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Abstract

This thesis was conducted at the Fraunhofer Chalmers Centre for Industrial Mathematics

in collaboration with the Fraunhofer-Institut für Techno- und Wirtschaftsmathematik.
The aim of this thesis is to develop an imaging system for the automated detection of
holes in images of supermarket shelves. The proposed approach uses an unsupervised
segmentation method to presegment the image into homogeneous regions. Each of those
image regions is then classified separately using a support vector machine. Finally,
suitable bounding boxes are found for image regions that are likely to represent holes.
Apart from the SVM classifier also an AdaBoost classifier and a structural classifier
based on conditional random fields are implemented and tested. This thesis describes the
implementation and performance characteristics of the resulting imaging system, which
is implemented using the ToolIP graphical image processing framework and C++.
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Introduction

In this work, an imaging system for the detection of holes in images of supermarket
shelves is presented. The work is embedded in a project conducted by the Fraunhofer

ITWM and the Fraunhofer-Chalmers Center for Industrial Mathematics in collaboration
with an industrial partner. The aim of the project is to automate the analysis
of supermarket shelves. Shelf appearance contains valuable information for the
manufacturer and, so far, has to be evaluated manually. This makes the process slow
and costly and an automated analysis is therefore of great interest.

Background

Recent advances in technology have made digital imaging widely available. Today, taking
an image is probably the fastest and cheapest way to transfer information to another
person. Unfortunately, this information is not directly available for computers. For
a computer an image is nothing but gridded spectral data recorded by the imaging
sensor. The field of image processing describes methods of how high-level information,
for example what kind of objects contained in an image, can be extracted from image
data. Such methods can be applied in almost every scientific field as well as in industry.
The field of image processing is still relatively young and vivid research throughout
the last 30 years has produced many powerful methods. However, there is no general
solution to the problem. Each solution has to be tailored to the application context, often
requiring the combination of different methods and the integration of domain specific
knowledge.

Aim

The aim of this thesis is to develop an imaging system for the detection of holes in shelf
images. A sample image is displayed in figure 1. A hole is defined to be an image region
that

• contains no products,
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Introduction

• goes from the front to the back of the shelf,

• is at least as wide as the adjacent products.

Figure 1: A sample image of a supermarket shelf containing a hole. The region marked in
red satisfies the definition of a hole. It is an image region, that contains no products, goes
from the front of the shelf to the back and is at least as wide as the adjacent products.

The system is implemented using the ToolIP image processing framework[1]
developed by the Fraunhofer ITWM. This document introduces the fundamentals of the
applied methods from the fields of image processing and machine learning and presents
the implementation of the system. Finally, the different performance aspects of the
resulting system are evaluated.

Methods

The approach taken here is to combine an unsupervised segmentation algorithm and an
SVM classifier to classify the resulting image regions. Presegmenting images in order
to obtain a more expressive image representation is a popular approach which has been
successfully applied to other object classification problems, for example in [2]. The
resulting image regions are then classified using an SVM classifier. Besides the SVM
classifier also an AdaBoost classifier and a structural classifier based on conditional
random fields are implemented and tested. The structural classifier is realized using a
two-level approach by using the results from the SVM and AdaBoost classifier as inputs
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Introduction

Figure 2: Flow diagram of the proposed method. The input image is segmented using an
unsupervised segmentation method. The resulting image regions are then classified using
an SVM classifier. Finally, suitable bounding boxes for the holes in the image are found.

to the conditional random field classifier. Similar approaches to image segmentation
and classification have also been taken in [3, 4, 5]. In figure 2 the proposed method is
displayed as a flow diagram.

Outline

The structure of this document is as follows. The first two chapters introduce the
theoretical foundations from the field of image processing (chapter 1) and the field
of machine learning (chapter 2). The third chapter describes the implementation
of the imaging system and presents intermediate results, that motivate concrete
implementation choices. The fourth chapter contains a detailed evaluation of the imaging
system. Finally, the results and difficulties encountered throughout the implementation
are discussed in chapter 5.
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Image Processing

In this chapter the foundations of digital color imaging and image processing are
introduced. An image describes a given scene using information about the spectral
composition of the light refracted by the objects in that scene. Mathematically, an
image is given by an image function I of two local variables x,y. The function I may be
scalar- or vector-valued, depending on whether the function represents a black-and-white
or a color image. Here, only color images will be considered, that can be described by a
three-dimensional image function. It is common to consider each component of a vector-
valued image function separately. Thus, a color image may be given by three grayscale
images, each of them representing one dimension of the color information. The three
resulting images are referred to as color channels. Processing an image on a computer
requires the domain and the values of I to be digitized. A digital image is thus given
by a matrix I = (Ii,j). The elements I are called pixels. The value Ii,j of the pixel at
position i,j is referred to as its gray value.

1.1 Color Imaging

In medium- and high-light situations human color vision is trichromatic. This means
that the human eye possesses three different kind of color sensing cells with different
responsivity spectra. As a result, almost every visible color can be reproduced by three
different monochromatic light sources. A natural description of color would thus be
given by the intensities of those three light sources. In some contexts, however, different
descriptions of color may be more suitable. Color information is usually given with
respect to a certain color space. A color space is a mathematical model that is used to
represent colors using tuples of numbers. The following section contains a description of
the color spaces that will be relevant for the implementation of the imaging system.

4



Chapter 1. Image Processing

1.1.1 CIE 1931 XYZ

The CIE 1931 XYZ color space is the scientific basis of objective color representation [6].
The general idea is to describe each color with respect to three monochromatic reference
colors, so called primaries. A color is then described by the respective intensities of each
primary that is needed to reproduce the color by additive mixing. Those values are
called tristimulus values. Given the power spectrum of a light signal E(λ) with respect
to the wavelength λ, the relation between E(λ) and the tristimulus values is described
by the three color matching functions x̄, ȳ, z̄. Figure 1.1 (a) displays the color matching
functions for the CIE 1931 XYZ color space. The XYZ representation of a light signal
is then given by

X =

∫

x̄(λ)E(λ) dλ (1.1)

Y =

∫

ȳ(λ)E(λ) dλ (1.2)

X =

∫

z̄(λ)E(λ) dλ (1.3)

From (1.1),(1.2),(1.3), it is clear that the energy spectrum of the light refracted by an
object depends on the energy spectrum of the illuminating light source. Human color
vision, however, is able to adapt to varying illumination conditions. A white object,
for example, appears white in the light of an incandescent bulb as well as in daylight.
Their spectra however are different. In order to truthfully reproduce a color it is hence
necessary to specify a reference white point. Such a reference white point is also of
importance for the conversion into other color spaces. The XYZ representation of a
color depends on the brightness of the color. This dependence can be eliminated by
normalizing the X,Y,Z by their sum. This yields two independent values x,y, called the
chromaticity coordinates.

x =
X

X + Y + Z
(1.4)

y =
Y

X + Y + Z
(1.5)

The chromaticity of a color denotes the brightness independent part of the color
description. Projecting all visible colors onto the chromaticity plane yield in the CIE
x,y chromaticity diagram shown in figure 1.1 (b). The CIE xy chromaticity coordinates
form a common basis for the conversion between different color spaces. One of the
disadvantages of the CIELAB XYZ space is that it is defined using imaginary primaries.
This means that they do not correspond to any human-perceivable color, but rather are
derived from experiments conducted with real colors. It is thus not suitable for the use
in devices that reproduce colors.

5



Chapter 1. Image Processing

Figure 1.1: (a) The CIE-color-matching functions define how the XYZ representation of
a color can be obtained from its spectral power spectrum. Each curve corresponds to one of
the tristimulus values.
(b) The CIE chromaticity diagram displays the colors that can be perceived by humans in
the CIE xy-plane. The triangle marks the colors that can be represented using the sRGB
color space.

1.1.2 RGB color spaces

RGB color spaces are based on real, monochromatic primaries in the red, green and blue
regions of the visible spectrum. Due to their connection to color reproduction they are
often used in computer applications. The most commonly used RGB space is the sRGB
space. Its RGB coordinates are defined with respect to the XY Z tristimulus values via









RS

GS

BS









=









3.2406 −1.5372 −0.4986

−0.9689 1.8758 0.0415

0.0557 −0.2040 1.0570

















X

Y

Z









(1.6)

and

R =f(RS) (1.7)

G =f(GS) (1.8)

B =f(BS) (1.9)

f(x) =







12.92x x ≤ 0.0031308

1.055x1/2.4 − 0.055 otherwise
(1.10)

(1.11)

The disadvantage of RGB spaces is that they do not correspond to human color
vision in the sense that differences in this space do not correspond to the perceptual
differences between colors.
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1.1.3 CIE LAB

The CIE LAB color space is a color space derived from the CIE 1931 XYZ space with
the aim of providing a perceptually uniform color space. A color space is said to be
perceptually uniform if two pairs of colors in the color space that are equally far away
from each other also appear equally different. The CIE LAB space has three dimensions
or channels l,a,b. The l channel represents lightness, i.e. how bright an object appears.
The a and b channels represent the two independent color components, namely red/green
and yellow/blue. The l,a,b components can be obtained from the XYZ tristimulus values
as follows:

l = 116 f
( Y

YW

)

− 16 (1.12)

a = 500
(

f(
X

XW
)− f(

Y

YW
)
)

(1.13)

b = 200
(

f(
Y

YW
)− f(

Z

ZW
)
)

(1.14)

f(t) =







t
1

3 , if t > ( 6
29)

3

1
3(

29
6 )

2t+ 4
29 , otherwise

(1.15)

The values XW ,YW ,ZW are the XYZ tristimulus values of a reference white point. The
a,b values can be used to derive another color feature, the chroma. The chroma Ca,b

describes the colorfulness of a color and is defined as the euclidean distance of a color to
zero in the a,b-subspace:

Ca,b =
√

a2 + b2 (1.16)

Although the CIE LAB space achieves perceptual homogeneity it is still not very
intuitive. A more intuitive way of describing colors is given by HSV color space.

1.1.4 HSV Color Space

Similar to the CIE LAB space, the HSV space separates the concept of brightness of a
color from its chromaticity. Nevertheless, compared to CIE LAB, the color description is
more intuitive and similar to an artists reasoning. A color in this space is specified by its
hue, its saturation and its value. The hue of a color describes the dominant wave length
of the spectral power distribution. It represents what is informally described by color
names such as red, blue, purple and yellow. It is given by a value between 0 and 360
and can be interpreted as an angle along a color disc. The HSV color disc is displayed
in figure . The center of the disc corresponds to neutral gray. The distance of a color
from the center of a disc corresponds to its saturation. The saturation (S) describes how
pure a given color is. The V channel, called value, describes how bright a color appears.

7



Chapter 1. Image Processing

The HSV space is defined with respect to the RGB space. In order to convert the RGB
values of a given color into the HSV space, let

R′ =
R

255
(1.17)

G′ =
G

255
(1.18)

B′ =
B

255
(1.19)

Cmax = max(R′,G′,B′) (1.20)

Cmin = min(R′,G′,B′) (1.21)

∆ = Cmax − Cmin. (1.22)

The corresponding HSV values are then given by

H =



















60◦(G
′−B′

∆ mod 6), Cmax = R′

60◦(B
′−R′

∆ + 2), Cmax = G′

60◦(R
′−G′

∆ + 4), Cmax = B′

(1.23)

S =
∆

Cmax
(1.24)

V = Cmax. (1.25)

1.2 Image Segmentation

Digital images today usually contain several millions of pixels. An image given by a grid
of pixels is what is usually referred to as low-level information: It only specifies the color
of given patches of a scene and their relative position. The aim of computer vision is to
extract high-level information, i.e. information about objects present in the scene, from
the given low-level information. Since it is usually not possible to infer much about a
scene from only one pixel, it is often desirable to group pixels into larger sets. This task
is called image segmentation. The approach taken in this work builds on a technique
called superpixels.

1.2.1 Superpixels

Superpixels are locally coherent patches of pixels of similar colors. The idea behind this
approach is that pixels that are close locally as well as in a certain color space are likely
to belong to the same object in the original scene and can thus be used to describe
this object. Apart from containing more relevant information, superpixels also facilitate
further analysis by reducing the computational complexity. An efficient and powerful
superpixel algorithm is presented by Achanta et al. in [7]. The Simple linear iterative

8



Chapter 1. Image Processing

Figure 1.2: The HSV Color Disc. The plot shows the colors of the HSV color space for
V = 1. This results in a color disc with pure colors on its edge and the line of gray at its
center.

clustering algorithm (SLIC) generates clusters in the five-dimensional space consisting of
the two spatial dimensions x,y and the the color dimensions of the CIE LAB space. The
algorithm starts out with a square grid of superpixels centers. Then in each iteration,
the algorithm assigns to each center pixels that are close spatially as well as with respect
to color. This is repeated until convergence. In a final step stray pixels are eliminated
by assigning them to the nearest neighboring cluster. Closeness in the combined space
is defined using the distance measure DS defined by

dlab(x,y) =
√

(xl − yl)2 + (xa − ya)2 + (xb − yb)2 (1.26)

dxy(x,y) =
√

(xx − yx)2 + (xy − yy)2 (1.27)

DS = dlab +
k

S
dxy (1.28)

Here, dlab is the euclidean distance in the CIE LAB space and dxy the euclidean distance
of the pixel coordinates. S is the interval length of the initial grid. The parameter k of
the algorithm determines how fast the color distance is outweighed by the local distance.
In this way it controls the compactness of the resulting superpixels. High values of k lead
to more compact superpixels at the price of reduced homogeneity. On the other hand,
small values of k result in more uniform superpixels with less regular boundaries.The
algorithm is quite similar to the k-means clustering algorithm but by exploiting spatial
information it achieves better runtime.

