
A Seamless, Client-Centric Programming
Model for Type Safe Web Applications

Anton Ekblad and Koen Claessen
Chalmers University of Technology

{antonek,koen}@chalmers.se

Abstract

We propose a new programming model for web applications which
is (1) seamless; one program and one language is used to produce
code for both client and server, (2) client-centric; the programmer
takes the viewpoint of the client that runs code on the server rather
than the other way around, (3) functional and type-safe, and (4)
portable; everything is implemented as a Haskell library that im-
plicitly takes care of all networking code. Our aim is to improve
the painful and error-prone experience of today’s standard develop-
ment methods, in which clients and servers are coded in different
languages and communicate with each other using ad-hoc proto-
cols. We present the design of our library called Haste.App, an ex-
ample web application that uses it, and discuss the implementation
and the compiler technology on which it depends.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Distributed Programming; D.3.2 [Language Classifica-
tions]: Applicative (functional) languages; H.3.5 [Online Infor-
mation Services]: Web-based services

Keywords web applications; distributed systems; network com-
munication

1. Introduction

Development of web applications is no task for the faint of heart.
The conventional method involves splitting your program into two
logical parts, writing the one in JavaScript, which is notorious even
among its proponents for being wonky and error-prone, and the
other in any compiled or server-interpreted language. Then, the two
are glued together using whichever home-grown network protocol
seems to fit the application. However, most web applications are
conceptually single entities, making this forced split an undesir-
able hindrance which introduces new possibilities for defects, adds
development overhead and prevents code reuse.

Several solutions to this problem have been proposed, as discussed
in section 5.1, but the perfect one has yet to be found. In this paper,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Haskell ’14, September 4–5, 2014, Gothenburg, Sweden.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3041-1/14/09. . . $15.00.
http://dx.doi.org/10.1145/2633357.2633367

we propose a functional programming model in which a web appli-
cation is written as a single program from which client and server
executables are generated during compilation. Type annotations in
the source program control which parts are executed on the server
and which are executed on the client, and the two communicate us-
ing type safe RPC calls. Functions which are not explicitly declared
as server side or client side are usable by either side.

Recent advances in compiler technology from functional languages
to JavaScript have led to a wealth of compilers targeting the web
space, and have enabled the practical development of functional
libraries and applications for the browser. This enables us to im-
plement our solution as a simple Haskell library for any compiler
capable of producing JavaScript output, requiring no further modi-
fication to existing compilers.

As our implementation targets the Haste Haskell to JavaScript com-
piler [11], this paper also goes into some detail about its design and
implementation as well as the alternatives available for compiling
functional languages to a browser environment.

Motivation Code written in JavaScript, the only widely supported
language for client side web applications, is often confusing and
error-prone, much due to the language’s lack of modularity, encap-
sulation facilities and type safety.

Worse, most web applications, being intended to facilitate commu-
nication, data storage and other tasks involving some centralized
resource, also require a significant server component. This compo-
nent is usually implemented as a completely separate program, and
communicates with the client code over some network protocol.

This state of things is not a conscious design choice - most web
applications are conceptually a single entity, not two programs
which just happen to talk to each other over a network - but a
consequence of there being a large, distributed network between
the client and server parts. However, such implementation details
should not be allowed to dictate the way we structure and reason
about our applications - clearly, an abstraction is called for.

For a more concrete example, let’s say that we want to implement a
simple “chatbox” component for a website, to allow visitors to dis-
cuss the site’s content in real time. Using mainstream development
practices and recent technologies such as WebSockets [15], we may
come up with something like the program in figure 1 for our client
program. In addition, a corresponding server program would need
to be written to handle distribution of messages among clients. We
will not give such an implementation here, as we do not believe it
necessary to state the problem at hand.

Since the “chatbox” application is very simple - users should only
be able to send and receive text messages in real time - we opt
for a very simple design. Two UI elements, logbox and msgbox,
represent the chat log and the text area where the user inputs their

function handshake(sock) {sock.send(’helo’);}
function chat(sock, msg) {sock.send(’text’ + msg);}

window.onload = function() {
var logbox = document.getElementById(’log’);
var msgbox = document.getElementById(’message’);
var sock = new WebSocket(’ws://example.com’);

sock.onmessage = function(e) {
logbox.value = e.data + LINE + logbox.value;

};

sock.onopen = function(e) {
handshake(sock);
msgbox.addEventListener(’keydown’, function(e) {
if(e.keyCode == 13) {
var msg = msgbox.value;
msgbox.value = ’’;
chat(sock, msg);

}
});

};
};

Figure 1: JavaScript chatbox implementation

messages respectively. When a message arrives, it is prepended to
the chat log, making the most recent message appear at the top of
the log window, and when the user hits the return key in the input
text box the message contained therein is sent and the input text
box is cleared.

Messages are transmitted as strings, with the initial four characters
indicating the type of the message and the rest being the optional
payload. There are only two messages: a handshake indicating that
a user wants to join the conversation, and a broadcast message
which sends a line of text to all connected users via the server.
The only messages received from the server are new chat messages,
delivered as simple strings.

This code looks solid enough by web standards, but even this sim-
ple piece of code contains no less than three asynchronous call-
backs, two of which both read and modify the application’s global
state. This makes the program flow non-obvious, and introduces
unnecessary risk and complexity through the haphazard state mod-
ifications.

Moreover, this code is not very extensible. If this simple application
is to be enhanced with new features down the road, the network
protocol will clearly need to be redesigned. However, if we were
developing this application for a client, said client would likely not
want to pay the added cost for the design and implementation of
features she did not - and perhaps never will - ask for.

Should the protocol need updating in the future, how much time
will we need to spend on ensuring that the protocol is used properly
across our entire program, and how much extra work will it take to
keep the client and server in sync? How much code will need to
be written twice, once for the client and once for the server, due to
the unfortunate fact that the two parts are implemented as separate
programs, possibly in separate languages?

Above all, is it really necessary for such a simple program to
involve client/server architectures and network protocol design at
all?

2. A seamless programming model

There are many conceivable improvements to the mainstream web
development model described in the previous section. We propose
an alternative programming model based on Haskell, in which web
applications are written as a single program rather than as two
independent parts that just so happen to talk to each other.

Our proposed model, dubbed “Haste.App”, has the following prop-
erties:

• The programming model is synchronous, giving the program-
mer a simple, linear view of the program flow, eliminating the
need to program with callbacks and continuations.

• Side-effecting code is explicitly designated to run on either the
client or the server using the type system while pure code can
be shared by both. Additionally, general IO computations may
be lifted into both client and server code, allowing for safe IO
code reuse within the confines of the client or server designated
functions.

