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Abstract	
The detrimental effect of the petroleum industry on the environment combined with the threat 
of peak oil has driven the exploration for alternative strategies to produce traditional 
petrochemicals. Biotechnological production could be an alternative, using microorganisms to 
convert renewable feedstocks into desired products. A microbial based system for production 
of the traditional petrochemical ethylene has previously been developed through the 
expression of a bacterial version of the ethylene forming enzyme (EFE), which catalyzes the 
2-oxoglutarate dependent ethylene pathway, in the yeast Saccharomyces cerevisiae.  
  This work aims at deepening the understanding of how the EFE functions and 
investigate the functionality of the S. cerevisiae-EFE cell factory for ethylene production. To 
this end metabolic modeling, metabolic engineering as well as several cultivation studies have 
been performed. Alongside this the enzyme has been characterized through structural 
prediction and enzyme engineering, which has reviled both a structural entity necessary for 
ethylene forming functionality as well as a number of specific amino acid residues coupled to 
ethylene formation.  
  Cultivation studies combined with metabolic engineering strategies have shown that 
balancing of arginine availability is important for optimal ethylene productivity. Further 
studies have also revealed that maintaining a high oxygenation level is a crucial cultivation 
factor for optimal ethylene productivity. This can be linked both to the reaction mechanism of 
the EFE, for which oxygen is a substrate, but also to an increased requirement of NADH re-
oxidation when EFE is expressed. It was found that co-expression of heterologous oxidases 
could help relieve the redox stress and expression of the Aox1 of Histoplasma capsulatum 
was concluded to increase the ethylene yield with 28 %. To find further metabolic targets for 
increased ethylene productivity metabolic modeling was performed. The majority of the 
targets found were involved in supply of the EFE substrate 2-oxogltuarate, however none of 
the targets evaluated in vivo so far has given any increase in ethylene yields. Through this 
work important factors for optimal ethylene formation have been revealed, however it has 
also shown that more work is required before this system is a competitive alternative for 
ethylene production. 
 
 

Keywords: Ethylene, Saccharomyces cerevisiae, ethylene forming enzyme, 2-oxoglutarate, 
production, cultivation, enzyme engineering, metabolic modeling, nitrogen metabolism, 
respiration rate  
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INTRODUCTION	

The petroleum industry is central in today’s world, and products derived from it permeate 

most corners of our everyday lives; from fueling our cars to chemicals in hygienic products to 

building materials to derivatives found in food. However, the production, environmental and 

social sustainability of the petroleum industry is under questioning and a shift from an oil-

based to a bio-based economy is increasingly asked for (European Commssion, 2012; OSTP, 

2012). 

One of the cornerstones for this shift is white biotechnology, i.e. the use of microorganism or 

enzymes for product manufacture, often with biomass envisioned as carbon source. The use of 

microorganisms for production purposes is not new and already in ancient times 

microorganisms were used within food processing, albeit unknowingly. In the early 20th 

century microbial fermentation began to be employed on an industrial scale for chemical 

production. Through the development of genetic engineering tools in the 70’s it became 

possible to alter the inherit metabolism of the microorganism to increase product formation. 

These technologies also enabled production of heterologous compounds, i.e. genes from other 

origins are expressed in the microorganism making it possible to produce compounds not 

naturally formed by the host. Pushed on by the right to patent genetically modified organisms 

in 1980 (U.S. supreme court, 1980) the bio-chemical area has expanded immensely in the last 

decades and today biotechnological production of a vast variety of products is being explored, 

from jet fuel to pharmaceutical compounds (Hong and Nielsen, 2012).  

Of all the organic compounds produced in the world, ethylene is claimed to be the one with 

the highest production volumes (McCoy et al., 2006), primarily due to large usage of its 

polymer products. In 2012 the global consumption of ethylene on a yearly basis reached 124 

million tons and the demand keeps increasing (Koottungal, 2012; Mann et al., 2010; True, 

2012). The traditional production is aside from being petroleum based also highly energy 

demanding and a major CO2 producer. A biotechnical production method would hence be of 

great interest. Several different biological pathways to form ethylene do exist in nature as 

ethylene is a plant hormone as well as a virulence factor produced by several plant pathogenic 

microorganisms (van Loon et al., 2006; Weingart and Volksch, 1997; Yang and Hoffman, 

1984). Throughout this study a single enzyme microbial pathway forming ethylene from  

2-oxoglutrate has been employed.  
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A successful biotechnical production must combine the production pathway with a host 

organism which is suitable for industrial fermentation conditions and requirements, the choice 

therefor fell on the industrially well-established yeast Saccharomyces cerevisiae. 

Heterologous product formation however imposes several challenges. It requires not only that 

a possible route from metabolite to product is assembled, but a holistic understanding of the 

system must be in place to enable optimization of the production system. 