9



Chapter 1. Image Processing

1.3 Texture Descriptors

A large amount of the information in an image is contained in its structure. The
local structure of an image region is referred to as its texture. A texture descriptor
consists of one or more values describing this structure. They are useful for comparing
different regions in images, because they summarize the information contained in them
and sometimes even provide independence of certain imaging conditions.

1.3.1 Local Binary Patterns

A powerful texture descriptor is the local binary pattern (LBP) operator [8]. It describes
the local texture pattern in the neighborhood of a pixel in a grayscale image. Figure 1.3
displays how the LBP operator for a given pixel is computed. The 8-connected neighbors
of a given pixel are thresholded using the pixels gray value. The binary values of
the neighbors are then interpreted as a bit sequence. This bit sequence can then be
interpreted as an unsigned integer assigning a value between 0 and 255 to all possible
neighborhood configurations. Through the thresholding the LBP operator achieves
independence of illumination conditions, which is a useful property when the operator
is used to compare textures. A given bit string is said to be uniform, if less than three
transitions from 1 to 0 or 0 to 1 occur in the string. There are 58 uniform binary patterns:
00000000,00000001,00000011,00000111,00001111,00011111,00111111,0111111,11111111
and their circular permutations. The texture of a given image region can be described by
computing a histogram over the values of the LBP operator for each pixel in the region.
This results in a histogram with n = 256 bins. As shown in [9], the expressiveness of
the texture descriptor can be increased by accumulating all occurrences of non-uniform
patterns in only one bin. This results in a histogram with 59 bins: 58 bins for uniform
patterns and 1 for the non-uniform patterns. This technique can be extended to color
images by considering each color channel separately.

Figure 1.3: The local binary pattern operator describes the local texture in the
neighborhood of a given pixel. The neighboring pixels are thresholded by the pixels
grayvalue. The resulting binary values are then combined into a binary string describing
the configuration.

10



Chapter 1. Image Processing

1.3.2 Agent Based Texture Descriptors

The idea of agent-based methods, is to simulate a population of agents in the image,
whose dynamics are influenced by the local image properties. The density of the agents
in a given region can then be used as a descriptor of the local structure of the image.
Agent based techniques have been successfully applied to image processing problem, for
example in [10].

The method used here is based on agents that move around in the image at a constant
speed. Each agent has a current position and moving direction. In each time step an
agents moves one pixel into its current direction. Moreover, an agent may give birth to
another agent, die or switch direction. The chance that an agent gives birth to another
agent is defined by the birth rate rb, which is given as a parameter of the method. If a
new agent is born it moves in the opposite direction than its ancestor. There are three
ways an agent can die. Besides dying when an agent leaves the image, an agent also dies
when the number of agents at a given pixel position is higher than a given threshold
tc. Finally, at each step an agent has a certain chance of dying that depends on the
gray value of the pixel at its current position. The death probability is specified by the
parameter tD. If the gray value of the corresponding pixel is larger than tD, the agent
dies with a probability of 1. Otherwise, the death rate is proportional to the ratio of
the gray value of the current pixel and tD. Apart from this, at each step an agent has a
certain chance of changing direction, this is given by the parameter rdir.

The initial population consists of a given number NA of agents, whose positions and
moving directions are chosen uniformly at random. Then T time steps are performed.
The results of the method are the position of the agents after T time steps.

The underlying image that will be used here is a dilated version of the internal
gradient. The internal gradient of an image is given by the difference of an image and an
eroded version of it. This will lead to high death rates in regions with distinct structure
and lower death rates in more homogeneous regions. Figure 1.4 displays the results of
the agent based texture descriptor applied to a sample image.
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(a) Input Image (b) Dilated Internal Gradient

(c) Agent Distribution (d) Number of Agents per Superpixel

Figure 1.4: The agent based texture descriptor applied to the sample image. The agent
method is applied to a dilated version of the internal gradients of the input image, as
displayed in (b). The resulting distribution of the agents over the image is displayed in (c).
The number of agents per superpixel are displayed in (d).
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2

Machine Learning

The field of machine learning is concerned with the problem of developing automatic
methods to identify the internal structure inherent to data. In the context of image
processing machine learning is usually applied in order to find ways of extracting high-
level information from images. For example in the hole-detection setting, the problem
is to design an algorithm to find holes in shelf images. This requires the definition of
conditions that a set of pixels has to satisfy to be classified as a hole. Here, machine
learning can be used to learn those relations from a given set of test data. For a broader
and more detailed treatment of the topic the reader is referred to [3, 11, 12].

2.1 Supervised Learning

The type of learning that will be considered throughout this work is called supervised

learning. The supervised learning problem is to find relations between a set of input
variables and a set of output variables from observations of both sets of variables. The
hole detection problem may be viewed as an instance of this problem: The input are a
set of features extracted from a given region of an image and the output is yes or no
depending on whether the region is part of a hole. The observations to learn from are a
set of image regions displaying holes and non-holes. Formally, this may be expressed as
follows. Assume there are p scalar input variables X1, . . . ,Xp. The set of input variables
is denoted by X. For now, let Y be the only output variable, that takes values in {−1,1}.
This is the setting if only a single image region is considered at a time. Y represents the
class of the image region with 1 corresponding to the region being a hole and -1 to the
region not being a hole. Later, also the case when Y is a set Y = (Y1, . . . ,Yn)S of binary
output variables will be considered. A concrete sample from X or Y is written as a
vector x or y respectively. If there is only one output variable then a sample is denoted
by y. The terms input and sample will be used to refer to concrete instantiations of
X. Yet, the word sample will be used for an element with known corresponding output,
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whereas input will be used more generally for a value of X. The term features is used
to denote the input variables X with feature or input space referring to the space of all
values X can take on. The relation between the input X and the output Y is modeled
using a function f : X → Y called decision rule or hypothesis. The predicted outcome
of an input x is given by f(x). For binary classification f is often of the form

f(x) = sign(g(x)) (2.1)

with g : X → R a function that maps an input x into R. The data that is available to
learn from is called the training set S. It consists of N observations of X and Y :

S = {(x1,y1), . . . ,(xN ,yN )} (2.2)

The observations in S are assumed to be i.i.d. samples from the joint distribution DX,Y

of X,Y .

2.1.1 Statistical Decision Theory

Statistical decision theory is the framework that is used for the development of methods
for machine learning. Assume, the hypothesis f is used to predict the outcome of an
input x. Now, define a loss function L : R × R → R. The role of the loss function
L(y,f(x)) is to quantify the quality of the prediction f(x) compared to the correct
output y. The loss function can be used as a criterion for choosing f . Generally, the
aim is to find the decision function f that minimizes the expected prediction risk :

R(f) = EX,Y (L(Y,f(X))) (2.3)

The expectation here is taken with respect to the joint distribution DX,Y of X and Y .
Of course, DX,Y is generally unknown. The expected prediction risk may be estimated
by the empirical prediction risk with respect to a given training set S:

RS(f) =
1

N

N
∑

i=1

L(y,xi) (2.4)

For example, a common choice for the loss function L in a classification setting is the so
called 0/1-loss assigning cost 1 to a misclassification:

L(y,f(x)) =







1 ,y 6= f(x)

0 , otherwise
(2.5)

By parametrizing f , a decision rule can now be found by minimizing the empirical risk.
However, the approach of minimizing the empirical risk with respect to a certain loss
function may turn out to be too short-sighted. Finding a sufficiently flexible function
that yields zero empirical risk over the training set is always possible. But does that
mean that the resulting hypothesis performs well on unseen samples? The answer is
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no. A problem that is likely to occur when the empirical risk is required to be very low
is overfitting. Overfitting occurs when the classifier adapts too closely to the training
data. This may lead to a decrease in performance on new data either due to noise in the
training set or because the training set fails to convey the true structure of the underlying
relation. A general technique to avoid overfitting in the learning phase is to introduce a
regularization term into the risk leading to the so called regularized risk :

R = EX,Y (L(Y,f(Y ))) + J(f) (2.6)

Here, J is a functional that penalizes high frequencies in f . The approach of formulating
the learning problem as a minimization problem of some loss-function turns out to be
very powerful. A lot of machine learning techniques can be shown to minimize a certain
loss-function although they were motivated in a different way.

2.1.2 Generalization Theory

The aim of generalization theory is to examine the capability of learning methods to
generalize to indepedent test data. Measuring the generalization performance of a
machine learning technique is important to compare different models and to assess
the overall quality one can expect from predictions on independent inputs. The
generalization error is defined as

errS = EX,Y (I[f(X) 6= Y ]). (2.7)

Here, I is the indicator function that is 1 if f(x) and y are not equal and zero otherwise.
The expectation here is taken over X and Y , while the training set S is held fixed.
Averaging the generalization error over all possible training sets S yields the expected
error:

err = EX,Y,S(I[f(X) 6= Y ]) (2.8)

Nevertheless, the value that best describes the performance of a given classifier is
the generalization error for a given training set S, errS . The sample analogue of the
generalization error over the training set is called the training error, denoted by errS .
The training error, however, is not a suitable estimator for the generalization error since
it tends to underestimate it. The training error constantly decreases with increasing
complexity of the model. The generalization error, on the contrary, often increases when
the model complexity becomes too high. In order to estimate the performance of a model,
some of the available data is held back during the training process. If the amount of
available data permits, the general approach is to define a validation and a test set. The
validation set is used to find suitable meta parameters for the model and to compare
different models. Finally, the test set is used to estimate the overall performance of the
system.
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Figure 2.1: Two two-dimensional toy problems displaying the concept of linear decision
boundaries in the input space. Learning here amounts to using the training data to find a
suitable splitting of the input space. The example in plot (a) can easily be separated using
a linear decision boundary whereas the example in (b) cannot.

2.2 Support Vector Machines

Support vector classifiers and support vector machines are motivated from a geometric
view on the data. A sample x from the input space X can be viewed as a point in a
p-dimensional space. In the binary classification setting, a hypothesis f assigns a label
to every point in the input space and thus defines a binary partition on X. A simple way
to partition a given space into two regions is by defining a separating hyperplane, also
called a linear decision boundary. This is the concept behind support vector classifiers.

For the case of two input variables, i.e. a two-dimensional input space, the problem
can be visualized in a plot. Consider the examples displayed in figure 2.1. Given are data
points belonging to two different classes, here marked by their color. In the first figure,
the two classes are samples from two scaled bivariate normal distributions. One of them
is centered around (0,1) and the other around (1,0). A linear decision boundary can
easily be found by inspection, for example f(x1,x2) = x2 − x1. Of course, this problem
is particularly simple: The two classes are well separated and the dimensionality is low.
As shown in the second figure in 2.1, the linear decision boundaries fail in the case of a
nonlinear relation between X1 and X2.

In the next section a formalized approach to finding separating hyperplanes in the
input space is presented.
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2.2.1 Linear Decision Boundaries

Assume a given training set S = {(x1,y1), . . . ,(xN ,yN )} with xi ∈ Rp and yi ∈ {−1,1}
for i = 1, . . . ,N . A hyperplane is a set of points {x : θTx + θ0 = 0} satisfying the
equation

θTx+ θ0 = 0. (2.9)

Here, θTx is the dot product of θ and x. θ is the normal vector to the hyperplane.
Setting f(x) = sign(θTx + θ0), the resulting hypothesis assigns label −1 to the points
lying on one side of the plane and label 1 to all others. The objective is thus to find
the parameters {θ,θ0} that represent an optimal separating hyperplane. But what are
the characteristics of such an optimal hyperplane? If the classes are separable, a natural
choice for the optimal separating hyperplane is the plane that maximizes the minimal
distance between the plane and the points from each class. This distance is also called
the margin. If the classes are not separable one may still try to minimize the distance
between the points from each class and the hyperplane but allow for some of them to
lie on the wrong side of the margin. Formally, this may be expressed as the following
minimization problem

min
θ,θ0,ξ

||θ||

subject to yi(θ
Txi + θ0) ≥ 1− ξi, i = 1, . . . ,N

ξi ≥ 0, i = 1, . . . ,N
∑N

i=1 ξi ≤ const

(2.10)

The rationale behind this formulation is as follows. Let di denote the distance of
sample xi to the decision boundary. Define di to have positive sign if xi lies on the
correct side of the boundary and negative sign otherwise. The expression yi(x

Tθ + θ0)
then corresponds to the product of di and the length of the normal vector ||θ||:

|yi(x
Tθ + θ0)| = di||θ|| (2.11)

The condition yi(x
Tθ + θ0) ≥ 1 thus ensures that ||θ|| is larger than the inverse

distance of each point from the hyperplane. Hence minimizing ||θ|| is the same as
maximizing the minimum distance of the points from the separating hyperplane. In
order to allow for some points to lie on the wrong side of the margin the slack variables
ξi are introduced. The value of ξi represents how far relative to the margin M the
point xi lies on the wrong side of the margin. Figure 2.2 illustrates the situation in a
two-dimensional feature space. A general formulation of the support vector classifier
reads

min
θ,θ0,ξ

1
2θ

Tθ + C
∑N

i=1 ξi

subject to ξi ≥ 0, i = 1, . . . ,N

yi(θ
Txi + θ0) ≥ 1− ξi, i = 1, . . . ,N

(2.12)
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Figure 2.2: A separating hyperplane in R2. If the two classes are separable, the optimal
separating hyperplane is defined as the one that maximizes the marginM , i.e. the minimum
distance of the samples to the plane. If the two classes are not separable, the slack variables
ξi are introduced to allow sample xi to lie on the wrong side of the margin. The value of ξi
corresponds to how far sample xi lies on the wrong side of the margin relative to the size of
the margin.

which is equivalent to (2.10) with C replacing the constant limiting the sum of the
slack variables ξi. Investigating this optimization problem further will reveal valuable
information about the structure of the support vector classifier.

