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Runaway electrons with strongly anisotropic distributions present in post-disruption tokamak

plasmas can destabilize the extraordinary electron (EXEL) wave. The present work investigates the

dynamics of the quasi-linear evolution of the EXEL instability for a range of different plasma

parameters using a model runaway distribution function valid for highly relativistic runaway

electron beams produced primarily by the avalanche process. Simulations show a rapid pitch-angle

scattering of the runaway electrons in the high energy tail on the 100–1000 ls time scale. Due to

the wave-particle interaction, a modification to the synchrotron radiation spectrum emitted by the

runaway electron population is foreseen, exposing a possible experimental detection method for

such an interaction. VC 2014 Author(s). All article content, except where otherwise noted, is licensed
under a Creative Commons Attribution 3.0 Unported License.

[http://dx.doi.org/10.1063/1.4895513]

I. INTRODUCTION

Disruptions in tokamaks can lead to the generation of a

high-current beam of highly energetic runaway electrons,1

which poses great challenges for the disruption mitigation

system of future tokamaks.2 The runaway electron beam has

a strongly anisotropic velocity distribution and may destabi-

lize high-frequency electromagnetic and electrostatic waves

through a resonant interaction. Several high-frequency insta-

bilities driven by runaway electrons have been considered

before, using various models for the initial runaway distribu-

tion function.3–8 In particular, the linear stability and the

quasi-linear analysis of the whistler wave instability (WWI)

have been investigated, and it was concluded that whistler

waves may be destabilized by an avalanching runaway elec-

tron population.7,8 The main motivation for that work was to

investigate the possible effect of these waves on the runaway

electron beam formation. If such an instability would lead to

scattering of the runaway electrons in pitch-angle, resulting

in higher synchrotron radiation losses, a passive mitigation

mechanism limiting the detrimental effects of the runaway

electrons would be provided. However, it was concluded that

for the low temperatures characteristic of post-disruption

plasmas, the collisional damping is likely to suppress the

WWI and the effect of the instability on runaway beam for-

mation is therefore small. On the other hand, the WWI may

provide a diagnostic opportunity due to its sensitive depend-

ence on the fast electron distribution function and the plasma

parameters.

Recently, it has been shown that runaways can also

destabilize so-called extraordinary-electron (EXEL) waves

at oblique propagation angles.9 Compared to the WWI, it

was found that significantly fewer energetic electrons are

needed to destabilize the EXEL wave, which is therefore

likely to be the most unstable wave.9 The aim of this work is

to determine the characteristics of the quasi-linear evolution

of the EXEL instability and quantify its effects on the

runaway electron beam. We also investigate the possibility

of detecting signatures of the wave-particle interaction in the

experimental infrared synchrotron emission data.

In large tokamak disruptions, where the principal source

of runaway electrons is the secondary avalanche process,10 an

analytical distribution function for the runaway electrons (in

the absence of wave-particle interaction) can be obtained.7

This distribution function has been benchmarked to the

results of numerical simulations11 and has been used in Ref. 8

as an initial runaway distribution function for the quasi-linear

evolution of the WWI. In the present work, we adopt a simi-

lar approach, extending the treatment to the EXEL wave.

One possible method of inferring the characteristics of

the runaway population is to study the synchrotron radiation

emitted by the energetic electrons. By calculating the inte-

grated emission from the complete electron population,12 we

show that the pitch-angle scattering of highly energetic run-

away electrons due to the interaction with the EXEL wave

causes a characteristic change in the synchrotron spectrum

that could be detected in experiments.

The structure of the paper is as follows. In Sec. II, the

dispersion relation and the characteristics of the EXEL wave

are described. In Sec. III, we investigate the quasi-linear evo-

lution of the EXEL wave and its effect on the distribution of

fast electrons. Section IV completes the analysis with a study

of the parametric dependencies of the process. The calcula-

tions of the synchrotron spectrum of the affected distribution,

presented in Sec. V, provide guidelines for possible experi-

mental detection of the instability. Finally, the results are

discussed and summarized in Sec. VI.

II. EXCITATION OF THE EXTRAORDINARY ELECTRON
WAVE

The characteristics of the EXEL wave can be derived

from the wave dispersion relation in a homogeneous, magne-

tized plasma approximation13
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Note that, to describe the EXEL wave, the frequently used

electromagnetic approximation �33 � ðkc=xÞ2 cos h sin h has

to be relaxed. Here, k is the wave number, kk and k? denote

its components parallel and perpendicular to the static mag-

netic field, respectively, and cos h ¼ kk=k. x is the wave fre-

quency, c is the speed of light, and �ij are the elements of the

dielectric tensor, consisting of the susceptibilities of the dif-

ferent plasma species: � ¼ 1þ vi þ ve. Here, the indices i
and e denote the ion and thermal electron populations,

respectively. We neglect the contribution of the runaway

electron population to the real part of the frequency. In order

to make the calculation of the instability growth rate more

convenient, we rewrite the dispersion relation by introducing

the cold plasma formulas for the ion and thermal electron

susceptibility tensor elements in the high-frequency case of

x�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
me=mi

p
xce. Equation (1) then becomes

x8 þ x6C1ðk; hÞ þ x4C2ðk; hÞ þ x2C3ðk; hÞ þ C4ðk; hÞ ¼ 0;