The aim of this PhD was to study and characterize the biotechnical ethylene production 

system consisting of a microbial ethylene-forming-enzyme (EFE) expressed in S. cerevisiae 

and to both deepen our understanding of how the constituents of the systems functions and 

interact as well as get a grip on the functionality of the system as a biotechnical solution for 

ethylene formation. To meet these criteria the system has been studied at different levels. 

Large efforts have been made to find out more about the EFE itself. Full structural 

determination proved difficult, however through sequence analysis and structural comparison 

with related enzymes structurally important signatures for ethylene formation has been 

identified. A previously unknown ethylene producer was also identified (Paper I). 

In paper II I studied several cultivation factors which affect the ethylene productivity, and 

identified some crucial factors to achieve optimal ethylene production. In this study it was 

also found that increased availability of the substrate/co-factor arginine had a detrimental 

effect on ethylene formation. In Paper III I investigated how this effect could be met and 

tried to understand the underlying mechanism for the effect and to identify a possible 

explanation.  

I have also provided cultivation data used for optimizing a metabolic model of the system. 

Through this modeling work several metabolic targets were identified which were predicted 

to lead to increased ethylene production.  A selection of these was subsequently tested in vivo 

in Paper IV. Further, as respiration rate had been identified as a possible limitation in a 

previous model, a strategy to overcome this was also evaluated in the same paper. 

This thesis hence covers several different research areas; including metabolic engineering, 

yeast as a cell factory for a heterologous chemical formation, enzyme structure and function 

and the metabolism of S. cerevisiae during different cultivation setups. In the first part of this 

thesis I will give an overview of these areas and try to set my own research into perspective.  
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This part is divided into three chapters of which the first (chapter 1) summarizes how 

ethylene is produced today and could be produced in a microbial setting. It further gives a 

detailed description of the EFE and how it functions. Chapter 2 links the production of 

ethylene via EFE to the metabolism of S. cerevisiae and elaborates on how the metabolism 

and physiological state of the yeast effects the ethylene formation. While chapter 3 provides 

methods for identifying possible metabolic improvements of the combined yeast-enzyme 

ethylene factory as well as evaluates some of the identified targets. The second part of this 

thesis is comprised of the research articles which have come out of these studies.  
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CHAPTER 1 

ETHYLENE	PRODUCTION	–	an	overview	

The first account of ethylene (ethene) is usually ascribed the German physician J.J. Becher 

who is said to have described the gas in a book from the mid-17th century (Key, 1945; 

Livingstone, 1955). In the following century the chemical formula (C2H4) and structure - an 

alkene, i.e. the two carbons are connected by a double bond and each carries two hydrogens - 

of it was determined. The simple chemical formula combined with the double bond makes 

ethylene a good starter molecule to build on and ethylene has hence become a bulk and base 

chemical (Matar and Lewis, 2001a) (Fig. 1). In this chapter I will review the different 

production pathways of ethylene in use today and discuss the benefits and drawbacks of each 

of these. I will reason around the chosen production pathway and discuss the function and to 

some extent the structure of the ethylene-forming-enzyme (EFE) which has been employed. 

 

 

Figure 1. Products derived from ethylene 
The double bond of ethylene is susceptible to a variety of derivatization reactions, e.g. polymerization, oxidation, 

halogenation and aromatic substitution, making ethylene a good building block chemical. The majority of 
ethylene is used for the production of differnet polymeric products 
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1.1 Traditional	petrochemical	production	

Industrially the majority of ethylene is produced via pyrolysis (steam cracking) of naphtha, 

i.e.  mixtures of hydrocarbons distilled from petroleum, though also other petroleum fractions 

and natural gas fractions are important feedstocks. In the cracking process the feedstock 

streams are preheated and mixed with steam, commonly at a 1:1 ratio of steam and 

hydrocarbon stream, then treated at temperatures of 750-850˚C for short time intervals  

(<0.5 sec). The ethylene yield in the process is dependent on the feedstock used. For naphtha 

the yield in the product stream is commonly around 35 mass-%, however if ethane is used as 

feedstock the cracking yield can reach 80-85 mass-%. (Matar and Lewis, 2001b). Even higher 

yields have been reported using catalytic cracking of ethane, through this process is not yet 

industrially very common due to issues with deactivation of the catalyst through e.g. coke 

deposition (Cavani et al., 2007). Ethane is becoming a feedstock of increasing importance as 

it can be extracted from natural gas, a resource for which the availability has increased greatly 

during the last decade due to hydraulic fracking (a.k.a fracking) of shale rock in foremost 

North America. In fracking natural gas entrapped deep underground is released using drilling, 

high pressure water, sand and chemical solutions (Holloway and Rudd, 2013). The increase in 

access of ethane has led to a sharp decrease in ethylene raw material price, however concerns 

have also been raised about the environmental effect of the technique, and studies have 

indicated that the fracking can lead to methane contamination of drinking water (Osborn et 

al., 2011) and increased seismic activity (Bame and Fehler, 1986).  