2.2.2 Optimization Theory

The aim of optimization theory is to provide methods for the solution and
characterization of optimization problems. It turns out that applying Lagrangian theory
to the optimization problem (2.12) reveals an interesting structure of the solution. Based
on this structure it is possible to extend the method to non-linear decision boundaries
by mapping the input space into higher- or even infinite-dimensional spaces.

The Lagrangian function corresponding to the support vector optimization problem
(2.12) is given by

L(θ,θ0,ξ,α,µ) =
1

2
θTθ + C

N
∑

i=1

ξi −
N
∑

i=1

αi

(

yi(θ
Txi + θ0)− (1− ξi)

)

−
N
∑

i=1

µiξi.

(2.13)
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The corresponding dual function may be obtained by differentiating with respect to β,β0
and ξi for i = 1 . . . ,N and setting the respective derivatives to zero. This gives

N
∑

i=1

yiαixi = θ (2.14)

N
∑

i=1

αiyi = 0 (2.15)

C − µi − αi = 0 (2.16)

The significance of (2.14) is that the normal vector of the separating hyperplane is
given by a weighted sum of the samples in the training set. Inserting the above equation
into (2.13) the objective function of the dual problem is obtained.

LD(α1, . . . ,αn) =
N
∑

i=1

αi −
1

2

N
∑

i=1

N
∑

j=1

αiαjyiyjx
T
i xj (2.17)

The dual problem is thus given by

max
α1,...,αN

LD(α1, . . . ,αN )

subject to αi ≥ 0, i = 1, . . . ,N

αi ≤ C, i = 1, . . . ,N
∑N

i=1 αiyi = 0

(2.18)

The primal problem is convex with affine constraints and domain RN and thus the
duality gap is zero. Consequently, the maximization problem (2.18) is equivalent to the
original minimization problem. What is interesting here is that the evaluation of the
dual function involves the input only through a weighted sum of the vector products
over the training set. This property will prove to be very useful for realizing non-linear
decision boundaries. Finally, the Karush-Kuhn-Tucker complementarity conditions yield

αi

(

yi(θ
Txi + θ0)− (1− ξi)

)

= 0 (2.19)

µiξi = 0. (2.20)

This together with (2.14) implies that the normal θ is a linear combination of the input
vectors with non-zero αi only for those points that satisfy

yi(θ
Txi + b0) = 1− ξi. (2.21)

That means that the SV classifier depends only on a subset of the samples in the training
set. The vectors xi with nonzero αi are called the support vectors. The dual perspective
also clarifies the influence of the parameter C on the support vector classifier. Condition
(2.20) together with (2.16) and the positivity constraint on αi for i = 1, . . . ,N guarantees
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that αi ≤ C holds. Since the value of the dual variable reflects the influence of the
corresponding constraint on the objective function, the constant C limits the influence a
point from the training set can have on the solution. In this way C limits the influence of
outliers in the training set, which would otherwise have large values in the corresponding
dual variables [13].

2.2.3 Overcoming Linearity

It is not hard to imagine problems where linear decision boundaries are insufficient.
Already a rather simple problem as the one depicted in figure 2.1 (b) cannot be solved
satisfactory using a linear decision boundary. Linearity may be overcome by mapping
the input space into another, possibly higher- or even infinite-dimensional, space using
a mapping h. Such methods are known as kernel methods. For the example given in
figure 2.1, one may choose h : (x1,x2) 7→ (x21,x2). The resulting space is plotted in
figure 2.3 (a). As can be seen from the plot, the two classes are linearly separable
in the resulting space h(X). The resulting decision boundary in the original space
is displayed in figure 2.3 (b). More generally, non-linear decision boundaries can be
obtained by mapping the input space into a transformed feature space and computing
the decision boundary there. The idea of kernel methods is to exploit the fact that the
input samples enter the optimization problem only through an inner product. In some
cases the inner product in the resulting feature space can be computed efficiently. In
this way, computations in higher- or infinite-dimensional feature spaces can be avoided
and such computations become tractable.

The main concept of kernel methods is the kernel function. A kernel function may
be viewed as a generalized version of the dot product. In this way it implicitly defines
another feature space. Consider a kernel function K : Rp×Rp → R with possibly finite
eigen-expansion

K(x,y) =

∞
∑

i=1

λiφi(x)φi(y). (2.22)

Note the structure similar to the dot product φTxφy of two vectors with φx =
(φ1(x), . . . ,φn(x), . . .) and φy = (φ1(y), . . . ,φn(y), . . .). Replacing xTy with K(x,y)
thus amounts to the inner product of the input vectors mapped into a different features
space given by the eigenvectors of K:

X = (X1, . . . ,Xp) 7→ φ(X) = (
√

λ1φ1(X), . . . ,
√

λnφn(X), . . .) (2.23)

In literature this space is called the implicit feature space, because the space appears only
implicitly through the use of K. This leads to an optimization problem corresponding
to (2.12):

min
θ,θ0,ξ

1
2K(θ,θ) + C

∑N
i=1 ξi

subject to ξi ≥ 0, i = 1, . . . ,N

yi(x
T
i θ + θ0) = 1− ξi, i = 1, . . . N

(2.24)
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Figure 2.3: Plots of the second example problem from figure 2.1. (a) displays the samples
in the augmented space h(X). h simply maps the first input variable X1 to its square and
leaves the second input variable X2 unchanged. The two classes are linearly separable in
the augmented space. In (b), the decision boundary in the original space is displayed.

The solution to the problem corresponds to a hyperplane in the implicit feature space.
The decision function in the original space is given by

f(x) = K(x,θ)− θ0 (2.25)

=

N
∑

i=1

αiK(x,xi)− θ0 (2.26)

and thus requires at most N evaluations of K. The function f lies in the space
H = {K(·,x) : x ∈ RP } spanned by the eigenvectors of K. The norm on H is the
norm defined by:

||f ||2H = ||
∞
∑

i=1

ciφi(x)||
2
H =

∞
∑

i=1

c2i
λi

(2.27)

Such a spaceH is called reproducing kernel Hilbert space (RKHS). Common examples
of kernel functions are

dth-Degree polynomial: K(x,y) = (1 + xTy)d

Radial basis functions: K(x,y) = exp(−γ||x− y||2)
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Neural network: K(x,y) = tanh(κ1x
Ty + κ2).

Figure 2.4 displays the resulting decision boundary of a SVM based on a radial
basis function kernel (RBF SVM) applied to the toy problem from figure 2.1 (b). The
parameter γ determines the smoothness of the decision boundary. For small values of γ
the boundary becomes very smooth, whereas large values of γ lead to a very irregular
decision boundary.

Figure 2.4: Radial basis function kernel. The decision boundaries of an RBF SVM applied
to the toy problem from figure 2.1 (b). The parameter γ determines the smoothness of the
decision boundary. γ = 0.1 leads to a smooth decision boundary, whereas γ = 10 leads to a
very irregular decision boundary. The true decision boundary is represented by the dotted
line.

The support vector classifier that is used in the implementation uses a radial basis
function (RBF) kernel. The parameter γ of the RBF kernel together with the parameter
C from the formulation of the SVM optimization problem in (2.12) are meta parameters
of the method. This means that they cannot be learned from data, but have to
be determined by trying out different values and choosing those that yield the best
performance.

2.3 Boosting

The term boosting designates a class of machine learning techniques, that achieve
high classification performance by combining a large number of classifiers with low
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performance, so called weak classifiers or weak learners. A weak classifier is a machine
learning technique that, given a set of training samples, issues a decision rule that
yields only slightly better results than guessing. The key idea of boosting is to train
each of the weak classifiers on a modified training set, forcing them to concentrate on
different aspects of the data. In the following the foundations of Boosting are presented
together with a concrete machine learning technique, the AdaBoost algorithm. For a
more detailed treatment the reader is referred to [11] and [14].

2.3.1 Strong and Weak learnability

A formal definition of boosting is given in terms of the concepts of strong and weak

learnability. The concept of strong learnability, or probably approximately correct (PAC)
learnability, is a formal definition of what is meant by learning a relation of an input
X and an output Y from data. Strong learnability assumes the existence of a target

function g, that defines the relation between X and Y . Since nothing can be learned
from the training set if the relation between X and Y is purely random, g is assumed
to be deterministic. Moreover it is assumed, that g comes from a class C of target
functions, that summarizes prior knowledge about the target function. Then a class
C is strongly PAC learnable if for every g ∈ C, every distribution DX over the input
space X and any positive ǫ and δ, there exists a learning algorithm A and a number N
of training samples, such that A, trained on a training set S consisting of N training
samples, outputs a hypothesis f that satisfies

Pr(errS ≥ ǫ) ≤ δ. (2.28)

The probability here is taken with respect to any selection of training samples. In other
words, strong PAC learnability means that the target function f can with very high
probability be learned almost correctly given a sufficient number of training samples.
Weak learnability is a relaxation of the demanding strong learnability model. A target
class C is weakly PAC learnable if for some γ > 0 there exists a learning algorithm A
that for every distribution DX over the input space and for every δ > 0 takes as input
N training samples and outputs a hypothesis f(x) such that

Pr(errS ≥
1

2
− γ) ≤ δ. (2.29)

Thus, weak PAC learnability formalizes that the relation between X and Y can with
high probability be learned with an accuracy just slightly better than guessing. It can
be shown that the weak and strong learnability are actually equivalent. This means
that there exists a technique for transforming a method for weak learning into a method
for strong learning. This is exactly the defining property of boosting methods. They
describe how a given target class can be learned in the strong sense, given an algorithm
that realizes weak learnability. Boosting methods thus rely on the assumption that the
given target class is weakly learnable. This assumption is called the weak learnability

assumption.
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2.3.2 AdaBoost

In this section the general AdaBoost algorithm as given in [14] is presented. The
algorithm assumes the existence of a weak learner, an algorithm that implements weak
learnability for the given learning problem. The AdaBoost algorithm describes how this
algorithm can be used to learn the target function in the strong sense. The weak classifier
algorithm is treated as a black box, assuming only that it takes a set of training samples
and outputs a hypothesis f(x).

Algorithm 2: AdaBoost

Input: Training set (x1,y1), . . . ,(xN ,yN )
Initialize: p1(i) =

1
N for all i = 1, . . . ,N ,i.e. the uniform probability distribution

function over the training set

For t = 1, . . . ,T do

• Train weak learner using the distribution corresponding to pt to obtain
hypothesis ft

• Compute the weighted training error ǫt:

ǫt =
N
∑

i=1

I(ft(xi) 6= yi)pt(i) (2.30)

• Compute the weight αt:

αt = log
(1− ǫt

2ǫt

)

(2.31)

• Update pt+1:

pt+1(i) =
pt(i) exp(−αtyift(xi))

Zt
(2.32)

where Zt =
∑N

i=1 pt(i) exp(−αtyift(xi)) is a normalization factor

Output: The final hypothesis F (x) = sign

(

∑T
t=1 αtft(x)

)

The algorithm presented above runs for T iterations, producing T weak classifiers. In
each iteration t = 1, . . . , T the classifier ft is trained on a distribution over the training
set given by pt. How this is realized depends on the type of weak classifiers used. Some
methods, such as decision trees, allow to integrate the weights given by pt directly into
the training process, for others a new training set has to be sampled from the original
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training set using the distribution given by pt. Moreover, in each iteration a weight αt

is computed in a way that minimizes the error over the training set. The weight αt is
defined in (2.31) to be αt =

1
2 log

(

1−ǫt
ǫt

)

. To see why this minimizes the expected error
consider the following upper bound for the training error errS :

errS =
1

N

N
∑

i=1

I[f(xi) 6= yi] (2.33)

≤
N
∑

i=1

p1(i) exp
(

− yiF (xi)
)

(2.34)

which is obtained using that I[F (xi) 6= yi] ≤ exp
(

− yiF (xi)
)

, since the labels y are
encoded using −1 and 1. Then, unraveling the recursion in (2.32), the distribution
function pt may be written as

pt+1(i) = p1(i)×
exp

(

− α1yif1(xi)
)

Z1
× . . .×

exp
(

− αtyift(xi)
)

Zt
(2.35)

= p1(i)
exp

(

− yi
∑t

j=1 αjfj(xi)
)

∏t
j=1 Zt

. (2.36)

This expression may in turn be used to derive the following upper bound on the training
error.

errS ≤
N
∑

i=1

p1(i) exp
(

− yiF (xi)
)

(2.37)

=

N
∑

i=1

pT+1(i)

T
∏

t=1

Zt (2.38)

=
T
∏

t=1

Zt. (2.39)

Finally, expanding the term for Zt using the definition of ǫt gives

Zt =

N
∑

i=1

Dt(i) exp
(

− αtyift(xi)
)

(2.40)

= exp(−αt)(1− ǫt) + exp(αt)ǫt. (2.41)

Using basic calculus it can be seen that this expression is minimized by αt = log
(

1−ǫt
2ǫt

)

.
Thus, in every step AdaBoost minimizes Zt, which then appears as a factor in the
upper bound on the training error. AdaBoost can therefore be viewed as a greedy
method to minimize the expected training error. Apart from the weak learnability
assumption, the AdaBoost algorithm makes no assumptions about the provided weak
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classifier. This means that potentially every machine learning technique can be used as
a weak learner. It should be noted however, that using a relatively strong weak classifier
might result in a greater test error, even though the training error is reduced. This is
because more accurate weak learners with higher complexity also increase the complexity
of the combined classifier and may thus lead to overfitting. A common solution is to use
decision trees with a low depth or stumps. This is also the approach that is taken here.

