 
where the variation in temperature in the combustion (grid) chimney is at its greatest 
(350±50ºC), and can be compared to the temperature of 200±30ºC in the oven chimney, see 
Figures 4.3.1 and 4.3.2. The variation in temperature is caused mainly by the feeding door to 
the baking oven being opened, as well as by natural convection of the air flowing into the 
combustion chamber.  

 

Figure 4.3.1: Graph of the temperature profile in the combustion chamber. 

 
 

Figure 4.3.2: Graph of the temperature profile in the chimneys. 
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Opening the feeding door affects the flow of combustion gases in the baking oven and in the 
chimneys. This phenomenon, which is studied in detail in Paper II, greatly affects the 
temperature profile of the baking process and thereby the baking time, with direct 
consequences for the bread quality. Although the static pressure within the oven is only slightly 
less than that of the surroundings, it is sufficient enough to draw air via the feeding door into the 
interior of the baking oven. Two phenomena occur as a consequence of this: some of the 
surrounding air is carried into the oven and some of the hot gases escape from the oven due to 
their high velocity. Consequently, some WFBOs have a collector for hot gases (i.e. a chimney) 
placed directly above the feeding door to prevent hot gases from entering into the work place. 
This provides better working conditions for the bakery operator when both placing dough in the 
oven and removing the bread from it. However, the efficiency of such a baking process is less 
than that of a process with a closed feeding door. Figure 4.3.3 compares the flow patterns of 
ovens with an open and a closed feeding door at the same inlet velocity (0.59 m/s), with respect 
to (a) velocity, (b) turbulent energy, (c) effective thermal conductivity and (d) dynamic pressure. 
The magnitude of these parameters decreases when the feeding door is opened. 
 
 

  
Figure 4.3.3: a) Velocity, flow patterns in a WFBO when the feeding door is opened (left) and closed 

(right). 
 

  
Figure 4.3.3: b) turbulent energy, Flow patterns in a WFBO when the feeding door is opened (left) and 

closed (right). 
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Figure 4.3.3: c) effective thermal conductivity, Flow patterns in a WFBO when the feeding door is opened 
(Left) and closed (right). 

 
 

  

Figure 4.3.3: d) dynamic pressure, Flow patterns in a WFBO when the feeding door is opened (left) and 
closed (right) 

The effects caused by opening the feeding door are inherent in the baking process, which 
occurs manually and in batches. This phenomenon significantly affects the temperature profile 
of the baking process and the baking time. In addition, the variations in the flow of air from the 
inlet to the combustion chamber also affect the hot gases that proceed to the baking oven. 
Opening the feeding door allows some of the surrounding air to enter the baking oven and, 
simultaneously, hot gases to exit from its top edge and thereby enter the working environment. 
The CFD model presented in Paper II describes the influence of the air flow from the 
combustion chamber on the temperature profile inside the baking oven, and Paper III shows the 
experimental procedure to estimate the air flow to inlet of the combustion chamber of the 
WFBO. 
 
Temperature Profile in the Mathematical Model 

The combustion of wood, the design of the furnace, the composition of the fuel, the way in 
which the fire is tendered and the rate at which fuel is fed into it are the most important 
parameters determining the thermodynamic efficiency of a WFBO. Other parameters include the 
design of the baking chamber, the baking practice employed and meteorological conditions. 
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Poor control of the inlet air contributes to inefficient combustion; resulting negative effects arise 
when the excess air is beyond the typical range (2≤λ≤4) (Luca and Blasiak, 2000). Incomplete 
combustion occurs below this range and, if the flow of inlet air is too high, the temperature will 
be too low. This, in turn, could give slow reaction rates and thereby result in incomplete 
combustion. However, even within the range of excess air, the temperature distribution and 
turbulent kinetic energy inside the oven are strongly influenced by the velocity of the inlet air. At 
low inlet velocities (0.3 m/s), the temperature is low (745K) at the fire-grate inlet of the baking 
oven, and the circulation of the hot gases will be weak inside the oven. An increase in velocity 
enhances many of the parameters that are important for baking. The temperature is the 
dominating factor regarding the quality of the product during the baking process, since it affects 
the enzymatic reactions, volume expansion, gelatinisation, browning reaction and migration of 
water. The pressure gradient, induced by water evaporation and migration, causes swelling of 
the bread  (Therdithai et al., 2003). Figure 4.3.4 shows correlations of the inlet velocity with 
minimum and maximum temperatures, turbulent kinetic energy and effective thermal 
conductivity. An increase in velocity gives more turbulent kinetic energy, higher effective thermal 
conductivity and higher temperatures in the oven. 
 

 
Figure 4.3.4: The impact of velocity on several parameters (Temperature at left Y Axis and other 
parameters at right Y Axis)  

In the range of complete combustion, as shown in Figure 4.3.5 b), atmospheric conditions may 
vary in such a manner that the velocity of the inlet air entering the combustion chamber 
increases. This might result in an increase in temperature and faster recirculation of the hot 
gases inside the baking oven, as well as an increase in the wood consumption. The 
recirculation of gases due to the turbulent kinetic energy enhances the degree of heat exchange 
between the gases and the products, determined as the effective thermal conductivity of the 
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gases. It should be noted that the main flow pattern inside a WFBO is almost the same, 
regardless of the velocity of the inlet air within this range. This means that variations in the 
velocity of the inlet air mainly affect the amount of heat transferred to the dough by convection 
and the amount of hot gases that circulate inside the baking oven; as mentioned above, they will 
directly influence the quality of the bread produced.  
 
 

    

a) b) 

Figure 4.3.5: Various stages in the combustion of logs in a WFBO. 
 
The desired temperature, achieved from measurements in different wood-fired bakery ovens, 
was found to be in the range of 700–800 K at the inlet fire-grate in order to achieve an end 
product of good quality (Manhica et al., 2012a).  
 
Temperature Profile In WFBO (Paper III) 
 
The typical temperature profile in the WFBO during a 24 hour period is shown in Figure 4.3.6 a); 
the temperature profile that corresponds to the production time is magnified in Figure 4.9b). 
Figure 4.3.6 a) is subdivided into 3 parts. Parts I and III correspond to the night shift, when wood 
is burnt only to maintain the temperature inside the WFBO; the amount of wood used during 
night shifts averages 79 kg/night. Part II corresponds with the production period; it shows the 
production profile during the day shift, when the temperature must be increased to bake the 
bread. Bread was produced for a period of only 4 to 6 hours a day when the measurements 
were taken, which differs significantly from a full commercial WFBO that produces day and 
night. If only the production period is taken into consideration, the results show that an average 
of 0.61 kg of wood/kg bread baked was consumed, which can be compared to the typical value 
of 0.90 kg of wood/kg of bread baked (Manhica et al., 2012a)  
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a)  

b)  

Figure 4.3.6: A typical temperature profile in a WFB, where a) is for the whole 24 hour period and b) is for 
the actual production period. 

In Figure 4.3.6b, zone A represents the temperature profile in the combustion chamber, zone B 
the temperature profile in the main duct and grid and zone C the temperature profile in the oven 
and chimneys. In general terms, the temperature profile in a WFBO is characterised by large 
fluctuations in zones A and B, which are the consequence of variations in the inlet air flow to the 
combustion chamber, as well as smooth fluctuations from the grid to the chimneys (zone C).  

The ceiling temperature in a WFBO is between 230 and 250°C whereas the floor temperature is 
constantly around 210°C. During the production period, the temperature of the gases that 
escape via the oven chimney (point 16 in Figure 3.4.2B) is lower (≈140 to 190°C), represented 
by the bottom line on Figure 4.3.6b than the gases that escape via the grid chimney (point 17 in 
Figure 3.4.2B) (≈180 to 230°C)  

The high circulation of heat close to the ceiling of the oven compared to that of the floor was 
investigated experimentally. This supports the theory that radiation is an important mode of heat 
transfer in the baking process (Carvalho and Nogueira, 1997) based on the fact that the ceiling 
absorbed most of the heat from the grid. The measurements taken in this investigation along the 
height of the oven confirm this statement. Figure 4.3.7 shows the temperature measured from 
various points in the oven. The green line represents the measurements taken using the 
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thermocouple in position 20, the brown line those taken with the thermocouple in position 19 
and the blue line those taken with the thermocouple in position 18 in the Figure 2.4.2B.  