• Client-server network communication is handled through stati-
cally typed RPC function calls, extending the reach of Haskell’s
type checker over the network and giving the programmer ad-
vance warning when she uses network services incorrectly or
forgets to update communication code as the application’s in-
ternal protocol changes.

• Our model takes the view that the client side is the main driver
when developing web applications and accordingly assigns the
server the role of a computational and/or storage resource,
tasked with servicing client requests rather than driving the
program. While it is entirely possible to implement a server-to-
client communication channel on top of our model, we believe
that choosing one side of the heterogenous client-server rela-
tion as the master helps keeping the program flow linear and
predictable.

• The implementation is built as a library on top of the GHC and
Haste Haskell compilers, requiring little to no specialized com-
piler support. Programs are compiled twice; once with Haste
and once with GHC, to produce the final client and server side
code respectively.

2.1 A first example

While explaining the properties of our solution is all well and good,
nothing compares to a good old Hello World example to convey the
idea. We begin by implementing a function which prints a greeting
to the server’s console.

import Haste.App

helloServer :: String → Server ()
helloServer name =
liftIO $ putStrLn (name ++ " says hello!")

Computations exclusive to the server side live in the Server monad.
This is basically an IO monad, as can be seen from the regular
putStrLn IO computation being lifted into it, with a few extra
operations for session handling; its main purpose is to prevent
the programmer from accidentally attempting to perform client-
exclusive operations, such as popping up a browser dialog box, on
the server.

Next, we need to make the helloServer function available as an
RPC function and call it from the client.

main :: App Done
main = do
greetings ← remote helloServer

runClient $ do
name ← prompt "Hi there, what is your name?"
onServer (greetings <.> name)

The main function is, as usual, the entry point of our application.
In contrast to traditional applications which live either on the client
or on the server and begin in the IO monad, Haste.App applications
live on both and begin execution in the App monad which provides
some crucial tools to facilitate typed communication between the
two.

The remote function takes an arbitrary function, provided that all
its arguments as well as its return value are serializable through the
Serialize type class, and produces a typed identifier which may
be used to refer to the remote function. In this example, the type of
greetings is Remote (String → Server ()), indicating that the
identifier refers to a remote function with a single String argument
and no return value. Remote functions all live in the Server monad.
The part of the program contained within the App monad is executed
on both the server and the client, albeit with slightly different side
effects, as described in section 3.

After the remote call, we enter the domain of client-exclusive code
with the application of runClient. This function executes com-
putations in the Client monad which is essentially an IO monad
with cooperative multitasking added on top, to mitigate the fact that
JavaScript has no native concurrency support. runClient does not
return, and is the only function with a return type of App Done,
which ensures that each App computation contains exactly one
client computation.

In order to make an RPC call using an identifier obtained from
remote, we must supply it with an argument. This is done us-
ing the <.> operator. It might be interesting to note that its type,
Serialize a ⇒ Remote (a → b) → a → Remote b, is very
similar to the type of the <*> operator over applicative functors.
This is not a coincidence; <.> performs the same role for the Remote
type as <*> performs for applicative functors. The reason for using
a separate operator for this instead of making Remote an instance of
Applicative is that since functions embedded in the Remote type
exist only to be called over a network, such functions must only
be applied to arguments which can be serialized and sent over a
network connection. When a Remote function is applied to an ar-
gument using <.>, the argument is serialized and stored inside the
resulting Remote object, awaiting dispatch. Remote computations
can thus be seen as explicit representations of closures.

After applying the value obtained from the user to the remote
function, we apply the onServer function to the result, which
dispatches the RPC call to the server. onServer will then block
until the RPC call returns.

To run this example, an address and a port must be provided so that
the client knows which server to contact. There are several ways
of doing this: using the GHC plugin system, through Template
Haskell or by slightly altering how program entry points are treated
in a compiler or wrapper script, to name a few. A non-intrusive
method when using the GHC/Haste compiler pair would be to add
-main-is setup to both compilers’ command line and add the
setup function to the source code.

main = do
remoteref ← liftServerIO $ newIORef 0

count ← remote $ do
r ← remoteref
liftIO $ atomicModifyIORef r (λv → (v+1, v+1))

runClient $ do
visitors ← onServer count
alert ("Your are visitor #" ++ show visitors)

Figure 2: server side state: doing it properly

setup :: IO ()
setup =
runApp (mkConfig "ws://localhost:1111" 1111) main

This will instruct the server binary to listen on the port 1111 when
started, and the client to attempt contact with that port on the local
machine. The exact mechanism chosen to provide the host and port
are implementation specific, and will in the interest of brevity not
be discussed further.

2.2 Using server side state

While the Hello Server example illustrates how client-server com-
munication is handled, most web applications need to keep some
server side state as well. How can we create state holding elements
for the server which are not accessible to the client?

To accomplish this, we need to introduce a way to lift arbitrary IO
computations, but ensure that said computations are executed on
the server and nowhere else. This is accomplished using a more
restricted version of liftIO:

liftServerIO :: IO a → App (Server a)

liftServerIO performs its argument computation once on the
server, in the App monad, and then returns the result of said com-
putation inside the Server monad so that it is only reachable by
server side code. Any client side code is thus free to completely
ignore executing computations lifted using liftServerIO; since
the result of a server lifted computation is never observable on the
client, the client has no obligation to even produce such a value.
Figure 2 shows how to make proper use of server side state.

2.3 The chatbox, revisited

Now that we have seen how to implement both network commu-
nication, we are ready to revisit the chatbox program from section
1, this time using our improved programming model. Since we are
now writing the entire application, both client and server, as op-
posed to the client part from our motivating example, our program
has three new responsibilities.

• We need to add connecting users to a list of message recipients;

• users leaving the site need to be removed from the recipient list;
and

• chat messages need to be distributed to all users in the list.