2.3.3 Decision Trees

The general idea of decision trees is to recursively partition the input space into different
regions and then assign a class to each of the resulting regions. Each internal node of a
tree splits the feature space in two by specifying a threshold with respect to a certain
input variable. Classifying an input using a decision tree amounts to moving along the
tree from its root to one of the leafs. If the value of the input variable lies below the
threshold specified at the current node one proceeds to the left and otherwise to the right.
Arriving at a leaf, the input is classified as the class represented by the leaf. The learning
task for decision trees amounts to growing a tree that suitably partitions the input
space. Since finding an optimal partition of a high dimensional space is computationally
infeasible, a greedy method is applied for growing the tree. At each step of growing the
tree, the problem is how to find the variable l and the threshold p at which the splitting
should occur. To this let

p̂m,k =
1

Nm

∑

xi∈Rm

I(yi = k) (2.42)

be the fraction of samples xi with class k ∈ {−1,1} in the Region Rm corresponding to
node m. Now define the following node impurity measure for a given node m, known as
the gini index.

∑

k∈{−1,1}

p̂m,k(1− p̂m,k) (2.43)

Then at each node the splitting variable l and split point p are found by minimizing the
sum of the impurity measures in each of the newly created nodes m1,m2 weighted by
the number of samples in those regions.

Nm1

∑

k∈{−1,1}

p̂m1,k(1− p̂m1,k) +Nm2

∑

k∈{−1,1}

p̂m2,k(1− p̂m2,k) (2.44)

The splitting is repeated until a given maximum depth is attained. Since trees grown
in this way are vulnerable to overfitting, the resulting tree is usually pruned using a
technique called cost-complexity pruning. But, since for Boosting the used trees are
generally small, this is not necessary here. In order to use a decision tree as a weak
classifier for Boosting, the sample weights given by the distribution function p(i) have
to be considered in the learning process. When using trees they can be incorporated
directly as weights into formula (2.42).
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2.3.4 Variants and Generalizations

The AdaBoost algorithm assumes binary outputs from the weak classifiers. A natural
extension is allowing real valued output for the weak classifiers. This variant is known
as Real AdaBoost. Instead of weighting ft by a factor αt, the value ft(x) is chosen to be
half the logit transform of the conditional probability of Y = 1 given X = x.

ft(x) =
1

2
log

( p(Y = 1|x = X)

p(Y = −1|X = x)

)

(2.45)

If decision trees are used as weak classifiers this value can be approximated using the
fraction of samples from class Y = 1 in a given final node. It can be shown[15], that
Discrete and Real AdaBoost fit a stagewise additive model to the training data that
minimizes the expected loss with respect to an exponential loss function L(y,f(x) =
exp(−yf(x)). However, the logit-transform in (2.45) may lead to numerical instabilities.
Gentle AdaBoost replaces (2.45) by the difference of the conditional probabilities:

ft(x) = p(Y = 1|X = x)− p(Y = −1|X = x) (2.46)

This leads to more stable results and Gentle AdaBoost often outperforms Real and
Discrete AdaBoost.

2.3.5 Regularization

The meta parameters of the presented Boosting methods are the size J of the trees used
as weak classifiers and the number M of weak classifiers. Although Boosting usually
generalizes well, the performance decreases if J orM are chosen too large. An interesting
property of Boosting is that its performance may increase even after the training error
has been driven down to zero. This is due to the margin increasing property of boosting
[14]. This means that with increasing M the classification results of the samples from
every class move away further from zero, yielding more confident results. In order to
find suitable parameters J and M , it is therefore necessary to monitor the performance
using a separate validation set. The usual approach is fixing a value for J and then to
iteratively increaseM until the validation error starts to increase. This method is known
as early stopping.

2.3.6 Interpretation

A major advantage of decision trees is their interpretability. Not only can the classifier
be easily visualized, it is also possible to define a relative importance measure for the
input variables. Each node in the tree corresponds to a binary split of a region. Let î2 be
the improvement in the empirical squared error that is obtained by fitting a piece-wise
constant decision function over the two regions compared to fitting a constant function
over the hole region. The estimated relative importance Î2

l of variable l is then the sum
of the improvement over all nodes n that split the variable l = var(n) in tree T .
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I2
l (T ) =

∑

n∈T

î2nI(var(n) = l) (2.47)

By averaging over the trees this measure can be extended to AdaBoost classifiers based
on trees:

I2
l =

1

M

M
∑

m=1

I2
l (Tm) (2.48)

2.4 Conditional Random Fields

The drawback of the presented SVM and AdaBoost machine learning methods is that
they are unsuitable to model dependencies between the output variables Y . Especially
in the field of image processing a lot of important information is contained in those
dependencies. Such structural dependencies can to some extent be modeled using
conditional random fields (CRF). The CRF approach to classification is essentially
different to the one taken by non-structural methods such as SVMs and Boosting.
Instead of considering the classification of each region independently, the whole image
is considered, represented by a set of output variables Y = (Y1, . . . ,Yn) . A Conditional

random field (CRF) models the conditional joint probability of a set of output variables Y
given a set of input variablesX. Conditional random fields can be conveniently described
using graphical models. Nevertheless, the richer structure of CRF models makes learning
and inference in those models more complicated. In this section graphical models for the
description of CRFs and the foundations of learning and inference in conditional random
fields will be presented.

2.4.1 Graphical Models

A factor graph G is given by a triple (V,F , E). The graph consists of a set V of vertices
and a set F of factors. The set E ⊂ G × F of edges connects vertices with factors. A
sample graph consisting of three variables and three factors is displayed in figure 2.5.
Factor graphs can be used to represent joint probabilities over a set of random variables.
Each variable is represented by a node in the graph. Here, the nodes are the input
variables X = (X1, . . . ,Xp) and the output variables Y = (Y1, . . . ,Yq). The probability
distribution modeled by a factor graph is defined to be of the form

p(x,y) =
1

Z

∏

F∈F

ψF (xF ,yF ). (2.49)

The shorthand xF ,yF is used to denote values of the variables that are adjacent to the
factor F ∈ F , also called the scope of the factor F . Thus, the function ψF is a function of
the variables adjacent to the factor F . The functions ψF for F ∈ F are called potentials.
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Figure 2.5: A sample graph representing a distribution over three variables(circles). The
factors are displayed by the black square. They are used to model interaction between the
variables.

Z is a normalization constant, called the partition function. A common reformulation is
to instead of the potentials ψF use the energies

EF (xF ,yF ) = − log(ψF (x,y)). (2.50)

The probability distribution p(x,y) can then be given in terms of the energies.

p(x,y) =
1

Z

∏

F∈F

exp
(

− EF (xF ,yF )
)

(2.51)

=
1

Z
exp

(

−
∑

F∈F

EF (xF ,yF )
)

(2.52)

Using the energy formulation makes it possible to reformulate the problem of probability
maximization as a minimization problem:

argmax
x,y

p(x,y) = argmax
x,y

exp
(

−
∑

F∈F

EF (xF ,yF )
)

(2.53)

= argmin
x,y

∑

F∈F

EF (xF ,yF ) (2.54)

It is convenient to define the total energy of the model as E =
∑

F∈F EF (yF ,xF ).
The energy minimization approach often offers more efficient solution methods than the
maximization of the probabilities [3]. Since the aim is to predict Y given the values of
X, one generally considers the conditional distribution of Y given X. Since conditioning
on X only changes the value of the normalization constant Z(x), that now depends on
the value of X, the same graph is used to model the probability distribution. A factor
graph describing a conditional probability distribution is called a conditional random
field. The conditional probability of Y = y given X = x is then given by

p(y|x) =
1

Z(x)

∏

F∈F

ψF (xF ,yF ) (2.55)
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2.4.2 The Image Model

So how can CRFs be used to model an image? A presegmented image containing
n image regions can be modeled using n variables Y = (Y1, . . . ,Yn). For the hole
detection problem it is sufficient to assume the Yi to be discrete, binary variables. For
each region the input variables (Xi,1, . . . ,Xi,p) are given. Two simplifying assumptions
made here are that there are only pairwise dependencies in the image and that those
dependencies are limited to neighboring image regions. Each of these dependencies is
modeled by a potential function. The dependency of variable Yi on the corresponding
inputs Xi,1, . . . ,Xi,p is modeled by the unary potential ψi(xi). The dependencies of Yi
on one of the neighboring regions Yj is modeled using the pairwise potential ψi,j(yi,yj).
Figure 2.6 shows the model displayed by a factor graph. Each node represents one
input or output variable. Each potential corresponds to one factor in the graph. The
corresponding conditional probability distribution and energy are then given by

p(y|x) =
1

Z(x)

∏

i∈1,...,n

ψi(xi,yi)
∏

i∈1,...,n
j∈N (i)

ψi,j(x,yi,yj) (2.56)

E(x,y) =
∑

i∈1,...,n

Ei(xi,yi) +
∑

i∈1,...,n
j∈N (i)

Ei,j(xi,yj) (2.57)

Here, the notation N (i) was used to denote the indices of the variables Yj that are
adjacent to variable Yi. What remains to be specified is the form of the unary and
pairwise potentials ψi,ψi,j or their negative log-potentials Ei,Ei,j . For the unary energies
Ei the form

Ei(yi) = θu(yi)
Txi (2.58)

is assumed. Thus, for binary classification the unary energies are given by a weighted
sum of the input variables x with the weights given by the parameters θ(0)U and θU (1).
Note that here the two classes are represented using k ∈ {0,1} instead of k ∈ {−1,1}. In
order to model horizontal and vertical interactions, the pairwise energy of two variables
Yi,Yj is assumed to be of the form

Ei,j(yi,yj) =







θH(yi,yj) + θCH(yi,yj) exp(−γCJi,j) for a horizontal edge

θV (yi,yj) + θCV (yi,yj) exp(−γCJi,j) for a vertical edge
(2.59)

Here, exp(−γCJi,j) is a similarity measure for the two image regions corresponding
to the variables Yi,Yj . Ji,j can for example be the distance between the two regions
in a certain color space. Since the value Ji,j is neither a feature of the superpixel
corresponding to Yi nor of the superpixel corresponding to Yj , features of this type
are called edge features, because they are associated to an edge in the graph. The
interaction between to adjacent image regions is thus assumed to consist of a constant
part, θH(yi,yj) or θV (yi,yj), and a contrast sensitive part, θCV (yi,yj) exp(−γCJi,j) or
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θCH(yi,yj) exp(−γCJi,j). Since there are two classes in the model, each of those parts is
specified by four values. All in all, the model contains 20 parameters that have to be
learned from the data. The additional parameter γC determines the form of the contrast
function between superpixels. It is chosen by measuring the performance of the classifier
on the validation set. How the parameters defining the unary and pairwise energies can
be learned from the data is presented in the following section.

Figure 2.6: Graphical model of an image. Each output variable Yi (white discs) corresponds
to one image region. The dependencies between the regions are assumed to be pairwise
and limited to neighboring regions. The dependency of a given region on its features, is
represented by the corresponding input variablesXi (gray discs). Each of those dependencies
is modeled by one factor in the graph.

