
 
 

 
 

 
Department of Signals and Systems 
CHALMERS UNIVERSITY OF TECHNOLOGY 
Gothenburg, Sweden 2014 
EX053/2014 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Decision Support Systems for 
Operators within the Process Industry 
 

Development of a Concept Using Online Modelica Models 
 

Master’s thesis in Systems, Control and Mechatronics 
 

TEODOR OLSSON 





REPORT NO. EX053/2014

Decision Support Systems for
Operators within the Process Industry

Development of a Concept Using Online Modelica Models

TEODOR OLSSON

Department of Signals and Systems
Division of Automatic control, Automation and Mechatronics

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2014



Decision Support Systems for Operators within the Process Industry
Development of a Concept Using Online Modelica Models
TEODOR OLSSON

© TEODOR OLSSON, 2014

Report no. EX053/2014
Department of Signals and Systems
Division of Automatic control, Automation and Mechatronics
Chalmers University of Technology
SE-412 96 Gothenburg
Sweden
Telephone +46 (0)31-772 1000

Department of Signals and Systems
Gothenburg, Sweden 2014



Abstract

As demands on efficiency and cost reduction within the process industry are increas-
ing, new ways to optimize production are desired. The result of the optimization
work is often reduction of energy buffers in conjunction with new operating pro-
cedures. Process systems are to a large extent controlled automatically, but parts
of the system are still controlled by human operators. Increasing complexity and
higher demands mean that it gets more difficult for the operators to make the
correct control decision. Therefore, an interest has arisen for developing different
solutions to aid the operators in their tasks.

The aim of this thesis is to develop a suitable concept for the design of a model-based
decision support systems (DSS) to provide predictions of the future state of the plant
to the operators. By allowing the operators to interact with the simulations, the
effects of control changes can be studied and optimized before applying the control
actions to the real system. The main factors taken into consideration during this
work have been requirements for the models, handling of plant measurements and
how the system should be implemented.

The proposed DSS concept makes the predictions by initiating a plant model de-
veloped in Modelica to a starting point representing the current state of the plant.
Simulations of the model are then performed to provide predictions of the future be-
havior. The starting points for the predictor simulations are continuously generated
from measurement data collected from the plant.

To evaluate the proposed concept, parts of the DSS have been implemented in
a case study for a fictitious thermomechanical paper mill. Three different internal
models were developed and the performance was evaluated. Two different techniques
were evaluated for the estimation of the starting point, one simple filtering method
and one more advanced method, where state estimation was performed using an
extended Kalman filter. The results from the implementation of the DSS in the case
study show that the construction of a DSS using the proposed system is promising,
but much work still remains before a DSS could be designed for a real system.

Keywords: Decision Support Systems, Online Modelica Models, Nonlinear State
Estimation, Process Simulation

ii



Acknowledgements

I want to thank all the employees at Solvina AB for providing a pleasant workplace
for me to do my thesis. Especially, I want to express my gratitude to my supervisor
Carl Ressel for his help and guidance.

At Chalmers, I want to thank my examiner Torsten Wik for providing helpful advice
and feedback.

Finally, I wish to thank my family for their support throughout my thesis work.

iii



Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objective and Specifications . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Scope and Delimitations . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Disposition of the Report . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Theory 3
2.1 Modeling and Simulation . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 State Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Case Study: Plant Description 12
3.1 Plant Process Overview . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Plant Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Operating Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Disturbance and Noise Modeling . . . . . . . . . . . . . . . . . . . . 16

4 Proposed DSS Concept 20
4.1 DSS Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Internal Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4 Predictor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Case Study: Simulation Results 31
5.1 Internal Model Development . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3 Predictor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6 Discussion 46
6.1 DSS Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.2 Modelica in Internal Models . . . . . . . . . . . . . . . . . . . . . . 46
6.3 Design of the Estimator . . . . . . . . . . . . . . . . . . . . . . . . 47
6.4 Accuracy of the Predictions . . . . . . . . . . . . . . . . . . . . . . 48

7 Concluding Remarks 49
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.2 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Bibliography 51

Appendices 54

iv



List of Figures

2.1 Overview of the Modelica translation process . . . . . . . . . . . . . 4
2.2 Dymola user interface . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 FMI interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 EKF algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 Schematic view of plant process . . . . . . . . . . . . . . . . . . . . 13
3.2 Overview of plant model . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Standard operating cycle for the plant . . . . . . . . . . . . . . . . 17
3.4 Examples of noisy signals in the plant. . . . . . . . . . . . . . . . . 19

4.1 Structure of the proposed DSS concept . . . . . . . . . . . . . . . . 21
4.2 Dymosim file interface . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1 Overview of Model 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2 Comparison between plant and models. . . . . . . . . . . . . . . . . 34
5.3 Filtered measurement signals . . . . . . . . . . . . . . . . . . . . . . 35
5.4 Result of the state estimation using the EKF . . . . . . . . . . . . . 39
5.5 EKF compensation for missing model dynamics or sensor drift . . . 40
5.6 EKF compensation of wrong controller parameters . . . . . . . . . . 41
5.7 Impact on predictions due to errors in initial state . . . . . . . . . . 43
5.8 Impact on prediction of delays in operating cycle . . . . . . . . . . 44
5.9 Impact on prediction of disturbance stops in production . . . . . . . 45

List of Tables

3.1 Noise and disturbance levels in plant model . . . . . . . . . . . . . 18

5.1 State variables for the models . . . . . . . . . . . . . . . . . . . . . 32
5.2 Output signals from the plant. . . . . . . . . . . . . . . . . . . . . . 36

v



Abbreviations

In this section the abbreviations used in this thesis are presented.

DAE Differential algebraic equation
DDE Dynamic Data Exchange
DSS Decision support system(s)
EKF Extended Kalman filter
FMU Functional Mock-up Unit
KF Kalman filter
MHE Moving horizon estimation
OPC Object Linking and Embedding (OLE) for Process Control
TMP Thermomechanical pulp
UKF Unscented Kalman filter

REF Pulp refiner
PT Pulp tank
BL Bleachery
BL.T1 Bleachery tank 1
BL.T2 Bleachery tank 2
PM Paper machine
WT1 Return water tank 1
WT2 Return water tank 2
HWP1 Hot water production line 1
HWT1 Hot water tank 1
HWP2 Hot water production line 2
HWT2 Hot water tank 2
HWT_PID Hot water tank PI-controller

vi



1 | Introduction

This chapter gives an introduction to the topic and the motive of this thesis. The
main objective is presented as well as the delimitations. Last in the chapter, the
disposition of the report is presented.

1.1 Background

Process industries are generally large and energy intensive systems. Due to rising
fuel and energy prices, large efforts are put into increasing efficiency to reduce costs.
Historically, process industries have featured large energy buffers and overcapacity,
which is now removed as part of the energy optimization. Reduced reserve capacity,
in combination with new operating procedures, increases the complexity of the
systems and introduce stricter requirements on the control systems.

The control of modern process industries is largely automated, although the sys-
tems still require human operators. Since the introduction of computer control the
operator tasks have shifted away from simple tasks to more advanced ones such as
supervision, optimization and to intervene when problems occur. To be able to do
their job, the operators scan large amounts of information presented through dif-
ferent operator interfaces. The operators rely heavily on their training and previous
work experience in the decision making process.

The more complex systems with humans in the loop inevitably mean that it gets
increasingly difficult for the operators to make correct control actions. One possi-
bility to aid operators with their tasks is to introduce different types of decision
support systems (DSS).

Solvina, an engineering company based in Gothenburg, has extensive knowledge
of working with design and optimization within the power and process industry.
During the last couple of years, Solvina has seen an increased interest for systems
aiding operators among its customers. Therefore, Solvina wants to investigate pos-
sibilities for constructing purpose built, model-based decision support systems for
operators.

1



Chapter 1. Introduction

1.2 Objective and Specifications

The objective of this thesis is to propose a suitable concept for a model-based
decision support system (DSS) for use within the process industry. The concept
should meet the following specifications:

• The proposed DSS concept should work online, in parallel to the real process,
giving the operators a fast overview of the current state of the plant as well
as predictions of future behavior.

• The predictions should help the operators to optimize the process control,
ensuring an efficient and reduced energy consumption during production.

• The proposed DSS concept should be evaluated using a case study of an
integrated thermomechanical paper mill.

• The proposed DSS concept should be able to serve as a starting point for
future development of DSS at Solvina.

1.3 Scope and Delimitations

Development of a complete DSS is a very large project. To ensure the feasibility of
the project within the available timeframe for this thesis, the work has been focused
on how to make the predictions using a controlled and accurate method.

The main delimitations include:

• Model as replacement for real plant data
Due to difficulties in obtaining data from a real paper mill and to simplify the
development of the DSS, a model is used as a replacement in the case study.

• Operator interaction and user interface
An important part of a DSS is the interface used by the operators. Develop-
ment of a suitable user interface can be considered as separate subject and is
not covered here.

1.4 Disposition of the Report

This report begins with Chapter 2 presenting the theoretical background. Chapter 3
covers the plant process that is used in the case study. In Chapter 4 the proposed
DSS concept is presented. Chapter 5 explains how some parts of the DSS concept
are evaluated using the case study and the results are discussed in Chapter 6. In the
final chapter conclusions are presented as well as ideas for future development.

2



2 | Theory

This chapter provides the theoretical background used.

2.1 Modeling and Simulation

The aim of creating a mathematical model is to describe the interesting behavior
of parts of a system using mathematical equations. Model construction of physical
systems can roughly be divided into two approaches depending on the principle
that is used. With physical modeling the system to be modeled is broken down
into smaller parts for which the behavior can be described with known physical
equations such as laws of motion or thermodynamic laws. The other approach,
identification, uses statistical methods to create models from measurement data by
fitting parameters to a predefined model structure [1].

A model is never a true representation of a system. Each model has a so called
domain of validity for which the model describes the system sufficiently close. The
size of the domain of validity is related to the accuracy required by the intended use
of the model. Once a model has been developed it is very important to validate the
model to ensure it meets the specified accuracy. Validation of physical models can be
done by performing a controlled experiment on the real system, and then compare
the results to the same experiment simulated on the model. Models derived using
identification techniques can use the same technique for validation. Normally this
is done by verifying the model against another set of measurement data separate
from the one used to create the model [1].

2.1.1 Modelica

Modelica is a free modeling language for modeling of complex physical systems,
developed by the non-profit Modelica Association [2]. Modelica is an object-oriented
language which can be used to describe both continuous and discrete dynamics of a
system. The language syntax resembles that of other object-oriented programming
languages such as Java or C++ [3].

One of the main objectives of Modelica is to provide a language for effective deve-
lopment of models which can be easily reused and shared as libraries for a wide range

3



Chapter 2. Theory

of engineering domains. A Modelica model consists of a number of class instances,
components, structured in an hierarchical structure. Examples of components in-
clude tank models or mechanical components [3].

As a specific modeling language Modelica differs in some key aspects from conven-
tional programming languages. One important example is that Modelica offers the
option to express relations between variables using equations without the need to
specify the causality [3].

The objective of developing in Modelica is usually to provide a model which can be
used for simulation purposes. In order to do this, the model has to be presented in
a form such that it can be linked together with a numerical integration algorithm, a
solver, and compiled into executable code. The Modelica specification states a num-
ber of rules for how the model structure should be translated into a so called hybrid
differential algebraic equation (hybrid DAE). A hybrid DAE consists of differential
equations describing the continuous time behavior, algebraic equations describing
relations between the variables and discrete equations for describing discrete time
behavior [3]. An overview of the translation process can be seen in Figure 2.1.

Modelica

Code

Flat

Modelica

Structure

Optimized

Hybrid

DAE

C-code
Code

Generation

Symbolic

Transformation

Figure 2.1: Overview of the Modelica translation process. The figure shows the steps of
translating a Modelica model into C-code.