	  

Figure 4.3.7: Temperature profiles at different distances from the ceiling of the baking oven during the 
baking process. 

a) Normal measurement position of the thermocouple in the ceiling; b) 10 cm below the normal 
measurement position; c) 20 cm below the normal measurement position.  

The measurements indicate that the hot gases lose part of their energy to the ceiling. The 
contact between the hot gases and the bread dough must be improved if the efficiency of the 
oven is to be increased. This could be made possible by reducing the height in the baking oven 
so that the vortex formed has full contact with the dough.   
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4. 4. Bread Quality  

Temperature profile inside the dough and its impact on the final product 

The first index of quality of soft baked products is the temperature measured in the centre 
(Thorvaldsson and Skjoldebrand 1998). It is here where the gelatinisation of starch occurs and 
is characterised by a harmonic increase (Zanoni et al., 1995a). The surface temperature was 
assumed to approach the oven temperature when the feeding door is kept closed, a situation 
that rarely occurs, Figure 4.12A. The surface temperature is more or less always affected by the 
feeding door when it is opened.  

Heat is transferred from the outer layer of the loaf to its centre during baking. Whilst the 
temperature increases quickly at the surface, it increases much more slowly in the centre, 
Figures 4.4.1A and 4.4.1B. Consequently, the partial pressure of the water vapour at the 
surface is higher than in the centre; in an attempt to reduce the pressure difference, water 
vapour migrates towards the centre. However, the temperature in the centre of the loaf is lower 
than at its surface, so water vapour condenses. The internal temperature in the centre then 
increases, keeping it constant at a maximum of 100ºC. The temperature in the crumb is 
normally stable during the last baking stage. Figures 4.4.1A and 4.4.1B illustrate that the baking 
chamber directly influences the speed at which the temperature profile changes in the crumb. 
When the temperature is high (i.e. 450ºC at the fire-grate inlet), the temperature of the crumb 
increases more rapidly than when it is low (i.e. 350ºC at the fire-grate inlet). In the former case, 
the temperature of the crumb reaches a value close to 100ºC in 12 minutes (centre 
temperature); in the latter, it takes 16 minutes. The temperature in the baking chamber also has 
a direct influence on the crust and bottom of the loaf; the temperature at the bottom of the loaf is 
higher when the fire-grate temperature is at 450ºC than at 350ºC. However, temperature 
measurements of the bread surface temperature are difficult and several cases must be 
considered: 

 

I. Case I The thermocouple is on the surface of the dough all the time. It follows the 
movement of expansion in its volume exactly. 

II. Case II The thermocouple is on the surface initially. It later sinks due to expansion in the 
volume of the dough. 

III. Case III The thermocouple is above the surface of the dough in order to measure the 
baking temperature only. 

 

An increase in temperature of 60ºC in the first stage enhances enzymatic activity and yeast 
growth, resulting in an increase in the volume of the crumb; an increase that is in the order of 
one-third of the original volume. Furthermore, the surface skin loses elasticity, thickens and 
starts to take on a brown appearance. 

Figure 4.4.1A illustrates Case II, in which the thermocouple sinks with time, thus measuring the 
temperature a few millimetres below the crust. It can be seen that, at fire-grate temperature 
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450ºC, the top temperature drops in the first 6 minutes but rises again in an attempt to reach the 
baking temperature. This temperature will not, however, be reached; the loaves are kept cool by 
evaporation and this stage is completed before all of the water has been evaporated. In the later 
stages of baking, the surface temperature of the end product enhances the flavour, according to 
the Maillard reaction associated with browning and this gives a darker crust. The Maillard 
reaction requires reduced sugars and amino-compounds as reactants. The temperature of the 
crumb never exceeds the boiling point of water (100°C). However, the temperature of the crust 
eventually reaches above 200°C when the oven temperature remains at a constant temperature 
of 220–240°C. For this reason, heat transmission during baking favours the formation of 
Maillard reaction products (melanoidins) in the bread crust. Figure 4.4.1B shows Case I with a 
fire-grate temperature of 350ºC where it can be seen that the top temperature is lower than the 
temperature in the baking chamber during almost the whole baking process and as a 
consequence, the baking time is increased.  

 

A  
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B  

Figure 4.4.1. A. The temperature profiles measured in a loaf of bread baked at the fire-grate temperature 
450°C.  B. Temperature profiles measured in a loaf of bread baked at fire-grate temperature 350°C.  

During the crust formation process, it is necessary to achieve the right amount of vapour in the 
oven. A low amount of steam results in a thinner crust, which has a high vapour transmission 
rate and permeability. It is expected that such a crust will remain crisp for longer time during 
storage (Altamirano-Fortoul et al., 2012). However, increasing crust water vapour permeability 
may give an increased water loss from the inner crumb, which would lead to unwanted crumb 
dryness (Hirte et al., 2012). A typical temperature profile for the baking process is illustrated in 
Figure 4.4.2A for Case III: the temperature at the top of the loaf reaches the baking temperature 
in both cases, i.e. 450ºC and 350ºC in fire-grate temperature. The baking time in one and the 
same bakery oven is dependent on the baking temperature: a high baking temperature results 
in a short baking time, fine crust formed and low moisture content in final product; however, 
when the temperature is low, it results in long baking time, thick crust formed and high moisture 
content in the bread. This relationship is illustrated in Figure 4.4.2B.  
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A  

B  

Figure 4.4.2. A. The temperature profile of bread baked when the feeding door is kept closed.  B. The 
relationship between baking time and temperature in the baking oven. 

Bakery products are also judged by their final colour, which is a result of reactions that occur 
during baking as a result of heat. Temperature and water gradients rise during the baking 
process and, as a consequence, the properties of texture and colour depend on the position in 
the oven. Figures 4.4.3A and 4.4.3B show the temperature profiles measured at positions P1 
and P2 (see Figure 3.1.B). It can be seen that the distribution of the temperature is not 
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homogeneous. A numbers of factors have been suggested to explain these differences. Among 
those are: baking geometry, effect of opening the feeding door, location of the combustion 
chimneys and variations in the air flow.  

A  

B  

Figure 4.4.3. A. Temperature profile measured at position P2 in a semi-direct WFBO when the bread is 
baked at the fire-grate temperature 450°C. B. Temperature profile measured at position P1 in a semi-
direct WFBO when the bread is baked at the fire-grate temperature 350°C. 

The experimental data shown in Table 10 confirms that the baking time follows the baking 
temperature, and that both parameters influence the colour of the crust. The colour of the crust 
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is an important attribute of bread, contributing to consumer preference. The crust acts as a 
barrier, thereby preventing the loss of water and flavour during baking (Zanoni et al., 1995b). 
The colour develops as a function of the moisture content, baking time and baking temperature 
(Zanoni et al., 1995c). The shelf life of a baked product is affected by the time and temperature 
of the baking process (Mondal and Datta 2008). Thermal preservation process and the 
inactivation of pathogenic and spoilage microorganisms and enzymes require a minimal 
treatment temperature and corresponding holding time (Jaeger et al., 2010). Whilst a long 
baking time due to low baking temperature increased the L values (the colour intensity) to 
72.40, the colour of the top crust and the average colour of the crust were both too pale. A short 
baking time due to high baking temperature lowered the L values to 54.33, resulting in the crust 
being significantly darker. The temperature at the top of the loaf remains below 150ºC for a long 
period of time when the fire-grate temperature is 350ºC, which is not conducive for the Maillard 
reaction to occur. It can be seen in Figure 4B that the temperature at the top of the loaf became 
higher than 150ºC after 14 to 16 minutes, with the result that the total baking time was as long 
as 24 min. 