2.4.3 Learning in CRFs

In the previous section, a model for structural dependencies of image regions was
presented. In order to use this model for image classification, its parameters have to
be learned from training data. For now, assume the parameters to be given by a vector
θ. Let X and Y be random variables with joint distribution DX,Y . The given training
data S = {(x1,y1), . . . ,(xN ,yN )} is assumed to consists of i.i.d. samples from this
distribution. Moreover, it is assumed that, given the parameters θ, a prediction rule
is given of the form f(X). Generally, there are two different approaches to learning
the parameters θ from the data. In probabilistic parameter learning, θ is chosen so
that the models conditional probability distribution p(y|x) is closest to the distribution
DY |X . Close here means in the sense of the Kullback-Leibler divergence between the
two probability distributions. The other approach to parameter learning is called Loss-

Minimizing Parameter Learning. Given a loss-function L, the task of loss-minimizing
parameter learning is finding the value of θ such that the expected prediction risk

R = EX,Y (L(Y,f(X)) (2.60)

is minimized. In the following, a method will be presented that realizes loss-minimizing
parameter learning. Assume that the prediction given an input x is chosen to be the y
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that maximizes the conditional probability p(y|x). This approach may be generalized
by defining a discriminant function g : X × Y → R from which the prediction f(x) is
obtained by maximizing g(x,·), i.e.

f(x) = argmax
y∈Y

g(x,y). (2.61)

Note that the maximum here is taken over all possible values y can take on. Since the
aim is learning the discriminant function from the data, it is assumed that g has the
form

g(x,y) = θTΨ(x,y). (2.62)

Here, Ψ(x,y) is the joint feature vector containing the input and output variables,
whereas θ is a weight vector defining a linear function in x and y. In the case
where edge features are used they also have to be included in the joint feature vector.
The discriminant function then is a linear function of the joint feature vector. For
a suitably chosen joint feature vector Ψ(x,y), this is exactly the form of the energy
function of the image model. Nevertheless, attention has to be paid to the sign.
Maximizing the probability corresponds to minimizing the energy, but here the aim
is to maximize g. Therefore instead of the negative log potentials only the log potentials
ψ̂(x,y) = logψ(x,y) will be considered. Assume now that for a given training set there
is a linear g such that all samples are classified correctly. This is the case if for all inputs
x1, . . . ,xN , g(x,·) attains its maximum at yi. This may be equivalently expressed using
a set of linear constraints:

θT (Ψ(xi,yi)−Ψ(xi,y)) ≥ 0,y ∈ Y,y 6= yi,i = 1, . . . ,N (2.63)

Here Y is used to denote the space of all possible configuration y can take on. In order
to identify a unique solution to the problem, the value of θ is chosen that yields the
largest margin. This leads to a minimization problem similar to the formulation of the
SVM classifier.

min
θ

1
2 ||θ||

2

subject to θT (Ψ(xi,yi)−Ψ(xi,y)) ,y ∈ Y,y 6= yi, i = 1, . . . ,N
(2.64)

As with the basic SVM formulation, this can be extended to allow training errors by
introducing slack variables. For a more detailed treatment of the different formulations
the reader is referred to [16]. The problem with the formulation (2.64) is that the number
of linear constraints N |Y | −N is usually very large. For graphs for example, the size of
the output space |Y | grows exponentially in the number of variables. It can however be
shown, that the solution to this minimization problem can be found using only a small
subset of the constraints. This observation leads to the cutting plane training method

which is described in [16]. The cutting plane training method iterates solving a relaxed
minimization problem using only a subset of the constraints. This subset is successively
updated until the solution is found.
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2.4.4 Inference

A fully specified CRF model describes a probability distribution. The task of using this
distribution to draw conclusions about the output variables Y is called inference. Again,
the concept of a Loss-function can be used to motivate different ways of conducting
inference in CRFs. Consider the two following loss-functions:

0/1 - Loss: The 0/1-loss is zero when the prediction is correct and 1 when it deviates
from the correct output, i.e.

L(y,f(x)) =







1, if yi = fi(x) for i = 1 . . . ,n

0, otherwise
(2.65)

Hamming - Loss: As opposed to the 0/1-loss the Hamming-loss is proportional to the
number of misclassified variables:

L(y,f(x)) =
1

n

n
∑

i=1

I(yi 6= fi(x)) (2.66)

The choice of the loss function defines which property of the distribution given by
p is used to make the prediction f(X). In either case, the aim is to minimize the risk.
Choosing the 0/1-loss, the risk is given by

R(f) = EY (L(Y,f(x))|X = x) (2.67)

=
∑

Y

p(y|x)L(y,f(x)) (2.68)

= 1− p(f(x)|x) (2.69)

Thus, minimizing the expected prediction error under 0/1-loss amounts to choosing f(x)
so that p(f(x)|x) is maximized. This type of inference is called maximum aposteriori

(MAP) inference. On the other hand, choosing the hamming loss results in the following
expression for the risk.

R(f) = EY (L(Y,f(x))|X = x) (2.70)

=
∑

y∈Y

p(y|x)L(y,f(x)) (2.71)

=
1

n

n
∑

i=1

(1− pi(f(x)i|x)) (2.72)

Here, pi was used to denote the marginal probability mass function of Yi. The expression
in (2.72) is minimized by the prediction

f(x)i = argmax
y∈Yn

pi(y|x), (2.73)
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i.e. the value of Yn that maximizes the marginal distribution of Yn given X. Computing
the marginals and the partition function Z of a CRF is known as probabilistic inference.
The advantage of probabilistic inference is that it yields a more differentiated result
than MAP inference. This is because the marginals of each variable yi provide useful
information that can be used in consecutive processing steps. A commonly used method
for probabilistic inference in graphs is belief propagation, which will be presented in the
following section.

Belief Propagation

Belief propagation is a dynamic programming method to perform probabilistic inference
in tree-structured graphs. For a cyclic graph the method provides an approximate
solution. The approximate version is also called loopy belief propagation. Even though
it lacks a theoretical justification, the methods performs very well in practice [17]. If
the method converges, the approximation is normally very good. Nevertheless, it can
happen that messages start circulating in the graph leading to an oscillation between
states. The core concept of belief propagation is to pass messages in the graph from
factors to variables and vice versa. The message from variable Yi to factor Fj is denoted
by qYi→Fj

, the message from factor Fj to variable Yi by rFj→Yi
. For tree structured

graphs, they are defined as follows.

qYi→Fj
(yi) =

∑

k∈N (Yi)
k 6=j

rFk→Yi
(yi) (2.74)

rFj→Yi
(yi) = log

(

∑

y
′

F
∈YFj

y′i=yi

exp
(

− EFj
(y′Fj

) +
∑

k∈N (Fj)\{i}

qYk→Fj
(y′k)

)

)

(2.75)

Here the notation N (Fj) was used to denote the set of indices of the variables
Yi adjacent to the factor Fj . Those formulas can be derived by computing marginal
distribution in a tree-structured graph, as shown in [12]. Since the messages depend
on each other, only the messages from factors or variables with only one adjacent
variable or factor are known initially. In graphs with loops this is not the case. Instead,
messages are initialized to zero or some random value. The message updates are then
performed iteratively or at random. In order to conduct inference in graphs with loops
those messages have to be modified slightly. The detailed formulas can be found in the
appendix B.
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Implementation

In this chapter, the implementation of the proposed hole detection system is described.
Since this work is part of a larger software project, the general structure of the hole
detection has to be adapted to the requirements of this project. The embedding of the
hole detection is displayed in the flow chart in figure 3.1. The hole detection is required
to be performed in two parts. The first part consists of an independent hole detection,
that uses only the raw information contained in the images. The second part refines
the results from the first step using high-level information from other modules for the
detection of shelves and products.

3.1 Software

The hole detection is implemented using the ToolIP [1] graphical framework, developed
by the ITWM Fraunhofer institute. ToolIP provides a library of different image
processing algorithms in the form of plugins, that can be combined as nodes in a graph.
Images are passed along edges in this graph and in that way complex image processing
solutions can be constructed in a convenient manner. ToolIP also provides an interface
for the development of new plugins in C++. For the hole detection 8 new plugins were
developed. The parameter learning of the machine learning techniques and other data
processing tasks were performed using Python 2.7.6. Furthermore, the following external
libraries were used to implement the hole detection system

OpenCV: The OpenCV 2.4.7 library[18] was used to implement the SVM and the
AdaBoost classifier.

OpenGM: Probabilistic inference in graphs was implemented using the OpenGM 2.0.2
library[19].

Dlib: Learning the parameters of the CRF image model was performed using the
structural SVM implementation of the Dlib library[20]

35



Chapter 3. Implementation

Figure 3.1: The structure of the hole detection system. The first part of the hole
detection is encapsulated in an independent hole detection module that uses only the
raw information from the shelf images. This preliminary hole detection consists itself of
three steps: segmentation of the image into superpixels, classification of the superpixels
and combination of the classified superpixels to obtain bounding boxes for potential holes.
The predictions are then refined using the information from the shelf and product detection
modules.

SLIC: The implementation of the SLIC superpixel algorithm was taken from [7].

3.2 The Proposed Method

In this section the proposed approach to the hole detection is described. The hole
detection makes two kind of predictions: An unrefined prediction using only the raw
information from the image and a refined prediction, that was obtained using information
from the other detection modules. The approach can be divided into the following,
consecutive steps:

Segmentation: First, the input image is segmented into superpixels using the SLIC
superpixels algorithm presented in section 1.2.1.

Classification: Each superpixel is classified using an SVM classifier as presented in
section 2.2.

Combination: In this step suitable bounding boxes for the tentative holes are found
and a confidence measure for each bounding box is computed. Then the unrefined
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Figure 3.2: Example of a ToolIP graph. A graph consists of plugins and subgraphs. Each
node processes the image that is given as input and passes it on to the next nodes. In this
way complete image processing solutions can be built from the available algorithms.

prediction is made using the bounding boxes and the confidence values.

Refinement: Using contextual information from the product and shelf detection, a
refined prediction for the holes in the image are made.

Apart from the SVM classifier, two other classification methods are implemented in
order to determine which one performs best. The two other classifiers are an AdaBoost
classifier and a CRF classifier, that uses the combined results from the SVM and the
AdaBoost classifier. The detailed structure of the proposed hole detection is displayed
in figure 3.3.

3.3 Image Segmentation

To segment the images, the SLIC algorithm described in chapter 1.2.1 is used. The
algorithm outputs an image containing labeled regions with labels 1, . . . ,Nsp, where Nsp

is the number of superpixels in the image. There are two parameters that influence
the results of the superpixel segmentation: The number Nsp of superpixels and the
compactness k. The compactness value used here is k = 10, as recommended in [7]. The
choice of the parameter Nsp is a tradeoff between the information content of a single
superpixel and the ability to adapt to the structure of the image. The situation is further
complicated, because the shelf images come in different scales and may contain products
of varying sizes. The number of superpixels also has an impact on the computation time
because it determines the number of classifications that have to be performed. Those
may be relatively costly depending on the chosen classification method. The value used
for almost all computations in this work is Nsp = 2000. The influence of Nsp on the
image segmentation is displayed in figure 3.4. As can be seen from the figure, a value
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Figure 3.3: The proposed hole detection method. The detection is performed in four steps.
First, the image is segmented into superpixels using the SLIC superpixels algorithm. The
superpixels are then classified an SVM classifier. The classification results for the superpixels
are then combined to find bounding boxes of tentative holes. Finally, the predictions are
refined using information from the other detection modules. Apart from the SVM classifier,
two other classification methods, an AdaBoost and a CRF classifier, are implemented and
tested.

(a) Input Image (b) Segmented Image

Figure 3.4: (a) Input image. An example image containing a hole and several products.
(b) Superpixel segmentation of (a). Displayed are the borders of the superpixels for
different numbers of superpixels in the hole image. Red corresponds to Nsp = 500, green to
Nsp = 1000, purple to Nsp = 2000 and yellow to Nsp = 4000.

value of Nsp that is too low fails to capture the structure of the image which may lead
to problems in the classification step.
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3.4 Classification

For the classification step three different methods are presented in this section. The
classification may be viewed as the main part of the hole detection, because it determines
which image regions are considered as potential holes. Therefore, three different
classifiers are implemented and tested in order to find the method that performs best.
The first two methods, the AdaBoost and the SVM classifier, can be considered as
local, because they only use features of one superpixel and its neighbors and don’t
consider the whole picture. The CRF classifier on the other hand takes into account
the whole structure of the image. Since training and inference in a CRF model is very
demanding, the CRF classifier uses the results from the SVM and AdaBoost classifier as
input features. It may thus also be viewed as a two-level classifier, building on the results
of the AdaBoost and CRF classifier. In this section the details of the implementation
and training of the classification methods are described.

3.4.1 Features

The local classifiers use a total of 219 features, that are extracted from each superpixel.
Apart from relatively common features, such as color and texture descriptors, some of
the features were designed specifically for the application context.

HSV Color Space: For each superpixel the mean, variance and maximum and
minimum value of each channel h, s and v are computed giving 3×4 = 12 features.

CIE LAB Color Space: Similarly, the mean, variance, maximum and minimum
values of each channel of the CIE LAB space are computed for each superpixel.
This yields another 12 features.

Chroma: For each pixel the chroma c is computed from the means of the a and b

channels of the CIE LAB color space. The features extracted from it are mean,
variance, maximum and minimum, yielding four more features.

Merged Superpixels: Over the whole image superpixels are merged depending on the
distance of their means in the CIE LAB color space. The size, maximum width and
maximum height are used as features. The motivation is that holes are usually large
homogeneous regions that yield large values, whereas products are inhomogeneous
and yield smaller values. A figure illustrating the merging of superpixels and the
corresponding features is included in the appendix in figure A.1.

Further Variance Measures: The homogeneity of holes can be exploited using
variance measures. However, the expressiveness of such measures on superpixel-
level is deteriorated by the segmentation, which aims to give homogeneous regions.
To overcome this, the variance in a bounding box of the superpixel rather than
only over the superpixel is computed. This is done for all three channels of the
CIE LAB space.
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Compactness Measures: The compactness of the superpixels depends on the
structure of the corresponding image region. Products often exhibit salient
structures, which result in superpixels that are not very compact. Holes on the
other hand are relatively homogeneous, which leads to compact superpixels. The
compactness measures used are given by

comp1 =
Asp

Abb
(3.1)

comp2 =
4πAsp

S2
sp

(3.2)

where Asp is the area of the superpixel, Abb the area of its bounding box and Ssp
its border length. A figure illustrating the compactness features can be found in
the appendix, figure A.2.

Local Binary Patterns: Two different histograms for the local binary patterns are
computed. The basic LBP histogram on three color channels would yield 3× 256
features. Since very high numbers of features may affect the performance of the
classifier and also make prediction more costly, compressed versions of the basic
and uniform LBP histograms are used. The standard LBP histogram with 256
bins is reduced to 8 bins. This is done by grouping the histogram into groups of 32
adjacent bins and merging them. For the uniform histogram, bins corresponding to
cyclic permutations of a given uniform pattern are merged together. As presented
in 1.3, this yields 9 bins plus one for the non-uniform patters. Thus, the resulting
histogram contains 10 bins. Computing the histograms for the three channels of
the CIE LAB space yields 3× (8 + 10) = 72 features.