(2)

where

C1ðk; hÞ ¼ �ð2k2c2 þ x2
ce þ 3x2

peÞ;

C2ðk; hÞ ¼ k4c4 þ 2k2c2ðx2
ce þ 2x2

peÞ þ x2
peðx2

ce þ 3x2
peÞ;

C3ðk; hÞ ¼ �½k4c4ðx2
ce þ x2

peÞ þ k2c2x2
peð3=2x2

ce

þ 2x2
pe þ 1=2x2

ce cos 2hÞ þ x6
pe�;

C4ðk; hÞ ¼ 1=2k4c4x2
cex

2
peð1þ cos 2hÞ;

xpe is the electron plasma frequency and xce is the electron

cyclotron frequency. Equation (2) is a fourth order equation

for x2 giving four different branches of electromagnetic

waves, as described in Ref. 9. It has been shown in Ref. 5

that the two highest frequency branches cannot be destabi-

lized by the runaway population. The remaining two

branches, namely, the electron-whistler and the EXEL wave,

can be destabilized but the EXEL wave was shown to have a

growth rate an order of magnitude higher than the electron-

whistler wave for a runaway distribution function relevant

for near-critical electric field.9

Figure 1 shows the dispersion of the EXEL and the

electron-whistler waves for two propagation angles at two

magnetic field values. For close-to-parallel propagation, both

waves have wave number regions with approximately con-

stant dispersion at the electron plasma frequency, while this

feature gradually disappears for more oblique propagation

directions.

A. Linear growth rate

By taking into account the contribution of runaway elec-

trons to the imaginary part of the frequency in the dispersion

(2), the linear growth rate cl of the EXEL wave is given by

Ref. 9 as

cl

x6 x2�x2
ce

� �
¼= �vr

11ð�11�k2c2=x2
� �

ð�33�k2
?c2=x2Þ

�2vr
12�12ð�33�k2

?c2=x2Þ
�vr

22½ð�11�k2
kc

2=x2Þ �33�k2
?c2=x2

� �
�k2
kk

2
?c4=x4�

�vr
33½�2

11��11ðk2c2=x2þk2
kc

2=x2Þ
þk2k2

kc
4=x4þ�2

12�g=F x;k;hð Þ; (3)

where

Fðx; k; hÞ ¼ 8x7 þ 6x5C1ðk; hÞ þ 4x3C2ðk; hÞ
þ 2xC3ðk; hÞ (4)

is the derivative of Eq. (2) with respect to x.

The most important resonant interaction between the run-

aways and the EXEL wave occurs when the wave frequency

x and wave-number k are such that x – kkvk¼�xce/c, where

v, c, and xce are the velocity, relativistic factor, and the cyclo-

tron frequency of the electrons taking part in the interaction,

respectively. This resonance is called the anomalous Doppler

resonance.

In the case of the EXEL wave, the anomalous Doppler

resonance occurs with ultra-relativistic runaway electrons

(p� 1, where p¼ cv/c is the normalized momentum). In this

region of the momentum space, the distribution function of

the runaway electrons is highly anisotropic. Meanwhile, the

Cherenkov resonance x – kkvk¼ 0 occurs with slightly rela-

tivistic runaways having significantly lower normalized

momentum (p� 1), for the same wave frequency and wave

number vector. For other resonances, such as the Doppler res-

onance, the resonant momentum would be in the negative

FIG. 1. Dispersion of the EXEL and

the electron-whistler (WH) waves at

different propagation angles for mag-

netic fields (a) B¼ 2 T and (b) B¼ 5 T.

The thermal electron density is ne¼ 5

� 1019 m�3.
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region (p< 0). Thus, for a velocity distribution which is suffi-

ciently isotropic for low momentum, so that the Cherenkov

resonance can be neglected, and anisotropic for higher

momentum, the anomalous Doppler resonance will be

dominant.

In the present analysis, the effect of the Cherenkov reso-

nance was neglected and a model for the ultra-relativistic

runaway tail was used as initial electron distribution for the

quasi-linear analysis. The distribution is given by

f0 pk; p?; tð Þ ¼
nr0a

2pcZpk
exp

E� 1ð Þt=sc � pk
cZ

� ap2
?

2pk

 !