Table 10: The analysed parameters of the baked bread in wood-fired bakery oven. 

Parameters Fire-grate temp. 450ºC Fire-grate temp. 350ºC 

Water activity, aw 0.60 to 0.92 0.73 to 0.95 

Baking time (min) 18 ± 2 24 ± 2 

Moisture content (g) 36.5 39.5 

Colour (L) 54.3 72.4 

Shelf-life (day) 4 3 

 

Water molecules play a complex role in bread products at every stage, from the preparation of 
the dough to the moment of consumption, and especially so during the relatively brief period of 
processing at elevated temperature. The water activity is defined as the current volume and 
availability of "free" water in a sample and should not be directly compared with water content (g 
water/g substance). It ranges between 0 (absolute dryness) and 1 (condensed humidity) and is 
responsible for the microbiological growth on surfaces, which influences the microbiological 
stability. The migration and equilibrium properties of water in food are an important point for the 
shelf life stability, and the water activity can thus be used as an indicator for the microbial 
stability of combined bakery products. A high baking temperature is necessary to achieve an 
optimal level of the water activity in the products. Water activity for these baked breads varies in 
the range of 0.60 to 0.92 using a fire-grate temperature of 450ºC, and in the range of 0.73 to 
0.95 for a fire-grate temperature of 350ºC. The low temperature during the baking process 
contributes to an increase of the water activity, which reduces the shelf life of the baked bread.  
Table 11 shows that mould appeared on the bread baked at a fire-grate temperature of 350ºC, 
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on the third day of its shelf-life. The general quality attributes, i.e. average water activity and 
moisture content, of bread baked in wood-fired bakery ovens are illustrated in Figure 4.4.4. 

 

Figure 4.4.4. Moisture content and water activity of the bread analysed. 

 
More specifically, water activity and colour of the bread sample baked in the WFBO shown in 
Figure 3.4.4 were studied in Paper III. These parameters also relate to the baking process such 
as colour, moisture content and ash in both crust and crumb. 

The temperature profile on the floor of the baking oven shows that the temperature is higher at 
points 13 and 15 than at point 14 (Figure 3.4.2B), which can be explained by the effect of 
conduction. More heat is transferred from the ceiling of the combustion chamber than from the 
parts around the base of the oven, which is further explained in Paper IV. 

Another parameter that influences the baking process is the baking time, which is generally 
defined as the time from when the first loaf of bread is placed in the oven until the last loaf in the 
same batch has been removed. As a consequence, loaves of bread in the same batch have 
varying qualities due to the differences in the time exposed to the heat. Table 11 shows the 
differences in colour, water activity and moisture content in the crumb and crust of the loaves of 
bread baked in the same batch. The loaf of bread in position 1 (Figure 3.4.4) has much longer 
baking time compared with all of the other loaves in the same batch: it not only has the best 
properties in terms of colour (dark) and moisture content (7.40 crust and 38.24 crumb) but 
relatively low levels of water activity in both the crust and crumb (0.456 and 0.996). The loaves 
in positions 5 and 6 had less baking time in the oven compared to the loaf in position 1, but all 
have approximately the same characteristics as far as quality parameters are concerned due to 
the additional heat transferred by conduction. 
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Loaves produced in positions 2 and 4 show high values of water activity and moisture content in 
the crumb and crust, and they are paler in colour. This is due to a too short baking time with 
respect to the present heat flux.  

The bread baked in different batches with different species of the wood fuel, have different 
qualities. In case of low heat intensity in the oven, the baking time is increased to maintain the 
quality of the bread. This increased baking time reduces the number of the batches that can be 
produced and thus reduced the production rate.  

Table 11. Properties of bread baked in one batch in a WFBO. 

 

 

Shelf life 

Shelf life is another method used to evaluate bread quality (Paper III). The shelf life of a baked 
product is affected by the time and temperature of the baking process (Mondal and Datta 2008). 
According to Jaeger et al. 2010, the preservation process and the inactivation of pathogenic and 
the spoilage of microorganisms and enzymes require a treatment temperature and 
corresponding holding time. Table 12 shows that mould appears first in the loaves of bread with 
levels of high water activity (baked in positions 2, 3 and 4). These results are in accordance with 
the effects of the heat distribution and the baking times during the baking time as shown by 
(Manhica et al., 2012a and Jaeger et al., 2010 a). 

  



 
 

62 

Table 12: The appearance of mould in bread baked in different positions. 

Samples 

Qualitative evaluation (%) 

Day 1 

(% of 
mould) 

Day 2 

(% of 
mould) 

Day 3 

(% of 
mould) 

Day 4 

(% of 
mould) 

Day 5 

(% of 
mould) 

Bread 1 0 0 0 20 to 30 100 

Bread 2 0 0 30 100  

Bread 3 0 0 20 80 to 90 100 

Bread 4 0 0 30 100  

Bread 5 0 0 0 20 to 30 100 

Bread 6 0 0 0 20 to 30 100 

 

 
4.5. Oven Geometry and Heat Transfer Process (3D Mathematical Model) 

Temperature and velocity distribution (flow pattern)  

The heat transfer mode, velocity and temperature distribution in the oven were analysed to find 
out which factors influence the bread baking process. The maximum velocity in the bakery oven 
was found in the duct region (3.7 m/s). The velocity at the grid outlet is down to 0.5 m/s due to 
the increase in the cross-section area. The mass flow rates and heat flux at different positions in 
the oven are presented in Table 13.  

 

  



 
 

63 

Table 13. The mass flow rate and heat flux measured in the WFBO used. 

  Mass flow rate 
(kg/s) 

Heat Flux (kW) 

Inlet + Wood Source    0.0196 14.12 

Outlet Chimney 1   0.00344 0.44 

Outlet Chimney 2   0.00318 0.46 

Outlet Chimney 3  0.00313 0.56 

Outlet Grid Chimney   0.00984 1.92 

Average at the Breads  ------- 0.35 

External Losses  ------- 10.39 

 

The majority of the hot gases (50%) that cross the grid outlet escape through the grid chimney. 
The remaining hot gases are distributed between the areas in which chimneys 1, 2 and 3 are 
found. This distribution creates low velocity zones (0.016–0.32 m/s) in the remaining parts. The 
velocity of the hot gases is close to zero at the surface of the oven base; the increase in the 
viscosity coefficient tends to reduce the velocity of the flow of fluids to zero at the walls. Figures 
4.15a and 4.5.1b represent the velocity and temperature profiles, respectively, in the whole 
oven. Regions of low temperatures are noticeable in the baking oven and they coincide with 
regions where the velocity magnitude is low. 

 

a)  b)  

Figure 4.5.1: Velocity (a) and (b) temperature profiles in entire baking oven.  

A comparison of the flow pattern of the current model results with previous 2D model (Manhica 
et al., 2012b) can be done by taking a longitudinal cut at the central section of the WFBO. It 
shows very good agreement and verifies the conclusion previously drawn regarding e.g. the 
existence of a vortex in the oven. The newly made 3D model gives additional spatial 
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information. The results of the mathematical model concerning previously recorded temperature 
measurements (Manhica et al., 2013) show accurate agreement. 

Heat transfer and its effect on the baking process  

Baking a whole batch of bread with uniform quality is achieved by a combination of baking time 
and overall heat transfer in the oven. The distribution of heat in the oven is strongly dependent 
on the flow patterns, which, to a large extent, are dependent on the geometry of the oven. The 
temperature and the velocity of the hot gases in the oven influence the heat transfer mode in the 
baking process. A low velocity, with a corresponding low temperature, of the gases gives a low 
convection heat transfer, so radiation is often the predominant mode of heat transfer during the 
baking process (Carvalho and Nogueira, 1997 and Velthusis et al., 1993). However, in regions 
where the velocity of the hot gases is high, heat transfer by convection is more effective (Khatir 
et al., 2012). The discussion regarding the heat transfer process is, for clarity, divided into the 
three modes: conduction, convection and radiation. Figure 4.5.2 shows the velocity and 
temperature profiles of Model 2 (baking oven with bread). The height of the surface of the bread 
is 5 cm above the base.  