Color Histograms: To describe the color characteristics of the superpixels color
histograms are used. A common approach taken here is to consider chromaticity
information and brightness information independently. To describe the brightness
of a superpixel a histogram with 10 bins of the l channel of the CIE LAB space is
used. The histogram is centered around the mean, because the brightness range in
a single superpixel is usually narrow. The chromaticity information is summarized
using a 10 × 10 histogram over the a and b channels. Again, the histograms are
centered around the mean of the superpixel. This yields another 110 features.

Agents An agent based structure descriptor, as described in section 1.4, is also used as
a feature for the superpixels. The algorithm is run on the dilated internal gradient
image and the number of agents in each superpixel is used as a feature. This is
done for the three channels l,a,b of the CIE LAB space.

Redrik For each row in a superpixel a maximum and a minimum to the left and another
minimum to the right of the maximum are computed. The differences are then
averaged over all rows in the superpixel. The resulting average values, one for the
minima on the left and one for the minima on the right, are then used as features
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for the superpixel. They are computed for all three channels of the CIE LAB space.
An illustration of the Redrik features can be found in figure ?? in the appendix.

Neighboring Superpixels: For the four neighboring superpixels that have the longest
common border with the current superpixel, the means of the l, a and b channel
of the CIE LAB space are used as features. If a superpixels has less than four
neighbors, the missing values are replaced by the means of the superpixel itself.
The exact neighborhood relation used here is described in section 3.5. This gives
another 12 features.

3.4.2 Training Data

The AdaBoost and the SVM classifier are both trained on the same training set consisting
of 25 images. The training images were annotated using the MAOI software tool, that
is included in the ToolIP package. One of the requirements of the project is to avoid to
falsely classify a product as a hole. On the other hand, false positives in other image
regions are tolerable. The classifiers were thus primarily trained to distinguish between
products and holes. This is achieved by explicitly labeling image regions corresponding
to holes or products and using the superpixels in those regions to train the classifiers.
Another problem with the training images is that the superpixels corresponding to
products usually outnumber the superpixels corresponding to holes. In order to avoid
complications due to the imbalance of the training set, the product instances in the
training set are randomly sampled without replacement from the total set of superpixels
classified as products. In order to evaluate the performance of different versions of the
classifiers and find suitable values for the meta-parameters a validation set consisting of
another 25 images was used. The validation data was preprocessed in the same way as
the training data.

3.4.3 The AdaBoost Classifier

In order to explore the capabilities of the AdaBoost classifier, different variants of it with
different weak classifiers were trained on the training set. To evaluate their performance,
the error on the validation set is computed. The results are displayed in figure 3.5. The
tested variants of the AdaBoost classifier are Real AdaBoost and Gentle AdaBoost. For
each variant weak classifiers with different complexities are tested. The weak classifiers
used are stumps, i.e. decision trees of depth 1, decision trees of maximum depth 5
and decision trees of depth 10. For stumps the performance of Real AdaBoost and
Gentle AdaBoost on the validation set is equal. For deeper trees the Gentle AdaBoost
method outperformed Real AdaBoost. The best performance on the validation set is
obtained by the Gentle AdaBoost method using decision trees with a maximum depth
of 5. Nevertheless, the advantage over Gentle AdaBoost with a decision tree depth of
10 is only marginal. Since the depth of the weak classifiers used affects the time needed
to evaluate the classifier, the Gentle AdaBoost method with decision trees of maximum
depth 5 is chosen. Since the gain in performance for more than 150 weak classifiers
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is minimal, a number of 150 weak classifiers is chosen for the AdaBoost classifier. As

Figure 3.5: Performance of the AdaBoost classifier. The graph displays the error on the
validation set with respect to the number of weak classifiers used. For each variant different
depths of the weak classifiers are tested. It can be seen that, except for the classifiers using
stumps, Gentle AdaBoost outperforms Real AdaBoost. The best performance yields the
Gentle AdaBoost method with a maximum depth of 5 or 10.

described in section 2.3.6, the AdaBoost method can be used to compute a relative
importance measure for the features used. For this purpose, a classifier is trained using
the Gentle AdaBoost method and the relative importances were computed. The 50
highest rated features are displayed in figure A.4 in the appendix. The most important
feature is the agent feature on the l-channel, followed by the Redrik Feature for the
l channel and the size of the merged superpixels. All of these features are in some
way connected to the homogeneity of the image, which goes along with the intuition
that holes are characterized by relative homogeneity compared to products. Since the
number of features has a strong impact on the computational cost of the classification
and sometimes also its performance, it is interesting to investigate the classification
performance with respect to the number of features. Figure 3.6 displays the performance
of the Gentle AdaBoost classifier based on decision trees with a maximum depth of 5 for
different numbers of features. The performance is measured for all as well as the 100, 50
and 25 features with the highest importance. The graph shows that up to a number of
250 weak classifiers the performance is almost equal for 50, 100 and all features. For 25
features the performance is slightly worse. The performance of the classifier using the
50 best features even improves slightly, when the number of weak classifiers is increased
further.

Based on the performance results and computational considerations, the Gentle
AdaBoost classifier with 150 decision trees of maximum depth 5 trained on the 50
features with the highest relative importances is chosen for the implementation. In
figure 3.7 the classification results of the AdaBoost classifier on a sample image are
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Figure 3.6: AdaBoost performance for selected features. A classifier was trained on
different numbers of samples using the Gentle AdaBoost method with a maximum-depth of
5 and 200 weak classifiers. The graph displays the error on the validation set for different
numbers of features. The performance for all features and the 100 and 50 features with the
highest importance is essentially equal. The performance of the classifier using the 50 best
features even improves slightly when the number of weak classifiers is increased over 200.
Using only the 25 features with the highest importances results in a slight performance loss.

(a) Input Image (b) Classification Results

Figure 3.7: Results of the AdaBoost classifier. The results of the classification are the
weighted votes of the AdaBoost classifier, which can be interpreted as confidences. White
regions are where the weighted votes of the weak classifier are positive indicating a hole. In
the dark regions the weighted votes are negative, which indicates products.

displayed. The values displayed are the weighted votes of the weak classifiers output by
the AdaBoost classifier. Those values can, to some extent, be interpreted as a confidence
value. That means large, positive values (white) indicate that the classifier is sure about
the corresponding region being a hole, whereas values that are much smaller than zero
(black) indicate that the classifier is sure about the region not being a hole.
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3.4.4 The SVM Classifier

The SVM classifier used here is based on radial basis functions (RBFs). SVMs based on
RBF are commonly used in image analysis because of their classification performance
and computational efficiency. Since SVM classifiers are sensitive to differently scaled
features, all features are normalized to have mean 0 and standard deviation 1. The RBF
SVM classifier has two meta-parameters. The parameter C appears as a factor of the
sums of the slack-variables in the formulation of the SVM, see (2.12). It determines how
big the influence of misclassified training samples is. A too large C leads to overfitting
of the classifier and makes it vulnerable to noise in the training data. The parameter γ
determines the smoothness of the decision boundary in the feature space. Again, it is
a trade-off between the ability of the classifier to adapt to the data and overfitting on
the other hand. In order to determine suitable values for the parameters a log-scale grid
search was performed. This was done for different subsets of the features presented in the
previous section. Again, the different subsets used were all features as well as the 100, 50
and 25 features with the highest relative importance values. The result are displayed in
figure 3.8. In the plots, the evaluation points are marked by gray dots. The coloring was
obtained using linear interpolation. The general structure of the results is the same for
all sets of features that were used. Also the optimal values obtained and their position
were essentially equal. The best performance on the training set was obtained for the
feature set containing the 50 highest rated features at values γ = 0.0251 and C = 1. This
is the classifier that was chosen for the implementation. The classification results of the
SVM classifier are the distances of each input sample to the decision boundary. Similar
to the AdaBoost classifier, large values greater than zero indicate holes and negative
values indicate non-holes. The results of the classifier on the sample image are displayed
in figure 3.9

3.5 The CRF Classifier

The CRF classifier models structural dependencies in the image using pairwise
interactions between neighboring superpixels. In order to model an image as a graph, it
is necessary to define a neighborhood relation on superpixels. Here, a generalized version
of the four connected neighborhood is used, in the sense that for every superpixel the
neighbors in a given direction are the superpixels that have the most border pixels in
this direction. However, since a neighborhood relation is symmetric this may result in a
superpixel with more than four neighbors. Formally, the neighborhood relation is defined
as follows. For each pair i,j of superpixels, for each direction north, east, south, west, it
is counted how many pixels of i have a neighbor in j in the given direction. The north,
east, south and west neighbors of i are then the superpixels with the most neighbors in
the respective direction, that are not already a neighbor in another direction. In order
to obtain a symmetric relation, all superpixels j that have i as a north, east, south or
west neighbor are also defined to be neighbors of i. The relation between neighboring
superpixels is modeled by an edge in the corresponding factor graph. Using the above
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Figure 3.8: Optimizing the SVM classifier. In order to find suitable meta-parameters
C and γ of the RBF SVM classifier a grid search using the error on the validation set
was performed for the different sets of features. The coloring was obtained using linear
interpolation. Evaluation points are marked using Gray dots. The features used were all
features as well as the 100, 50 and 25 best features as determined in the previous section.
The optimal values for each set of features are essentially equal. Moreover, the general
structure of the results looks similar.
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(a) Input Image (b) Classification Results

Figure 3.9: Results of the SVM classifier. The results of the classification are the distances
to the decision boundary, which can be interpreted as confidences. Large, positive results
(white) indicate a confident hole, whereas large, negative values (black) indicate confidence
that the corresponding superpixel is not a hole.

definition of the neighborhood relation, it is possible to distinguish horizontal and vertical
edges. The resulting graph is displayed in figure 3.5. Vertical edges in the graph are
displayed in blue and horizontal edges in red.

3.5.1 Training

The CRF model presented in section 2.4 has 20 parameters specifying the unary and
pairwise potentials. Since the CRF classifier is based on the SVM and AdaBoost
classifier, a different training set is used. The data used to trained the classifier consists
of 15 images from the validation set. The remaining 10 images in the validation set are
used to determine the parameter γC of the contrast function and the parameter C of the
structural SVM. Since the training of the CRF model is computationally demanding, an
extensive grid search as in the SVM case was not possible. 30 different combinations of
the parameters were tested and their errors on the validation set computed. The best
values are obtained for C = 1 and γC = 0.45. The corresponding unary energies of node
i in the graph are given by

Ei(yi,xi) =







−1.2xi,1 − 0.4xi,2 , yi = 0

1.2xi,1 + 0.4xi,2 , yi = 1
. (3.3)

Here, xi,1,xi,2 are the classification results of the corresponding superpixel from the SVM
classifier and the AdaBoost classifier, respectively. An interesting result here is, that the
results from the SVM classifier are weighted heavier than the results from the AdaBoost
classifier. The values of parameters of the pairwise potentials Ei,j are given as 2 × 2
matrices in figure 3.11. The rows correspond to the classes of Yi and the columns to
the class of Yj . They can be interpreted as follows. Negative values on the diagonal
as well as positive values on the off-diagonal favor neighboring superpixels to have the
same class and thus have a smoothing effect on the image. The model has thus learned
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Figure 3.10: The CRF model. The CRF model uses a graph to model the interactions
between image regions. The graph corresponding to an example image is displayed in the
figure. Vertical edges are displayed in blue and horizontal edges in red.

that the results can be smoothed in vertical direction rather than in horizontal direction.
However, for the non-hole class (Yi = 1) the soothing is restricted to similar superpixels.

3.5.2 Inference

In order to classify the superpixels in an image the marginal distributions of each node are
computed. The used method is loopy belief propagation. The method yields two values
for each superpixel, namely the energy corresponding to the marginal probability of the
superpixel being a hole and for the superpixel being a non-hole. In order to obtain the
corresponding probabilities, it would be necessary to approximate the partition function
Z(x). The approach chosen here is to compute the negative difference between the two
energies which amounts to computing a logarithmic likelihood ratio. Hence, the class
of a superpixel is given by the sign of the log-likelihood ratio. The results of the CRF
classifier on the sample image are displayed in figure 3.12.
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Figure 3.11: Pairwise Potentials. The plots display the pairwise potentials that were
learned from the training data. The plots in the top row display the parameters for vertical
edges. Here, negative values on the diagonal indicate that the result is smoothed in this
direction. The plots in the bottom row display the parameters for horizontal edges. Here,
no strong smoothing effect occurs.

3.6 Combination

Since the results of the hole detection are required to be bounding boxes together with
confidence values, it is necessary to find suitable bounding boxes for the image regions
that were classified as holes. Moreover, this step is also used to refine the results from
the previous steps and eliminate unlikely candidates. For the combination step it is
assumed that the classification results are in or close to the range [−1,1] and in some way
represent confidences whether a given superpixel is a hole (positive) or not (negative).
In this way it is possible to recover from small classification errors and obtain a more
precise detection by allowing small negative region in the detected holes.
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(a) Input Image (b) Classification Results

Figure 3.12: Results of the CRF classifier. The displayed values correspond to the
logarithm of the likelihood ratio of a superpixel being a hole. Thus, positive regions (white)
imply confidence about the superpixel being a hole and negative regions (black) confidence
about the superpixel not being a hole.