The translation process starts with the transformation, flattening, of the hierarchical
model into a flat set of Modelica statements. In this step all equations from the
different sub-components are expanded and connections (constraints) between the
components are considered. It is also during this part of the translation process that
suitable states, x, for which derivatives are formed, are selected [3].

Due to the design of the flattening process, the resulting hybrid DAE contains a
large number of sparse equations. In order to simulate the model using numerical
methods in a reliable way, the equations have to be restructured to a more suitable
form. For this, Modelica specify the use of a symbolic translator to rearrange the
equations and to reduce the index of the DAE. Once the symbolic translation has
been performed the Modelica code can be compiled into executable code and linked
to a solver [3].

When a simulation of a Modelica model is initiated, an initial problem first has to
be solved to find consistent values for all variables in the hybrid DAE. Modelica
offers the ability to specify initial conditions using any of the variables in the model.

4



Chapter 2. Theory

There are two ways to provide initial conditions: either via start values for individual
variables or as special initiation equations that only holds at the initial time. An
example of an initial condition can be that the model should start at steady-state
(ẋ = 0). In this case, the initial values of x will be calculated automatically using
equations from the model [4], [5, pp. 121-131].

Once the model has been initiated, the hybrid DAE is solved using the linked
solver. Since the models can feature both continuous and discrete dynamics, special
techniques are used by the solver. Normally, when no discrete event is active, all
discrete variables are kept constant and the model is treated as if it just contained
continuous variables. If a discrete event is triggered the integration is halted and the
event is processed. After the event, the integration is restarted with new conditions
[3].

2.1.2 Modelica Standard Library

Parallel to the development of the Modelica language, the Modelica Association
oversees the development of the Modelica Standard Library which features approx-
imately 1300 pre-made model components and 900 functions for modelling within
multiple domains. The content of the Modelica Standard Library is often con-
structed for general purpose use which makes it a useful resource when creating
Modelica models.

2.1.3 Dymola

Dymola (Dynamic Modeling Laboratory) is a commercial modeling and simulation
software from Dassault Systèmes based on the Modelica language. Dymola offers a
graphical interface for interaction with Modelica models. The program features two
different modes, Modeling and Simulation. The modeling mode helps the user to
design Modelica models using a block or text based interface. The simulation part of
the program includes the tools (e.g. symbolic translator and numerical integration
algorithms) needed to translate the models into C-code used for simulation [5, 6].
A screenshot of the user interface in Dymola can be seen in Figure 2.2.

2.1.4 Functional Mock-up Interface

The Functional Mock-up Interface (FMI) is a standard for exchange of models
between different simulation environments. FMI is linked to the Modelica project,
but can be used for other modelling solutions as well. The first version of FMI was
released in 2010 by Daimler AG in an attempt to simplify the exchange of simulation
models between suppliers.

5



Chapter 2. Theory

Figure 2.2: Overview the user interface in Dymola for a model of a drum boiler. The front
image shows the block-based interface and the rear image shows the text-based interface.

The interface specifies how a model is exported as a combination of XML files
and compiled C-code. The XML files provide information about the model (inputs,
outputs, states etc.) while the C-code provides the model dynamics. FMI consists
of two different editions, FMI for Model Exchange (FMI-ME) and FMI for Co-
Simulation (FMI-CS). The difference between the two is that ME only provides the
model while CS also includes a solver (see Figure 2.3).

A model exported with FMI is called a Functional Mock-up Unit (FMU). A FMU
is a zipped file (with file extension .fmu) containing all of the model files. At the
time of this report, the latest version of FMI was version 2.0 (released 2014-07-25)
[7].

6



Chapter 2. Theory

Application FMI FMU

Solver    Model

Application

Solver

FMU

Model

FMI

FMI-ME FMI-CS

Figure 2.3: FMI interface for Model Exchange (left) and Co-Simulation (right).

2.2 State Estimation

In many control problems information about the states of a system is often required.
All system states can rarely be measured directly without noise or disturbances.
Therefore, it is often necessary to use some kind of state estimation technique to
reconstruct the values of the states using observations (measurements) of the inputs
and outputs combined with a model of the system.

2.2.1 Observability

For state estimation, the concept of observability is important. Observability de-
scribes if it is theoretically possible to calculate the system states from observations
of the outputs. A system is said to be observable if for any combination of states
and inputs it is possible to determine the state of the system using information of
the output [8, 9].

A linear system on standard state space form

ẋ = Ax+Bu (2.1)
y = Cx+Du (2.2)

is said to be observable if and only if the observability matrix

O =
(
C CA CA2 . . . CAn−1

)T

(2.3)

has full rank, rank(O) = n where n is the number of states.

If a system is not observable, it might still be detectable. Detectability is a weaker
property than observability. A system is said to be detectable if and only if all of
its unobservable modes are asymptotically stable [8, 9].

7



Chapter 2. Theory

2.2.2 Kalman Filter

The Kalman filter, or Linear Quadratic Estimator (LQE), is a popular algorithm
for estimating the state of a system from noisy and uncertain data. The Kalman
filter is a recursive estimator which can be formulated in two steps: prediction and
correction [10].

Consider the following discrete time system on state space form

xk+1 = Axk +Buk + wk (2.4)
yk = Cxk + vk (2.5)

where the subscript k denotes the time step, wk is the process noise and vk the
observation noise. Both noises are assumed to be additive zero mean Gaussian
noise with covariances Q and R respectively (wk ∼ N (0, Q), vk ∼ N (0, R)).

2.2.2.1 Initialization

For the first iteration (t = 0), the Kalman filter requires an initial guess of the state
(x̂) and a corresponding error covariance matrix (P ):

x̂0|0 = x0 (2.6)
P0|0 = P0 (2.7)

2.2.2.2 Prediction step

The prediction step uses the last state estimate (x̂k−1|k−1), the input signal (uk)
and the system model to predict values for the current state estimate (x̂k|k−1). The
change of the error covariance matrix is also calculated according to the model and
the given process noise:

x̂k|k−1 = Ax̂k−1|k−1 +Buk (2.8)
Pk|k−1 = APk−1|k−1A

T +Q (2.9)

8



Chapter 2. Theory

2.2.2.3 Correction step

During the correction step, the filter uses the error covariances and system model
to compute the Kalman gain:

Kk = Pk|k−1C
T (CPk|k−1C

T +R)−1 (2.10)

The Kalman gain is then used together with the observations (ỹk) to correct the
state estimate and error covariance matrix:

x̂k|k = x̂k|k−1 +Kk(ỹk − Cx̂k|k−1) (2.11)
Pk|k = (I −KkC)Pk|k−1 (2.12)

2.2.3 Extended Kalman Filter (EKF)

The basic Kalman filter requires the system model to be linear. Since many systems
are described using nonlinear equations, several approaches to modify the Kalman
filter for use on nonlinear systems have been developed. Commonly used in the
industry is the extended Kalman filter (EKF). The EKF is based on the same
equations as the basic Kalman filter (as it is just an extension). The nonlinearity of
the system is handled by linearizing the system around the last estimate for every
iteration [10].

Consider the nonlinear system

xk+1 = f(xk, uk) + wk (2.13)
yk = h(xk) + vk (2.14)

where wk and vk denotes the same type of noise as in Equation (2.4) and (2.5).

2.2.3.1 Initialization

The initialization is done in the same way as for the basic Kalman filter:

x̂0|0 = x0 (2.15)
P0|0 = P0 (2.16)

9



Chapter 2. Theory

2.2.3.2 Prediction step

The difference in the prediction step compared to the basic Kalman filter is that
the EKF uses the nonlinear system model for calculating the state estimate and a
linearized model when calculating the error covariance matrix:

x̂k|k−1 = f(x̂k−1|k−1, uk−1) (2.17)
Pk|k−1 = Fk−1Pk−1|k−1F

T
k−1 +Q (2.18)

where

Fk−1 =
∂f

∂x

∣∣∣∣
x̂k−1|k−1,uk−1

(2.19)

2.2.3.3 Correction step

In the correction step, the linearized model is used in the calculation of the Kalman
gain. Apart from that, the correction step uses the same changes as for the prediction
step. The nonlinear model is used to update the state estimates and the linearized
model is used when calculating the Kalman gain and updating the error covariance
matrix:

Kk = Pk|k−1Hk
T (HkPk|k−1Hk

T +R)−1 (2.20)

where

Hk =
∂h

∂x

∣∣∣∣
x̂k|k−1

(2.21)

The Kalman gain is then used together with the observations (ỹk) to correct the
state and covariance estimates:

x̂k|k = x̂k|k−1 +Kk(ỹk − h(xk)) (2.22)
Pk|k = (I −KkHk)Pk|k−1 (2.23)

A Schematic view of the recursive EKF algorithm is presented in Figure 2.4.

10



Chapter 2. Theory

 

 

Measurements  

 

 

Initialization 

 

=  

= +  

Prediction  

= +  

= + −  

= ( − )  

Correction  

Figure 2.4: Schematic view of the EKF algorithm.

11



3 | Case Study: Plant Description

This chapter provides a description of the paper mill model used as a replacement
for a real plant in the case study. The first part of the chapter gives a general
introduction to how the plant process typically works in reality. The second part of
the chapter covers how the plant is modeled in Modelica using Dymola.

3.1 Plant Process Overview

The plant in the case study is an integrated paper mill. The specific method used
for making pulp is called thermomechanical pulping (TMP). Paper made from this
kind of pulp is often used for newspapers and other printing purposes.

The process starts with debarking of wood logs. When the logs have been debarked
they are turned into chips in a chipper. The wooden chips are then preheated
and softened using steam, and then fed into a series of refiners. The refiners use
large amounts of electricity to grind the chips between two large rotating steel
discs. Grinding is done under pressure and at high temperatures (hence the name
thermomechanical) forcing the cellulose fibers in the chips to separate. In addition to
the pulp, due to the large energy consumption, large amounts of steam is generated
by the refiners. After the refining, depending on the use, the pulp could be sent to
bleaching where chemicals is used to increase the whiteness of the pulp. After this,
the pulp is ready for the paper machine.

Paper machines are complex systems. The main part of a paper machine can be
divided into four distinct sections: the forming section, the press section, the drying
section and the calender section. The pulp enters the machine in the forming section
where the pulp is formed into a wet paper web. The paper web then passes the press
section where as much water as possible is removed by running the paper through
roll presses. The paper then enters the drying section where water is evaporated
using steam heated cylinders. The last major step in the paper machine is the
calender section where the paper passes between cylinders which apply pressure to
the paper. This makes the surface of the paper smooth and increases its glossiness
[11].

12



Chapter 3. Case Study: Plant Description

In addition to the mentioned systems, a paper mill features several supplementary
systems such as a steam network, hot water production systems and different en-
ergy recovery systems. A schematic view of the main plant process is presented in
Figure 3.1.

Bleachery

(BL)

Refiner

(REF)

Paper Machine

(PM)

Hot Water

Wood Chips

Return Water

Pulp Bleached Pulp Paper

Steam Steam

Figure 3.1: Schematic view of the main pulp to paper line.

3.2 Plant Model

The plant model is modeled in Modelica using Dymola. The plant model is to a
large extent based on a previous project at Solvina [12], but with several changes
to make the model better suit the requirements for this work.

The model describes the plant-wide behavior of one pulp to paper line (a real
plant typically have several lines) with some of the related supplementary systems.
Due to the wide model focus, only the most interesting and important aspects of
the dynamics are modeled. Most of the components in the model originates from
the Modelica Standard Library or an in-house Modelica library called SteamPower
from Solvina. An overview of the implemented model in Dymola is presented in
Figure 3.2. Some of the different model components are described in greater detail
below.