� exp
pk � pmax

rp

� �
þ 1

� ��1

; (5)

where the first part is the analytic secondary generation

distribution derived in Ref. 7, valid for E � 1. In the above

equation, E ¼ ejEkjsc=me0c is the normalized parallel electric

field (assumed to be constant in time), me0 is the electron rest

mass, sc ¼ 4p�2
0m2

e0c3=nee4ln K is the collision time

for relativistic electrons, ne is the background electron den-

sity, cZ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðZ þ 5Þ=p

p
ln K, Z is the effective ion charge,

a¼ (E – 1)/(Zþ 1), and nr0 is the seed produced by primary

generation. In Eq. (5) this form is supplemented by a Fermi

function imposing a gradual cut-off at high momentum

around pmax with a width of rp. This latter factor is necessary

to account for the maximum energy the electrons typically

reach, which is determined by the finite time duration of the

accelerating electric field14 and the energy loss due to close

collisions.15 In the present paper, pmax¼ 30 (corresponding to

an energy of 15 MeV) was chosen. This is the order of magni-

tude of the maximum runaway electron energies typically

observed in experiments, see, e.g., Figure 13 of Ref. 16. The

width was chosen to be rp¼ 1. The runaway electron distri-

bution in Eq. (5) is only valid for highly relativistic runaways,

and as such can only be used to calculate the resonant interac-

tion through the anomalous Doppler resonance.

B. Most unstable wave and stability thresholds

The linear growth rate of the EXEL wave is calculated

by substituting the EXEL dispersion given by the second

lowest frequency solution of Eq. (2) and the runaway elec-

tron susceptibility7,13 into Eq. (3). It is positive in the whole

wave number space, but the growth rate is highest in the

high wave number region, where kkc>x, see Fig. 2. The

growth rate increases as the parameters get closer to

the kkc¼x line. (Note, that values closer to kkc¼x than the

pres¼ 30 line in Fig. 2 (red points) would only be valid for a

distribution function without the cut-off at pmax¼ 30.)

By approaching the kkc¼x line in the wave number

plane, the resonant momentum pres of the runaways needed

for the destabilization of the wave increases rapidly. This is

illustrated in Fig. 3 by showing curves calculated at different

wave propagation angles h. This was done by substituting

the EXEL dispersion into the anomalous Doppler resonance

condition x – kkvk¼�xce/c. The origin of the divergence at

the kkc¼x line can be understood by inserting vk� c in the

resonance condition.

Since the growth rate is increasing as we approach the

kkc¼x line (as seen on Fig. 2) and the closer we are to

kkc¼x, the higher is the resonant momentum pres, it follows

that the resonant momentum of the most unstable EXEL

wave is close to the chosen maximum momentum pres ’
pmax. However, we note that the exact value of the chosen

pmax does not have any drastic effect on either the growth

rate or the parameters of the resonant wave. The reason for

that is that the resonant wave parameters are not changed

significantly as pmax changes (as seen on Fig. 3, the wave

number k is almost the same whether we have, e.g., pres¼ 30

or pres¼ 20). Also no divergence in the growth rate is

observed when approaching the kkc¼x. Therefore, the order

of magnitude of the growth rate for the most unstable wave

is the same, irrespective of the choice of pmax. However, due

to the fact that the line corresponding to pres¼ pmax nearly

coincides with the contour lines of the growth rate (as shown

in Fig. 2), it is not trivial to find the exact parameters of the

most unstable wave. Fortunately, for precisely the same rea-

son, the value of the growth rate or the number of runaways

needed for the interaction are not affected significantly by

the exact value of these parameters.

Comparing the linear growth rate of the most unstable

wave (cl) to the collisional damping rate cd ¼ 1:5s�1
ei

(Ref. 17) (where sei ¼ 3p3=2m2
e0v

3
Te�

2
0=niZ

2e4ln K is the

electron-ion collision time), and the convective damping rate

FIG. 2. Growth rate (contour lines) of

the extraordinary electron wave

(ln½cl=xce� is plotted) in the kkc>x
region for different magnetic fields (a)

B¼ 2 T and (b) B¼ 5 T. The grey dot-

ted line shows where kkc¼x0, and the

red dotted line where pres¼ pmax¼ 30.

The parameters are electric field

Ek¼ 40 V/m, thermal electron density

ne¼ 5 � 1019 m�3, runaway density

nr¼ 3 � 1017 m�3, and effective ion

charge Z¼ 1.
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cv � ð@x=@k?Þ=ð4LrÞ (where Lr is the radius of the runaway

beam8), gives the linear stability threshold—the number of

runaway electrons needed for the destabilization of the

wave. In the high electric field case studied in the present pa-

per, the momenta of the resonant runaways is expected to be

higher than in the corresponding near-critical case studied in

Ref. 9, and both the most unstable EXEL and whistler waves

therefore have lower frequencies. For the whistler wave this

means that instead of the high-frequency electron-whistler

approximation, the magnetosonic-whistler wave7—which

also includes the ion susceptibilities in the dispersion rela-

tion—should be used. The stability thresholds for the EXEL

and the magnetosonic-whistler wave are shown in Fig. 4.

Note that the stability threshold for the EXEL wave is signif-

icantly lower in this high electric field case compared to the

near-critical case studied in Ref. 9. Here, the electric field

was chosen to be 40 V/m.