3.6.1 Greedy Bounding Boxes

At the heart of the combination step is a greedy algorithm for finding bounding boxes
for potential holes. The algorithm starts out with the superpixel that obtained the
highest result in the classification and grows a bounding box around this superpixel. All
superpixels that are contained within this box are then removed from the seeds. This is
repeated until no seeds are left. A pseudo-code formulation of the algorithm follows.
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Algorithm 3: Greedy Bounding Boxes

Input: Image I containing classification results, corresponding superpixels
s1, . . . ,sn

Initialize: Seed list lS = (s1, . . . ,sn), bounding box list lB = ∅

• Compute classification results cs1 , . . . ,csn of each superpixel s1, . . . ,sn.

• Remove superpixels si with csi < 0 from lS

• Sort lS with respect to the classification results in descending order

For si ∈ lS do

• Compute bounding box bi of si

• Grow bounding box bi

• Add bounding box bi to lb

• Remove all superpixels si from the seed list lS that are contained in bi

Output: The list of bounding boxes lb

An important part of this algorithm is the growing of the boxes. The idea here is
to grow the boxes in vertical direction primarily, since holes per definition have to span
one full row of the shelf. Beginning with the north and south direction, the boxes are
grown pixel-wise while the sum over the corresponding edge in the classification results is
positive and the box does not collide with any other box. In the west and east direction,
the image is only grown one step, in order to prioritize vertical growth. This is repeated
until the box could not be grown further in any direction.
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Algorithm 4: Grow Bounding Box

Input: Image I containing classification results, bounding box b = (x1,y1,x2,y2)
while b has grown do

while no collision and sumN (I) > 0 do
grow box to the north

end
while no collision and sumS(I) > 0 do

grow box to the south
end
if no collision and sumW (I) > 0 then

grow box to the west
end
if no collision and sumE(I) > 0 then

grow box to the east
end

Output: The list of bounding boxes lb

Here, sumN (I) is the sum of the pixel-wise classification results over the northern
edge of the box. The sums over the other edges are denoted accordingly. Using the sum
over one of the edges as growth condition may turn out to be too gentle and lead to
too large boxes. To prevent this, a non-linear scaling is applied to negative values that
puts increasing weight on large, negative values. In a final step, bounding boxes that
are directly above each other are merged. This is done to ensure that holes are detected
in their full height, which is important for the elimination of false positives.

3.6.2 Confidences

Apart from the bounding box, a predicted hole is required to have an associated
confidence value between 0 and 1 that reflects how certain the predictions is. The
approach taken here is as follows. For each bounding box, the average of the classification
results over a larger box containing this box is computed. The larger box is required to
have the same width as the bounding box and to be at least as high as a given fraction of
the highest bounding box in the image. The height here is chosen to be 0.9 ·hmax, where
hmax is the height of the highest bounding box. This larger box is found by choosing the
box of the required height that contains the original box and yields the highest average
over the classification results. The approach is based on the assumption that holes in an
image should have roughly the same height. Forcing the boxes to have a given minimum
height avoids being overly confident about small boxes. In order to obtain values between
zero and one, the validation set was used to fit a scaled and shifted version of the tanh
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(a) Input Image (b) Detected Bounding
Boxes

(c) Thresholded Bounding
Boxes

Figure 3.13: Discarding unlikely bounding boxes. Growing bounding boxes around every
superpixel that was classified as a hole leads to many false positives (b). Requiring the boxes
to have a certain minimum height and width relative to the height of the highest box in the
image improves the results (c).

function to the averages. The curve was parametrized to have form

g(x) = 0.5(1 + tanh(bx+ a)). (3.4)

(3.5)

The obtained parameters are given by

a =0.76 (3.6)

b =2.86 (3.7)

3.6.3 Discarding Holes

The results from the previous steps yield bounding boxes around every superpixel that
was classified to be a hole. Those results still contain too many false positives, that might
resemble a hole on a local scale but do not satisfy the exact definition of it. This is for
example the case when a product does not reach up to the next shelf edge. It is possible
to eliminate some of those false positives by discarding all holes with a height less than
a certain fraction of the height of the highest bounding box found in the image. In the
following hrel will be used to denoted the relative height of a detected hole compared to
the height of the highest hole. Also holes that are very narrow are unlikely to be actual
holes, because they have to be at least as wide as adjacent products. The detected holes
can thus also be thresholded on the their width relative to the height of the highest hole
in the image. The effect of this is displayed in figure 3.13 for a classification result from
the SVM classifier.

3.7 Refinement

In this step the predicted holes are further refined using the high-level information
provided from the other detection modules. Since a hole is required to go from the
lower shelf edge to the upper shelf edge and to be at least as wide as the adjacent
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products, the information from the other detection modules is very valuable to further
eliminate false positives. Here, the focus will lie on using information from the shelf
detection to eliminate false positives.

For the refinement it is assumed that the shelves are given by a set of bounding boxes
corresponding to the shelf edges. First of all, detected holes whose centers do not lie
over a shelf are discarded. This is done to get rid of detections in regions where there
is no shelf present and detections that are beneath the shelf. Then, for each detected
hole the number of pixels with a negative classification result in the rectangle between
the bounding box of the detected hole and the upper and lower shelf edge denoted by is
computed. This value is then divided by the width of the tentative hole and the distance
between the two shelve edges. This value is denoted by σn. The purpose of this is to
obtain a measure of how probable it is that there is a product between the predicted
hole and the shelf edges, which would mean that the detection is false. This value can
then be used as a threshold to eliminate false positives in the results. The principle is
illustrated in figure 3.14. The figure displays a region of a shelf image, where a false hole
was detected (red box). The value σn is computed over the region indicated by the blue
rectangle.

(a) Input Image (b) Classification Results

Figure 3.14: Refinement of predicted holes. The predictions for holes are refined by
thresholding on the value σn, which is the sum of negatively classified pixels in the rectangles
between the detected hole (red) and the upper and lower shelf edge (green) divided by its
width and the minimum distance between two shelves in the image.
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Results

In this chapter the hole detection system is evaluated with respect to its performance.
The proposed solution based on the SVM classifier is compared to the AdaBoost and the
CRF classifier. This is followed by a detailed analysis of the performance characteristics
of the hole detection based on the SVM classifier.

4.1 Classifier Performance

The detection performance of the hole detection is measured by applying it to a set of test
images and comparing the results to a ground truth. A true hole is counted as detected
if a predicted hole box covers at least 25% of the true hole. Moreover, a predicted hole
is counted as correct prediction if at least 50% of it covers a true hole. Based on this,
precision and recall of the hole detection are computed. The precision of a detection
method is the ratio of correct predictions and the total number of predictions made.
The recall of a detection method is the ratio of true holes that were detected and the
total number of true holes contained in the test images. Moreover, the computational
performance of the method is evaluated by computing the average runtime on the test
set.

4.1.1 Unrefined Predictions

In figure 4.1, the detection performance of the unrefined hole detection using the SVM
classifier and the two other methods is displayed. As described in section 3.6.3, detected
holes with a relative height with respect to the highest box in the image hrel are discarded
if hrel is below a certain threshold. The values of recall and precision for different values
of this threshold are given by the recall-precision curves in figure 4.1. Moreover, holes
that were narrower than 0.1 of the height of the highest hole in the image are discarded.
The SVM classifier performs better than the other two methods for all but one value.
The AdaBoost method performs worse than the SVM method, but approaches the curve
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of the SVM classifier for high recall values. The CRF classifier performs almost as good
as the AdaBoost classifier. The values of hrel used as threshold corresponding to the
recall-precision curves are given in table C.1 in the appendix. All methods can reach a
relatively high recall values, but at insufficient precision rates. As can be seen for example
from the sample results in the appendix, the high number of false positives come from
regions where the shelf is visible above products for example or regions outside of the
shelf. At this level, however, it is very hard to discard those because only very little is
known about the structure of the image.

Figure 4.1: Detection Performance of the unrefined hole detection. The hole detection
based on the SVM classifier yields the best performance on the test set. The performance of
the AdaBoost and the CRF classifier is very much alike. A problem inherent to all classifiers
are the high false positive rates.

4.1.2 Refined Predictions

In figure 4.2, the detection performance for the hole detection using refinement is
displayed. Since the refinement is only used to eliminate detections, no bounding boxes
are discarded with respect to their relative height compared to the highest detected
box in the image hrel. Instead, the normalized sum σn of the negative classification
results in the rectangle between detected hole and upper and lower shelf is computed
(see section 3.7). This value is then used as a threshold to discard detections. Moreover,
bounding boxes are discarded that are smaller than one third of the minimum distance
between two shelves in the image. The resulting recall-precision curve is displayed in
figure 4.2. The refinement significantly improves the performance of all three methods.
Through the refinement much higher precision can be obtained at similar recall levels.
From the three classifier, it is still the SVM that performs best. The values of σn
corresponding to the recall-precision curves in figure 4.2 are given in table C.2 in the
appendix.
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Figure 4.2: Performance of the hole detection using refinement. Using refinement, the
performance of the hole detection can be increased drastically. The SVM classifier still
yields the best performance. Moreover, the CRF classifier now performs nearly equally well
as the AdaBoost classifier.

4.1.3 Computational Performance

The computational performance of the system for the three classification methods is
compared by computing the average runtime on the test set. The size of the test images
is 812 × 608 pixels and the computations were performed on an intel core i-5 2500
processor with 8 gb memory. Since the contribution of the refinement to the overall
runtime is small and the same for all classification methods, this is only done for the
unrefined hole detection. The results are displayed in figure 4.3. The SVM classifier
clearly outperforms the other two methods with respect to the runtime. Its average
runtime is 2.16 s, which is more than half a second faster than the AdaBoost method
and one second faster than the CRF classifier.

Figure 4.3: Average runtime of the hole detection on the test set. The SVM classifier
clearly outperforms the other two methods with respect to the runtime. It is half a second
faster than the AdaBoost method and more than one second faster than the CRF classifier.

4.1.4 Sample Images

The results of the hole detection for the three different methods applied to sample
images are displayed in figures A.5, A.6, A.7 in appendix A. For each method the input
image, the classification results, the unrefined results and the results using refinement
are displayed. On the sample image the results obtained from the SVM classifier and
the AdaBoost classifier are very much alike. The images also illustrate the problem of
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false positives. Regions without products are likely to be falsely detected as holes. Also
detections outside of shelves occur. The classification results of the CRF classifier show
the smoothing effect the CRF classifier has on the results. In some cases this helps to
reduce false positives but also leads to the loss of detail in other regions and spreading
of holes over its actual boundaries.

4.2 Detailed Analysis

In this section a detailed analysis of the performance of the hole detection system based
on the SVM classifier is presented. The influence of the number of superpixels used
to segment the image is examined. Moreover, the computational performance of the
different parts of the system are analyzed. Finally, conditions under which the system
performs badly are discussed.

4.2.1 The Number of Superpixels

As mentioned in section 1.2.1, the number of superpixels Nsp used to segment an image
is a tradeoff between the information content in one superpixel and the conservation of
object borders in the image. Moreover, the value ofNsp also influences the computational
performance of the system. In this concrete case, if a too small number of superpixels is
chosen, small holes may be missed because the superpixel either contains a part of the
product or the variance in its vicinity is large. In order to determine a suitable number
Nsp of superpixels, the detection performance of the hole detection is evaluated for
different values of Nsp. The resulting recall-precision curves are displayed in figure 4.4.
The system performs best using Nsp = 2000 for most parts of the curve, even though for
large recall values Nsp = 1000 yields slightly better performance. However, due to the
very low precision, this part of the curve is not really relevant and the chosen number of
superpixels is thus Nsp = 2000.

4.2.2 Confidences

Apart from bounding boxes, for each detected hole a confidence is computed, which
is supposed to represent a measure of how certain the hole detection is about a given
prediction. The method used to compute the confidences is presented in 3.6.2. In order
to validate the significance of the confidence values, their distribution for true and false
predictions on the test set is computed. The results are displayed in figure 4.5. The plot
displays an overlay of the histograms of the confidence values of the true positive and
false positive predictions on the test set. The predictions used are the results from the
unrefined hole detection using a threshold hrel = 0.7. and the refined hole detection using
σn = 0.25 as threshold. For the unrefined predictions one can see that, even though there
is overlap between the two distributions, the values still display an obvious correlation
between low confidence values and a detection being a false positive. For the refined
predictions, the distribution of the true positives stays nearly the same whereas many
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Figure 4.4: Detection performance for different numbers of superpixels. Three SVM
classifiers were trained and tested using different numbers of superpixels and the classification
performance of the unrefined hole detection over the test set was measured. Using
Nsp = 2000 yields a clear advantage over the two other values tested, Nsp = 4000 and
Nsp = 1000.

of the false positives disappear. However, the remaining false positives do not show any
clear correlation to low confidence values.

4.2.3 Computational Performance

The average runtime of the hole detection on the test set is given in figure 4.3. The
proposed method has an average runtime of 2.16s on the test set. Since this is quite
much, a more detailed analysis of the computational performance is given here. In
table 4.1 the runtime for the different steps of the method, segmentation, classification,
combination and refinement are given. The time measurement was performed using the
timing function in ToolIP on a sample image.