  

a) b) 

  

c) d) 

Figure 4.5.2: Velocity and temperature profiles in the baking oven containing bread. Velocity profile at a 
height above the oven base of a) 1 cm and b) 5 cm. Temperature profile at a height above the oven base 
of c) 1 cm and d) 5 cm.  
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The results of both models show that the temperature and velocity vary with height in the baking 
oven: both are high for hot gases close to the top wall of the oven and are lowest close to the 
base.  

Conduction 
The combustion of wood in the combustion chamber of a WFBO occurs at temperatures in the 
range of 800–1200 K. Such high temperatures affect the walls, which then increase in 
temperature. On top of the combustion chamber are four different layers. First, a layer of bricks, 
then a layer of sand, which is followed by a layer of salt and a final layer of bricks. The sand 
layer (≈15 cm) is used as insulation material to prevent the temperatures from becoming too 
high at the base of the oven. The salt, with a thickness of around 5–10 cm, is used as a buffer 
layer for storing heat between the combustion chamber and the baking oven. The increment in 
temperature of the oven base is dependent on the temperature that develops on the combustion 
chamber but should never exceed the melting point of the salt (1074 K) at the position of the salt 
layer. The salt layer maintains the temperature of the oven base by absorbing heat during the 
melting process, if the temperature exceeds 1074 K and releasing it when the temperature is 
low.  

Figure 4.5.3 a) shows the temperature profile in the salt layer (situated 1cm below the oven 
base) and illustrates the differences in conductive heat transfer to the oven base. The part of the 
oven base that is situated directly above the combustion chamber has significantly higher 
temperature compared to the rest of the oven base. The temperature at the base of the oven 
increases due to convection and radiation heat that is transferred from the top walls of the oven. 
Figure 4.5.3 b) shows the temperature distribution on the actual oven base surface when 
simulating an empty oven. This figure also includes convection and radiation in addition to the 
conduction.  

a)  b)  

 

Figure 4.5.3: Temperature distribution in a WBFO a) in the salt layer and b) at the base of the oven. 

Convection  
The rate at which heat is transferred by convection to the bread’s surface is related directly to 
the velocity and temperature of the gas as well as to the shape of the loaf of bread. The velocity 
is the result of the combustion process together with the design of the nozzle at the end of the 
combustion chamber (Manhica et al., 2012b). The residence time of the hot gases is dependent 
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on the geometry of the baking oven, the format of which means that two regions can be 
identified: (i) a zone where a large vortex is created by the movement of hot gases in the central 
region of the oven and (ii) several regions that are not affected significantly by the grid chimney. 
The irregular distribution of the hot gases in the oven creates dead zones where both velocity 
and temperature are low.   

Radiation 
Heat transferred by radiation is the result of energy transferred from the hot walls of the oven, 
and has almost the same effect in the whole oven. The hot gases that go along the top wall of 
the baking oven have a temperature of around 665 K. Figure 4.5.4 shows the temperature 
distribution along the oven ceiling. 

 

Figure 4.5.4: The temperature distribution along the oven ceiling 

 

The bread baking process 
 

A combination of heat transfer, flow pattern and baking time is used to explain the differences 
between the bread loaves baked in one batch. During the baking process, the temperatures in 
the different positions in the oven base influence the heat transferred by conduction. Table 14 
reports the outer surface temperature of the bread samples at zero minutes, and at transient 
conditions in the WFBO. The transient results show the temperature at a specific time during the 
baking process.  

In general, the contribution of the conduction and convection is high at the beginning compared 
to the end of the process. The heat flux is initially zero and reaches its maximum value during 
the baking process and decreases again at the end. The samples located directly above the top 
of the combustion chamber are more influenced by conduction than the other samples due to 
the higher temperature of the oven base in these positions. According to Figure 4.5.2b, which 



 
 

67 

shows the assumed constant oven base temperatures, the samples located in positions 7 and 5 
(see Figure 3.4.4) will have the highest heat transfer by conduction due to the higher 
temperature in these positions. However, the samples located in positions 3, 7 and 5 receive 
441, 437 and 435 K, respectively, from heat transferred by convection and radiation, as shown 
in Table 14. After 20 minutes, samples 3 and 5 receive most heat by radiation and convection 
during the baking process, followed by 7, 2, 6 and 1; Samples 8 and 4 receive the least.  

The loaves baked in the region with a low velocity and low temperature, as shown in Figures 
4.17 a) and b), have the lowest temperatures (Samples 4 and 8) as well as the lowest average 
temperature. Sample 2 is located close to the grid outlet and therefore is part of the loaf 
subjected to high convection heat whilst the remainder is exposed to low convectional heat. The 
total amount of heat received is nevertheless high when compared with Samples 4 and 8. 

 

Table 14: The temperatures of the bread samples.   

S
am

ples 

Flux (W) 

Transient Infinite time 

(Steady State) 0 min 10 min 20 min 

Surface 
and 

Base 
temp (K) 

Base 

Temp 
(K) 

Surface 
Temp 

(K) 

Total 
Heat 
Flux 
(W) 

Base 
Temp 

(K) 

Surfac
e 

Temp 
(K) 

Total 
Heat 
Flux 
(W) 

Base 

Temp 
(K) 

Surfac
e 

Temp 
(K) 

1 300 361 384 47.19 376 391 25.71 414 426 

2 300 364 388 49.43 380 396 26.98 415 428 

3 300 363 403 51.70 379 403 27.94 421 441 

4 300 356 378 44.64 371 387 24.35 406 422 

5 300 363 397 50.60 380 399 27.41 417 435 

6 300 367 387 49.50 384 395 26.90 422 428 

7 300 366 398 51.85 384 396 28.04 415 437 

8 300 360 377 45.76 375 388 24.98 412 421 

 

The model with breads provides details of the distribution of heat inside the oven during the 
baking process. Regardless of how the bread is fed into the baking oven, the loaves should 
have different baking times because the heat flux is not uniform throughout the oven. The 
irregular distribution of heat means that some loaves are baked faster than others in the same 
batch. Common practice is that loaves are fed into the oven one line at a time (Manhica et al., 
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2012a), but normally they are all discharged at the same time (i.e. bread removal is much faster 
than bread loading). Samples 3 and 7, for example, reach 372 K (99°C) after 14 to 15 minutes. 
It will take samples 4 and 8 an additional 4 to 5 minutes to reach this temperature and if 
removed at the same time they will not be ready; thus, a trade-off with respect to baking time 
must be made to achieve high enough quality of the whole batch. The temperature profile and 
the difference in baking time in each sample baked in the same batch are illustrated in Figure 
4.5.5.  

  

 

Figure 4.5.5: Average temperature profiles of the bread samples during the baking process. The line at 
372 K corresponds to the required final bread temperature. 

 
4.6. Optimization of the Oven Geometry 

Previously a 3D CFD model (below considered as model 0) was created and experimentally 
validated by the temperature profile at the grid outlet (Manhica et al., 2013). This model was 
then used to study the flow when geometrical changes were made of the baking oven in order to 
find a more even temperature and heat distribution. The changes in the flow effects: the 
residence time of gases, the magnitude of convection, conduction and radiation heat transfer 
and the baking time of each loaf during the baking process. The changes were compared with 
the original design of the WFBO to evaluate the improvements on new design.  



 
 

69 

Reduction of the grid chimney diameter is essentially equivalent to a reduction of the amount of 
gases that leave the oven before releasing their energy content. The reduction of hot gases 
through the grid chimney can also be made via a damp at the top of the chimney. The damp is 
constructed of a metal plate with a weight as a lever for automatic control of the opening 
depending on the pressure in the oven; low pressure keeps the damp closed and increased 
pressure will open the damp. The pressure inside the oven depends on the velocity of the inlet 
air flow and the surrounding atmospheric condition. This dependence makes it difficult to 
calculate the exact weight of the level. The velocity of the gases inside the oven is dependent 
on the total amount of gas present inside. When there is high amount of gases leaving through 
the grid chimney, the velocity of the gases in the oven will be lower. Table 15 summarises the 
differences of the mass flow and heat flux in the oven in the original and the modified geometry. 