For the reference scenario of Fig. 4 at B¼ 2 T, the

parameters of the most unstable wave are wave-number km

’ 4900 m�1, wave vector angle hm¼ 1.2 and frequency x0

’ 5.1 � 1011 s�1. Although the EXEL wave dispersion is

generally quite complicated, in the vicinity of the most

unstable wave the dispersion can be approximated by a linear

trend in wave number k and a linear dependence in sin h

xfitðk; hÞ ¼ Cxxpe þ Ckkcþ Chxce sin h; (6)

where Cx¼ 0.92, Ck¼ 0.011, and Ch¼ 0.35 around the most

unstable wave in the reference scenario. The values of Cx

and Ch tend to be quite robust with respect to changes in

plasma density and magnetic field strength; a variation of

only about 5% is observed for a change in the plasma param-

eters of roughly 20%. Ck increases very strongly with

increasing magnetic field, but remains almost insensitive to

changes in the background electron density. This parameter

gives a relatively small contribution to xfit, so the fit is con-

sidered to be quite good in the close vicinity of the most

unstable wave in the reference scenario. The fit also reprodu-

ces some of the dominant changes in the dispersion due to

changes in the plasma parameters. However, in the region of

interest (which is quite large due to the large spectral range

of the waves destabilized in the quasi-linear interaction), xfit

deviates significantly from the exact dispersion. In the

remainder of this paper, the exact dispersion given by the

solution of Eq. (2), will be used.

III. QUASI-LINEAR DEVELOPMENT OF THE
EXTRAORDINARY-ELECTRON WAVE INSTABILITY

In the framework of quasi-linear theory, the evolution of

the distribution function of the electrons is given by a diffusion

equation in phase space, and the rate of growth of wave-

energy is equal to the difference between the linear growth rate

and the damping rates, ck¼ cl – cd – cv. The analysis of the dy-

namics of the interaction of runaway electrons with the EXEL

wave can be performed similarly to that of the magnetosonic-

whistler wave in Ref. 8. Only the dispersion relation and the

polarization of the wave are different in this case, but as we

will show, this proves to have a significant effect on the tempo-

ral evolution of the instability. The evolution of the runaway

distribution in the general case is given by13

@f

@t
¼ pe2

m2
e0c2

X1
n¼�1

ð
d3k P̂ p?d xk � nX� kkpkc=c

� �

�
jwn;kj

2

x2
p?P̂f ; (7)

where X¼ eB/me¼xce/c,

P̂ ¼
x� kkpkc=c

p?

@

@p?
þ

kkc

c
@

@pk
; (8)

jwn;kj
2 ¼

����Ekx
n

z
Jn þ iEkyJ0n þ

pk
p?

EkzJn

����
2

; (9)

FIG. 3. Resonant momentum for the

EXEL wave as a function of the wave-

number at different propagation angles

(h¼ 5�, 30�, and 60�) for (a) B¼ 2 T

and (b) B¼ 5 T magnetic fields for the

anomalous Doppler resonance. The

thermal electron density is ne¼ 5 �
1019 m�3.

FIG. 4. Stability thresholds for the most unstable magnetosonic-whistler and

EXEL waves in a strong electric field. The parameters are Te¼ 20 eV, ne¼ 5

� 1019 m�3, Z¼ 1, pmax¼ 30, Lr¼ 0.1 m (effective runaway beam radius8).
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Ekx, Eky, and Ekz are the components of the spatial Fourier transform of the electric field and Jn(z) is the Bessel function of the

first kind and of order n, with the argument z¼ k?p?c/xce. Using the polarization for the EXEL wave

ex; ey; ezð Þ ¼ 1 ;�i
x2

pexce=x

x2 � k2c2 � x2
ce � x2

pe þ k2c2x2
ce=x

2
;

kkk?c2

x2
pe þ k2

?c2 � x2

 !
; (10)

where x¼xEXEL (k, h), Eq. (9) gives

jwn;kj
2 ¼ jEkxj2

���� nJn

z
þ

J0nx
2
pexce=x

x2 � k2c2 � x2
ce � x2

pe þ k2c2x2
ce=x

2
þ

pk
p?

kkk?c2Jn

x2
pe þ k2

?c2 � x2

����
2

: (11)

The wave instability is driven by the anisotropy of the runaway distribution via the anomalous Doppler resonance n¼�1.

For z	 1, the Bessel function can be expanded as J�1¼�J1 ’ �z/2 in jw�1;kj
2; and using jEkj2 ¼ jEkxj2ðjexj2 þ jeyj2 þ jezj2Þ

we obtain

jw�1;kj
2 ¼ jEkj2

4

����1� x2
pexce=x

x2 � k2c2 � x2
ce � x2

pe þ k2c2x2
ce=x

2
� pk

kkk
2
?c3

xce x2
pe þ k2

?c2 � x2
	 
 ����

2

jexj2 þ jeyj2 þ jezj2
� jEkj2

4
P x; k; h; pk
� �

: (12)

The quasi-linear equation for the runaway distribution becomes

@f

@t
¼ pe2

m2
e0c2

ð
d3k P̂

jEkj2

4
P x; k; h; pk
� � p2

?
x2

d xþ X� kkpkc=c
� �

P̂ f ; (13)

and if we assume kkv?@f/@pk	X @f/@p?, Eq. (13) simplifies to a diffusion equation

@f p?; pk; tð Þ
@t

¼ 1

cp?