As can be seen from the table, the classification step takes the most time in the
process. It should however be noted, that this step also includes the feature extraction,
which takes about 1506 ms. The current implementation of the feature extraction
extracts all 219 features and not only the 50 used features. This is due to the
implementation in ToolIP in which algorithms can only be used in their entity. Since
each of the feature extraction algorithms runs separately, their overheads sum up leading
to a high runtime. Compared to the overall runtime the contribution of the combination

58



Chapter 4. Results

Figure 4.5: Distribution of the confidence values for the true and false positive predictions
over the test set. The plots display an overlay of the two histograms of the confidence values
of true and false positive predictions. (a) displays the values for the unrefined prediction
using hrel = 0.7 as threshold on the relative height of the holes. The results clearly show
a correlation between false positives and low confidence values. (b) displays the results for
the refined predictions using σn = 0.25. The distribution shows no clear correlation between
the confidence values and false positive predictions.

Step Time [ms]

Segmentation 322

Classification 1607

Combination 21

Refinement 30

Average Total 2160 ms

Table 4.1: Approximate runtime of the different steps of the hole detection

and refinement steps is very small.

4.2.4 Problems

Under certain conditions the detection performance of the hole detection system may
deteriorate significantly. The classification of superpixels is based on local color and
variance properties. One the one hand, this means that if an image contains products
that resemble a shelf in its appearance, i.e. without salient structures or strong colors,
those products are likely to be falsely classified as a hole. On the other hand, this also
means that shelves with distinct structures or strong colors may not be detected. The
hole detection also struggles to detect holes in the top rows of shelves. This is due to the
different illumination conditions compared to other holes as well as the fact that in the
background of those holes often roof or other products appear. Another problem, that is
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specific to the unrefined hole detection, is that in images that do not contain true holes
many false positives are detected. This is because the unrefined hole detection uses the
height of the highest hole in the image to estimate the distance between two shelves.
This approach obviously fails if there is no true hole in the image. In figure 4.6, the hole
detection is applied to images displaying such problematic conditions.

Input Image Unrefined Predictions Refined Predictions

(a)

Input Image Unrefined Predictions Refined Predictions

(b)

Figure 4.6: Difficult conditions for the hole detection. In (a), the unrefined version
yields false positive detections where the products to not reach up to the upper shelf edge.
Moreover, the hole is not completely detected due to the structures in the back of the
shelves. In (b) the hole in the top row is not detected because of the salient structures in
the background.
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Discussion and Conclusions

In this work an imaging system for the detection of holes in images of supermarket
shelves was designed, implemented and tested. The unrefined predictions manage to
detect holes quite well, but at the price of a relatively low precision. This however, is
in accordance with the requirements to the system, because only very few of the false
positive detections are actual products. The detection performance can be significantly
improved using the refined method, which requires the detection of shelves in the image.

5.1 Main Difficulties

Compared to other detection problems, the main difficulty of this project is that, rather
than detecting objects, the task of the hole detection is to detect the absence of objects.
Moreover, already the definition of a hole requires knowledge about the shelf and the
products contained in the image. This has made the task quite difficult to fulfill using
only low-level information. Another difficulty here was that the images come from an
uncontrolled environment, i.e. they may contain shelves at different scales and also
images taken from different angles. Thus, only very few assumptions about the structure
of the images could be made.

The approach taken here is to segment the image into small, homogeneous regions and
to classify each of those regions independently. Then bounding boxes for the predictions
are found in the image containing the classification results. The main problem of this
approach is its locality. Each image region is classified independently using only the
information from the region itself and its neighbors. For most of the images those regions
are much smaller than the actual holes and hence a lot of valuable information is left
unconsidered. In order to overcome the locality of the classification step, also a structural
classifier was implemented and tested. The results however showed, that instead of
improving performance the classifier actually performed worse. One reason for this may
be that the model used was too simple to fully reflect the structural dependencies in the
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image. Another reason may be that the images contain holes at many different scales.
However, there was not sufficient time to investigate this further. Another difficulty of
the chosen approach was to find suitable confidence values for the bounding boxes. The
approach taken here was chosen rather heuristically and might not perform optimal.

5.2 Future Improvements

Even though the method presented here is fully functional, there are still ways to
improve the system. One improvement would be to include the classification results
in the threshold used to discard unlikely predictions in the unrefined version of the
hole detection. The value currently used is the relative height of the bounding box,
whereas the confidence value computed also considers the classification results. It would
be more natural to use only one value for both purposes. Using the classification results
to discard false positives might also lead to a better detection performance. Further
improvement of the detection results may be obtained by considering the results from
the product detection in the refinement step. So far, the products are left unconsidered in
the detection step and incorporating this information may lead to an improved precision.
One obvious improvement concerning the runtime of the system would be to implement
the feature extraction in only one plugin. Also instead of all features only the 50 features
that are actually used could be computed. Since the feature extraction contributes most
to the overall runtime of the system this should lead to a significant improvement in
computational performance.

5.3 Conclusions

The imaging system developed within this thesis is fully functional and yields satisfactory
results when refinement is used. Without refinement however, the system suffers from a
low precision. The reason is that, due to the restriction of the unrefined hole detection not
to use other high-level information, it is not possible to decide with certainty whether
a given prediction is a true hole. One drawback of the proposed solution is that the
classification is performed on the whole image and then bounding boxes are found in the
classification results. The finding of suitable bounding boxes and the computation of the
confidence are heuristics and are hard to optimize in their performance. Moreover, the
locality of the classification also ignores important information. Using a more integral
approach, such as for example a sliding window as it is commonly used for face detection,
might sidestep such problems. Nevertheless, even if another approach should prove to
be more suitable, this work still contains valuable information for the realization of such
an approach.
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[4] . L. Ladický, P. Sturgess, K. Alahari, C. Russell, P. Torr, What, where and
how many? combining object detectors and crfs, in: K. Daniilidis, P. Maragos,
N. Paragios (Eds.), Computer Vision – ECCV 2010, Vol. 6314 of Lecture Notes in
Computer Science, Springer Berlin Heidelberg, 2010, pp. 424–437.
URL http://dx.doi.org/10.1007/978-3-642-15561-1_31
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Appendix A. Figures

(a) Superpixel Segmented Images (b) Merged Superpixels

(c) Size of the Merged Superpixel (d) Height of the Merged Superpixel

(e) Width of the Merged Superpixel

Figure A.1: Features derived from merged superpixels. (a) Displays the input image
that was segmented using Nsp superpixels. The superpixels are merged depending on the
euclidean distance of the superpixels in CIE LAB space (b). Figures (c),(d),(e) display the
relative size, width and height of each of the merged superpixels.
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Appendix A. Figures

(a) Test Shapes (b) comp1 Compactness Measure

(c) comp2 Compactness Measure (d) comp1 Compactness Measure

(e) comp2 Compactness Measure

Figure A.2: Compactness measures. The compactness values of the shapes in figure (a)
are computed to illustrate the compactness measures defined in section 3.4.1. Figure (b)
and (c) display the values of the compacteness measures of the shapes in figure (a). Figure
(d) and (e) the compactness values of the superpixels in a shelf image. As can be seen from
figure (d) and (e), the superpixels in products tend to be less compact than the superpixels
in hole regions.
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Appendix A. Figures

(a) Input Image (b) Pixel Color Distribution in CIE
LAB Space

(c) l-Channel Histogram (d) a,b-Channel Histogram

Figure A.3: Color Histograms. (b) displays the distribution of the pixel colors in the
CIE LAB color space of the superpixel highlighted in (a). The histogram of the l channel is
displayed in (c), the 2d histogram of the a and b channel is displayed in (d). The histograms
are centered around the means of the distributions. Values lying outside of the histogram
are handled by applying a cutoff of the highest and lowest bin edges respectively.
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Figure A.4: Relative feature importance. An AdaBoost classifier was trained on the
training set and used to computed the relative importances of the features. The figure
displays the fifty features with the highest importances. Those are the features that are
used in the implementation.
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Appendix A. Figures

Input Image Classification
Results

Unrefined
Predictions

Refined
Predictions

Input Image Classification
Results

Unrefined
Predictions

Refined
Predictions

Input Image Classification
Results

Unrefined
Predictions

Refined
Predictions

Input Image Classification
Results

Unrefined
Predictions

Refined
Predictions

Figure A.5: Hole detection using the SVM classifier. In the second row false holes are
detected beneath the shelf. Otherwise, even the unrefined predictions work quite well, due
to the fact that all images contain holes.

70



Appendix A. Figures

Input Image Classification
Results

Unrefined
Predictions

Refined
Predictions

Input Image Classification
Results

Unrefined
Predictions

Refined
Predictions

Input Image Classification
Results

Unrefined
Predictions

Refined
Predictions

Input Image Classification
Results

Unrefined
Predictions

Refined
Predictions

Figure A.6: Hole detection using the AdaBoost classifier. The results are quite similar to
the ones obtained using the SVM classifier. Nevertheless, as can be seen in the first row, for
example, the AdaBoost classifiers has more probles with false positive detections.
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Input Image Classification
Results

Unrefined
Predictions

Refined
Predictions

Input Image Classification
Results

Unrefined
Predictions

Refined
Predictions

Input Image Classification
Results

Unrefined
Predictions

Refined
Predictions

Input Image Classification
Results

Unrefined
Predictions

Refined
Predictions

Figure A.7: Hole detection using the CRF classifier. Comparing to the other classifiers
one can clearly see the smoothing effect of the CRF classifier. In some cases this helps
to eliminate false positives. In other this leads to loss of detail and sometimes even false
detections in other regions.
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Loopy Belief Propagation

Let G = (V,F , E) be a factor graph modeling the conditional probability of a set of output
variables Y1, . . . ,Yn. Belief propagation is a method of conducting probabilistic inference
in such graphs. This is done by iteratively passing messages from factors to variables and
vice versa until convergence of the marginals. The messages for tree-structured graphs
are given by

qYi→F (yi) =
∑

j∈N (Yi)

rFi→Yi
(yi) (B.1)

rF→Yi
(yi) = log

(

∑

y′
F
∈YF

y′i=yi

exp
(

− EF (y
′
F ) +

∑

j∈N (F )\{i}

qYj→F (y
′
j)
)

)

. (B.2)

The method can also be applied to cyclic graphs, even though it may not converge.
The messages for the method for cyclic graphs, called loopy belief propagation, change
slightly:

q̄Yi→Fj
(yi) =

∑

j∈N (Yi)\j

rFj→Yi
(yi) (B.3)

δ = log
∑

yi∈Yi

exp(q̄Yi→F (yi)) (B.4)

qYi→F (yi) = q̄Yi→F (yi)− δ (B.5)
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From this the variable marginals can be computed using

µ̄Yi
(yi) =

∑

j∈N (Yi)

rFj→Yi
(yi) (B.6)

zYi
= log

∑

yi∈Yi

exp(µ̄Yi
(yi)) (B.7)

µYi
(yYi

) = exp(µ̄Yi
(yi)− zYi

). (B.8)

Finally, also the factor marginals µFi
(yFi

) can be computed as follows:

µ̄Fi
(yFi

) = −EFi
(yFi

) +
∑

j∈N (F )

qYj→Fi
(yFj

) (B.9)

zFi
= log

∑

yFi
∈YFi

exp(µ̄Fi
(yFi

)) (B.10)

µFi
(yFi

) = exp(µ̄Fi
(yFi

)− zFi
). (B.11)
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Appendix C

The following tables contain the values of hrel and σn corresponding to the recall
precision curves that were used to discard false positives in the unrefined and the refined
predictions, respectively.

Table C.1: Threshold values hrel. Values of the threshold used to discard detected holes
and the corresponding recall and precision values on the test set.

hrel
SVM AdaBoost CRF

Recall Precision Recall Precision Recall Precision

0.20 0.85 0.31 0.91 0.14 0.83 0.23

0.30 0.85 0.31 0.90 0.2 0.82 0.27

0.35 0.85 0.31 0.89 0.24 0.82 0.3

0.40 0.85 0.31 0.89 0.28 0.82 0.34

0.45 0.85 0.31 0.87 0.32 0.81 0.37

0.50 0.85 0.37 0.85 0.36 0.80 0.42

0.55 0.84 0.42 0.84 0.41 0.80 0.45

0.60 0.83 0.5 0.81 0.44 0.78 0.49

0.70 0.82 0.61 0.77 0.53 0.74 0.58

0.80 0.74 0.71 0.72 0.63 0.66 0.66

0.90 0.64 0.75 0.63 0.69 0.60 0.69
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Table C.2: Values of σn used as a threshold to discard unlikely holes and the corresponding
recall and precision values on the test set.

σn
SVM AdaBoost CRF

Recall Precision Recall Precision Recall Precision

0.00 0.14 0.96 0.12 0.88 0.20 0.89

0.10 0.65 0.95 0.57 0.88 0.55 0.91

0.15 0.74 0.93 0.68 0.86 0.63 0.89

0.20 0.78 0.89 0.74 0.82 0.70 0.85

0.23 0.80 0.85 0.75 0.79 0.72 0.84

0.25 0.81 0.84 0.77 0.79 0.74 0.82

0.28 0.82 0.81 0.78 0.78 0.74 0.81

0.30 0.82 0.79 0.78 0.77 0.74 0.79

0.35 0.82 0.75 0.80 0.75 0.75 0.77

0.40 0.82 0.72 0.80 0.72 0.75 0.73

0.45 0.83 0.65 0.81 0.66 0.77 0.67

0.50 0.83 0.62 0.81 0.63 0.79 0.63

0.60 0.83 0.58 0.81 0.57 0.79 0.57
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