With this in mind, we begin by importing a few modules we are
going to need and define the type for our recipient list.

import Haste.App
import Haste.App.Concurrent
import qualified Control.Concurrent as CC

type Recipient = (SessionID, CC.Chan String)
type RcptList = CC.MVar [Recipient]

We use an MVar from Control.Concurrent to store the list of
recipients. A recipient will be represented by a SessionID, an
identifier used by Haste.App to identify user sessions, and an MVar
into which new chat messages sent to the recipient will be written
as they arrive. Next, we define our handshake RPC function.

srvHello :: Server RcptList → Server ()
srvHello remoteRcpts = do
recipients ← remoteRcpts
sid ← getSessionID
liftIO $ do
rcptChan ← CC.newChan
CC.modifyMVar recipients $ λcs →
return ((sid, rcptChan):cs, ())

An MVar is associated with the connecting client’s session identi-
fier, and the pair is prepended to the recipient list. Notice how the
application’s server state is passed in as the function’s argument,
wrapped in the Server monad in order to prevent client-side in-
spection.

srvSend :: Server RcptList → String → Server ()
srvSend remoteRcpts message = do

rcpts ← remoteRcpts
liftIO $ do
recipients ← CC.readMVar rcpts
mapM_ (flip CC.writeChan message) recipients

The send function is slightly more complex. The incoming message
is written to the Chan corresponding to each active session.

srvAwait :: Server RcptList → Server String
srvAwait remoteRcpts = do
rcpts ← remoteRcpts
sid ← getSessionID
liftIO $ do
recipients ← CC.readMVar rcpts
case lookup sid recipients of
Just mv → CC.readChan mv
_ → fail "Unregistered session!"

The final server operation, notifying users of pending messages,
finds the appropriate Chan to wait on by searching the recipient list
for the session identifier of the calling user, and then blocks until a
message arrives in said MVar. This is a little different from the other
two operations, which perform their work as quickly as possible
and then return immediately.

If the caller’s session identifier could not be found in the recipient
list, it has for some reason not completed its handshake with the
server. If this is the case, we simply drop the session by throwing
an error; an exception will be thrown to the client. No server side
state needs to be cleaned up as the very lack of such state was our
reason for dropping the session.

Having implemented our three server operations, all that’s left is to
tie them to the client. In this tying, we see our main advantage over
the JavaScript version in section 1 in action: the remote function
builds a strongly typed bridge between the client and the server,
ensuring that any future enhancements to our chatbox program are
made safely, in one place, instead of being spread about throughout
two disjoint code bases.

main :: App Done
main = do
recipients ← liftServerIO $ CC.newMVar []

hello ← remote $ srvHello recipients
awaitMsg ← remote $ srvAwait recipients
sendMsg ← remote $ srvSend recipients

runClient $ do
withElems ["log","message"] $ λ[log,msgbox] → do
onServer hello

Notice that the recipients list is passed to our three server op-
erations before they are imported; since recipients is a mutable
reference created on the server and inaccessible to client code, it
is not possible to pass it over the network as an RPC argument.
Even if it were possible, passing server-private state back and forth
over the network would be quite inappropriate due to privacy and
security concerns.

The withElems function is part of the Haste compiler’s bundled
DOM manipulation library; it locates references to the DOM nodes
with the given identifiers and passes said references to a function.
In this case the variable log will be bound to the node with the
identifier “log”, and msgbox will be bound to the node identified by
“message”. These are the same DOM nodes that were referenced in
our original example, and refer to the chat log window and the text
input field respectively. After locating all the needed UI elements,
the client proceeds to register itself with the server’s recipient list
using the hello remote computation.

let recvLoop chatlines = do
setProp log "value" $ unlines chatlines
message ← onServer awaitMsg
recvLoop (message : chatlines)

fork $ recvLoop []

The recvLoop function perpetually asks the server for new mes-
sages and updates the chat log whenever one arrives. Note that un-
like the onmessage callback of the JavaScript version of this ex-
ample, recvLoop is acting as a completely self-contained process
with linear program flow, keeping track of its own state and only
reaching out to the outside world to write its state to the chat log
whenever necessary. As the awaitMsg function blocks until a mes-
sage arrives, recvLoop will make exactly one iteration per received
message.

msgbox ‘onEvent‘ OnKeyPress $ λ13 → do
msg ← getProp msgbox "value"
setProp msgbox "value" ""
onServer (sendMsg <.> msg)

This is the final part of our program; we set up an event handler to
clear the input box and send its contents off to the server whenever
the user hits return (character code 13) while the input box has
focus.

runClient :: Client () → App Done
liftServerIO :: IO a → App (Server a)
remote :: Remotable a

⇒ a → App (Remote a)

onServer :: Remote (Server a) → Client a
(<.>) :: Serialize a

⇒ Remote (a → b) → a → Remote b

getSessionID :: Server SessionID

Figure 3: Types of the Haste.App core functions

Function Purpose

runClient Lift a single Client computation into
the App monad. Must be at the very
end of an App computation, which is en-
forced by the type system.

liftServerIO Lift an IO computation into the App
monad. The computation and its result
are exclusive to the server, as enforced
by the type system, and are not observ-
able on the client.

remote Make a server side function available to
be called remotely by the client.

onServer Dispatch a remote call to the server and
wait for its completion. The result of the
remote computation is returned on the
client after it completes.

<.> Apply an remote function to a serializ-
able argument.

getSessionID Get the unique identifier for the cur-
rent session. This is a pure convenience
function, to relieve programmers of the
burden of session bookkeeping.

Table 1. Core functions of Haste.App

The discerning reader may be slightly annoyed at the need to ex-
tract the contents from Remote values at each point of use. Indeed,
in a simple example such as this, the source clutter caused by this
becomes a disproportionate irritant. Fortunately, most web applica-
tions tend to have more complex client-server interactions, reduc-
ing this overhead significantly.

A complete listing of the core functions in Haste.App is given in
table 1, and their types are given in figure 3.

3. Implementation

Our implementation is built in three layers: the compiler layer, the
concurrency layer and the communication layer. The concurrency
and communication layers are simple Haskell libraries, portable to
any other pair of standard Haskell compilers with minimal effort.

To pass data back and forth over the network, messages are serial-
ized using JSON, a fairly lightweight format used by many web
applications, and sent using the HTML5 WebSockets API. This
choice is completely arbitrary, guided purely by implementation

convenience. It is certainly not the most performant choice, but can
be trivially replaced with something more suitable as needed.

The implementation described here is a slight simplification of
our implementation, removing some performance enhancements
and error handling clutter in the interest of clarity. The com-
plete implementation is available for download, together with the
Haste compiler, from Hackage as well as from our website at
http://haste-lang.org.

Two compilers The principal trick to our solution is compiling the
same program twice; once with a compiler that generates the server
binary, and once with one that generates JavaScript. Conditional
compilation is used for a select few functions, to enable slightly
different behavior on the client and on the server as necessary.
Using Haskell as the base language of our solution leads us to
choose GHC as our server side compiler by default. We chose the
Haste compiler to provide the client side code, mainly owing to our
great familiarity with it and its handy ability to make use of vanilla
Haskell packages from Hackage.