What can be concluded is that traditional petrochemical based production of ethylene is a 

highly efficient and optimized process, although the feedstock extraction processes are linked 

to adverse environmental effects. Further the process is one of the most energy intense 

chemical processes in used today (Worrell et al., 2000).  

1.2 Ethanol	based	production	

As stated in the introduction above, many governments strive towards a more bio-based 

society and economy. In line with this a production process for ethylene has been developed 

in which ethanol is dehydrated catalytically to form ethylene. Bioethanol formation through 

fermentation of sugarcane or corn is a well-developed technology and ethanol is the 

dominating biofuel on the market at this point. However, as the feedstocks employed also 

function as or compete with food/feed, a shift towards non-competitive feedstocks, e.g. 

agricultural and forestry residues, is required for bioethanol and biochemicals in general to 
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reach their full potential (Sims et al., 2010; Tilman et al., 2009). Fermentation of 

lignocellulosic material (e.g. wood) encounters several difficulties such as high levels of 

inhibitory compounds and high dry matter concentrations (Koppram et al., 2014). While the 

starch and sugar based fermentation processes for ethanol in place today are efficient with 

final ethanol concentrations of 8-12 v-% and yields close to the maximal theoretical yield of 

0.51g ethanol / g glucose (Basso et al., 2011; Galbe et al., 2007), the ethanol yields and final 

concentrations for the lignoscellulosic process are so far lower (Ask et al., 2012; Galbe et al., 

2007; Gu et al., 2014). Extensive research is hence at the moment performed within the area 

of detoxification and fermentation efficiency. 

The second step of the process is the catalytic dehydration of the formed ethanol. The 

catalytic mechanism of ethanol dehydration is a three step process, first the catalyst protonates 

the hydroxyl group which is disposed as water, the methyl group is subsequently deprotonated 

by the catalyst and finally the hydrocarbon rearranges into ethylene. During the past 15 years 

or so much effort has been made to optimize the catalyst composition to improve yields and 

operational costs. Traditionally γ-alumina was used as catalyst, however this gave low 

ethylene yields (80%) and required high temperatures (450˚C) (Fan et al., 2013). These days 

catalysts giving yields above 99% are available. The most promising of these are nanoscale 

HZSM-5 (HnAlnSi96–nO192·16H2O, 0<n<27) and Ag3PW12O40 salt, both of which requires 

much lower temperatures than the traditional γ-alumina, 240˚C and 220˚C respectively (Bi et 

al., 2010; Gurgul et al., 2011). Despite being major improvements, the temperatures required 

are still high and hence so is the energy demand. Further, deactivation of the catalyst due to 

coke deposition, especially at higher moisture contents, is an issue which could lead to 

requirement of regeneration of the catalyst at narrow intervals (Aguayo et al., 2002; Zhang 

and Yu, 2013). 

Interestingly, life cycle assessments of the above discussed ethylene production processes; 

cracking of naphtha, cracking of ethane and corn based bioethanol dehydration, concluded 

that the cumulative emissions of the different processes were similar and that the major part of 

the environmentally adverse effect stems from the production of the energy required by the 

processes. In the case of ethanol dehydration two of the most energy demanding steps are the 

distillation of ethanol from the fermentation broth and the catalytic dehydration step (Ghanta 

et al., 2013). This, hence, supports our work to develop a biological process which can 

convert biomass into ethylene in a one-step process. Several biological pathways exist in 

nature which could be employed in this direct conversion. 
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1.3 The	plant	pathway		

In nature ethylene is most commonly known as a plant hormone being both sensed and 

produced by the plant. The biosynthetic pathway of ethylene in plants is well studied and two 

key enzymes have been identified; ACS (ACC synthase) and ACO (ACC oxidase). In 

summary ACS first converts the methionine derivative SAM (S-adenosyl methionine) into 

ACC (1-aminocyclopropane-1-carboxylic acid) and methylthioadenosin. The latter is recycled 

in the Yang cycle to reform SAM while ACC is further degraded by ACO into ethylene, CO2 

and HCN (Adams and Yang, 1979; Yang and Hoffman, 1984) (Fig. 2). Both ACS and ACO 

belong to strongly regulated multigene families, with the number of genes differing between 

plant species. The members of both the ACS and ACO families exhibit distinct temporal and 

spatial expression patterns and their activities and ethylene formation is affected by several 

factors such as the levels of other plant hormones and light. Further, several stress factors will 

also induce ethylene formation, including both abiotic (e.g. flooding and drought) and biotic 

ones (for reviews see Argueso et al., 2007; Lin et al., 2009).  