@

@p?

p?D p?; pk; tð Þ
c

@f p?; pk; tð Þ
@p?

� �
; (14)

with

D p?; pk; tð Þ ¼
pe2x2

ce

2�0m2
e0c2

ð
d3k

Wk tð Þ
x2

P x; k; h; pk
� �

d xþ X� kkpkc=c
� �

; (15)

where WkðtÞ ¼ �0

2
jEkðtÞj2 is the spectral energy of the wave. The assumption kkv?@f/@pk 	 X@f/@p? is valid when zkk/k? 	

(@f/@p?)/(@f/@pk), and is satisfied due to the ordering z	 1, kk
 k? and (@f/@p?)/(@f/@pk)� 1.

The time variation of the spectral energy of the wave is determined by the differential equation8

dWk

dt
¼ 2ck tð ÞWk; (16)

with the initial condition Wk0¼Wk(t¼ 0)¼ eTe/2, which is the thermal fluctuation level.

A. Numerical solution

Assuming a beam-like velocity distribution c ’ pk and introducing all terms containing pk in (14) into the diffusion

operator

~D pk; tð Þ ¼
pe2x2

ce

2�0m2
e0c2

1

p2
k

ð
d3k

Wk tð Þ
x2

P x; k; h; pk
� �

d xþ xce=pk � kkc
� �

; (17)

we obtain a diffusion equation for f in which ~Dðpk; tÞ is independent of p?. Introducing a dimensionless time

sðpk; tÞ ¼
ðt

0

dt0 ~Dðpk; t0Þ; (18)

the diffusion equation (14) takes the form:

@f

@s
¼ 1

p?

@

@p?
p?

@f

@p?
; (19)

and with the initial condition (5) the solution according to Ref. 8 is
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f p?; pk; tð Þ ¼
nr0a

2pcZ/ pk; tð Þ

� exp
E� 1ð Þt=sc � pk

cZ
� ap2

?
2/ pk; tð Þ

 !

� exp
pk � pmax

rp

� �
þ 1

� ��1

; (20)

where /ðpk; tÞ ¼ 2asðpk; tÞ þ pk.
This formula gives the evolution of the runaway distri-

bution as a function of the dimensionless time, s(pk, t). This

enables us to create a numerical code which only has to solve

for s in each time step for every pk value in a certain region.

In order to calculate s, we need to evaluate the integral in

Eq. (17). Due to the azimuthal symmetry of the system,

Eq. (17) can be written on the form

~D pk; tð Þ 
 2p
ð

dk dh k2 sin hG k; hð Þ

d x k; hð Þ þ xce

pk
� kc cos h

� �
; (21)

where G(k, h) is a function incorporating all dependences on

the wave number and the propagation angle (other than the

delta function and the Jacobian). We can evaluate the inte-

gral in k and arrive at

~D pk; tð Þ ¼
p2e2x2

ce

�0m2
e0c2

ð
dh

Wk tð Þ
p2
kx

2 k; hð ÞP x; k; h; pk
� �"

� k2 sin h��� dx
dk
� c cos h

���
3
75

k¼kres

; (22)

where kres is the solution of the resonance condition

xðk; hÞ þ xce=pk � kc cos h ¼ 0, which can be calculated

numerically. From now on we will refer to kres as the reso-
nant curve.

The numerical solution of the quasi-linear equations

proceeds as follows. For each time step and for each parallel

momentum, the linear growth rate of the EXEL wave is cal-

culated along the resonant curve. Based on this, the wave

energy is determined (with the initial condition being the

level of thermal fluctuations). Then the diffusion coefficient

is calculated by integrating along the resonant curve, as pre-

scribed by Eq. (22). Finally, the diffusion coefficient is inte-

grated in time to yield the dimensionless time s, which in

turn gives the distribution function for the runaways.

A reference scenario was chosen with the following

JET-like parameters: magnetic field B¼ 2 T, thermal elec-

tron density ne¼ 5 � 1019 m�3, post-disruption background

temperature T¼ 20 eV, and electric field E¼ 40 V/m. The

quasi-linear effect in this case is shown in Fig. 5 and can be

characterized as the following cycle. After some initial time,

the runaway density reaches the critical value and the EXEL

wave is destabilized. During the evolution, the energy of the

wave grows to a certain point where the runaway distribution

is affected by the wave and the resonant electrons around

pk
 25 are pitch-angle scattered. This causes the wave

energy to decrease while the distribution is unaffected for

some time. As the number of runaways continues to grow on

a longer time scale, the number of runaways reaches the crit-

ical value again and the wave is destabilized for a second

phase of isotropization.