The App monad The App monad is where remote functions are
declared, server state is initialized and program flow is handed over
to the Client monad. Its definition is as follows.

type CallID = Int
type Method = [JSON] → IO JSON
type AppState = (CallID, [(CallID, Method)])
newtype App a = App (StateT AppState IO a)
deriving (Functor, Applicative, Monad)

As we can see, App is a simple state monad, with underlying IO
capabilities to allow server side computations to be forked from
within it. Its CallID state element contains the identifier to be given
to the next remote function, and its other state element contains a
mapping from identifiers to remote functions.

What makes App interesting is that computations in this monad are
executed on both the client and the server; once on server startup,
and once in the startup phase of each client. Its operations behave
slightly differently depending on whether they are executed on the
client or on the server. Execution is deterministic, ensuring that the
same sequence of CallIDs are generated during every run, both
on the server and on all clients. This is necessary to ensure that
any particular call identifier always refers to the same server side
function on all clients.

After all common code has been executed, the program flow di-
verges between the client and the server; client side, runClient
launches the application’s Client computation whereas on the
server, this computation is discarded, and the server instead goes
into an event loop, waiting for calls from the client.

The workings of the App monad basically hinges on the Server
and Remote abstract data types. Server is the monad wherein any
server side code is contained, and Remote denotes functions which
live on the server but can be invoked remotely by the client. The
implementation of these types and the functions that operate on
them differ between the client and the server.

Client side implementations We begin by looking at the client
side implementation for those two types.

data Server a = ServerDummy
data Remote a = Remote CallID [JSON]

The Server monad is quite uninteresting to the client; since opera-
tions performed within it can not be observed by the client in any
way, such computations are simply represented by a dummy value.
The Remote type contains the identifier of a remote function and a
list of the serialized arguments to be passed when invoking it. In
essence, it is an explicit representation of a remote closure. Such
closures can be applied to values using the <.> operator.

(<.>) :: Serialize a
⇒ Remote (a → b) → a → Remote b

(Remote identifier args) <.> arg =
Remote identifier (toJSON arg : args)

The remote function is used to bring server side functions into
scope on the client as Remote functions. It is implemented using
a simple counter which keeps track of how many functions have
been imported so far and thus which identifier to assign to the next
remote function.

remote :: Remotable a ⇒ a → App (Remote a)
remote _ = App $ do
(next_id, remotes) ← get
put (next_id+1, remotes)
return (Remote next_id [])

As the remote function lives on the server, the client only needs
an identifier to be able to call on it. The remote function is thus
ignored, so that it can be optimized out of existence in the client
executable. Looking at its type, we can see that remote accepts any
argument instantiating the Remotable class. Remotable is defined
as follows.

class Remotable a where
mkRemote :: a → ([JSON] → Server JSON)

instance Serialize a ⇒ Remotable (Server a) where
mkRemote m = λ_ → fmap toJSON m

instance (Serialize a, Remotable b) ⇒
Remotable (a → b) where

mkRemote f =
λ(x:xs) → mkRemote (f $ fromJSON x) xs

In essence, any function, over any number of arguments, which
returns a serializable value in the Server monad can be imported.
The mkRemote function makes use of a well-known type class trick
for creating statically typed variadic functions, and works very
much like the printf function of Haskell’s standard library. [25]

The final function operating on these types is liftServerIO, used
to initialize state holding elements and perform other setup func-
tionality on the server.

liftServerIO :: IO a → App (Server a)
liftServerIO _ = App $ return ServerDummy

As we can see, the implementation is as simple as can be. Since
Server is represented by a dummy value on the client, we just
return said value.

Server side implementations The server side representation of
the Server and Remote types are in a sense the opposites of their
client side counterparts.

newtype Server a = Server (ReaderT SessionInfo IO a)
deriving (Functor, Applicative, Monad, MonadIO)

data Remote a = RemoteDummy

Where the client is able to do something useful with the Remote
type but can’t touch Server values, the server has no way to inspect
Remote functions, and thus only has a no-op implementation of the
<.> operator. On the other hand, it does have full access to the
values and side effects of the Server monad, which is an IO monad
with some additional session data for the convenience of server side
code.

Server values are produced by the liftServerIO and remote func-
tions. liftServerIO is quite simple: the function executes its argu-
ment immediately and the result is returned, tucked away within
the Server monad.

liftServerIO :: IO a → App (Server a)
liftServerIO m = App $ do
x ← liftIO m
return (return x)

The server version of remote is a little more complex than its client
side counterpart. In addition to keeping track of the identifier of
the next remote function, the server side remote pairs up remote
functions with these identifiers in an identifier-function mapping.

remote f = App $ do
(next_id, remotes) ← get
put (next_id+1, (next_id, mkRemote f) : remotes)
return RemoteDummy

This concept of client side identifiers being sent to the server
and used as indices into a table mapping identifiers to remotely
accessible functions is an extension of the concept of “static values”
introduced by Epstein et al with Cloud Haskell [12], which is
discussed further in section 5.1.

The server side dispatcher After the App computation finishes,
the identifier-function mapping accumulated in its state is handed
over to the server’s event loop, where it is used to dispatch the
proper functions for incoming calls from the client.

onEvent :: [(CallID, Method)] → JSON → IO ()
onEvent mapping incoming = do
let (nonce, identifier, args) = fromJSON incoming

Just f = lookup identifier mapping
result ← f args
webSocketSend $ toJSON (nonce, result)

The function corresponding to the RPC call’s identifier is looked
up in the identifier-function mapping and applied to the received
list of arguments. The return value is paired with a nonce provided
by the client to tie it to its corresponding RPC call, since there may
be several such calls in progress at the same time. The pair is then
sent back to the client.

Note that during normal operation, it is not possible for the client
to submit an RPC call with a non-existent call identifier, hence the
irrefutable pattern match on Just f. Should this pattern match fail,
this is a sure sign of malicious tampering; the resulting exception is
caught and the session is dropped as it is no longer meaningful to
continue.

The Client monad and the onServer function As synchronous
network communication is one of our stated goals, it is clear that we
will need some kind of blocking primitive. Since JavaScript does
not support any kind of blocking, we will have to implement this
ourselves.