The sensing of ethylene in plants is another complex story. The number of ethylene receptor 

isoforms present differs between plant species (e.g. A. thaliana have five versions while 

tomato has six) with overlapping but not redundant functions. The receptors are divided into 

two sub-families based on the sequence of the ethylene binding domain. They are membrane 

bound and commonly localizes to the ER, however alternative localizations have been 

determined for some isoforms. A copper cofactor is crucial for the binding of ethylene to the 

active site. In the inactive state the receptor forms a complex with the downstream repressor 

CTR1. Upon binding of ethylene the CTR1 will be released and inactivated and the signaling 

pathway de-repressed, with a diverse array of genes being the target for the regulation (for 

reviews see Binder, 2008; Wang et al., 2013; Zhao and Guo, 2011). 

An attack from a plant pathogen will result in a sharp increase in ethylene production by the 

plant. Deficiency in the ethylene signaling results in a reduced resistance towards the 

infection of the plant (McManus, 2012). Interestingly, several plant pathogens also produce 

ethylene. In this case as a virulence factor and it has been found that some ethylene negative 

strains has significantly reduced infection rates (van Loon et al., 2006; Weingart et al., 2001). 

Ethylene hence has an ambiguous roll in infection development and the complete complexity 

of it has not yet been unraveled. 
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Figure 2. Biological ethylene biosynthesis pathways 
The three known version. The plant version originates from methionine, likewise does one of the two known 
microbial pathways. The third version is the 2-oxoglutrate dependent pathway, found in some microorganism 

and the one utilized in this study. SAM; S-adenosyl methionine, ACC; 1-aminocyclopropane-1-carboxylic acid, 
ACS; ACC synthase, ACO; ACC oxidase, KMBA, 2-keto-4-methylthiobutyric acid, P5C; 1-Pyrroline-5-

carboxylic acid, EFE; ethylene forming enzyme 
 

1.4 Microbial	pathways	

That some microorganisms produce ethylene has been known since the mid 1900’s when it 

was determined that the gas was formed by both the green fruit mold Penicillum digitatum 

(Biale, 1940; Miller et al., 1940; Young et al., 1951) and by the human pathogen Blastomyces 

dermatitidis (Nickerson, 1948). Since then numerous microbial ethylene producers have been 

discovered, from bacterial as well as fungal origins. Two pathways for ethylene production 

have been identified within these microorganisms; the L-methionine-dependent KMBA-

pathway and the 2-oxoglutarate-dependent EFE-pathway.  In the former L-methionine is 

deaminated into 2-keto-4-methylthiobutyric acid (KMBA) which through a complex reaction 

and formation of hydroxyl radicals is oxidized to ethylene. The latter pathway is catalyzed by 

a single enzyme, the ethylene forming enzyme (EFE) for which 2-oxoglurtarate is a key 

substrate (Fukuda et al., 1993; Ogawa et al., 1990) (Fig. 2). 

Investigation of 757 strains of bacteria found that 30 % of these produced ethylene. A very 

vast majority of these (225) were determined to be forming ethylene via the KMBA pathway 

while only one was found to be utilizing the EFE pathway – a Pseudomonas syringae strain. 

When comparing the ethylene production rates of the 226 ethylene forming strains it was 
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concluded that the P. syringae strain exhibited the highest rate of all, indicating that the EFE 

pathway is the most efficient (Nagahama et al., 1992).  

Several different pathovars of Pseudomonas syringae have been evaluated for their ethylene 

production efficiency via the EFE-pathway. The pathovar phaseolicola was found to be about 

twice as productive as the glycinea, sesame and cannabina ones, while the pathovar pisi 

produces considerably less and several others seems to have only minute production or even 

lacking production and the EFE gene completely (Sato et al., 1987; Sato et al., 1997; 

Weingart and Volksch, 1997; Weingart et al., 1999). The EFE mainly used in this study is of 

the Pseudomas syringae pathovar phaseolicola, hence one of the top ethylene producing 

strains found. Aside from this two fungal EFEs from Penicillium species (P. digitatum and P. 

chrysogenum) were also studied in paper I.  It was found that when expressed through an 

integrative strategy in S. cerevisiae the EFE of P. chrysogenum is non-active (no ethylene 

formation seen). Further a new potential ethylene producer; Myxococcus stipitatus, was 

identified by performing a BLASTp search with the P. syringae EFE as query and looking for 

certain conserved motifs. The M. stipitatus protein was found to have trace production of 

ethylene, and as far as we know this is the first non-plant-pathogenic microbial ethylene 

producer identified (paper I).  