The effect seen in Fig. 5 is the result of several such

wave destabilization cycles. During these cycles, the part of

the runaway distribution that is affected by the interaction

(the resonant region) is spread out and the effects due to the

individual cycles accumulate to cause a significant pitch-

angle scattering of the runaways. This extension of the

affected region can also be observed by looking at the

parameters of the resonant waves. Although the propagation

angles do not change significantly, the wave number region

affected becomes broader due to the broader interaction

region in momentum space.

IV. PARAMETRIC DEPENDENCIES

It is instructive to examine the quasi-linear effect for a

wider range of plasma parameters. For different magnetic

fields, electric fields, background temperatures, and thermal

electron densities, we have looked at the differences in the

final runaway distribution about 90 ls after the destabiliza-

tion of the EXEL wave by varying one parameter at a time.

This time duration is not enough for the EXEL wave to cause

such a large effect on the distribution function as shown in

Fig. 5, however the first stage of the isotropization is clearly

visible, allowing a characterization of the influence of the

various parameters on the dynamics of the interaction.

An example, where the magnetic field strength was var-

ied, is shown in Fig. 6. The figures for different magnetic

fields are qualitatively similar; there are only two pronounced

differences. The first is that a significantly larger number of

runaway electrons are necessary for the destabilization of the

EXEL wave for high magnetic field strengths, as indicated by

the vertical axes of the distribution function plots. This agrees

with the trend shown in Fig. 4. The other significant differ-

ence is the smaller angle of wave propagation at weak mag-

netic field, although the difference of about 0.2 rad is not

particularly large. Upon closer inspection, the extent of iso-

tropization due to the EXEL wave seems slightly larger for

stronger magnetic fields, but the difference is not significant.

A quantitative analysis has also been performed regard-

ing the change in the quasi-linear evolution due to changes

in the plasma parameters. The results are summarized in

Table I, which shows the value of the following characteriz-

ing parameters:

• pm
k , the momentum resonant with the most unstable wave.

• nr1, the runaway density at momentum pm
k integrated over

p? at the time of the first wave destabilization. nr1 is thus

the “threshold linear density.”
• Wmax, the maximum wave energy over the 85.9 ls dura-

tion of the simulation.
• s, the parameter characterizing the extent of velocity space

diffusion (calculated according to Eq. (18)) at pm
k at the

end of the simulation.
• km, the wave-number of the most unstable wave.
• hm, the propagation angle of the most unstable wave.
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From Table I, we can infer that the most unstable mo-

mentum of the runaways is not affected significantly by the

change of the plasma parameters through the quasi-linear

evolution—it is close to the pmax cut-off value introduced in

the initial distribution function (Eq. (5)).

The changes due to variations in the magnetic field

already described in the discussion of Fig. 6 are also visible

in the table, with the additional observation that larger mag-

netic fields shift the resonant EXEL waves towards larger

wave numbers. On the other hand, the maximum wave

energy is an order of magnitude higher for lower magnetic

field and is obtained by the most unstable wave during the

first phase of isotropization (whereas Fig. 6 shows a later

time instant).

The dominant effect of a change in the density is a mod-

ification to the strength of the collisional damping.

Accordingly, a higher density means a higher critical run-

away density (nr1). On the other hand, the quasi-linear diffu-

sion is significantly faster for high densities and the wave

energies are significantly higher.

Increasing the accelerating electric field results in

decreasing the critical runaway density needed for the

destabilization, which is explained by the increasing anisot-

ropy of the runaway beam. There is no substantial effect on

the other parameters in Table I.

The background plasma temperature enters through the

collisional damping, so nr1 increases with decreasing temper-

ature. It is a general observation that a higher threshold

runaway density is accompanied by a higher wave energy.

The only exception is modifications to the magnetic field

strength, where the trend is the opposite.

In summary, the EXEL wave is expected to be destabi-

lized in plasmas where the density and temperature are not

too low, and where the magnetic field is weak. These condi-

tions could be fulfilled in, e.g., the thermal quench phase of

tokamak disruptions, especially if an anisotropic fast electron

population (due to for instance lower hybrid or electron

cyclotron resonance heating) is present just before the dis-

ruption. The parameters of the wave remain in the

km
 3–8.5 � 103 m�1 and hm
 1–1.3 rad region, and the

largest difference in wave-numbers is caused by changes to

the magnetic field strength. At the same time, the spectral

energy of the wave is on the order of 10�12–10�11 J, making

the direct detection of the wave practically impossible.
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FIG. 5. Quasi-linear evolution of the runaway distribution and the wave energy of the EXEL wave at consecutive times. Red and blue lines correspond to the

wave energy along the kres resonant curve as a function of h for a certain pres resonant momentum. The displayed time corresponds to the time elapsed since the

first destabilization of the most unstable wave. The parameters correspond to the JET-like reference scenario: B¼ 2 T, ne¼ 5 � 1019 m�3, Z¼ 1, Te¼ 20 eV.
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V. IMPACT ON SYNCHROTRON RADIATION
SPECTRUM