A solution is given in the poor man’s concurrency monad [4]. Mak-
ing use of a continuation monad with primitive operations for fork-
ing a computation and atomically lifting an IO computation into the
monad, it is possible to implement cooperative multitasking on top
of the non-concurrent JavaScript runtime. This monad allows us to
implement MVars as our blocking primitive, with the same seman-
tics as their regular Haskell counterpart. [21] This concurrency-
enhanced IO monad is used as the basis of the Client monad.

type Nonce = Int
type ClientState = (Nonce, Map Nonce (MVar JSON))
type Client = StateT ClientState Conc

Aside from the added concurrency capabilities, the Client monad
only has a single particularly interesting operation: onServer.

newResult :: Client (Nonce, MVar JSON)
newResult = do
(nonce, m) ← get
mv ← liftIO newEmptyMVar
put (nonce+1, insert nonce var m)
return (nonce, mv)

onServer :: Serialize a
⇒ Remote (Server a) → Client a

onServer (Remote identifier args) = do
(nonce, mv) ← newResult
webSocketSend $
toJSON (nonce, identifier, reverse args)

fromJSON <$> takeMVar mv

The createResultMVar function creates a new MVar, paired with
its corresponding nonce in the

After a call is dispatched, onServer blocks, waiting for its result
variable to be filled with the result of the call. Filling this variable
is the responsibility of the receive callback, which is executed every
time a message arrives from the server.

onMessage :: JSON → Client ()
onMessage response = do
let (nonce, result) = fromJSON response
(n, m) ← get
put (n, delete nonce m)
putMVar (m ! nonce) result

As we can see, the implementation of our programming model is
rather simple and requires no bothersome compiler modifications
or language extensions, and is thus easily portable to other Haskell
compilers.

4. The Haste compiler

In order to allow the same language to be used on both client and
server, we need some way to compile that language into JavaScript.
To this end, we make use of the Haste compiler [11], started as an
MSc thesis and continued as part of this work. Haste builds on the

GHC compiler to provide the full Haskell language, including most
GHC-specific extensions, in the browser.

As Haste has not been published elsewhere, we describe here some
key elements of its design and implementation which are pertinent
to this work.

4.1 Choosing a compiler

Haste is by no means the only JavaScript-targeting compiler for
a purely functional language. In particular, the GHC-based GHCJS
[17] and UHC [8] compilers are both capable of compiling standard
Haskell into JavaScript; the Fay [10] language was designed from
the ground up to target the web space using a subset of Haskell;
and there exist solutions for compiling Erlang [13] and Clean [9]
to JavaScript as well. While the aforementioned compilers are the
ones most interesting for purely functional programming, there
exist a wealth of other JavaScript-targeting compilers, for virtually
any language.

Essentially, our approach is portable to any language or compiler
with the following properties:

• The language must provide a static type system, since one of
our primary concerns is to reduce defect rates through static
typing of the client-server communication channel.

• The language must be compilable to both JavaScript and a
format suitable for server side execution as we want our web
applications to be written and compiled as a single program.

• We want the language to provide decent support for a monadic
programming style, as our abstractions for cooperative mul-
titasking and synchronous client-server communication are
neatly expressible in this style.

As several of the aforementioned compilers fullfil these criteria,
the choice between them becomes almost arbitrary. Indeed, as
Haste.App is compiler agnostic, this decision boils down to one’s
personal preference. We chose to base our solution on Haste as
we, by virtue of its authorship, have an intimate knowledge of its
internal workings, strengths and weaknesses. Without doubt, others
may see many reasons to make a different choice.

4.2 Implementation overview

Haste offloads much of the heavy lifting of compilation - parsing,
type checking, intermediate code generation and many optimiza-
tions - onto GHC, and takes over code generation after the STG
generation step, at the very end of the compilation process. STG
[20] is the last intermediate representation used by GHC before the
final code generation takes place and has several benefits for use as
Haste’s source language:

• STG is still a functional intermediate representation, based on
the lambda calculus. When generating code for a high level
target language such as JavaScript, where functions are first
class objects, this allows for a higher level translation than when
doing traditional compilation to lower level targets like stack
machines or register machines. This in turn allows us to make
more efficient use of the target language’s runtime, leading to
smaller, faster code.

• In contrast to Haskell itself and GHC’s intermediate Core lan-
guage, STG represents ‘thunks‘, the construct used by GHC to
implement non-strict evaluation, as closures which are explic-
itly created and evaluated. Closures are decorated with a wealth
of information, such as their set of captured varibles, any type

information needed for code generation, and so on. While ex-
tracting this information manually is not very hard, having this
done for us means we can get away with a simpler compilation
pipeline.

• The language is very small, essentially only comprising lambda
abstraction and application, plus primitive operations and facil-
ities for calling out to other languages. Again, this allows the
Haste compiler to be a very simple thing indeed.

• Any extensions to the Haskell language implemented by GHC
will already have been translated into this very simple inter-
mediate format, allowing us to support basically any extension
GHC supports without effort.

• Application of external functions is always saturated, as is ap-
plication of most other functions. This allows for compiling
most function applications into simple JavaScript function calls,
limiting the use of the slower dynamic techniques required to
handle curried functions in the general case [16] to cases where
it is simply not possible to statically determine the arity of a
function.

In light of its heavy reliance on STG, it may be more correct
to categorize Haste as an STG compiler rather than a Haskell
compiler.

4.3 Data representation

The runtime data representation of Haste programs is kept as close
to regular JavaScript programs as possible. The numeric types are
represented using the JavaScript Number type, which is defined as
the IEEE754 double precision floating point type. This adds some
overhead to operations on integers as overflow and non-integer
divisions must be handled. However, this is common practice in
hand-written JavaScript as well, and is generally handled efficiently
by JavaScript engines.

Values of non-primitive data types in Haskell consist of a data con-
structor and zero or more arguments. In Haste, these values are rep-
resented using arrays, with the first element representing the data
constructor and the following values representing its arguments.
For instance, the value 42 :: Int is represented as [0, 42], the
leading 0 representing the zeroth constructor of the Int type and
the 42 representing the “machine” integer. It may seem strange that
a limited precision integer is represented using one level of indirec-
tion rather than as a simple number, but recall that the Int type is
defined by GHC as data Int = I# Int# where Int# is the primi-
tive type for machine integers.

Functions are represented as plain JavaScript functions, one of
the blessings of targeting a high level language, and application
can therefore be implemented as its JavaScript counterpart in most
cases. In the general case, however, functions may be curried. For
such cases where the arity of an applied function can not be deter-
mined statically, application is implemented using the eval/apply
method described in [16] instead.