3.2.1 Pulp Medium

To model the thermodynamic state of the pulp, a simple medium model is used.
The medium is based on a template from the Modelica Standard Library. The
thermodynamical properties of the pulp is determined from pressure, temperature
and the mass fractions between water and fibers. All properties of the pulp is selected
to be the same as for the medium IF97 water from the Modelica Standard Library
except the enthalpy (hp), which is calculated using

13



Chapter 3. Case Study: Plant Description

Figure 3.2: Overview of the plant model. The gray lines represent the pulp line, the
orange lines the return water system, the purple lines the hot water production, the dark
green lines dirty condensate and the red lines connections to the steam network. Grey
boxes add disturbances and noise. Green boxes are adapters for connecting components
from different Modelica libraries.

hp = wwhw + wfcp,fT (3.1)

where ww is the mass fraction of water, hw the enthalpy of the water, wf the mass
fraction of fiber, cp,f the specific heat capacity of the fibers and T the temperature
of the pulp.

3.2.2 Refiner

The refiner (REF) is modeled using basic energy and mass balances. The input
streams are wood chips and dilution water while the output streams are pulp and
steam. The wood chips have a moisture content of 50% and a temperature of
100 ◦C whereas the outgoing pulp have a consistency of 4%. It is assumed that all
dry content in the chips is turned into pulp. When the refiner is running at full

14



Chapter 3. Case Study: Plant Description

capacity it produces 225 kg/s of pulp. The pulp leaving the refiner is stored in a
pulp tank (PT) at a constant temperature of 55 ◦C.

3.2.3 Bleachery

The bleachery (BL) model considers only its input-output behavior. The bleachery
is comprised of two tanks (BL.T1 and BL.T2) and two pumps. Pulp is fed into
BL.T1 where it stays for 1 h. Then the pulp is pumped into BL.T2 where it can
be used by the paper machine. The pulp in the bleachery is stored at a constant
temperature of 55 ◦C.

3.2.4 Paper Machine

The paper machine (PM) is, as the refiner, modeled using mass and energy balances.
The model consists of two parts; a wet part (forming and pressing), and a dry part
(drying and calendering). The wet part has pulp and hot water as input streams.
Output streams are pulp (with a consistency of 50%) and return water. The input
streams for the dry part are the pulp from the wet part and steam. Output streams
are condensate and finished paper, which contains 6% water. When running at full
capacity, the PM produces 7 kg/s of paper and consumes 175 kg/s of pulp.

3.2.5 Return Water System

The return water system recovers waste water from the paper machine and reuses
it in the refiner process. The system includes two storage tanks (WT1 and WT2).
Level control in the tanks is a simple on-off system which tries to keep the tank
levels at certain values. To model the heat loss in the tank to the environment a
heat transfer coefficient of 15W/(m2K) is used.

3.2.6 Hot Water System

The PM requires hot water for its production. The hot water is produced from
two different sources. The first, and main, production line (HWP1) uses steam to
heat cold (5 ◦C) fresh water to 60 ◦C. The second production line (HWP2) uses
leftover dirty condensate (92 ◦C) from another, not modeled, part of the plant to
heat cold fresh water. Since the condensate originates from another part of the
plant, the amount of hot water from HWP2 cannot be directly controlled by the
operators. Hot water from HWP2 is merely additional hot water from an excess
energy source.

15



Chapter 3. Case Study: Plant Description

The produced hot water is stored in a tank (HWT1). From HWT1 hot water is feed
to a smaller tank (HWT2) closer to the PM. A control loop, using a PI-controller
(HWT_PID), exists to keep the level in HWT2 constant at 9 meters. Heat loss from
HWT1 and HWT2 are modeled in the same way as for the return water tanks.

3.2.7 Steam Network

The steam network is not included in the plant model. For all subsystems in the
plant connected to the steam network, simple boundary components are used with
a supply steam at 3.5 bar and 160 ◦C.

3.3 Operating Cycle

To be able to compare results from different simulations, a standard operating cycle
(SOC) for the plant have to be established. Since no information about the operating
cycle of a real plant is available, the SOC is chosen such that the resources of the
plant are kept close to constant over a 12 h period, i.e. all of the tank levels should
be roughly the same after 12 h of operation.

The central part of the plant is the PM. The objective is to have it running as much
as possible and let the other parts of the plant run as much as required to satisfy
the requirements of the PM. According to literature, the effective production time
for a paper machine is 70 − 85% of total time [13]. Usually, breakdowns or other
stops in production are the cause of the paper machine not being in production. The
frequency and length of these production stops are unknown so the PM is chosen
to operate for 4 h and 15min followed by a 45min break in production (which gives
85% of production time). The operating cycle for the other parts of the plant are
chosen to balance the operating cycle of the PM. The resulting SOC for the plant
can be seen in Figure 3.3.

3.4 Disturbance and Noise Modeling

To make the plant model behave more like a real system, disturbance and noise
are added to the model. For this purpose, a specific component has been designed
in Modelica. The component offers the ability to add white Gaussian noise with a
given mean and standard deviation at a given sampling time. The component also
offers the ability to add a sinusoid to mimic slow varying disturbances. The noise
and disturbance component can be seen as grey blocks in Figure 3.2.

16



Chapter 3. Case Study: Plant Description

0 2 4 6 8 10 12
0

100

Paper machine (PM)

%
 o

f 
m

a
x

0 2 4 6 8 10 12
0

100

Refiner (REF)

%
 o

f 
m

a
x

0 2 4 6 8 10 12
0

100

Bleachery (BL)

%
 o

f 
m

a
x

0 2 4 6 8 10 12
0

15

Hot water production 1 (HWP1)

[k
g
/s

]

0 2 4 6 8 10 12
0

5

Hot water production 2 (HWP2)

[k
g
/s

]

Time [h]

Figure 3.3: The Standard operating cycle (SOC) chosen for the plant in the case study.
Note how REF, BL and HWP1 balance the needs for the PM. HWP2 operates indepen-
dently from the others and is only used when dirty condensate is available.

Noise and disturbances are added according to Table 3.1.

• Sensors and outputs
Measurement noise is added to the sensors in the system, both to the ones used
internally by the controllers of the plant and to the ones used for outputs from
the plant. The different noises are adapted depending on the type of sensor.

Tank level sensors are assumed to be accurate with a low level of white Gaus-
sian noise. Instead, the sensor readings are mainly disturbed by sloshing in
the tanks [14]. The effect of sloshing is modeled by adding a sinusoidal signal.

Temperature sensors are assumed to have a moderate level of white Gaussian
noise. The readings from temperature sensors are also affected by sensor drift
and changes in temperature due to stratification in the tanks [14]. This slow
varying disturbances are also modeled by adding a sinusoidal signal.

Flow sensors are assumed to have a moderate level of white Gaussian noise.

17



Chapter 3. Case Study: Plant Description

Table 3.1: Levels for the noise and disturbances added to the plant model. For the white
Gaussian noise, µ is the mean value, %RSD the relative standard deviation compared to
the variables nominal levels and ts the sampling time. For the sinusoidal disturbance, A
is the amplitude of the sinusoid relative to the variables nominal level and T the period
time.

White Gaussian Sinusoid
µ %RSD ts A T

Sensors
Tank level 0 0.02 − 0.05% 5 s 0.2 − 1% 10 s

Temperature 0 0.5 − 0.8% 5 s 0.5 − 0.8% 4 − 12 h

Flow 0 0.5 − 1% 5 s 0.1 − 1% 6 − 12 h

Control signals 0 0.5 − 1% 60 s

Steam network
Pressure 0 1.5% 240 s

Temperature 0 0.2% 120 s

• Control signals
A moderate amount of white Gaussian noise is added to the control signals
to introduce small disturbances in the plant.

• Steam system
A moderate amount of white Gaussian noise is added for the pressure and
temperature of the boundary components that represents the steam network.

The effect of the added noise and disturbances are presented for some variables in
Figure 3.4.

18



Chapter 3. Case Study: Plant Description

0 2 4 6
0

5

10

15

Hot water production

Time [h]

M
a
s
s
 f
lo

w
 r

a
te

 [
k
g
/s

]

0 2 4 6
20

40

60

80

100

Time [h]

T
e
m

p
e
ra

tu
re

 [°
C

]

0 2 4 6
3.3

3.4

3.5

3.6

3.7
Steam network

Time [h]

P
re

s
s
u
re

 [
b
a
r]

0 2 4 6
150

155

160

165

170

Time [h]

T
e
m

p
e
ra

tu
re

 [°
C

]

Figure 3.4: Examples of noisy signals in the plant. The left column shows how the
hot water production is affected by noise. The blue lines show HWP1, the green lines
HWP2 and the red lines indicate the desired value. The large variation in the temperature
of HWP2 during short periods is due to a very small flow through the heat exchanger,
causing numerical errors in the model which result in large fluctuations in the output
temperature. Since the flow is so small, this has no impact on the temperature in HWT1.
The right column shows how the pressure and temperature of the steam system vary. Here,
the red lines also indicate the desired value.

19



4 | Proposed DSS Concept

This chapter presents the proposed DSS concept that was developed in this thesis.
The chapter covers both the method developed for providing predictions and some
general guidelines for different design choices. First, a short overview of the DSS
concept is given, where the main structure of the DSS is presented and the function
of the different parts are briefly explained. This is then followed by sections, where
each part is explained in more detail.

4.1 DSS Overview

Decision Support Systems (DSS) are a broad area covering a large variety of tools
related to assisting humans in decision making situations. Each DSS often has its
own implementation and the design is often strongly related to how the DSS is to
be used. The DSS considered here is supposed to be used online, parallel to a real
plant process to provide operators with predictions of the future behavior of the
plant.

The aim was to design the DSS concept to fulfill to the following:

• Applicable for a variety of process systems
The DSS structure must allow development of DSS for a variety of process
systems, not just the plant considered in the case study presented in Chapter 3.

• Modular design
The structure should, as much as possible, be modular. Each module could
then be adapted and upgraded separately from the others. The modular so-
lution will allow the modules to be reused for other systems.

• Stand-alone implementation
The DSS concept should be designed so it can be delivered as a stand-alone
application without the need of licenses for expensive third party software.

• High performance
The DSS concept should be able to deliver fast predictions in order to minimize
the waiting time for the operators. As an example, the DSS should be able
to deliver a 4 h prediction within 1min when running on a standard personal
computer.

20



Chapter 4. Proposed DSS Concept

An overview of the proposed structure for the DSS concept is presented in Figure 4.1
and is explained in detail below.

DSS

PlantOperator

 

User

Interface

Predictor

Internal 

Model

Estimator

Internal

Model

Figure 4.1: Overview of the structure of the DSS concept. u is the operator controlled
inputs (control signals), ỹ the measured outputs from plant, x̂ the estimated state used as
the initial starting point for the predictor, and ûf the estimated future operator control
actions (future change in production etc.).

The central part of the DSS is the predictor. The predictor provides information
about the expected future behavior of the plant. To do this the predictor initiates
an internal model, representing the plant, to a starting point (x̂) which corresponds
to the current state of the plant. The predictor then simulates the model for the
amount of time that is requested. Besides values for the starting point, the predictor
also requires values for the future control signals (ûf ) to be used in the simulation.
More detailed information concerning the predictor is presented in Section 4.4.

The starting point for the predictor is to be calculated using measurement data (ỹ)
from the plant. Since measurements are often noisy and can be conflicting it can
be hard to calculate a good starting point. To handle this problem, an estimator
module must be designed. Depending on the available plant measurements and the
design of the predictor model, the estimator might require an internal model of the
plant. The estimator module is explained further in Section 4.3.

The internal models which are used to describe the plant are important for the
DSS. The end-performance of the DSS is directly linked to how well the models are
able to reflect the dynamics of the plant. When describing large process systems
it is important to use a powerful modeling solution which allows for modeling of
complex systems. Further information about the development of the models is given
in Section 4.2.

21



Chapter 4. Proposed DSS Concept

4.1.1 DSS Usage

The proposed structure of the DSS concept offers a number of different potential
usage applications. Two important ones are considered in this thesis.

The first (normal operation) is to use the DSS to monitor the current trend of
the plant by automatically running the predictor at fixed intervals using the latest
values from the estimator as the starting point. This will allow the operators to get
a quick update of where the plant is currently heading.