Based on the results, it can be suggested that the hot gases could be delayed to leave the oven 
by using the numerous holes along the chimney in such a way that the pressure becomes high 
close to the base of the chimney pipe. The problem in this method is how to calculate the 
number and diameter of the holes to get the adequate pressure magnitude in a situation of a 
natural draught.  

 

Table 15. The mass flow rate and heat flux measured in the original and the modified geometry. 

 
Original Geometry Modified geometry 

Mass flow rate 
(kg/s) 

Heat Flux 
(KW) 

Mass flow 
(kg/s) 

Heat Flux 
(KW) 

Inlet + Wood source 0.0196 14.12 0.0196 14.12 
Chimney 1 0.0034 1.92 0.0049 1.20 
Chimney 21 0.0032 0.44 0.0049 1.66 
Chimney 3 0.0031 0.46 0.0049 1.68 
Grid Chimney 0.0098 0.56 0.0049 1.22 
Bread average   0.35  0.41 
External losses  10.39  7.95 

 

The change of the grid chimney diameter makes the mass flow in the modified geometry 
balanced on all chimneys and thus distributes the gas flow around in the whole oven.  

The magnitude of convection, conduction and radiation heat transfer was determined by the 
final temperature at the surfaces and bases of the bread and top wall of the oven at steady state 
condition and at the end of the baking process simulation. The results of the baking time of each 
sample in the original geometry together with the result from the geometry modification in the 
oven are shown in Table 16. The baking time in this study is defined as the time to reach 372 K 
(99°C). 

When a fluid flows over a bread surface, the first layer of the fluid sticks to the boundary and this 
causes the flow to retard. From the original geometry, it was concluded that there is a central 
vortex that has a high temperature close to the ceiling compared to the base of the oven. A high 
height of the oven results in a low temperature close to the oven base (Manhica et al., 2012b). 
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The geometry modification is based on the assumption that by reducing the height of the oven, 
both the convective and the radiative heat transfer will be improved. In addition, the area of the 
oven’s top surface will decrease due to its hemispherical shape; thus, the loss by conduction 
through the oven wall will be reduced. The improvement of the circulating heat in the oven will 
increase the temperature of the hot gases, and it will affect the quality of the bread baking 
process (Manhica et al., 2012a).  

 

Table 16. Baking time for the original geometry and for the geometry change.  

Sample Time (min) 
Original Geometry  Geometry change 

1 17.5 ~10 
2 16.0 8.5 
3 14.5 ~9 
4 20.0 10.5 
5 15.0 8.5 
6 16.0 ~9 
7 14.5 ~9 
8 19.0 10 

  

Shifting the oven chimneys backwards from the original position will likely decrease the flow of 
the long vortex and thereby increase the heat flux to the bread. The results of the modification 
(Paper V) are shown in Figure 4.6.1. Figures 4.6.1a and 4.6.1b represent the temperatures in 
the oven at 1 cm and 5 cm above the oven base for the original geometry and the modified 
geometry, respectively. It can be seen that the temperature of the oven base is higher in the 
modified geometry at the bottom line compared to the original at the top line of Figure 4.6.1 
when the same amount of wood fuel is used, which indicates a more efficient process. 

The temperature inside the oven after the modification is higher compared to the original design. 
High temperatures are concentrated to the feeding door areas, which suggests that a large 
amount of heat will spread out from them.  
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a)	   	   	   	   	   	   b)	  

Figure	  4.6.1:	  Comparisons	  of	   the	   temperature	  profile	  of	   the	  oven	  base	  between	  the	  original	  geometry	  at	   the	   top	  
line	  and	  the	  modified	  geometry	  at	  the	  bottom	  line;	  Figure	  2a)	  at	  1	  cm	  and	  Figure	  2b)	  at	  5	  cm	  height	  from	  the	  oven	  
base.	  

The graph in Figure 4.6.2 shows that the average temperature of the bread samples reaches 
372 K (99 °C) between 8 and 10 minutes. In Table 17 the temperature distribution on the bread 
samples and the heat flux to the bread samples in the oven are shown. The analysis made in 
conjunction with the Table 17 shows that the heat is distributed along the oven is almost 
homogeneous. However, sample 4, followed by samples 8 and 1, receive less heat in the oven 
than the other samples.  In general, the temperature in the oven is high and the bread baking 
processes are decreased in time. In such case, the standard baking process will not be followed 
properly and processes such as Maillard reaction, browning crust and water vaporisation in the 
crumb will not be completed (Manhica et al., 2012a). The bread baking process in such 
condition results in the bread having a good appearance on the outside but not being well baked 
inside. In order to avoid this situation, the amount of wood burnt must be reduced in the 
combustion chamber and the temperature should be decreased. This process will not affect the 
heat distribution in the oven.  
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Figure	  4.6.2:	  Graphic	  representation	  of	  the	  heat	  distribution	  on	  samples	  	  

Table	  17:	  The	  temperatures	  of	  the	  bread	  samples.	  	  	  

Sam
ples	  

Flux	  (W)	  

Transient	  

0	  min	   10	  min	   20	  min	  

Surface	  
and	  Base	  
temp	  (K)	  

Base	  

Temp	  
(K)	  

Surface	  
Temp	  
(K)	  

Total	  
Heat	  
Flux	  
(W)	  

Base	  
Temp	  
(K)	  

Surface	  
Temp	  (K)	  

Total	  
Heat	  
Flux	  
(W)	  

1	   300	   394	   408	   51.13	   412	   432	   28.3	  

2	   300	   401	   418	   55.29	   419	   440	   30.5	  

3	   300	   396	   416	   53.60	   414	   440	   30.0	  

4	   300	   390	   404	   48.93	   407	   428	   27.25	  

5	   300	   394	   413	   52.13	   412	   436	   29.2	  

6	   300	   400	   413	   53.73	   419	   436	   29.5	  

7	   300	   398	   410	   52.30	   416	   433	   28.9	  

8	   300	   395	   407	   51.02	   413	   431	   28.1	  
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	   CONCLUSIOS	  
 
5. CONCLUSIOS 

A performance analysis of the bakery furnaces was conducted on the two most commonly used 
types in the southern part of Mozambique. In terms of specific wood consumption, the indirect 
type of furnace showed a higher degree of efficiency than the semi-direct type.  
 
The temperature in these ovens is affecting the baking process. An increase in the air flow 
velocity improves the baking conditions by increasing both the circulation and the effective 
thermal conductivity of the hot gases within the baking oven. 
 
The feeding door affects the baking process in several ways. When the door is open, hot gases 
leave the oven close to the upper edge, and the cooler surrounding air enters via the lower edge 
of the door opening, which results in a lower total flow inside the baking oven. This leads to a 
shift in the location of the maximum values of several key parameters pertaining to the 
characteristics of the flow (e.g. turbulence energy and effective heat conductivity in baking 
oven); from the bottom of the chimney to the top of the fire grate. If these effects are minimised, 
this will improve both the efficiency of the baking process and the quality of the bread produced 
in wood-fired bakery ovens. 
 
The experiment performed in the WFBO and the In situ measurements are useful to highlight 
the problems associated with the bread production process. Mainly, it is necessary to change 
the temperature distribution in the oven as well as the geometry of the oven to improve the heat 
transfer during the baking process. The combustion process can be improved by reducing the 
large amount of heat that is lost between the combustion zone and the baking oven.  
 
The Mathematical model shows high accuracy with experimental data and highlighted the 
necessity to reduce the large amount of the gases that cross the oven without releasing any 
heat (the amount of gases leaving already in the grid chimney is as high as 50%) and to change 
the temperature distribution in the oven.  
 