4.4 Interfacing with JavaScript

While Haste supports the Foreign Function Interface inherited from
GHC, with its usual features and limitations [21], it is often im-
practical to work within the confines of an interface designed for
communication on a very low level. For this reason Haste sports its
own method for interacting with JavaScript as well, which allows
the programmer to pass any value back and forth between Haskell

import Haste.Foreign

-- A MutableVar is completely opaque to Haskell code
-- and is only ever manipulated in JavaScript. Thus,
-- we use the Unpacked type to represent it,
-- indicating a completely opaque value.
newtype MutableVar a = MV Unpacked

instance Marshal (MutableVar a) where
pack = MV
unpack (MV x) = x

newMutable :: Marshal a ⇒ a → IO (MutableVar a)
newMutable = ffi "(function(x) {return {val: x};})"

setMutable :: Marshal a ⇒ MutableVar a → a → IO ()
setMutable = ffi "(function(m, x) {m.val = x;})"

getMutable :: Marshal a ⇒ MutableVar a → IO a
getMutable = ffi "(function(m) {return m.val;})"

Figure 4: Mutable variables with Haste.Foreign

and JavaScript, as long as she can come up with a way to trans-
late this value between its Haskell and JavaScript representations.
Not performing any translation at all is also a valid “translation”,
which allows Haskell code to store any JavaScript value for later
retrieval without inspecting it and vice versa. The example given in
figure 4 implements mutable variables using this custom JavaScript
interface.

The core of this interface consists of the ffi function, which al-
lows the programmer to create a Haskell function from arbitrary
JavaScript code. This function exploits JavaScript’s ability to parse
and execute arbitrary strings at run time using the eval function,
coupled with the fact that functions in Haste and in JavaScript
share the same representation, to dynamically create a function ob-
ject at runtime. The ffi function is typed using the same method
as the mkRemote function described in section 3. When applied to
one or more arguments instantiating the Marshal type class, the
pack function is applied to each argument, marshalling them into
their respective JavaScript representations, before they are passed
to the dynamically created function. When that function returns,
the inverse unpack function is applied to its return value before it is
passed back into the Haskell world.

As the marshalling functions chosen for each argument and the for-
eign function’s return value depends on its type, the programmer
must explicitly specify the type of each function imported using
ffi; in this, Haste’s custom method is no different from the con-
ventional FFI.

There are several benefits to this method, the most prominent being
that new marshallable types can be added by simply instantiating
a type class. Thanks to the lazy evaluation employed by Haste,
each foreign function object is only created once and then cached;
any further calls to the same (Haskell) function will reuse the
cached function object. Implementation-wise, this method is also
very non-intrusive, requiring only the use of the normal FFI to
import JavaScript’s eval function; no modification of the compiler
is needed.

5. Discussion and related work

5.1 Related work

Several other approaches to seamless client-server interaction ex-
ist. In general, these proposed solutions tend to be of the “all or
nothing” variety, introducing new languages or otherwise requiring
custom full stack solutions. In contrast, our solution can be imple-
mented entirely as a library and is portable to any pair of compilers
supporting typed monadic programming. Moreover, Haste.App has
a quite simple and controlled programming model with a clearly
defined controller, which stands in contrast to most related work
which embraces a more flexible but also more complex program-
ming model.

The more notable approaches to the problem are discussed further
in this section.

Conductance and Opa Conductance [6] is an application server
built on StratifiedJS, a JavaScript language extension which adds
a few niceties such as cooperative multitasking and more concise
syntax for many common tasks. Conductance uses an RPC-based
model for client-server communication, much like our own, but
also adds the possibility for the server to independently transmit
data back to the client through the use of shared variables or call
back into the client by way of function objects received via RPC
call, as well as the possibility for both client and server to seam-
lessly modify variables located on the opposite end of the network.
Conductance is quite new and has no relevant publications. It is,
however, used for several large scale web applications.

While Conductance gets rid of the callback-based programming
model endemic to regular JavaScript, it still suffers from many of
its usual drawbacks. In particular, the weak typing of JavaScript
poses a problem in that the programmer is in no way reprimanded
by her tools for using server APIs incorrectly or trying to transmit
values which can not be sensibly serialized and de-serialized, such
as DOM nodes. Wrongly typed programs will thus crash, or even
worse, gleefully keep running with erroneous state due to implicit
type conversions, rather than give the programmer some advance
warning that something is amiss.

We are also not completely convinced that the ability to implicitly
pass data back and forth over the network is a unilaterally good
thing; while this indeed provides the programmer some extra con-
venience, it also requires the programmer to exercise extra caution
to avoid inadvertently sending large amounts of data over the net-
work or leak sensitive information.

The Opa framework [18], another JavaScript framework, is an im-
provement over Conductance by introducing non-mandatory type
checking to the JavaScript world. Its communication model is
based on implicit information flows, allowing the server to read
and update mutable state on the client and vice versa. While this
is a quite flexible programming model, we believe that this uncon-
trolled, implicit information flow makes programs harder to follow,
debug, secure and optimize.

Google Web Toolkit Google Web Toolkit [26], a Java compiler
targeting the browser, provides its own solution to client-server in-
teroperability as well. This solution is based on callbacks, forcing
developers to write code in a continuation passing style. It also suf-
fers from excessive boilerplate code and an error prone configu-
ration process. The programming model shares Haste.App’s client
centricity, relegating the server to serving client requests.

Duetto Duetto [22] is a C++ compiler targeting the web, written
from the ground up to produce code for both client and server
simultaneously. It utilizes the new attributes mechanism introduced
in C++11 [24] to designate functions and data to live on either
client or server side. Any calls to a function on the other side of the
network and attempts to access remote data are implicit, requiring
no extra annotations or scaffolding at the call site. Duetto is still
a highly experimental project, its first release being only a few
months old, and has not been published in any academic venue.

Like Conductance, Duetto suffers somewhat from its heritage:
while the client side code is not memory-unsafe, as it is not pos-
sible to generate memory-unsafe JavaScript code, its server side
counterpart unfortunately is. Our reservations expressed about how
network communication in Duetto can be initiated implicitly apply
to Duetto as well.

Sunroof In contrast to Conductance and Duetto, Sunroof [2] is
an embedded language. Implemented as a Haskell library, it allows
the programmer to use Haskell to write code which is compiled
to JavaScript and executed on the client. The language can best
be described as having JavaScript semantics with Haskell’s type
system. Communication between client and server is accomplished
through the use of “downlinks” and “uplinks”, allowing for data to
be sent to and from the client respectively.

Sunroof is completely type-safe, in the DSL itself as well as in the
communication with the Haskell host. However, the fact that client
and server must be written in two separate languages - any code
used to generate JavaScript must be built solely from the primitives
of the Sunroof language in order to be compilable into JavaScript,
precluding use of general Haskell code - makes code reuse hard.
As the JavaScript DSL is executed from a native Haskell host,
Sunroof’s programming model can be said to be somewhat server
centric, but with quite some flexibility due to its back and forth
communication model.