The second, and maybe the most important use of the DSS, is to allow the operators
to run the predictor multiple times using the same starting point. By letting the
operators control the future control signals (ûf ) it is possible to run simulations
where the effects of changes in control can be studied and optimized before applying
them to the real system.

4.2 Internal Models

The DSS concept was chosen to use Modelica models developed in Dymola. Modelica
offers a powerful modeling solution and was selected for a number of reasons:

• The Modelica model structure
Modelica models are developed using components representing different phys-
ical parts of the plant (pumps, pipes, tanks etc.) connected in hierarchical
structures. As Modelica models several physical properties simultaneously (for
example both the pressure and the temperature changes) modeling will be fast
and efficient for many aspects of the plant. The structure also allows models
to be easily changed and expanded over time if the plant is redesigned.

• Large number of available libraries
Thanks to the extensive use of Modelica within the industry, many existing
libraries are available to support modeling of thermo-fluid systems [15]. This
minimizes the need for developing large parts of the models from scratch.

• Previous knowledge at Solvina
Another important reason for choosing Modelica was that Solvina has previ-
ous knowledge of modeling in Modelica/Dymola. Solvina also has developed
a number of in-house Modelica libraries for modeling of process and power
systems.

22



Chapter 4. Proposed DSS Concept

Modelica models have traditionally been used for offline simulation and design
purposes. To use Modelica models online introduces a different set of require-
ments regarding numerical robustness and computational speed. Knowledge gath-
ered when developing Modelica models for use within nonlinear model predictive
control (NMPC) has proven to be useful since similar principles apply for the devel-
opment of models for the DSS. Several such projects exist in literature [16, 17].

4.2.1 Model Scope

The models of the DSS must describe the dynamics of large process systems at a
plant-wide basis and at the same time be fast to simulate. In order to keep the model
efficient and the complexity to a minimum, the model designer has to decide which
simplifications that should be made while still keeping the interesting dynamics.
This requires a good insight into the process that is to be modeled. A simple rule of
thumb is that, if a specific phenomenon is an important factor in the real system,
it should also have an important role in the model [18].

Useful techniques to reduce model complexity include:

• Simplify complex components into mass and energy balances
When constructing models for large energy systems an effective technique is to
reduce complex components into simple mass and energy balance equations.
Even though this technique has large advantages, it must be used with some
care. For example, if reducing a large component like a whole paper machine
to a single set of balance equations it might give an efficient model with a
correct input-output behavior, but using such an approach will also spoil the
ability to study any of the internal dynamics, which could be an important
aspect for the operators using the DSS. Therefore, an important task of the
model designer is to decide which components could be simplified and for
which components it is important to keep the internal dynamic structure.

• Utilize operational conditions
The complexity of a model can often be reduced by considering the conditions
for which the plant is operated [18]. A potential area for such simplifications
are control loops. For example, if it is known that a certain temperature in the
plant is strictly controlled through a control loop, it might be useful to model
the temperature as constant. When set to constant, no state will represent
the temperature in the translated model.

• Precompute properties
If the model contains complex relations, for example advanced thermodynamic
properties, a way to simplify the model is to precompute the relations and form
lookup tables. Using this technique, caution has to be taken not to introduce
non-smooth derivatives which can cause numerical instabilities [18].

23



Chapter 4. Proposed DSS Concept

4.2.2 Selection of States

An important factor to consider during the development of the models is the se-
lection of states. Normally, the variables chosen as states in Modelica models are
selected automatically during the translation process. Though the automatic selec-
tion usually works well there could be some advantages selecting the states manually
when developing models for online use. Manually selecting states that closely relate
to variables measurable in the plant will reduce the complexity of the estimation
problem (this is explained in Section 4.3). Selecting states manually also allows the
model designer to select a less nonlinear representation [6, p. 347] and to avoid
implicit equations [18].

Modelica offers the ability to manually affect the selection of states using the at-
tribute stateSelect.

4.2.3 Formulation of Initial Problem

The DSS concept requires the models to be initiated using specific values for the
states. The model designer has to make sure that the initial problem is formulated
such that the given values for the states are not changed when the solving the initial
problem [4], [5, pp. 121-131].

Initial values for variables are set in Modelica using the attribute start. By also
adding the attribute fixed=true this means that this is a required value and not
just a value to use as the initial guess [5].

4.2.4 Selection of Solver (Integration Algorithm)

When Dymola translates a Modelica model for simulation it is linked with a nu-
merical integration algorithm, a solver. Dymola includes a number of solvers for
the model designer to choose from. The choice of solver will affect the speed and
the robustness of the DSS and the best choice depends on a combination of model
properties. For most cases it may well be that the model work well with one solver
but is unsolvable using another.

24



Chapter 4. Proposed DSS Concept

Key aspects to consider when selecting the solver are:

• Fixed vs variable step algorithms
With fixed step solvers, the integration step size remain the same during
the whole simulation. Variable step solvers adapts the step size to fit the
specified error tolerances. Variable step solvers are usually preferred since
they are usually more efficient. Fixed step algorithms are usually only used
if the simulation has to be performed in real time or with a discrete time
designed controller. For models used in the DSS, variable step solvers are to
be used [5].

• Single vs multiple step algorithms
The solver can either use a single or multiple step approach. Single step al-
gorithms are designed to start fresh for every integration step and do not use
information from any previous integration point. On the other hand, multiple
step solvers use information from previous points. Since the solvers have to
be restarted after every discrete event, and the cost of restarting single step
algorithms are lower, multiple step solvers are only recommended for models
with few events while single step solvers are to be used otherwise [5].

• Algorithms for stiff models
If the model includes a combination of fast and slow dynamics it may cause
the algorithms to become numerically unstable if the step size is not very
small. If a model has this behavior it is said to be stiff. For these kind of
systems, special solvers should be selected [5].

4.3 Estimator

A process plant features a large amount of sensors measuring different variables of
the process. The main task of the estimator is to constantly evaluate the sensor
measurements to find a good starting point for the predictor simulations.

To do this the estimator have the following tasks:

• Sensor fusion
Use combinations of sensor data to form "better" approximations of the states
than if single sensors were used.

• Mapping measurements to model states
The model is a simplification of the real world. The estimator has to know how
the measurements from the real plant relates to the states in the predictor
model and map them accordingly.

The complexity of designing the estimator depends on how the available plant
measurements relate to the states of the predictor model.

25



Chapter 4. Proposed DSS Concept

In the most simple case all information required for estimating the states of the
predictor model can be directly measured or trivially calculated from plant mea-
surements. Thus, at least one sensor measurement is present for every state of the
predictor model. In this case the task of designing the estimator becomes easy,
all that is required is to handle the noise in the sensors by proper filtering of the
signals.

Unfortunately, the more common and more complicated case is that some of the
states in the predictor model cannot easily be directly related to the measurements
from the plant. One scenario is that a measurement might be missing due to the
particular variable being difficult to measure, or that no sensor is present. Another
scenario might be that the predictor model is such a simplification of the real world
that a variable corresponding to the particular state does not exist in the same form
in the plant and therefore cannot be measured directly.

The more complicated case requires some kind of model-based estimation technique
to be used within the estimator. Process systems often include nonlinear dynamics
so the estimator should be designed with this in mind. The field of nonlinear state
estimation is broad and many different choices exist. A requirement is that the
chosen method has to be compatible with Modelica models. Modelica models are
translated into code for simulation with no easy access to the equations. Therefore,
the estimator has to be designed so that the model can be interfaced by sequentially
calling simulations of the model. Popular solutions include nonlinear Kalman filters,
such as the extended Kalman filter (EKF) and the unscented Kalman filter (UKF),
or Moving Horizon Estimation (MHE) for example. The best choice also depends
on the model dynamics and the available computing power. While MHE is a very
powerful solution, it requires a nonlinear optimization problem to be solved and
therefore might not be suitable as the first solution to try for the implementation
of the estimator. A better "first-try" solution is to use EKF or UKF. The EKF is
just an extension of the basic Kalman filter where the system is linearized at every
time step. This linearization can be done efficiently for Modelica/Dymola models
(see Section 4.5), but it also means that the EKF might have poor performance for
systems with highly nonlinear dynamics.

4.3.1 Constraints on State Values

When estimating the states one has to make sure that no invalid state values are
generated. Since the models represents physical systems, the states cannot assume
all possible values, for example a temperature cannot be below absolute zero. Trying
to initiate the prediction model with invalid state values will fail and cause the DSS
to crash. To prevent this, constraints related to the physical restrictions have to be
implemented.

26



Chapter 4. Proposed DSS Concept

In their standard form the Kalman filters do not handle constraints. This is often
one of the most common arguments to use a MHE based approach, but several
versions of constrained nonlinear Kalman filters (CEKF and CUKF) have been
presented [19, 20].

4.3.2 Estimation of More Than States

The above section only covers state estimation since it is an absolute necessity for
the implementation of the DSS. The option also exists to estimate other factors, for
example model parameters. If the plant features some type of time-varying parame-
ter which need to be included in the model, introducing parameter estimation might
be a way to improve the accuracy of the DSS. Extending the estimation to also cover
parameters using Modelica based solutions have been shown [21, 22].

4.4 Predictor

The predictor is the part of the DSS that supplies the predicted future behavior of
the plant. The predictor is basically a simulation of an internal plant model for a
predetermined amount of time. The most important aspect of the predictor is to
accurately describe the behavior of the plant for as long time as possible.

Generally three factors determine the accuracy of the predictions:

• Error due to model inaccuracy
The first factor to affect the accuracy of the prediction is how well the predictor
model represents the dynamics of the plant. Simply put, the better the model,
the longer predictions can be made.

• Error in starting point from the estimator
The second factor is errors in the starting point supplied by the estimator.
This error will affect the prediction right from the start of the simulation.

• Error in estimate of future control inputs
The third factor is the accuracy of the estimated future control inputs. Fu-
ture control inputs are difficult to estimate since they are controlled by hu-
man operators and affected by unscheduled changes in production and plant
breakdowns. Despite this, estimates of future control inputs are a necessity
if predictions should be valid for longer than just until the next change in
control.

27



Chapter 4. Proposed DSS Concept

In a largely automated process system, when the control signals directly con-
trolled by the operators are few, it might be possible to get a relatively good
estimate of future control signals from production schedules and schedules for
planned maintenance work etc. For a system where many control signals are
controlled by the operators it might prove impossible to provide good esti-
mates for the future control signals and then a successful implementation of
a DSS will be very challenging.

4.4.1 Validity of Predictions

During production, the operators might need time to study the predictions in order
to make good control decisions. Therefore, it can be useful to monitor for how long
a prediction is valid and may be used to support decision making. A situation might
occur when an operator makes a change in control based on an old, invalid prediction
and this can have large negative consequences for the control of the plant. To avoid
such kind of situations, it may be a good idea to include an automatic system, a
validator, in the predictor for monitoring the validity of the predictions.

The method used by the validator can be very simple. Once a prediction has been
made, the validator compares the values of the prediction to the latest state estimate
and control signals. If the estimate or control signals start to deviate to much from
the values in the prediction, the operator is warned that the prediction might be
invalid.

Another use of the validator can be to support automatic fault detection. If the
control actions remain in line with what was given for the prediction, but the state
estimates start to deviate, a malfunction has occurred in the plant (leaking pipe,
stop in pump etc.) and the operator is warned.

4.5 Implementation

The DSS is going to be used during active production, which means requirements on
stability and availability. This makes the implementation of the system important.
As already mentioned in Section 4.1, the DSS should be designed so that it can be
delivered as a stand-alone program needing no additional software to be installed.
For example, Dymola should not be required by a completed DSS.

The DSS can be implemented in a number of different ways. Since it was chosen
to use Modelica models developed in Dymola the best implementation practice is
connected to the possible ways of interfacing with these models.