Geometry changes in the mathematical model predict a better distribution of heat in the oven, 
leading to a more uniform quality of the bread produced with less energy input.  
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	   FURTHER	  WORK	  
 
6. FURTHER WORK 

The optimisation of the geometry of the oven is a complex process that needs special attention 
on many details. The modification in the geometry needs the particular modification on the 
settings within the computer software. However, it is necessary to maintain the originality of the 
experimental validated models. 
 
In this work, only part of the oven base was covered with bread and when the number of the 
samples (bread loaves) is increased to get a more realistic heat distribution, the amount of the 
data will be large which will require substantial computing resources.  
 
The effect of the feeding door during the baking process has to be taken into account during 
optimisation because a large amount of the hot gases are lost. 

 

 

 

 

	    



 
 

76 

	    



 
 

77 

	  
	  
	  
	  

REFERENCES	  

 
 
7. REFERENCES 

Andersson, B., Andersson, R., Håkansson, L., Mortensen, M., Sudiyo, R. & van Wachem, B., 
Computer Fluid Dynamics for Chemical Engineers, 5th Ed., Gothenburg, Sweden, 2009. 

Altamirano-Fourtoul, R., Li-ail, A., Chevallier, S. & Rosell, C.M. Effect of the Amount of Steam 
During Baking On Bread Crust Features and Water Diffusion. Journal of Food Engineering 108 
(2012) pp. 128 -134. 

Annual Statistical Report. Electricity of Mozambique, Maputo, Mozambique, 2004. 

Baillifard, M., Casartelli, E. & Nussbaumer, P. Experimental Investigation of Fluid Dynamics in 
Wood Combustion Process, 16th European Conference and Exhibition, 2 – 6 June Valencia, 
Spain. 

Baranski, J., Physical and Numerical Modelling of Flow Pattern and Combustion Process in 
Pulverized Fuel Fired Boiler/Division of Energy and Furnace Technology, Ph.D. Thesis, Royal 
Institute of Technology (KTH), Stockholm, Sweden, 2002. 

Birds, R.B., Stewart, W.E. & Lightfoot, E.N., Transport Phenomena, Second Edition, John Wiley 
& sons, Inc., New York, 2001. 

Boulet, M., Marcos, B. & Moresoli, C. CFD Modelling of Heat Transfer and Flow Field in a 
Bakery Pilot Oven. Journal of Food Engineering, 97 (2010) pp. 393 – 402. 

Bruch, C., Peters, B. & Nussbaumer, T., Modelling Wood Combustion Under Fixed Bed 
Combustions, Fuel, Vol. 82 (2003) pp. 729 – 738.  

Carvalho, M.G & Mertins, N., (1991). Mathematical modelling of heat and mass transfer 
phenomena in baking ovens. In “Computational Methods and Experiment Measurements V,” 
Ed. by Sousa, A., Brebbia, C.A. and Carlomagno, G.M. Computational Mechanics Publications, 
pp. 359–370. 



 
 

78 

Carvalho, M.G. & Nogueira, M., Improvement of Energy Efficiency in Glass-Melting Furnaces, 
Cement Kilns and Baking Ovens, Applied Thermal Engineering, 17 (8-10), (1997) pp. 921-933. 

Carvalho, M.G. & Nogueira, M. - "Modelling of Fluid Flow and Heat Transfer in a Glass Melting 
Tank"  Presented at the 7th International Conference on Numerical Methods in Laminar and 
Turbulent Flow, Stanford, USA, 15-19 July 1991. Numerical Methods in Laminar and Turbulent 
Flow, Volume VII - Part II, Ed. Taylor, C., Chin, J.H., Homsy, G.M., Pineridge Press, 1991, pp. 
1363-1373. 

Chanwal, N., Indrani, D., Raghavarao, K.S.M.S. & Anandharamakrishnan, C. Computational 
Fluidics Dynamics Modelling of Bread Baking Process. Food Research International 44 (2011) 
pp. 978 – 983. 

Chevatllier, S., Della Valle, G., Colonna, P., Broyart, B. & Trystram, G., Structural and Chemical 
Modifications of Short Dough During Baking, Journal of Cereal Science, 35 (2002) pp. 1-10. 

Cuvilas, C. A., Characterization of Available and Potential Source of Wood Fuels in 
Mozambique, Licentiate Thesis, Report 010, ISSN 1654-9406, Uppsala 2009. 

Czuchajowska, Z. & Pomeranz Y. Differential Scanning Calorimetry, Water Activity, and 
Moisture Content in Crumb Center and Near-Crust Zone of Bread During Storage. Cereal 
Chemistry, 66 (4) (1989) pp. 305 – 309. 

De Vries, U., Sluimer, P. & Bloksma, A.H., A quantitative model for heat transport in dough and 
crumb during baking. In “Cereal Science and Technology in Sweden,” Ed. by Asp, N.-G. STU 
Lund University, Lund (1989) pp. 174–188. 

Duke J. Handbook of Energy Crops. 
http://www.hort.purde.edu/newcrop/duke_energy/Acacia_nilotica.htm#Energy; 1983 

Faaij, A.P.C., Biomass Combustion, Encyclopaedia of Energy, 1 (2004) pp. 175-191. 

Fahloul, D., Trystram, G., McFarlane, I. & Duquenoy, A., Measurements and Predictive 
Modelling of Heat Fluxes in Continuous Baking Ovens, Journal of Food Engineering, 26 (1995) 
pp. 469-479. 

Fluent Inc. Fluent 6.1 User's Guide, 2004. 

Ghojel, J.I., A new Approach to Modelling Heat Transfer in Compartment Fires, Fire Safety 
Journal, 31, (1998), 227-237. 

Global Forest Resources Assessment, 2005; p. 196; Table 4. 

Gori, F., Heat Transfer, Encyclopaedia of Energy, 3 (2004) pp. 145-157. 

GRNB (Group Management of Natural Resources and Biodiversity), Evaluation of levels of 
energy consumption from biomass in the provinces of Tete, Nampula, Zambezia, Sofala, Gaza 
e Maputo. Final Report. Eduardo Mondlane University, Mozambique Energy Ministry, 
Mozambique, (2008). (In Portuguese). Universidade Eduardo Mondlane. Ministerio de Energia 



 
 

79 

de Moçambique, Moçambique, (208). 

Gupta, T. R., Individual Heat Transfer Modes During Contact Baking of Indian Unleavened Flat 
Bread (chapatti) in a Continuous Oven, Journal of Food Engineering, 47 (2001) pp. 323-319. 

Hadiyanto, Asselman, A., van Straten, G., Boom, R.M., Esveld, D.C. & van Boxtel, A.J.B., 
Quality Prediction of Bakery Production in the Initial of Process Design, Innovative Food 
Science and Engineering Technologies, 8 (2007) pp. 285-289. 

Hirte, A., Hamer, R.J., Meinders, M.B.J. van de Hoek, K. & Primo-Martin, C. Control of Crust 
Permeability and Crispiness Retention in Crispy Breads. Food Research International 46 (2012) 
pp. 92 – 98. 

Hostikka, S., (2001). Large Eddy Simulation of Wood Combustion, National Institute of 
Standards and Technology, Gaithersburg, MD 20899, USA. 

Hwang, K.S., Sung, H.J. & Hjun, J.M. Visualizations of Large-scale Vortices in Flow about a 
Blunt-faced Flat Plate, Experiments Fluids 29 (2000) pp. 198 – 201.  

Jaeger, H. Janositz, A. & Knorr, D. The Millard Reaction and it is Control During Food 
Processing. The Potential Technologies, Pathologie Biologie 58 (2010) pp. 207 – 213. 

Jefferson, D.R., Lacey, A.A. & Sadd, P. A., Understanding Crust Formation During Baking, 
Journal of Food Engineering, 75 (2006) pp. 515-521. 

Jefferson, D.R., Lacey, A.A. & Sadd, P. A., Crust density in bread: Mathematical modelling and 
numerical solution, Applied Mathematical Modelling, 31 (2007) pp. 209 – 225. 