Ocsigen Ocsigen [1] enables the development of client-server
web applications using O’Caml. Much like Opa, it accomplishes
typed, seamless communication by exposing mutable variables
across the network, giving it many of the same drawbacks and
benefits. While Ocsigen is a full stack solution, denying the devel-
oper some flexibility in choosing their tools, it should be noted that
said stack is rather comprehensive and well tested.

AFAX AFAX [19], an F#-based solution, takes an approach quite
similar to ours, using monads to allow client and server side to
coexist in the same program. Unfortunately, using F# as the base of
such a solution raises the issue of side effects. Since any expression
in F# may be side effecting, it is quite possible with AFAX to
perform a side effect on the client and then attempt to perform
some action based on this side effect on the server. To cope with
this, AFAX needs to introduce cumbersome extensions to the F#
type system, making AFAX exclusive to Microsoft’s F# compiler
and operating system, whereas our solution is portable to any pair
of Haskell compilers.

HOP, Links, Ur/Web and others In addition to solutions which
work within existing languages, there are several languages specif-
ically crafted targeting the web domain. These languages target not
only the client and server tiers but the database tier as well, and
incorporate several interesting new ideas such as more expressive
type systems and inclusion of typed inline XML code. [23][5][3]
As our solution aims to bring typed, seamless communication into
the existing Haskell ecosystem without language modifications,
these languages solve a different set of problems.

Advantages of our approach We believe that our approach has a
number of distinct advantages to the aforementioned attacks on the
problem.

Our approach gives the programmer access to the same strongly
typed, general-purpose functional language on both client and
server; any code which may be of use to both client and server
is effortlessly shared, leading to less duplication of code and in-
creased possibilities for reusing third party libraries.

Interactive multiplayer games are one type of application where
this code sharing may have a large impact. In order to ensure that
players are not cheating, a game server must keep track of the entire
game state and send updates to clients at regular intervals. However,
due to network latency, waiting for server input before rendering
each and every frame is completely impractical. Instead, the usual
approach is to have each client continuously compute the state of
the game to the best of its knowledge, rectifying any divergence
from the game’s “official” state whenever an update arrives from
the server. In this scenario, it is easy to see how reusing much of
the same game logic between the client and the server would be
very important.

Any and all communication between client and server is both
strongly typed and made explicit by the use of the onServer func-
tion, with the programmer having complete control over the se-
rialization and de-serialization of data using the appropriate type
classes. Aside from the obvious advantages of type safety, making
the crossing of the network boundary explicit aids the program-
mer in making an informed decision as to when and where server
communication is appropriate, as well as helps prevents accidental
transmission of sensitive information intended to stay on either side
of the network.

Our programming model is implemented as a library, assuming
only two Haskell compilers, one targeting JavaScript and one tar-
geting the programmer’s server platform of choice. While we use
Haste as our JavaScript-targeting compiler, modifying our imple-
mentation to use GHCJS or even the JavaScript backend of UHC
would be trivial. This implementation not only allows for greater
flexibility, but also eliminates the need to tangle with complex com-
piler internals.

Inspiration and alternatives to remote One crucial aspect of
implementing cross-network function calls is the issue of data
representation: the client side of things must be able to obtain some
representation of any function it may want to call on the server.

In our solution, this representation is obtained through the use of
the remote function, which when executed on the server pairs a
function with a unique identifier, and when executed on the client
returns said identifier so that the client may now refer to the func-
tion. While this has the advantage of being simple to implement,
one major drawback of this method is that all functions must be
explicitly imported in the App monad prior to being called over the
network.

This approach was inspired by Cloud Haskell [12], which intro-
duces the notion of “static values”; values which are known at com-
pile time. Codifying this concept in the type system, to enable it to
be used as a basis for remote procedure calls, unfortunately requires
some major changes to the compiler. Cloud Haskell has a stopgap
measure for unmodified compilers wherein a remote table, pairing
values with unique identifiers, is kept. This explicit bookkeeping
relies on the programmer to assign appropriate types to both values
themselves and their identifiers, breaking type safety.

The astute reader may notice that this is exactly what the remote
function does as well, the difference being that remote links the
identifier to the value it represents on the type level, making it
impossible to call non-existent remote functions and break the
program’s type safety in other ways.

Another approach to this problem is defunctionalization [7], a pro-
gram transformation wherein functions are translated into algebraic
data types. This approach would allow the client and server to use
the same actual code; rather than passing an identifier around, the
client would instead pass the actual defunctionalized code to the
server for execution. This would have the added benefit of allow-
ing functions to be arbitrarily composed before being remotely in-
voked.

This approach also requires significant changes to the compiler,
making it unsuitable for our use case. Moreover, we are not entirely
convinced about the wisdom of allowing server side execution of
what is essentially arbitrary code sent from the client which, in a
web application context, is completely untrustworthy. While ana-
lyzing code for improper behavior is certainly possible, designing
and enforcing a security policy sufficiently strict to ensure correct
behavior while flexible enough to be practically useful would be an
unwelcome burden on the programmer.

5.2 Limitations

Client-centricity Unlike most related work, our approach takes
a firm stand, regarding the client as the driver in the client-server
relationship with the server taking on the role of a passive com-
putational or storage resource. The server may thus not call back
into the client at arbitrary points but is instead limited to returning
answers to client side queries. This is clearly less flexible than the
back-and-forth model of Sunroof and Duetto or the shared vari-
ables of Conductance. However, we believe that this restriction
makes program flow easier to follow and comprehend. Like the
immutability of Haskell, this model gives programmers a not-so-
subtle hint as to how they may want to structure their programs.
Extending our existing model with an onClient counterpart to
onServer would be a simple task, but we are not quite convinced
that there is value in doing so.

Environment consistency As our programming model uses two
different compilers to generate client and server code, it is crucial
to keep the package environments of the two in sync. A situation
where, for instance, a module is visible to one compiler but not
to the other will render many programs uncompilable until this
inconsistency is fixed.

This kind of divergence can be worked around using conditional
compilation, but is highly problematic even so; using a unified
package database between the two compilers, while problematic
due to the differing natures of native and JavaScript compilation
respectively, would be a significant improvement in this area.