28



Chapter 4. Proposed DSS Concept

Dymola offers a number of possibilities for exporting a model, which can then be
simulated outside Dymola:

• As Dymosim
Dymosim is a stand-alone executable program (.exe) generated by Dymola.
Interfacing with Dymosim is normally done using a simple file interface. An
input file with the start values for the model variables is generated. Dymosim
reads the file, performs the simulation and returns the result in an output file.
The files can either be ASCII formatted text files (.txt) or version 4 Matlab
(.mat) files. Using Dymosim with the file interface is the method used within
Dymolas internal simulation mode. An overview of Dymosim’s file interface is
presented in Figure 4.2.

dymosim.exe

dsfinal.txt

Final state at

end of simulation

dsres.txt

dsres.mat

Result of

the simulation

dslin.mat

Linearized model at the

values given in dsin

dsu.txt

dsu.mat

Input file

with values

for inputs

dsin.txt

dsin.mat

Input file

with start values

for variables

dslog.txt

Log file

Figure 4.2: Overview of Dymosim’s file interface.

In addition to the file interface, Dymosim can be compiled to include a DDE
or OPC server. DDE and OPC are standardized forms of communication
between applications. By running Dymosim with a DDE/OPC server one can
communicate and interact with the simulation. Values for variables can be
read and written while the simulation is controlled (start/stop/pause).

A third option for Dymosim is to compile it as a Dynamic Link Library (.dll).
This means the model can easily be integrated into custom software.

29



Chapter 4. Proposed DSS Concept

• As Simulink S-functions
Dymola also offers the ability to export models for use within Simulink. Dy-
mola is most often required to be installed on the same computer as Simulink
in order to simulate the models. Despite this, options exist to first compile the
model in Dymola to S-functions which can then be used in Simulink without
connection to Dymola [6, p. 236].

• As FMUs using FMI
Another approach for export of Dymola models, that have arisen during the
last years, is the use of the Functional Mockup Interface (FMI). Two versions
of FMI exist, 1.0 and 2.0. FMI 2.0 is the best choice since it includes more
functions and is more robust [23]. By exporting a model for Co-Simulation
(FMI-CS) the model can be used for simulation in any environment support-
ing the FMI standard. Support for FMI is currently being implemented in a
variety of tools. A number of libraries have also been developed for interfacing
with FMUs directly for different programming languages. Libraries currently
exists for C [24], Python [25] (part of the larger package Jmodelica.org [26])
and Java [27]. A benefit of basing the DSS concept around models exported
with FMI-CS is that models can be developed using any tool supporting FMI-
CS export, not only Dymola.

• As C code
As a final possibility Dymola offers the option to export the models directly
as source code (C-code). The model can then be linked with binary libraries
containing the solver code. This option is only recommended for advanced
users.

Depending on the design of the estimator, linearizations of the models can be re-
quired (for example when using an EKF). While linearization can be made numeri-
cally, two of the export techniques above offer analytic linearizations of the models,
Dymosim and FMI 2.0. When using FMI 2.0, model linearizations are not offered
directly but can be derived using the fmi2GetDirectionalDerivative function [7,
p. 27]. Generally, FMI has become a popular approach when implementing nonlinear
estimators with Modelica models [23, 22, 28].

30



5 | Case Study: Simulation Results

In this chapter different aspects of the DSS concept is evaluated using the case
study presented in Chapter 3.

5.1 Internal Model Development

Three versions of internal models for the paper mill were developed to describe
different levels of model accuracy. The developed models were designed such that
they can be used both within the estimator and the predictor. All models were
designed to use the solver Dassl which is a variable step solver using a multiple
step method that can handle stiff dynamics.

Model 1 was developed with the aim to simplify the model as much as possible while
still retaining a near perfect representation of the plant. To minimize the number
of states, the two hot water production lines (HWP1 and HWP2) were simplified
to boundary components supplying hot water at a constant temperature. The main
pulp line was modeled without the fiber content, using only a standard IF97 water
medium, thus eliminating states related to mass fractions of the pulp. The resulting
model has 12 states which were manually selected to be the temperature and level
for the tanks and states for the integral part of the PI-controller in the hot water
system. The final states are presented in Table 5.1. An overview of Model 1, as seen
in Dymola, is presented in Figure 5.1.

Model 2 is based on Model 1, adding some parametric errors to reflect when one is
not able to derive the correct parameters from the plant. Three different parametric
errors were introduced. The first was that the pumps between the WT and HWT
tanks in the model operate with 110% capacity of the pumps in the plant. This
could represent lowered performance of the pumps in the plant due to wear while
modeling the pumps using their original specifications. The second error was giving
the PI-controller (HWT_PID) different values for its parameters compared to the
ones in the plant. The controller gain (K) was given a slightly higher value and the
time constant for the integrator part (Ti) was given a lower value. The third error
introduced was that the heat transfer between the tanks and the environment in
the internal model is 150% of that in the plant. This is to reflect when the loss of
heat in the tanks is overestimated in the internal model.

31



Chapter 5. Case study: Simulation Results

Table 5.1: State variables for the models

State Modelica variable
x1 PT.level Level in pulp tank (PT)
x2 BL.T1.level Level in bleachery tank 1 (BL.T1)
x3 BL.T2.level Level in bleachery tank 2 (BL.T2)
x4 WT1.level Level in return water tank 1 (WT1)
x5 WT1.medium.T Temperature in return water tank 1 (WT1)
x6 WT2.level Level in return water tank 2 (WT2)
x7 WT2.medium.T Temperature in return water tank 2 (WT2)
x8 HWT1.level Level in hot water tank 1 (HWT1)
x9 HWT1.medium.T Temperature in hot water tank 1 (HWT1)
x10 HWT2.level Level in hot water tank 2 (HWT2)
x11 HWT2.medium.T Temperature in hot water tank 2 (HWT2)
x12 HWT_PID.I Integrator value of PI-controller (HWT_PID)

Model 3 is based on Model 2, introducing a major modeling error by completely
removing the second hot water production line (HWP2). Though it might seem un-
likely that such a severe modeling error could be made, it is important to remember
that real plants are a lot more complex than the plant used in this case study and
include hundreds of streams. This makes it possible for streams to be overlooked
during modeling.

5.1.1 Validation

To evaluate the developed models they were simulated and compared to the plant
using the standard operating cycle (SOC) over a 12 h period. The results for the 12
states for the three different models are presented in Figure 5.2.

Model 1 manages to resemble the plant well for most of the states. A difference
can be seen for the temperatures in WT1 and WT2. The difference originates from
the replacement of the pulp medium. Without the fiber content in the pulp, the
heat capacity of the pulp is different and the energy balance in the paper machine
changes, which affects the water temperature.

32



Chapter 5. Case study: Simulation Results

Figure 5.1: Overview of Model 1. The grey lines represents the pulp line, the orange
lines the return water system, the purple lines the hot water production and the red lines
connections to the steam network. Green boxes are adapters for connecting components
from different Modelica libraries. Simplifications in the model can be seen by comparing
it to Figure 3.2 which shows the plant model.

The parametric errors for the pump capacity introduced in Model 2 and 3 allow
a faster water transfer between the tanks in the models compared to that in the
plant. For the level of HWT2 no difference can be seen since it is controlled by the
PI-controller. For the levels in WT1 and WT2 the result is different. The "zig-zag"
pattern of the tank levels is changed but it is still centered around the same mean.
The error in heat transfer is noticeable by the temperatures in WT and HWT tanks
being lower for Model 2 and 3.

The effects of removing one of the hot water streams in Model 3 can be seen clearly
from the tank level in HWT1. Since HWP2 supplies hot water at a slightly higher
temperature than HWP1 the removal also has a negative effect on the temperatures
in the tanks.

33



Chapter 5. Case study: Simulation Results

0 2 4 6 8 10 12
32

34

36

38

40

42

44

46
PT.level

T
a

n
k
 l
e

v
e

l 
[m

]

Time [h]

0 2 4 6 8 10 12
1

2

3

4

5

6

7

8
BL.T1.level

T
a

n
k
 l
e

v
e

l 
[m

]
Time [h]

0 2 4 6 8 10 12
4.5

4.6

4.7

4.8

4.9

5
BL.T2.level

T
a

n
k
 l
e

v
e

l 
[m

]

Time [h]

0 2 4 6 8 10 12
24.5

25

25.5

26

26.5

27

27.5

28
WT1.level

T
a

n
k
 l
e

v
e

l 
[m

]

Time [h]

0 2 4 6 8 10 12
54

54.5

55

55.5

56

56.5
WT1.medium.T

T
e

m
p

e
ra

tu
re

 [°
C

]

Time [h]

0 2 4 6 8 10 12
25.5

26

26.5

27

27.5

28

28.5
WT2.level

T
a

n
k
 l
e

v
e

l 
[m

]

Time [h]

0 2 4 6 8 10 12
53.5

54

54.5

55

55.5
WT2.medium.T

T
e

m
p

e
ra

tu
re

 [°
C

]

Time [h]

0 2 4 6 8 10 12
2

3

4

5

6

7
HWT1.level

T
a

n
k
 l
e

v
e

l 
[m

]

Time [h]

0 2 4 6 8 10 12
57

57.5

58

58.5

59

59.5
HWT1.medium.T

T
e

m
p

e
ra

tu
re

 [°
C

]

Time [h]

0 2 4 6 8 10 12
8.95

9

9.05

9.1

9.15

9.2
HWT2.level

T
a

n
k
 l
e

v
e

l 
[m

]

Time [h]

0 2 4 6 8 10 12
56

56.5

57

57.5

58

58.5

59
HWT2.medium.T

T
e

m
p

e
ra

tu
re

 [°
C

]

Time [h]

0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
HWT_PID.I

V
a

lu
e

Time [h]

Figure 5.2: Comparison between plant and the three developed internal models. The
thick black lines corresponds to the true value from the plant, the blue lines to Model 1,
the green lines to Model 2 and the red lines to Model 3. Note that all lines are not visible
in some graphs since they are covered by other lines.

34



Chapter 5. Case study: Simulation Results

5.2 Estimator

The objective of the estimator is to provide estimates for the states in the predictor
model for the current state of the plant. Two different implementations of the esti-
mator were studied for the paper mill. One case is when all states are measurable
and another when state estimation is required.

5.2.1 All States Measurable

The studied system offers a particular good case for filtering since the system dy-
namics are slow compared to the measuring noise. A simple moving average filter
was designed in MATLAB using the function filter to average the signals over
150 s using a 3 s sampling time. The result of the filtering is presented for two of
the states in Figure 5.3.

0 2 4 6

6

6.2

6.4

6.6

Time [h]

T
a
n
k
 l
e
v
e
l 
[m

]

HWT1.level

0 2 4 6
57

58

59

60

61

Time [h]

T
e
m

p
e
ra

tu
re

 [°
C

]

HWT1.medium.T

Figure 5.3: Example of filtered measurement signals for the state related to HWT1.
The thick black line corresponds to the true value from the plant, the grey lines are the
measurement signals and the blue lines are the signals after filtering.

As can be seen in Figure 5.3, the moving average filter manages well to filter out the
measurement noise. As long as the measurements from the sensors does not have too
large offset errors using simple filtering in the estimator is a viable approach.

5.2.2 State Estimation Required

As mentioned, direct measurements can in reality not be expected for all states and
state estimation probably has to be performed. In order to demonstrate the use of
state estimation using Modelica models, an EKF was implemented using each of the
three developed models. 13 variables (see Table 5.2) were chosen to be measured as
plant outputs such that the system becomes observable.

35



Chapter 5. Case study: Simulation Results

Table 5.2: Output signals from the plant.