Due to the low energy of the destabilized EXEL wave in

our simulations (Wmax � 10�11 J, see Table I), the resonant

interaction between the runaway electrons and the EXEL

wave are likely to be hard to detect directly. One possible

way to infer the presence of the interaction is to look at the

spectrum of the synchrotron radiation emitted by the highly

relativistic runaways as a consequence of their toroidal and

gyro-motion. The emitted synchrotron power is highly de-

pendent on both the energy and pitch of the emitting particle

(it scales roughly as P / c2(v?/vk)
2 (Ref. 18)), and for this

reason pitch-angle scattering of the runaways alters their

synchrotron spectrum. The biggest effect of the interaction

with the EXEL wave is expected among the most energetic

TABLE I. Characteristic parameters of the quasi-linear interaction for different values of the magnetic field, thermal electron density, electric field, and back-

ground temperature at a fixed time (85.9 ls) after the first wave destabilization. In each column, only the parameter indicated by the column heading was

changed - the remaining parameters where those of the reference scenario.

B (T) n (m�3) E (V/m) T (eV) Reference scenario

1 4 2 � 1019 1 � 1020 20 80 10 50

2 T, 5 � 1019 m�3

20 eV, 40 V/m

pm
k 25.9 26.2 26.1 25.8 25.8 26.1 26.0 26.0 26.0

nr1 (1013 m�3 0.8 13 2.4 4.4 4.6 2.3 5 2.3 3.1

Wmax (10�12 J) 7.7 0.7 0.2 14 3.3 2.5 7 1.1 2.7

s (10�3) 3.1 4.5 1.8 6.1 3.0 4.5 4.4 3.0 3.6

km (103 m�1) 2.9 8.5 6.4 4.2 4.0 5.9 4.5 5.3 4.9

hm (rad) 1.06 1.24 1.34 1.04 1.13 1.27 1.17 1.23 1.20
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FIG. 6. Quasi-linear evolution of the runaway distribution and the wave energy at magnetic fields (a) B¼ 1 T, (b) B¼ 2 T, and (c) B¼ 4 T, 85.9 ls after the first

wave destabilization. The parameters not displayed correspond to the reference values.
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runaways, but these are also the most strongly emitting par-

ticles in terms of synchrotron radiation. Therefore, the wave-

particle interaction can result in a substantial change in the

synchrotron spectrum.12

The average synchrotron power emitted per runaway

particle at a specific wavelength k can be calculated as a con-

volution of the distribution function with the synchrotron

emission from a single particle

P k; tð Þ ¼ 2p
nr tð Þ

ð
SRE

f pk; p?; tð Þ P pk; p?; k
� �

p?dpk dp? ; (23)

where f is the momentum-space distribution of electrons, P
describes the synchrotron emission, and SRE is the runaway

region in momentum space.12 The synchrotron power radi-

ated by a highly relativistic particle in a toroidal plasma was

derived in Ref. 19 and is given by

P kð Þ ¼ cP

ð1
0

g yð Þ J0 any3
� �

sin h yð Þ
� �

dy

�

�4a

ð1
0

y J00 any3
� �

cos h yð Þ
� �

dy� p
2

�
; (24)

where cP ¼ ce2=ðe0k
3c2Þ; a ¼ g=ð1þ g2Þ; gðyÞ ¼ y�1 þ 2y;

hðyÞ ¼ 3nðyþ y3=3Þ=2,

n ¼ 4p
3

R

kc3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

p ; (25)

g ¼ eBR

cme

v?
v2
k
’ xcR

cc

v?
vk
; (26)

R is the tokamak major radius, c is the relativistic mass fac-

tor, J�(x) is the Bessel function, and J0�ðxÞ its derivative.

Equation (24) takes the drifts stemming from the curvature

and gradient of the magnetic field into account and is valid

when pk � p?, c/k � xce, and when the aspect ratio is

large. It depends on the particle energy and pitch through

the parameters c and g, respectively. Due to their structure,

the integrands in Eq. (24) are highly oscillatory and evalu-

ating the integrals can be numerically demanding. Here,

we use a Matlab routine called SYRUP (SYnchrotron

emission from RUnaway Particles), also used to obtain the

results in Ref. 12, to calculate the synchrotron spectrum

from the normalized distribution before and after the onset

of the resonant interaction between the runaway distribu-

tion and the EXEL wave. SYRUP implements Eqs. (23)

and (24).