EFEs of mainly Pseudomonas syringae origin has been heterologously expressed in a 

multitude of host organism including the prokaryotic; Escherichia coli (Ishihara et al., 1995), 

Pesudomonas putida (Ishihara et al., 1996; Wang et al., 2010), Synechococcus (Sakai et al., 

1997; Takahama et al., 2003), Synechocytis 6803 (Ungerer et al., 2012) and the eukaryotic; 

Saccharomyces cerevisiae (Pirkov et al., 2008), Trichoderma viride (Tao et al., 2008) and 

Trichoderma reesei (Chen et al., 2010) as well as within the plant Nicotiana tabacum (Araki 

et al., 2001). Overexpression of the EFE within the native producers has also been evaluated 

(Ishihara et al., 1996). A compilation of the ethylene production rates achieved so far reviled 

that the S. cerevisiae-EFE system is the second most efficient. The rates achieved with the S. 

cerevisiae have only been surpassed by multicopy integration in combination with vector 

expression of EFE in P. putida and the production rates with S. cerevisiae are almost twice as 

high as those reached within E coli (Eckert et al., 2014). The inherent suitability of S. 

cerevisiae in an industrial setting will be discussed in chapter 2.  
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Comparison of the plant pathway to the EFE dependent microbial pathway through metabolic 

modeling concluded that in theory the two pathways should produce ethylene approximately 

equally effective when expressed in S. cerevisiae (Larsson et al., 2011). However, actual 

expression of the plant pathway in S. cerevisiae resulted in production levels significantly 

lower compared with the EFE pathway in the same host (Lu et al., 1999; Pirkov et al., 2008). 

One explanation for this lower production could be the side product HCN formed in the plant 

pathway which is highly toxic. The presence of HCN could further present a serious issue in 

industrial settings. As the alternative microbial pathway, the KMBA pathway, includes a non-

enzymatic degradation step dependent on hydroxyl radicals, which are also toxic to the cell, 

the EFE pathway seems to be the most suitable of the biological options known today. 

 
 
 
Table 1. Properties of the P. syringae EFE 

* Based on differential scanning fluorimetry. Increased Tm correlates to a stabilizing effect of the additive on the  
   enzyme indicating binding of the additive to the enzyme.  
1 in vitro 
2 in vivo (E. coli) 
3 in vivo (S. cerevisiae) 

 

1.4.1 The	EFE	reactions	and	subsequent	classifications	

The EFE has been thoroughly characterized (Table 1). It was early concluded that it requires 

the presence of not only 2-oxoglutarate but also Fe(II), oxygen and arginine for the formation 

of ethylene. Moreover, it was determined that the addition of chelating reagents resulted in 

loss of ethylene formation from which it was proposed that the Fe(II) has a coordinating 

function in the enzyme. (Nagahama et al., 1991a; Nagahama et al., 1991b). In one of the 

Property Reference 

Molecular mass 42 kDa (Nagahama et al., 1991b) 
pI 5.9 (Nagahama et al., 1991b) 

optimal pH for stability 7.0-7.5 1 (Nagahama et al., 1991b) 
optimal temp. for catalysis 

 
20-25˚C 1 

25˚C 2 
(Nagahama et al., 1991b) 
(Ishihara et al., 1995) 

maximum temp for stability 30˚C 2,1 (Ishihara et al., 1995; Nagahama et al., 1991b)
Tm

*
 (in hepes with no substrates) 40˚C This work (unpublished) 

Tm with arginine 42.5˚C This work (unpublished) 
Tm with 2-oxoglutarate 45 ˚C This work (unpublished) 

Km Fe2+ 5.9*10-5 M (Nagahama et al., 1991b) 
Km L-arginine 1.8*10-5 M (Nagahama et al., 1991b) 

Km 2-oxoglutarate 1.9*10-5 M (Nagahama et al., 1991b) 
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studies Nagahama et al. (1991a) propose a reaction mechanism of the EFE, in which the 

active site is an Fe(II) complex. When coordinated with the 2-oxoglutarate and arginine a so 

called Shiff’s base (R1R2C=NR3) intermediate is formed which upon the addition of oxygen 

decomposes to one ethylene and two CO2. In a later study a second reaction was added to the 

scheme as it was found that succinate was also formed by the enzyme at a ratio of 1 succinate 

per 2 ethylene molecules. Further, arginine was consumed almost equally fast as the succinate 

was formed, from this it was concluded that in the succinate reaction arginine is a substrate, 

while in the ethylene reaction it is merely a co-factor. Hence, a dual circuit mechanism of the 

EFE was proposed, with the ethylene forming reaction occurring 2 times for each non-

ethylene forming reaction, (Fig. 3).  