Output signal Measurement
y1 Level in pulp tank (PT)
y2 Level in bleachery tank 1 (BL.T1)
y3 Level in bleachery tank 2 (BL.T2)
y4 Level in return water tank 1 (WT1)
y5 Temperature in return water tank 1 (WT1)
y6 Level in return water tank 2 (WT2)
y7 Temperature in top of return water tank 2 (WT2)
y8 Temperature in bottom of return water tank 2 (WT2)
y9 Level in hot water tank 1 (HWT1)
y10 Temperature in hot water tank 1 (HWT1)
y11 Mass flow between hot water tanks (HWT1 and HWT2)
y12 Temperature of hot water entering paper machine (PM)
y13 Integrator value of PI-controller (HWT_PID)

Output measurements from the plant were generated using the standard operating
cycle for 6 h with a sampling time of 30 s. The sampled outputs were imported into
MATLAB where the EKF algorithm was implemented. Model 1-3 were exported as
Dymosim and interfaced with the EKF using the file interface.

For implementing the EKF in MATLAB four special functions were created:

• build_dsin
Function used to generate the dsin.mat file with start values for variables to
the Dymosim simulation.

• build_dsu
Function used to generate the dsu.mat file with values for the inputs to the
Dymosim simulation.

• check_inputs
The implemented EKF is a standard EKF not considering constraints. In
order to avoid invalid state estimates check_inputs was created. The function
makes sure that the state estimates (x̂) and inputs (u) are within their allowed
range.

• ekf
Function that performs one iteration of the EKF.

36



Chapter 5. Case study: Simulation Results

The algorithm is described below:

1. Initiate state estimate x̂k−1 and error covariance matrix Pk−1 to the initial
guesses.

2. Get the input uk and measured outputs ỹk from the plant.

3. Check x̂k−1 and uk using check_inputs.

4. Create dsu.mat and dsin.mat with values for the state estimate and the
input.

5. Linearize the model using the command Dymosim -l and load the matrices
in dslin.mat into MATLAB.

6. Since the matrices are for continuous time behavior, discretize them using
F = eAcontTs and H = C (Acont is the continuous time system matrix and Ts
is the sampling time).

7. Check that the matrices are observable. If not, print out a warning.

8. Simulate the model using Dymosim -s for one sample and load dsres.mat
into MATLAB. From the result, extract the values for x̂k|k−1 and yk.

9. Use F to calculate Pk|k−1 = FPk−1|k−1F
T +Q.

10. Use H to calculate the Kalman gain Kk = Pk|k−1H
T (HPk|k−1H

T +R)−1.

11. Calculate the new state estimate x̂k|k = x̂k|k−1 +Kk(ỹk − yk).

12. Calculate the new error covariance matrix Pk|k = (I −KkH)Pk|k−1.

13. Iterate from step 2.

The MATLAB code for the implementation is presented in Appendix A.

The most important tuning parameters for the EKF are the estimates for the co-
variances Q and R. To receive the best performance it is important to get a good
balance between the two. In practice, Q and R are often chosen as diagonal matri-
ces, i.e. the noises are assumed to be uncorrelated. The values along the diagonal
are then the variances for the different variables. Simply put, the different values in
the matrices become weights on how much each variable (states and measurements)
can be "trusted". A low value (low variance) corresponds to small noise for the par-
ticular variable meaning it should be trusted more by the Kalman filter. Values for
R are normally the easiest to estimate since it relates to the measurement noise.
Choosing values for Q is more difficult since it relates to model errors and process
disturbances, which are difficult to assess.

37



Chapter 5. Case study: Simulation Results

For the EKF in this case study the choice of Q and R were initially chosen as:

Q = diag([0.001 0.001 0.001 0.001

0.001 0.001 0.001 0.001

0.001 0.001 0.001 1000]);

(5.1)

R = diag([0.16 0.001 0.001 0.001

0.05 0.001 0.05 0.05

0.16 0.05 0.16 0.05 0.001]);

(5.2)

The simulation result for the EKF is presented in Figure 5.4.

38



Chapter 5. Case study: Simulation Results

0 2 4 6
32

34

36

38

40

42

44

46
PT.level     

Time [h]

T
a

n
k
 l
e

v
e

l 
[m

]

0 2 4 6
0

2

4

6

8
BL.T1.level  

Time [h]
T

a
n

k
 l
e

v
e

l 
[m

]

0 2 4 6
4.5

4.6

4.7

4.8

4.9

5

5.1
BL.T2.level  

Time [h]

T
a

n
k
 l
e

v
e

l 
[m

]
0 2 4 6

24.5

25

25.5

26

26.5

27

27.5
WT1.level    

Time [h]

T
a

n
k
 l
e

v
e

l 
[m

]

0 2 4 6
53

53.5

54

54.5

55

55.5

56
WT1.medium.T 

Time [h]

T
e

m
p

e
ra

tu
re

 [°
C

]

0 2 4 6
25.5

26

26.5

27

27.5

28

28.5
WT2.level    

Time [h]

T
a

n
k
 l
e

v
e

l 
[m

]

0 2 4 6
51

52

53

54

55

56

57
WT2.medium.T 

Time [h]

T
e

m
p

e
ra

tu
re

 [°
C

]

0 2 4 6

5.9

6

6.1

6.2

6.3

6.4

6.5

6.6
HWT1.level   

Time [h]

T
a

n
k
 l
e

v
e

l 
[m

]

0 2 4 6
58

58.5

59

59.5

60

60.5
HWT1.medium.T

Time [h]

T
e

m
p

e
ra

tu
re

 [°
C

]

0 2 4 6
8.95

9

9.05

9.1

9.15

9.2
HWT2.level   

Time [h]

T
a

n
k
 l
e

v
e

l 
[m

]

0 2 4 6
55.5

56

56.5

57

57.5

58

58.5

59
HWT2.medium.T

Time [h]

T
e

m
p

e
ra

tu
re

 [°
C

]

0 2 4 6
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3
HWT_PID.I    

Time [h]

In
te

g
ra

to
r 

v
a

lu
e

Figure 5.4: Result of the state estimation using the EKF. The thick black lines are the
true values of the states from the plant, the grey lines sensor measurements, the blue lines
the state estimates when Model 1 is used, the green lines when Model 2 is used and the
red lines when Model 3 is used. Note that all lines are not visible in some graphs since
they are covered by other lines.

39



Chapter 5. Case study: Simulation Results

As seen in Figure 5.4, the EKF manages to estimate most of the states well. The
result also shows that the EKF perform almost the same for all models despite
their different errors. The reason for this is because the state estimates are con-
stantly corrected using measurement data. However, some errors can be seen in
the estimation for the temperature in HWT2 (HWT2.medium.T), the tempera-
ture in WT1 (WT1.medium.T) and the level in HWT2 (HWT2.level) when using
Model 2 and 3.

The estimation error for HWT2.medium.T is due to no direct measurement being
available. To limit the number of states in the models, no pipe dynamics were
modeled between HWT2 and the PM. Thus, the EKF sees the measurement of
the inflow temperature to the PM as a direct measurement of the temperature in
HWT2 and corrects the state estimates towards it. This can be seen in Figure 5.4
for HWT2.medium T where the temperature for the water entering the PM (y12)
is plotted in gray. To avoid this type of errors, care has to be taken not to put too
much trust in measurements for which model dynamics are missing. By adjusting
Q and R so that less trust is put on y12, the estimate in HWT2.medium.T can be
improved. This is presented in the left plot of Figure 5.5.

The estimation error in WT1.medium.T is related to sensor drift in measurement
y5 (compare the grey measurement line with the black line showing the true value).
Trying to use the same technique for correcting, as above (less trust in y5) will force
the EKF to increase the trust on the model. Since there are modeling errors for the
temperatures in WT1 (pulp modeled as water) this will impair the estimate as can
be seen in the right plot of Figure 5.5. This type of error with sensor drift is best
avoided by using information from more sensors in the plant.

0 2 4 6
55

56

57

58

59
HWT2.medium.T

Time [h]

T
e
m

p
e
ra

tu
re

 [°
C

]

0 2 4 6
53

54

55

56
WT1.medium.T

Time [h]

T
e
m

p
e
ra

tu
re

 [°
C

]

Figure 5.5: EKF compensation for missing model dynamics or sensor drift. The thick
black lines are the true value of the states from the plant, the grey lines sensor mea-
surements, the blue lines the state estimates when Model 1 is used, the green lines when
Model 2 is used and the red lines when Model 3 is used.

40



Chapter 5. Case study: Simulation Results

The error in the estimate for HWT2.level for Model 2 and 3 is related to the level
in HWT2 not being directly measured for the EKF. Since the flow between the
tanks are measured (y11), it can be used together with the controller parameters
(K,Ti) and the integrator value from HWT_PID (y13) to calculate the level in
the tank. Since HWT_PID is a part of the plant control system, y13 is not a
sensor measurement and was assumed to be noise free. The values of Q and R were
therefore adapted to highly trust y13 (compare the high last value in Equation (5.1)
to the low value in Equation (5.2)), giving the result presented in Figure 5.4. By
adjusting the values of Q and R other results can be achieved. An example of this
is seen in Figure 5.6

0 2 4 6
8.95

9

9.05

9.1

9.15

9.2
HWT2.level

Time [h]

T
a
n
k
 l
e
v
e
l 
[m

]

0 2 4 6
−0.1

0

0.1

0.2

0.3
HWT_PID.I

Time [h]

In
te

g
ra

to
r 

v
a
lu

e

Figure 5.6: Result when trying to compensate for wrong controller parameters. The thick
black line is the true value of the states from the plant, the blue lines the state estimates
when Model 1 is used, the green lines when Model 2 is used and the red lines when Model 3
is used. As can be seen on the left, when the weights of Q and R are changed the estimation
of HWT2.level becomes correct for all models. On the right, it can be seen how the change
of weights instead moves the estimate error for Model 2 and 3 to the integrator state of
HWT_PID.

5.2.3 Computation Time

The estimator must be able to perform its calculations between the sampling points.
In the simple case where all states are measurable this will not be a problem since
filtering can be done fast and efficiently. For the more complex case, where the EKF
has been designed, the used sampling time was 30 s and this is therefore also the
maximum allowed time for the EKF calculations.

41



Chapter 5. Case study: Simulation Results

With the implemented solution, one iteration of the EKF takes about 0.4 s, leaving
a large margin for use of more complex models, use of more advanced estimator
techniques or a shorter sampling time. Note that the calculation time would prob-
ably also be shorter if a more efficient way to interact with the model simulations
was used. With the current implementation, a large portion of the 0.4 s is spent on
reading and writing to files.

5.3 Predictor

As mentioned in Chapter 4, three main factors determine the accuracy of the pre-
dictions. To study the influence of these factors simulations were performed for the
predictor.

5.3.1 Error Due to Model Inaccuracy

The first factor to affect the accuracy of the prediction is how well the model de-
scribes the system. The effect of the three developed models on the prediction has
indirectly been shown in Figure 5.2. Generally the modeling errors and their respec-
tive impact on the prediction can be divided into two different categories:

The first category are model errors which have a less severe impact on the prediction
since they only affect how energy and material are distributed in the system. An
example of this type of error is difference in pump capacity between two tanks.
For this type of error the prediction can give the wrong value for the individual
content in the two tanks, but the sum of the contents in the two tanks might still
be correct.

The second category of model errors are more severe when energy or material is lost
from the system. Examples of this type of errors are missing streams or higher/lower
heat transfer coefficients. The impact of these kind of errors will increase with
simulation time.

5.3.2 Error in Starting Point from the Estimator

The second factor to affect the accuracy of the prediction is errors in the starting
point supplied by the estimator. To study the impact of an initial error in the
starting point, simulations were performed using Model 1 where three different
values were given for the initial values of the tank level and temperature in HWT1.
The results are presented in Figure 5.7.

42



Chapter 5. Case study: Simulation Results

0 2 4 6 8 10 12

5.5

6

6.5

7

Time [h]

T
a
n
k
 l
e
v
e
l 
[m

]
 

0 2 4 6 8 10 12

58

58.5

59

59.5

60

Time [h]

T
e
m

p
e
ra

tu
re

 [°
C

]

HWT1 for different inital state values

Figure 5.7: Simulations performed with Model 1 with different initial state values. The
thick black lines represent the true value from the plant, the blue lines Model 1 with no
initial error, the green lines Model 1 for a situation where the initial values for the states
are too high and the red lines when the initial values are too low.