The result of the synchrotron spectrum calculation for

the reference JET-like scenario is shown in Fig. 7. As an ini-

tial distribution, Eq. (5) was used with R¼ 3 m. The distribu-

tion affected by the interaction was taken at 604 ls after the

first destabilization of the most unstable wave (this is the dis-

tribution function plotted in Fig. 5). The runaway region in

momentum space (SRE) was defined by pk � [12, 31] and

p?� [0, 3] (cf. Fig. 5). Due to the strong energy dependence

of the synchrotron emission, and the exponential fall-off of

the distribution with increasing p?, contributions from par-

ticles with lower parallel momentum or larger perpendicular

momentum were negligible. The maximal parallel

momentum was determined by the cut-off of the distribution

function (20) at pmaxþrp.

The synchrotron spectra in Fig. 7 show that in 604 ls,

the particle-wave interaction has a significant effect on the

synchrotron spectrum, with the peak emission increasing by

roughly a factor 2.5. The wavelength of peak emission is

also shifted slightly towards shorter wavelengths. We

emphasize that Fig. 7 shows the average emission per run-

away, meaning that if the number of runaways can be con-

sidered fixed, the effect of the interaction with the EXEL

wave is a significant increase of the total synchrotron

emission.

As discussed in Ref. 12, however, there are several other

factors that have a similar effect on the synchrotron spec-

trum. The spectrum is highly dependent on the properties of

the runaway distribution and is thus sensitive to plasma

parameters such as temperature, density, impurity content,

and electric and magnetic fields. The effect of the EXEL

wave interaction could only be discriminated by the charac-

teristic sudden increase of the emission on the 100–1000 ls

time scale.

The EXEL wave interaction is likely to produce an even

larger effect than that shown in Figures 5 and 7, however,

since as the assumption of beam-like distribution used in our

modeling breaks down, we can not simulate the later stages

of the interaction. Pitch-angle scattering might also increase

radial transport and eventually lead to the mitigation of the

runaway beam, but at an earlier stage our model predicts a

burst of synchrotron radiation unaccompanied by macro-

scopic MHD activity.

For the distribution used in Fig. 7, the wavelength region

of strong emission is in the far-infrared and sub-millimeter

regions of the spectrum, implying that detection of the effect

of the EXEL wave instability by means of synchrotron radia-

tion would require an infrared camera sensitive to this wave-

length range. The reason for the long wavelength emission is

the cut-off of the runaway distribution (Eq. (5)) at a particle

energy of roughly 15 MeV. A runaway electron distribution

extending to higher maximum energy would allow detection
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FIG. 7. Average synchrotron spectrum emitted by the initial runaway popu-
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for the JET-like reference scenario parameters.
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by ordinary near-infrared (or even visible light) cameras, but

realistic modeling of the evolution of the distribution func-

tion in a disruption is out of the scope of this paper.

VI. CONCLUSIONS

Runaway electrons pose a significant threat to tokamaks.

This is especially true for ITER, where the runaway current

might be as high as 12 MA in disruptions, with the electron

energy spectrum extending up to several tens of MeV.2 In

this paper, the quasi-linear resonant interaction of the run-

away population and the high-frequency obliquely propagat-

ing extraordinary-electron (EXEL) wave, which leads to

rapid pitch-angle scattering of the resonant runaways, was

studied. The scattering occurs when the runaway density

reaches a certain critical density of about 1014–1017 m�3,

depending on the plasma parameters. As soon as the EXEL

wave is destabilized, it leads to a pitch-angle scattering of

resonant electrons through quasi-linear diffusion in the

velocity space on the 100–1000 ls time scale. In our simula-

tions, the spectral energy of the destabilized EXEL wave did

not exceed 10�11 J in any of the scenarios considered, imply-

ing that direct experimental detection of the wave is likely to

be difficult.

As the resonant interaction with the EXEL wave mainly

affects the high energy runaways, which are the electrons

characterizing the synchrotron radiation emitted by the

whole population, the interaction causes a significant change

in the synchrotron spectrum. The interaction with the EXEL

wave was shown to produce a burst of synchrotron radiation

accompanied by a simultaneous shift of the spectrum

towards shorter wavelengths, which might offer a possibility

to detect the impact of the quasi-linear interaction in

experiments.

By looking at a wide range of plasma parameters, we

concluded that the characterizing quantities of the interaction

(resonant runaway momentum, wave energy, critical run-

away density, etc.) have a weak dependency on plasma

parameters. We can therefore extend our conclusions to an

ITER-like scenario. The intensity of the interaction and the

resulting change in the synchrotron spectrum are expected to

be qualitatively similar and of the same order of magnitude

as for the investigated JET-like reference scenario. The only

major difference in the ITER case is a slightly higher stabil-

ity threshold (which could still easily be reached) due to the

stronger magnetic field.

Our analysis shows that the EXEL wave is destabilized

considerably more easily, as compared to the previously

studied whistler wave.7,8 A possibility for experimental con-

firmation of the results presented in this paper is offered

through the predicted bursts in the far-infrared synchrotron

emission. Our results also provide a basis for further theoreti-

cal work making use of more realistic kinetic simulations

with advanced Fokker-Planck solvers, such as the LUKE

code.20
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