The two reactions are chemically summarized as (Fukuda et al., 1992); 

1) 2-oxoglutarate + O2 → ethylene + 3 CO2 + H2O 

2) 2-oxoglutarate + O2 + arginine → succinate + 1-Pyrroline-5-carboxylic  

        + acid guanidine + CO2 + H2O 

 

With the average reaction of the enzyme being: 

 

3) 3 2-oxoglutarate + 3 O2 + arginine → 2 ethylene + succinate + guanidine +  

           1-Pyrroline-5-carboxylic acid + 7 CO2 + 3 H2O  

 

 

Figure 3. Schematic representation of the proposed mechanism of EFE 

A dual mechanism in which the decomposition of the oxygen complex determines  

which product pathway of the two will be occurring. 
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The two sub-reactions of the EFE classifies the enzyme within two different enzyme families: 

for reaction 1) the 2-oxoglutarate/Fe(II) dependent dioxygenases (Brenda 1.13.12.19 – one 

substrate oxogenase) and for reaction 2)  the 2-oxoglutarate/L-arginine 

monooxygenase/decarboxylase (succinate-forming) family (Brenda EC 1.14.11.34 – two 

substrate oxogenase). The basis for both of these reactions is the central EFE complex with 2-

oxoglutarate, O2 and Fe(II) which puts the enzyme as a whole within the large and 

biologically diverse Fe(II)/2-oxoglutarate dependent oxygenase super family. 

1.4.2 The	EFE	structure	and	sequence		

The structure of the EFE is unknown and despite serious efforts during this work to 

structurally determine the P. syringae EFE it has not been possible to resolve the structure, 

neither through crystallization nor through NMR experiments, due to issues with stability as 

well as crystal formation. Instead a structure prediction through sequence homology with 

other structurally determined enzymes was made for the EFE sequences of Pseudomonas 

syringae, Penicillim digitatum and Penicillium chrysogenum using the program Phyre2 

(Baker and Sali, 2001; Kelley and Sternberg, 2009). This predicted that the EFEs have good 

structural similarities with a Leucoanthocyanidin dioxygenase (LDOX) from Arabidopsos 

thaliana (paper I). From this model it was observed that the EFEs should contain the jelly 

roll structure which is unifying for the Fe(II)/2-oxoglutarate dependent oxygenases  

(Hausinger, 2004) (Fig. 4). This barrel-like structure is composed of pairs of antiparallel β-

sheets wrapping to form the core of the enzyme (Hausinger, 2004; Roach et al., 1995).  The 

jelly roll structure is stabilized by surrounding structures, in the case of EFE predicted to 

mainly be α-helices. The presence of α-helices was further supported by a 15N-HSQC NMR-

spectrum of the P. syringae EFE achieved within this work which exhibit a quite narrow peak 

dispersion typically indicative of α-helices (Fig. 5) (unpublished data). 

Within the hydrophobic cavity of the jelly roll the coordinating iron of the enzyme complex is 

contained. The ion is generally connected to the enzyme peptide by weak interactions with the 

side chains of three amino acids. These residues typically follow the pattern His-X1-Asp/Glu-

X2-His, X being a strech of spacing residues varying from enzyme to enzyme within the 

family (Hausinger, 2004). Histidine resiudes, through their N-atoms, are hence central for the 

coordination of the Fe-ion. Based on mutation experiments of 10 different histidine residues 

within the  P. syringae EFE, H189 and H233 were proposed to be the ligands to the Fe ion as 

mutation of these led to complete loss of ethylene activity (Nagahama et al., 1998). However, 
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based on the sequence and structure analysis of the above three EFEs and comparison with 

related enzymes, it was peoposed that the ligands are likely rather H189 and H268, together 

with D191 (Hausinger, 2004) (paper I) (Fig. 4). This is supported by the fact that mutation of 

H189, H268 and D191 all respectively led to lost ethylene formation ability (paper I) (Fig. 

6), whereas the H233A remained active. Plotting the H233 residue onto the predicted 

structure of EFE, it is further found that it is located away from the center of the enzyme (Fig. 

4). Making it even less likely that it is involved in the Fe coordination.  

 

 

 

 

 

 

Figure 4. A predicted structure of the P. syringae EFE 
as generated by the Phyre2 server. Plotted onto the structure are the sites of the mutations  

introduced to the enzyme.  The table indicates which mutation each number correspond to.  
Yellow numbers show residues correlating with ethylene formation  

and green numbers to residues believed to be involve in the binding of the iron.  
*amino acids 323-350 at C-terminal not in model 



14 
 

 

 

 

 

Comparing the sequences of the two ethylene producing EFEs of P. syringae and P. digitatum 

with the sequence of the non-producing P. chrysogenum 10 residues could be identified which 

were conserved in the two functional, but not conserved in the non-functional (paper I). 

Several of these are of extra interest as they are found in crucial parts of the sequence. V172 

and F278 (nomenclature based on the P. syringae sequence) are within suggested 2-

oxoglutarate binding domains (when comparing to those found in the LDOX of A. thaliana) 

(Wilmouth et al., 2002), while A199, although not in any suggested binding domain, clusters 

structurally close to the two previous among the β-sheets making up one side of the active site 

(Fig. 4). Exchanging the residues of the two former ones with the ones found in the non-

functional P. chrysogenum sequence had little effect on the enzymes ethylene productivity, 

Figure 5. 15N-HSQC NMR-spectrum of EFE (unpublished data) 
The spectrum shows nitrogen-protons which are covalently bound, i.e. all 

amino acids except proline should give rise to a least one signal. Certain side 
chain will also give rise to a signal (i.e. Trp, Asn and Gln). However, due to 

the size of the enzyme some signals are too weak to register. 
Blue spectrum; pure enzyme, red spectrum; enzyme with 2-oxoglutarate 

added, purple signifies overlaps between the two spectra. 
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while altering the A199 to the glycine found in the P. chrysogenum EFE interestingly led to a 

substantial decrease in ethylene formation (Fig. 6), indicating that the A199 is important in 

assuring that the substrates bind effectively to the active site.  