The supply to the tank is modeled correctly for flow and temperature. Therefore,
the impact of the initial error in the tank level will remain constant for the whole
prediction. The impact of an initial error in the temperature is different. In this
case, the impact will decrease over time since new water is supplied and the tank
temperature will converge to the temperature of the supplied water. Since the model
has a correct supply water temperature, the tank temperature will converge towards
the correct value.

5.3.3 Error in Estimate of Future Control Inputs

The third factor to affect the accuracy of the prediction is the estimates of future
control inputs. As already mentioned in Chapter 4, the impact of this factor is
very hard to determine since the decision to change the control inputs are made by
human operators. Despite this, supply estimates of future inputs are necessary in
order to make predictions longer than just to the next change in control. Simulations
were made for two possible scenarios.

5.3.3.1 Delays in Operating Cycle

The first scenario covers unexpected delays in the operating cycle of the PM after a
prediction was performed. Two different delays are possible, an extended production
time or an extended stop time.

43



Chapter 5. Case study: Simulation Results

Simulations were made using the SOC with the two different delays. In the first
case, the production of the PM was extended by 20min at 1.5 h into the SOC. In
the second case, the stop time of the PM was extended by 20min at 30min into the
SOC. Results from the simulations are displayed for HWT1 in Figure 5.8.

0 2 4 6 8 10 12

5.5

6

6.5

7

Time [h]

T
a
n
k
 l
e
v
e
l 
[m

]

 

0 2 4 6 8 10 12
58.4

58.6

58.8

59

59.2

59.4

Time [h]

T
e
m

p
e
ra

tu
re

 [°
C

]

HWT1 for delays in operating cycle

Figure 5.8: Impact on the accuracy of the prediction for HWT1 if the operating cycle
is delayed. The black lines represent the prediction made using Model 1 according to the
SOC, the blue lines the plant if the estimate of future control inputs was correct (i.e the
estimates matched the SOC), the green lines a 20min delay after 1.5 h and the red lines
a 20min delay after 30min.

As can be seen, the impact of the delays is worst for the tank level. The reason
is that the operating cycle used in the prediction has become out of sync with
the plant. Depending on when the delay occur the impact is different. If the delay
happens when the PM is running (extended running time, green lines), the cycle
will get out of sync for the periods during when the PM should have been turned
off. If the delay happens when the PM is stopped (extended stop time, red lines) the
cycle will get out of sync during the period when the PM was supposed to run. For
the temperature only a small difference can be seen, and compared to the modeling
error, the impact of the delay is negligible.

5.3.3.2 Disturbances in Production Cycle

The second scenario considered is disturbances that cause unexpected stops in pro-
duction. Simulations were performed when 5% and 10% of the scheduled production
time are stops. The result is presented in Figure 5.9.

Again, the impact is worst for the tank level. The unexpected stops mean that the
predicted water usage is much higher than in the plant, causing the tank levels to
be underestimated. For the temperature, the result is similar to the scenario with
delays where the change is so small that it can be neglected.

44



Chapter 5. Case study: Simulation Results

0 2 4 6 8 10 12

6

6.5

7

7.5

Time [h]

T
a
n
k
 l
e
v
e
l 
[m

]
 

0 2 4 6 8 10 12
58.4

58.6

58.8

59

59.2

59.4

Time [h]

T
e
m

p
e
ra

tu
re

 [°
C

]

HWT1 for disturbance stops in production

Figure 5.9: Impact on the accuracy of the prediction for disturbance stops in production.
The black lines represent the prediction made using Model 1 according to the SOC, the
blue lines the plant if the estimate of future control inputs were correct (i.e the estimates
matched the SOC), the green lines the plant running according to the SOC but when 5%
of each hour are unexpected stops and the red lines when 10% of each hour are unexpected
stops.

5.3.4 Computation Time

As mentioned in Chapter 4, the DSS should be able to deliver a 4 h prediction
within 1min. To test the performance, the three models were simulated for 12 h.
The simulation times were roughly the same for all the models within approximately
17 s. The models used in this case study are therefore well below the target, which
leaves a large margin for more complex models to be used in the predictor.

45



6 | Discussion

In this chapter various aspects of the proposed DSS concept are discussed. Different
previously presented issues are covered and some reflections on design choices and
their consequences are made.

6.1 DSS Concept

The purpose of this thesis was to propose a concept for a decision support system
(DSS). The proposed concept should be able to serve as a starting point for future
development of DSS at Solvina. Development of a DSS is a large project and only
a part of the required work has been covered in this thesis

The DSS concept is a combination of modules which have to work well together
in order to provide good predictions for the operators. Since the modules are in-
tertwined, the different design choices have to be balanced and compromises are
necessary in order to achieve acceptable performance of the DSS.

6.2 Modelica in Internal Models

Important for the success of the DSS is to have good internal models. Since Solvina
has previous knowledge of modeling in Dymola/Modelica the proposed concept was
developed to use this type of models. The choice of using Modelica to construct the
models offers a versatile and powerful modeling solution. The use of Modelica models
in online applications is a relatively new area that has arisen in the last couple
of years. The majority of the work presented in literature is related to nonlinear
model predictive control (NMPC) [16, 17, 29]. Projects like this one, where Modelica
models are used in DSS systems to provide operators with information, are not as
common and references in literature are few [30].

When designing the models the most challenging task is to achieve a suitable model
complexity. The models should be able to describe complex process systems on
a plant-wide basis, but still remain relatively simple to meet the computational
requirements set by their online use. The use of a simple model for the predictor
will result in few states and a less complicated implementation of the estimator, but
a simple model might not describe the behavior of the plant well enough, meaning

46



Chapter 6. Discussion

the prediction will only be accurate for a short period of time. On the other hand,
using a too complex model for the predictor will result in a large number of states
which will make the design of the estimator difficult. The models will also take
much longer to simulate with an increased waiting time for the predictions.

The models developed for the case study used in this thesis are relatively simple.
Most of the large components in the plant were simplified to a single set of mass and
energy balance equations. It was decided to replace the pulp medium with regular
water to reduce the states in the internal models. When examining the results, it
is clear that this was not the optimal choice since it introduced one of the most
significant error in Model 1. A better simplification would probably have been to
keep the pulp media, but modify it to have a constant consistency. In this case,
no states would be created for the mass fractions, but the media would have more
pulp-like characteristics than plain water.

6.3 Design of the Estimator

When constructing a DSS with the proposed concept, the design of the estimator will
most likely require the largest effort. The design of the estimator is closely related
to the plant process and to the states of the model in the predictor. Several choices
exist for the design. The best choice depends on the dynamics of the system.

In the case study two different designs for the estimator were presented; one where
all states were directly measurable and one where state estimation using an EKF
was implemented. For the studied system, the EKF manages rather well to estimate
the states. However, if an EKF was implemented for a system with highly nonlinear
dynamics the performance would likely be worse and other approaches such as the
UKF or MHE should be considered.

The EKF was implemented for models of the whole plant. Therefore, in each time
step the entire plant model had to be linearized and simulated. For small models
with few states, such as the ones in the case study, this approach was not a prob-
lem. However, if an estimator should be constructed for a much larger model with
hundreds of states it may prove difficult to include a model of the whole plant as
one component. In this case, an option might be to separate the estimator into sev-
eral sub-estimators that cover different states. The different state estimates could
then be combined and used for initializing the predictor model which features all
the states. Separation into sub-estimators would also simplify the tuning (selection
of Q and R for the EKF). With smaller modules, the tuning parameters could be
more easily selected and evaluated.

47



Chapter 6. Discussion

Important for the estimator is the interface used to communicate with the model.
The estimator needs fast access to the model since it should be simulated repeat-
edly. In the case study, interfacing to the models was done using files (exported as
Dymosim). This implementation is easy to implement, but the solution is slow and
sensitive to faults. Therefore, this technique is only recommended for test purposes
and not to be used in an active DSS. A better solution would be to use a more
direct approach to interface with the models. A solution that appears promising
for the future is to use FMI-CS 2.0. This gives a direct interface and the models
can be developed using any tool supporting FMI. Disadvantages using a FMI based
implementation are mostly related to it being a relatively new standard still under
development (FMI 2.0 was released 2014-07-25). Native support for FMI is cur-
rently lacking in many common simulation tools (for example MATLAB/Simulink
and LabVIEW). However, efforts are made to implement FMI support in future
versions.

6.4 Accuracy of the Predictions

Even though the predictor is simple to design, the accuracy of the predictions are
affected by a number of factors which can be difficult to influence. Three main
factors have been mentioned. The two first factors, errors due to model inaccuracy
and errors in initial state from the estimator, can likely be minimized by designing
good models and using powerful estimator techniques.

Minimizing the effect of the third factor (errors in estimate of future control inputs)
offers a totally different challenge. Estimating what the operators will do in the
future can prove to be very difficult and depends upon the type of work tasks the
operators perform within the actual plant process. Therefore, more information,
experience and knowledge about how operators work in real plants have to be
gathered and analyzed.

48



7 | Concluding Remarks

This chapters provides some concluding remarks about the work performed in this
thesis, and gives suggestions for future development.

7.1 Conclusions

The work presented covers the design of a decision support system (DSS) concept
to be used within the process industry. The DSS concept use simulations of internal
models, in parallel to the real plant, to provide predictions to operators about the
future behavior of the plant.

In the proposed concept, predictions are made by initiating a prediction model to
a starting point representing the current state of the plant. The predictor model
is then simulated, providing the predictions. The initial starting point is provided
by an estimator module which continuously evaluate measurement data from the
plant. To develop the models used within the DSS, Modelica was chosen for its
powerful multi-domain modeling capabilities and its ability for simple reuse of model
components.

To evaluate the proposed DSS concept, a case study was conducted where parts of
the concept was evaluated for a fictitious thermomechanical paper mill. Three differ-
ent models were developed to be used as internal models, each representing different
levels of model accuracy. The estimator module was designed for two different cases;
one simple, where all states were measurable, and one where state estimation was
performed using an extended Kalman filter (EKF). Simulations were also performed
to evaluate different factors affecting the accuracy of the predictions.

The results from the case study show that the proposed concept provides a pos-
sible solution though each implementation of a DSS has to be adapted for each
specific process system. Nevertheless, the implementation technique and the knowl-
edge gathered are reusable when developing DSS concepts for other systems.

Concluding, the development of a DSS is a large and challenging project and the
presented DSS concept provides a far from finished solution. Further work have
to be conducted in a number of areas before a DSS as the one proposed can be
developed for use within active production. Despite this, the results gathered in
this thesis show the development of a DSS to be promising.

49



Chapter 7. Concluding Remarks

7.2 Further Work

To further develop the DSS concept extended work have to be performed. The main
areas of interest can be summarized into four points:

• Development of online models for real process systems
Developing the models that are to be used in the DSS are a time consuming
task which requires a good understanding of the system that should be mod-
eled. In order to get a better understanding of Modelica models for online use,
models have to be developed for real process systems where validation data
is available. It is only then that it is possible to see what kind of problems
might arise and how they are best handled.

• Further research into estimators using Modelica models
A complex part of the DSS is the estimator. Since several different design op-
tions exist for the estimator further studies have to be performed to evaluate
the performance of the different options. For this task, information gathered
from nonlinear model predictive control (NMPC) using Modelica models can
prove useful. Another thing to consider when designing estimators for large
process systems is some kind of automated implementation technique to min-
imize the the manual work otherwise required.

• Availability of future control inputs
As mentioned previously, an important factor for the accuracy of the predic-
tions are the estimates of future control signals. At the moment, it is unknown
how well these can be estimated. Therefore, further studies have to be per-
formed on real process system to gain more knowledge.