Johansson, R., Thunman, H. & Leckner, B., Influence of Intraparticle Gradient in Modelling of 
the Fixed Bed Combustion, Combustion Flame, 149 (2007) pp. 49 – 62.  

Knight, R.A.E. & Menlove, M. Effect of the Bread-baking Process on the Destruction of Mould 
Spores. Journal of the Science of Food and Agriculture 12(10) (2006) pp. 653 -656. 

Klass, D.L., Biomass for Renewable Energy and Fuel, Encyclopaedia of Energy, 1 (2004) pp. 
193- 212. 

Krist-Spit, C.E. & Sluimer, P. Heat Transfer in Oven During the Baking of the Dough for Bread. 
Cereals in a European Context, First European Conference on Food Science and Technology, 
Ellis Harwood, Chichester, UK (1987) pp. 344-354. 

Lhate, I. Cuvilas, C. Terziev, N. & Jirjis, R. Chemical Composition of Traditional and Lesser-
used Wood Species from Mozambique. Wood Material Science and Engineering 5 (2010) pp. 
143 – 150. 

Lucas, C. & Blasiak, W., Experimental Study on Fixed Bed Combustion of Biomass, Nordic 
Seminar-Thermochemical Conversion of Biofuel (NTH), 21st November 2000. 

Lucas, L. H. M., Lucas, C. & Sapojinkov, V., Metologia de Calculo Termico da Estufa Dum 



 
 

80 

Forno de Padaria, Unpublished data, Dto de Engenharia Química da U.E. Mondlane, 1995. 

Lucas, T., Le Ray, D., Peu, P., Wagner, M. & Picard, S., A New Method for Continuous 
Assessment of CO2 Released From Dough Baked in Ventilated Ovens, Journal of Food 
Engineering, 81 (2007) pp. 1-11. 

Manhica, F.A., Lucas, C. & Richard, T. Wood consumption and Analysis of the Bread Baking 
Process in Wood-Fired Bakery Ovens. Applied Thermal Engineering, No 47 (2012a) pp. 63 - 72. 

Manhica, F.A., Lucas, C. & Richard, T. Computational Fluid Dynamics Simulation of the Flow 
Field in Wood-Fired Bakery Ovens. International Journal of Applied Science and Technology, 
Vol.2 No 7 (2012b) pp. 1 - 11. 

Manhica, F.A., Lucas, C. & Richard, T. Evaluation of the Performance of a Wood-Fired Bakery 
Ovens Using In-Situ Measurement. JP Journal of Heat and Mass Transfer, Vol.8 No 2 (2013) 
pp. 119 - 135. 

McFarlane, Control of Final Moisture Content of Food Products Baked in Continuous Tunnel 
Ovens, Measurement Science and Technology, 17 (2006) pp. 241 – 248. 

MacGrattan, K., Fire Dynamics Simulator (Version 4) Technical Reference Guide, Building and 
Fire Research Laboratory, 2004. 

Mahassa, M. S. M., Lucas, C., Sapojinkov, V., Desenvolvimento do Calculo Aerodinamico Num 
Forno de Padaria, Unpublished data, Dto de Engenharia Química da U.E. Mondlane, 1995. 

Mancuhan, E. & Kucukada, K., Optimization of Fuel and Air Used in a Tunnel Kiln to Produce 
Coal Admixed Bricks, Applied Thermal Engineering, 26, (2006) pp. 1556-1563. 

ME ( Ministerio de Energia – Energy Statistic). 2009 http://www.me.gov.mz/ 

ME ( Ministerio de Energia). 2004 http://www.me.gov.mz/  

ME ( Ministerio de Energia). 2006 http://www.me.gov.mz/ 

Michalska, A., Amigo-Benavent, M., Zeilinski, H. & del Castillo, M.D. Effect of Bread on Maillard 
Reaction Products Contributing to the Overall Antioxidant Activity of rye Bread. Journal of 
Cereal Science48 (2008) pp. 123-132. 

Miltner, M., Makaruk, A., Harasek, M. & Fredl, A., CFD-Modelling for the Combustion of Solid 
Baled Biomass, Fifth International Conference on CFD in the Process Industries, CSIRO, 
Melbourne, Australia, 13th-15th December 2006. 

Mirade, P.S., Daudin, J.D., Ducept, F., Trystram, G. & Clement, J., Characterization and CFD 
Modelling of air Temperature and Velocity Profiles in Industrial Biscuit Baking Tunnel Oven, 
Food Research International, 37 (2004) pp.1031-1039. 

Momayez, L., Dupont, P. & Peerhossaini, H., Effects of Vortex Organization on Heat Transfer 
Enhancement by Görtler Instability, International Journal of Thermal Sciences, Vol. 43, pp. 753-



 
 

81 

760, 2004. 

Mondal, A., & Datta, A.K., Bread Baking – A Review, Journal of Food Engineering 86 (2008) pp. 
467-474. 

Nussbaumer, T., Combustion and Co-combustion of Biomass Fundamentals Technologies and 
Primary Measures for Emissions Reduction, Energy and Fuel, Vol. 17, (2003) pp. 1510-1521.  

Oman, J., Tacer, M. & Tuma, M., Overfeed Fixed-bed Combustion of Wood, Bioresource 
Technology, 67 (1999) pp. 139-147. 
 
Patel, B.K. Waniska, R.D. & Seetharaman, K. Impact od Different Baking Process on Bread 
Firmness and Starch Properties in Bread Crumb. Journal of Cereal Science. 42 (2005) pp. 173 - 
184. 
 
Pereira, C., Brouwer, R., Monjane, M. & Falcão, M., Charcoal potential in Southern Africa, Final 
Report, Eduardo Mondlane University, Maputo, Mozambique (2004) 

Peters, B. & Bruch, C., A Flexible and Stable Numerical Method for Simulating the Thermal 
Decomposition of Wood Particles, Chemosphere, 42 (2001) pp. 481- 490. 

Pettersen R. C., The chemical composition of wood, 1984. In: Rowell, R.M., ed. The chemistry 
of solid wood. Advances in chemistry series 2007. American chemical society, pp. 57-126. 

Purlis, E. Bread Baking: Technological Considerations Based on Process Modelling and 
Simulation. Journal of Food Engineering, 103 (2011) pp. 92 - 102. 

Purlis, E. Browning Development in Bakery Products – A Review. Journal of Food Engineering 
99 (2010) pp. 239 – 249. 

Pyler, E. J. Baking Science & Technology, Vol. I (2nd ed.), Siebel Publ. Co., Chicago (1973) 
USA. 

Pyler, E. J. Baking Science & Technology, Vol. II (3rd ed.), Siebel Publ. Co., Chicago (1988) 
USA. 

Ragland, K.W., Aerts, D.J. & Baker, A.J. Properties of wood and Combustion Analysis. 
Bioresources Technology 37 (1991) pp. 161 - 168. 

Rath, J., Wolfinger, M.G., Steiner, G., Krammer, G., Barotini, F. & Cozzani V. Heat of Wood 
Pyrolysis. Fuel (2003) 82, pp. 81 – 89. 

Sablani, S.S., Marcotte, M., Baik, O.D. & Castaigne, F., Modelling of Simultaneous Heat and 
Water Transport in the Baking Process, Lebensmittel Wissenschaft und Technologie, 31, (1998) 
pp. 201- 209. 

Sahin, B., Ust, Y., Teke, I. & Erdem, H.H. Performance Analysis and Optimisation of heat 
Exchange: a new Thermoeconomic Approach. Apply Thermal Engineering 30 (2010) pp. 104-
109. 



 
 

82 

Sal, & Caldeira, Reflexão Sobre A Problematica do Sector Florestal em Mozambique, 
Advogados e consultores, Lda 2008. 

Shitu, T.A., Raji, A.O. & Sanni, L.O. Bread form Composite Cassava-wheat Flour: Effect of 
Baking Time and Temperature on some Physical Properties of Bread Loaf. Food Research 
International, 40 (2007) pp. 280-290. 