Inspection of the predicted structure further revealed a non-structured and non-modelled loop 

between residues 210 and 232 (Fig. 4). This loop was found to be required for ehylene 

formation (Fig. 6). Three non-conserved residues were further found in or close to the loop; 

V212, E213 and E235. A double mutant of the two neighbors 212 and 213 showed reduced 

capability for ethylene formation, again indicating that this characteristic loop is crucial for 

the function of the EFE.  

The mutation which showed the largest effect out of the 10 was the I304N, for which ethylene 

formation was completely abolished (Fig. 6). This non-conservative mutation is situated just 

before the C-terminal α-helix and may hence affect the positioning of this, thereby possibly 

affecting the form of the active site and the ability to bind the coordinating iron (Fig. 4). 

Mutation of the final three of the 10 residues; L22, I254 and 1322 did not affect the ethylene 

formation (Figs. 4 and 6). Further, in an attempt to restore ethylene formation to the P. 

chrysogenum EFE, the 10 identified residues were altered into the amino acid found the P. 

syringae EFE. This was however not enough to reestablish ethylene formation to the enzyme. 

Apart from the  amino acids above, it was found that residue 280, which is close to one of the 

suggested 2-oxoglutarate binding motifs, is a cysteine in the P. syringae EFE whereas being a 

more bulky and hydrophobic phenylalanine in both the Penicillium versions of the enzyme. 

Exchanging the cysteine for a phenylalanine severely reduced the productivity of the 

Pseudomonas EFE. Further, comparing the sequence of the top ethylene producing 

Pseudomonas pathovar; phaseolicola, to the sequences of the pathovars cannabina, sesamii 

and glycinea it was found that they only differ at one position; R236 in phaseolicola is 

replaced with an S in the three other pathovars. This mutation also conferred a large decrease 

in ethylene production when introduced to the phaseolicola version, supporting the 

importance of this residue (Figs. 4 and 6). 

From these tests it can conclude that mutations which seemingly effect the coordinating iron 

have the largest effect on the ethylene formation activity of the EFE, while mutations within 

substrate binding domains can effect, but commonly to a lesser extent.  
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Figure 6. Ethylene production relative to wt of mutated versions of EFE 
Large rectangle indicates the amino acids identified to correlate with ethylene formation,  

the small rectangle those believed to be involved in binding of the coordinating iron.  
Production of the wild type version was set to 1,  

standard deviations of at least three separate cultures. 
 

1.4.3 The	EFE	reaction	mechanism	

From the NMR-spectra it could be concluded that when 2-oxoglutarate was added to the 

sample a shift in position of approximately 15 residues occurred (difference between red and 

blue marking in figure 5). This is typical for the binding of a small molecule such as 2-

oxoglutarate. Within the oxogynase family 2-oxoglutarate is known to bind to the active site 

in two modes; In-line and Off-line, depending on how the C-1 carboxyl and C-2 keto groups 

of 2-oxoglutrate chelates the Fe-ion. Which binding mode that will occur is governed in part 

by interaction of the 2-oxoglutarate C-5 carboxylate with arginine and lysine residues and in 

part by C-1 carboxylate-Arg interactions (Hausinger, 2004). From the NMR spectrum it can, 

however, not be determined which of the two modes that is the functional for EFE. Further, 

the flexibility of the catalytic reaction that these two modes open up for could perhaps be part 

of the explanation for the dual-circuit mechanism proposed for EFE. Fukuda et al. (1992) 

hypothesized that the stretching of the bound 2-oxoglutarate molecule would favor the 

ethylene forming reaction of the EFE. Speculating freely, this stretching could perhaps be 

dependent on the 2-oxoglutarate binding mode 
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In the ethylene forming reaction arginine functions merely as a co-factor, while in the non-

ethylene forming reaction it is a co-substrate. The reaction mechanism proposed by Fukuda et 

al. (1992) does not conform to any of the reaction mechanisms described for other enzymes 

within the family and it is hence questionable if this proposed mechanism is actually true. One 

major difference in the reaction pattern suggested for EFE compared to other enzymes within 

the family is how arginine is bound in the active site. Commonly for the enzymes in the 

family the co-substrate (in our case arginine) does not bind directly to the metal ion, but rather 

coordinates itself within the active site so as to be close to the 2-oxoglutarate-metal reactive 

center (Hausinger, 2004), unlike what is proposed for the EFE where the arginine is suggested 

to coordinate directly to the enzyme (Fukuda et al., 1992).  