• User interface
While it is outside the scope for this thesis, development of a suitable user in-
terface for the DSS has to be conducted which allows the operators to interact
and work with the system.

50



Bibliography

[1] L. Ljung and T. Glad. Modeling of Dynamic Systems. Prentice Hall, 1994.
isbn: 9780135970973.

[2] Modelica Association. url: http://www.modelica.org.

[3] Modelica Language Specification 3.3. Modelica Association. May 2012.

[4] S. E. Mattsson et al. “Initialization of Hybrid Differential-Algebraic Equations
in Modelica 2”. In: Proceedings of the 2nd International Modelica Conference.
Oberpfaffenhofen, Germany, Mar. 18–19, 2002, pp. 9–15.

[5] Dymola - User Manual Volume 1. 15th ed. Dassault Systemes AB. Sept. 2013.

[6] Dymola - User Manual Volume 2. 15th ed. Dassault Systemes AB. Sept. 2013.

[7] Functional Mock-up Interface for Model Exchange and Co-Simulation. 2.0.
Modelica Association. July 25, 2014. url: http://www.fmi-standard.org.

[8] T. Glad and L. Ljung. Control Theory: Multivariable and Nonlinear Methods.
CRC Press, 2000. isbn: 9780748408788.

[9] K. J. Åström and R. M. Murray. Feedback Systems: An Introduction for Scien-
tists and Engineers. Princeton University Press, 2008. isbn: 9780691135762.

[10] S. Särkkä. Bayesian Filtering and Smoothing. Cambridge University Press,
2013. isbn: 9781107030657.

[11] How a paper machine line works. Metso. url: http://www.metso.com/
corporation/info_eng.nsf/WebWID/WTB-060628-2256F-1BCC2.

[12] M. Rodríguez Pascual. “Konceptstudiemodell av TMP”. Internal document
Solvina AB. 2013.

[13] J. Pettersson. “Energikartläggning för energiledningssystem. Holmen Paper,
Hallsta”. Luleå University of Technology, Applied Physics - Division of Energy
Science, 2005.

51



Bibliography

[14] N. J. Sell and P. E. Chair. Process Control Fundamentals For The Pulp &
Paper Industry. Tappi Press, 1995. isbn: 978898522945.

[15] H. Elmqvist, H. Tummescheit, and M. Otter. “Object-Oriented Modeling of
Thermo-Fluid Systems”. In: Proceedings of the 3rd International Modelica
Conference. Linköping, Sweden, Nov. 3–4, 2003, pp. 9–15.

[16] R. Franke and J. Doppelhamer. “Online Application of Modelica Models in the
Industrial IT Extended Automation System 800xA”. In: 5th Modelica Confer-
ence. Sept. 4–5, 2006.

[17] L. Imsland, P. Kittilsen, and T. S. Schei. “Model-based optimizing control and
estimation using Modelica models”. In: Modeling, Identification and Control
Vol. 31.No. 3 (2010).

[18] P. Kittilsen, S. O. Hauger, and S. O. Wasbø. “Designing models for online use
with Modelica and FMI”. In: Proceedings of the 9th International Modelica
Conference. Munich, Germany, Sept. 3–5, 2012, pp. 197–204.

[19] S. Ungarala, E. Dolence, and K. Li. “Constrained Extended Kalman Filter
for Nonlinear State Estimation”. In: 8th International IFAC Symposium on
Dynamics and Control of Process Systems. Cancún, Mexico, June 6–8, 2007,
pp. 63–68.

[20] S. Kolås, B. A. Foss, and T.S. Schei. “Constrained nonlinear state estimation
based on the UKF approach”. In: Computers and Chemical Engineering Vol.
33 (2009), 1386–1401.

[21] J. I. Videla and B. Lie. “Using Modelica/Matlab for parameter estimation
in a bioethanol fermentation model”. In: Proceedings of the 6th International
Modelica Conference. Bielefeld, Germany, Mar. 3–4, 2008, pp. 287–299.

[22] M. Bonvini, M. Wetter, and M. D. Sohn. “An FMI-based Framework for State
and Parameter Estimation”. In: Proceedings of the 10th International Modelica
Conference. Lund, Sweden, Mar. 10–12, 2014, pp. 647–656.

[23] J. Brembeck et al. “Nonlinear State Estimation with an Extended FMI 2.0
Co-Simulation Interface”. In: Proceedings of the 10th International Modelica
Conference. Lund, Sweden, Mar. 10–12, 2014, pp. 53–62.

[24] FMI Library (FMIL). url: http://www.jmodelica.org/FMILibrary/.

[25] PyFMI. url: http://pypi.python.org/pypi/PyFMI/.

52



Bibliography

[26] JModelica.org. url: http://www.jmodelica.org.

[27] javaFMI. url: http://bitbucket.org/siani/javafmi.

[28] C. Schweers et al. “Automated Design of an Unscented Kalman Filter for
State- and Parameter Estimation on unknown Models”. In: Control, Automa-
tion, Robotics and Embedded Systems (CARE), 2013 International Confer-
ence. Jabalpur, India, Dec. 16–18, 2013.

[29] A. Johnsson. “Nonlinear Model Predictive Control for Combined Cycle Power
Plants”. MSc thesis. Lund University, Department of Automatic Control, 2013.

[30] E. Dahlquist, B. Widarsson, and E. Tomás-Aparicio. Demand-based mainte-
nance and operators support based on process models. Project 1231. Värme-
forsk, Feb. 2012.

53



A | MATLAB Code

A.1 build_dsin

f unc t i on build_dsin ( experiment , method , settings , initialName , initialValue , quiet )

% Check that ds in_in i t ex i s t , i f not : c r e a t e i t .
i f ~ e x i s t ( ' d s in_in i t . mat ' , ' f i l e ' )

dos ( ' dymosim − i d s in_ in i t . txt ' ) ;
dos ( ' a l i s t −b ds in_in i t . txt d s in_in i t . mat ' ) ;
d e l e t e ( ' d s in_in i t . txt ' ) ;
i f ~quiet

di sp ( ' ds in . txt c r ea ted ! ' ) ;
end

end

% Load i n i t ds in f o r d e f au l t va lue s .
dsin = load ( ' d s in_in i t . mat ' ) ;

% Set experiment
i f l ength ( experiment ) == 7

dsin . experiment = experiment ( : ) ;
e l s e i f ~quiet

di sp ( ' Experiment wrong s i z e ! ' ) ;
end

% Set method
i f l ength ( method ) == 27

dsin . method = method ( : ) ;
e l s e i f ~quiet

di sp ( 'Method wrong s i z e ! ' ) ;
end

% Set s e t t i n g s
i f l ength ( settings ) == 13

dsin . settings = settings ( : ) ;
e l s e i f ~quiet

di sp ( ' S e t t i n g s wrong s i z e ! ' ) ;
end

% Set i n i t i a lV a l u e f o r in i t i a lName
i f s i z e ( initialName , 1 ) == length ( initialValue )

f o r i = 1 : l ength ( initialValue )
n = tnindex ( dsin . initialName , tnblank ( initialName (i , : ) ) ) ;
i f n

dsin . initialValue (n , 2 ) = initialValue ( i ) ;
e l s e i f ~quiet

di sp ( ' Fa i l ed to s e t va lue ! ' ) ;
end

end
e l s e i f ~quiet

di sp ( ' S i z e o f in i t i a lName and i n i t i a lV a l u e have to be the same ! ' ) ;
end

54



Appendix A. MATLAB Code

% Save changed ds in f i l e .
dsin = rmfield ( dsin , ' i n i t i a l D e s c r i p t i o n ' ) ;
save ( ' ds in . mat ' , '−s t r u c t ' , ' d s in ' , '−v4 ' ) ;
i f ~quiet

di sp ( ' ds in . mat c rea ted ! ' ) ;
end

end

A.2 build_dsu

f unc t i on build_dsu ( names , data , quiet )

% Build s t r u c t
dsu . Aclass = char ( ' At ra j e c to ry ' , ' 1 . 0 ' , ' Generated by Matlab ' ) ;
dsu . names = char ( ' time ' , names ) ;
dsu . data = [0 data ( : ) ' ] ;

% Save dsu f i l e .
save ( ' dsu . mat ' , '−s t r u c t ' , ' dsu ' , '−v4 ' ) ;
i f ~quiet

di sp ( ' dsu . mat c rea ted ! ' ) ;
end

end

A.3 check_inputs

f unc t i on x_ret = check_inputs (x , x_min , x_max , x_names )

x_ret = zero s ( s i z e ( x ) ) ;

f o r i = 1 : l ength ( x )
x_ret ( i ) = min (max( x ( i ) , x_min ( i ) ) , x_max ( i ) ) ;
i f ~isequal ( x ( i ) , x_ret ( i ) )

d i sp ( [ tnblank ( x_names (i , : ) ) ' l im i t ed to ' num2str ( x_ret ( i ) ) ' from '
num2str ( x ( i ) ) ' ! ' ] ) ;

end
end

end

55



Appendix A. MATLAB Code

A.4 ekf

f unc t i on [ x2 , P2 ]=ekf ( model_path , x_init_names , x_names , x0 , u_names , u0 , y_names , y0 , P0 , Q ,
R , ts )

% Change path to model dymosim . exe
old_path = cd ( model_path ) ;

% Delete o ld f i l e s to avoid e r r o r s
d e l e t e ( ' dsu . mat ' , ' d s r e s . mat ' , ' d s l i n . mat ' ) ;

% Se t t i n g s f o r Dymosim s imu la t i on
experiment = [0 ts 0 1 0 .001 0 8 ] ;
settings = [0 1 0 1 1 0 0 0 0 0 1 0 1 ] ;

% Create f i l e s f o r Dymosim
build_dsin ( experiment , 0 , settings , x_init_names , x0 , 1 ) ;
build_dsu ( u_names , u0 , 1 ) ;

% L in ea r i z e and d i s c r e t i z e
[ ~ ] = evalc ( ' dos ( ' ' dymosim . exe − l −u dsu . mat ds in . mat ' ' ) ' ) ;
[~ , A ,~ , C ,~]= evalc ( ' t l o a d l i n ' ) ;

% Check system f o r o b s e r v ab i l i t y . Halt i f not obse rvab l e !
O = obsv (A , C ) ;
i f ~rank (O , 0 . 0 1 ) == length ( x0 )

d i sp ( ' System i s not obse rvab l e ! ' ) ;
pause ;

end

% D i s c r e t i z e system matr i ce s
F = expm( A∗ts ) ;
H = C ;

% Simulate to f i nd x_k | k−1 and y_k
[ ~ ] = evalc ( ' dos ( ' ' dymosim . exe −s −u dsu . mat ds in . mat ' ' ) ' ) ;
[~ , s , n ] = evalc ( ' t l oad ( ' ' d s r e s . mat ' ' ) ' ) ;

% Extract va lue s f o r x from the r e s u l t f i l e
x1 = zero s ( s i z e ( x_names , 1 ) , 1 ) ;
f o r i = 1 : s i z e ( x_names , 1 )

x1 ( i ) = s ( end , tnindex (n , x_names (i , : ) ) ) ;
end

% Extract va lue s f o r y from the r e s u l t f i l e
y = zero s ( s i z e ( y_names , 1 ) , 1 ) ;
f o r i = 1 : s i z e ( y_names , 1 )

y ( i ) = s ( end , tnindex (n , y_names (i , : ) ) ) ;
end

% Compute the covar iance matrix
P1 = F∗P0∗F ' + Q ;

% Compute the Kalman gain
K = ( P1∗H ' ) /( H∗P1∗H ' + R ) ;

% Ca lcu la te x_k | k and P_k| k
x2 = x1 + K ∗( y0 ( : ) − y ) ;
P2 = ( eye ( s i z e ( K∗H ) ) − K∗H ) ∗P1 ;

% Change to o ld path
cd ( old_path ) ;

56