Searle, S.d. & Owen, J.V. Variation in Density and the Percentage of Heatwood in Temperate 
Australian Acacia Species, Australian Forestry 68 (2) (2005 pp. 126 – 136. 

Swortfiguer, M. J., Dough Absorption and Moisture Retention in Bread, Bakers Digest, 42(4) 
(1968) pp. 42-44.  

Therdithai, N., Zhou, W. & Adamczak, T. Two-dimensional CFD modelling and Simulation of an 
Industrial Continuo Bread Baking Oven, Journal of Food Engineering, 60 (2003) pp. 211-217. 

Therdithai, N., Zhou, W. & Adamczak, T., Optimisation of the Temperature Profile in Bread 
Baking/Journal of Food Engineering, 55 (2002) pp. 41-48. 

Therdthai, N. & Zhou, W., Recent Advances in the studies of Bread Baking Process and Their 
Impacts on the Bread Baking Technology, Food Science and Technology Research, 9 (3) 
(2003) pp. 219-226. 

Therdthai, N., Design for Bread Baking Temperature Profile Using Neutral Network Modelling 
Approach, Journal Natural Science, 39 (1), (2007) pp. 119 -124. 

Therdthai, N., Zhou, W. & Adamczak, T., Simulation of starch gelatinisation during baking in a 
travelling-tray oven by integrating a three-dimensional CFD model with a kinetic model, Journal 
of Food Engineering, 65 (2004b) pp. 543-550. 

Therdthai, N., Zhou, W. & Adamczak, T., The Development of an Anemometer for Industrial 
Bread Baking, Journal of Food Engineering, 63 (2004a) pp. 329 - 334. 

Therdthai, N., Zhou, W. & Adamczak, T., Three-dimensional CFD modelling and Simulation of 
the temperature profiles and airflow patterns during a Continuous Industrial Bread Baking Oven, 
Journal of Food Engineering, 65 (2004c) pp. 599 - 608. 

Thorvaldsson, K. & Janestad, H., A Model for Simultaneous Heat, Water and Vapour Diffusion, 
Journal of Food Engineering, 40 (1999) pp. 167-172. 

Thorvaldsson, K. & Skjoldebrand, C., Water Diffusion in Bread During Baking, Lebensmittel 
Wissenschaft und Technologie, 31 (1998) pp. 658 – 663. 

Thunman, H., Leckner. B., Niklasson, F. & Johnsson, F., Combustion of Wood Particles - A 
Particle Model for Eulerian Calculations, Combustion and Flame Vol. 128 (2002) pp. 30 – 46. 

Tietema T., Ditlhogo M., Tibone C. & Mathalaza, N., Characteristics of eight firewood species of 
Botswana, Biomass and Bioenergy, 1 (1) (1991) pp. 41- 46. 



 
 

83 

Tong, C.H. & Lund, D.B., Microwave Heating of Baked Dough Products with Simultaneous Heat 
and Moisture Transfer, Journal of Food Engineering, 19 (1993) pp. 319-339. 

TorII, K. & Yanagihara, J.I., The Effects of Longitudinal Vortices on Heat Transfer of Laminar 
Boundary Layers, LSME, International Journal, Series II, Vol. 32, No. 3, (1989) pp. 395 - 402. 

Tran, H.C. & White, R.H. Burning Rate Of Solid Wood Measured In Heat Release Rate 
Calorimeter. Fire and Flame 16 (1992) pp. 197 – 106. 

Tsamba, A.J. & Lucas, C., Metodologia de Cálculo Térmico Em Fornos de Padaria,  
Unpublished data, Dto de Engenharia Química da U.E. Mondlane, 1994. 

Van Loo & Koppejan, J. The Handbook of Biomass Combustion and Co-firing, Earthscan, 
London, Sterling, VA, 2009, pp. 1- 55. 

Vasco, H. & Costa, M., Quantification and Use of Forest Biomass Residues in Maputo Province, 
Mozambique, Biomass and Bioenergy, 33 (2009), pp. 1221-1228. 

Velthuis, H., Dalhuijsen, A. & De Vries, U., Baking ovens and product quality, Food Technol. Int. 
Eur. (1993) pp. 61– 66. 

Verboven, P., Datta, A. K., Nguyen, T. A., Scheerlinck, N. & Nicolaï, B. M. Computation of 
Airflow Effects on Heat and Mass Transfer in a Microwave Oven, Journal of Food Engineering 
59(2-3), (2003) pp. 181-190. 

Verboven, P., Scheerlinck, N., De Baerdemaeker, J. & Nicolai, B. M. Sensitivity of the food 
centre temperature with respect to the air velocity and the turbulence energy, Journal of Food 
Engineering 48, (2001) pp. 53 – 60. 

Wagner, M.J., Lucas, T., Le Ray, D. & Trystran G., Water Transport in Bread During Baking, 
Journal of Food Engineering, 78 (2007) pp. 1167-1173. 

Wang, Y. & Yan, L., CFD Studies on Biomass Thermochemical Conversion, International 
Journal of Molecular Sciences, Vol. 9 (6) (2008) pp. 1108 – 1130. 

Wong, Y., Zhou, W. & Hua, J., CFD Modelling of an Industrial Continuous Bread-Baking 
Process Involving U-movement, Journal of Food Engineering, 78 (2007) pp. 888 – 896. 

Wong, S.Y., Zhou, W. & Hua, J., Robustness Analysis of a CFD Model to the Uncertainties in its 
Physical Properties for a Bread Baking Process, Journal of Food Engineering, 77 (2006) pp. 
784 – 791. 

Zanoni B., Schiraldi, A. & Simonetta, R., A Naive Model of Starch Gelatinization Kinetics,    
Journal of Food Engineering, 24 (1995a) pp. 25-33. 

Zanoni, B., Peri C. & Bruno, D., Modelling of Browning Kinetics of Bread Crust During Baking, 
Lebensmittel Wissenschaft und Technologie, 28 (1995c) pp. 604 – 609. 

Zanoni, B., Peri C. & Pierucci, S., A Study of the Bread-Baking Process. I: A Phenomenological 



 
 

84 

Model, Journal of Food Engineering, 19 (1993) pp. 389 - 398. 

Zanoni, B., Peri C. & Pierucci, S., A Study of the Bread-Baking Process. II: A Phenomenological 
Model, Journal of Food Engineering, 23 (1994) pp. 321- 336. 

Zanoni, B., Peri, C. & Bruno, D., Modelling of Starch Gelatinization Kinetics of Bread Crumb 
During Baking, Lebensmittel Wissenschaft und Technologie, 28 (1995b) pp. 314 - 318. 

Zanoni, B., Peri, C., Giovanelli, G. & Paggliarini, E., Design and Setting Up of a Water Vapour 
Pressure Capacitance Manometer for Measurement of Water Activity, Journal Of Food 
Engineering, 38 (1999) pp. 407- 423. 

Zereifard, M.R., Boissonneault, V., Marcote, M. Baker product Characteristics as Influenced by 
Convection heat flux. Food Research International, 42 (2009) pp. 856 – 864. 

Zhang, J. & Datta, A.K., Mathematical Modelling of Bread Process/Journal of Food Engineering, 
75 (2006) pp. 78-86 

Zhang, L.I., Lucas, T., Doursat, C., Flick, D. & Wagner, M., Effect of Crust Constraints on Bread 
Expansion and CO2 Release, Journal of Food Engineering, 80 (2007) pp. 1302-1311	   	  



 
 

85 

APPENDIX	  
 
8. APPENDIX  
 

APPENIX I 

 

 

Figure 1: Technical design of the combustion chamber in a semi-direct wood-fired bakery oven, 
showing the positions at which the temperatures were measured. 

 

  

Figure 2: Arrangement of the chimneys above the baking oven in a the wood-fired bakery oven 



 
 

86 

APPENDIX II 

 

Figure 3: Flow pattern in a baking oven, where the combustion chamber is rectangular in shape 

 

Figure 4: Flow pattern in a baking oven where the combustion chamber has a more rounded 
shape.	   