6. Future work

Information flow control Web applications often make use of a
wide range of third party code for user tracking, advertising, col-
lecition of statistics and a wide range of other tasks. Any piece of
code executing in the context of a particular web session may not
only interact with any other piece of code executing in the same
context, but may also perform basically limitless communication
with third parties and may thus, inadvertently or not, leak informa-
tion about the application state. This is of course highly undesirable

for many applications, which is why there is ongoing work in con-
trolling the information flow within web applications [14].

While this does indeed provide an effective defence towards attack-
ers and programming mistakes alike, there is value in being able to
tell the two apart, as well as in catching policy violations resulting
from programming mistakes as early as possible. An interesting
venue of research would be to investigate whether we can take ad-
vantage of our strong typing to generate security policies for such
an information flow control scheme, as well as ensure that this pol-
icy is not violated at compile time. This could shorten development
cycles as well as give a reasonable level of confidence that any run
time policy violation is indeed an attempted attack.

Real world applications As Haste.App is quite new and experi-
mental, it has yet to be used in the creation of large scale applica-
tions. While we have used it to implement some small applications,
such as a spaced repetition vocabulary learning program and a more
featureful variant on the chatbox example given in section 2.3, fur-
ther investigation of its suitability for larger real world applications
through the development of several larger scale examples is an im-
portant area of future work.

7. Conclusion

We have presented a programming model which improves on the
current state of the art in client-server web application develop-
ment. In particular, our solution combines type safe communication
between the client and the server with functional semantics, clear
demarcations as to when data is transmitted and where a particular
piece of code is executed, and the ability to effortlessly share code
between the client and the server.

Our model is client-centric, in that the client drives the application
while the server takes on the role of passively serving client re-
quests, and is based on a simple blocking concurrency model rather
than explicit continuations. It is well suited for use with a GUI pro-
gramming style based on self-contained processes with local state,
and requires no modification of existing tools or compilers, being
implemented completely as a library.

Acknowledgments

This work has been partially funded by the Swedish Foundation for
Strategic Research, under grant RAWFP.

References
[1] V. Balat. ”Ocsigen: typing web interaction with objective Caml.”

Proceedings of the 2006 workshop on ML. ACM, 2006.

[2] J. Bracker and A. Gill. ”Sunroof: A Monadic DSL for Generating
JavaScript.” In Practical Aspects of Declarative Languages, pp. 65-80.
Springer International Publishing, 2014.

[3] A. Chlipala. ”Ur: statically-typed metaprogramming with type-level
record computation.” ACM Sigplan Notices. Vol. 45. No. 6. ACM, 2010.

[4] K. Claessen. ”Functional Pearls: A poor man’s concurrency monad.”
Journal of Functional Programming 9 (1999): 313-324.

[5] E. Cooper, S. Lindley, P. Wadler, and J. Yallop. Links: Web program-
ming without tiers. In Formal Methods for Components and Objects (pp.
266-296). Springer Berlin Heidelberg, 2007.

[6] The Conductance application server. Retrieved March 1, 2014, from
http://conductance.io.

[7] O. Danvy and L. R. Nielsen. ”Defunctionalization at work.” In
Proceedings of the 3rd ACM SIGPLAN international conference on
Principles and practice of declarative programming, pp. 162-174. ACM,
2001.

[8] A. Dijkstra, J. Stutterheim, A. Vermeulen, and S. D. Swierstra.
”Building JavaScript applications with Haskell.” In Implementation
and Application of Functional Languages, pp. 37-52. Springer Berlin
Heidelberg, 2013.

[9] L. Domoszlai, E. Bruël, and J. M. Jansen. ”Implementing a non-strict
purely functional language in JavaScript.” Acta Universitatis Sapientiae
3 (2011): 76-98.

[10] C. Done. (2012, September 15). “Fay, JavaScript, etc.”, Retrieved
March 1, 2014, from http://chrisdone.com/posts/fay.

[11] A. Ekblad. ”Towards a declarative web.” Master of Science Thesis,
University of Gothenburg (2012).

[12] J. Epstein, A. P. Black, and S. Peyton-Jones. ”Towards Haskell in the
cloud.” In ACM SIGPLAN Notices, vol. 46, no. 12, pp. 118-129. ACM,
2011.

[13] G. Guthrie. (2014, January 1). ”Your transpiler to JavaScript toolbox”.
Retrieved March 1, 2014, from http://luvv.ie/2014/01/21/your-transpiler-
to-javascript-toolbox/.

[14] D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld. ”JSFlow: Tracking
information flow in JavaScript and its APIs.” In Proc. 29th ACM
Symposium on Applied Computing. 2014.

[15] P. Lubbers and F. Greco. ”Html5 web sockets: A quantum leap in
scalability for the web.” SOA World Magazine (2010).

[16] S. Marlow, and S. Peyton Jones. ”Making a fast curry: push/enter vs.
eval/apply for higher-order languages.” In ACM SIGPLAN Notices, vol.
39, no. 9, pp. 4-15. ACM, 2004.

[17] V. Nazarov. ”GHCJS Haskell to JavaScript Compiler”. Retrieved
March 1, 2014, from https://github.com/ghcjs/ghcjs.

[18] The Opa framework for JavaScript. Retrieved May 2, 2014, from
http://opalang.org.

[19] T. Petricek, and Don Syme. ”AFAX: Rich client/server web applica-
tions in F#.” (2007).

[20] S. Peyton Jones. ”Implementing lazy functional languages on stock
hardware: the Spineless Tagless G-machine.” J. Funct. Program. 2, no. 2
(1992): 127-202.

[21] S. Peyton Jones. ”Tackling the awkward squad: monadic input/output,
concurrency, exceptions, and foreign-language calls in Haskell.”
Engineering theories of software construction 180 (2001): 47-96.

[22] A. Pignotti. (2013, October 31). ”Duetto: a C++ compiler for the Web
going beyond emscripten and node.js”. Retrieved March 1, 2014, from
http://leaningtech.com/duetto/blog/2013/10/31/Duetto-Released/.

[23] M. Serrano, E. Gallesio, and F. Loitsch. ”Hop: a language for
programming the web 2. 0.” OOPSLA Companion. 2006.

[24] B. Stroustrup. (2014, January 21). ”C++11 - the new
ISO C++ standard.” Retrieved March 1, 2014, from
http://www.stroustrup.com/C++11FAQ.html.

[25] C. Taylor. (2013, March 1). ”Polyvariadic Functions
and Printf”. Retrieved March 1, 2014, from http://chris-
taylor.github.io/blog/2013/03/01/how-haskell-printf-works/.

[26] S. Wargolet. ”Google Web Toolkit. Technical report 12.” University of
Wisconsin-Platterville Department of Computer Science and Software
Engineering, 2011.