The final substrate to bind to the reactive site is oxygen which forms a reactive peroxo-

structure in the EFE-complex. According to Fukuda et al. (1992) this decomposes irreversibly 

towards one of the two possible reaction pathways. The reactiveness of the oxygen 

intermediate combined with the flexibility in the 2-oxoglutarate binding gives that steering of 

the reaction towards the desired reaction likely is hard. Moreover, reactive oxygen forms are 

damaging for both the cell as a whole and for the enzyme itself. It has also been found that if 

the coordinating ion is oxidized before the binding of the substrates it can result in an inactive 

Fe(III) form (de Jong and Kemp, 1984). This could hence mean that a part of the EFE pool 

present is inactive. It can therefore be tempting to limit the oxygen provision to minimize 

detrimental binding of oxygen to the active site, however metabolic model results (Larsson et 

al., 2011) as well as actual experiments showed that a good provision of oxygen in vivo was 

required for optimal ethylene formation and no negative effect was seen even when relatively 

high oxygenation levels were applied (paper II) (Fig. 7).  

 

 

Figure 7. Effect of dissolved oxygen on ethylene productivity 
as the oxygenation level is step-wise decreased followed by a step-wise increase. 
100 % pO2 is equal to the amount dissolved oxygen in air saturated water at 30˚C. 

 
 



18 
 

Taking all of the above in to account EFE seems the most promising of the three biological 

pathways, however even though we are learning more about the structure and function of the 

enzyme it still presents us with several challenges, including determining its true structure and 

reaction mechanism. Further its stability seems low and strategies to meet this, i.e. altering the 

source of the enzyme to one phylogenetically closer to S. cerevisiae or co-expressing the P. 

syringae chaperons GroEL and GroES (unpublished data), has rather decreased productivity.  

  



19 
 

CHAPTER 2 

LINKING	THE	PHYSIOLOGY	OF	S.	CEREVISIAE	TO	ETHYLENE	

PRODUCTION	

Already in the ancient societies of Mesopotamia (McGovern et al., 1996) and pre-historic 

China (McGovern et al., 2004) humans seem to have been exploiting yeast (albeit 

unknowingly) to produce edible and drinkable products. In these early applications it was the 

ability to ferment sugar into alcohol and carbon dioxide which were sought after. Through 

work by scientist such as Anton van Leeuwenhoek, Robert Hooke, Lazzaro Spallanzani and 

Louis Pasteur it was established that the process was due to a small living entity – a 

microorganism – later classified as a yeast which was given the name Saccharomyces 

cerevisiae. Its metabolism and growth profiles came to be extensively studied and 

characterized.  

In the last centuries a new area of utilization has arisen for S. cerevisiae, namely the industrial 

biotech area where it is used as host for chemical production of both natively and non-natively 

formed substances. This chapter will reason around why S. cerevisiae is a suitable host for 

chemical production. It will give an overview of its central metabolism and review its 

physiology in different growth conditions. I will further connect the metabolism and 

physiology to ethylene formation and discuss important findings we made regarding optimal 

growth conditions for ethylene production.  

2.1 Saccharomyces	cerevisiae		

Through the years the yeast S. cerevisiae has emerged as one of the central microorganisms 

within the microbiology and biotechnology areas. Its long historical usage has given it some 

advantages over other organisms available, e.g. many metabolic engineering tools are 

available for it, its metabolism is one of the most studied, it was one of the first genomes to be 

sequenced (Goffeau et al., 1996) and several of the so called omics-techniques (e.g. genomics, 

metabolomics, fluxomics) are well developed for it. Thus, with time it has become one of our 

model organisms. S. cerevisiae moreover has some advantageous properties in industrial 

settings e.g. short generation times, ability to grow in both minimal and complex media, 

aerobic as well as anaerobic growth, growth at a relatively wide pH range and a GRAS status 

(generally regarded as safe) making it legally easier to handle and implement. S. cerevisiae is 
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hence both a scientific and an industrial work horse, supporting its use as the platform for the 

development of an ethylene cell factory. 

A multitude of S. cerevisiae strains have been employed scientifically, typically dependent on 

specific research topic and research group traditions. Different strains can have important 

variations genetically and phenotypically, e.g. differences in protein expression (Rogowska-

Wrzesinska et al., 2001) lipid metabolism (Daum et al., 1999) and missing genes (Daran-

Lapujade et al., 2003) have been concluded during systematic analyses. An interlaboratory 

study with the aim of finding a common reference strain taking several aspects into account 

including growth rate, possible nitrogen and carbon sources, aerobic growth and respiration 

rate, genetic stability, sporulation efficiency etc. found that the strain family CEN.PK (which 

was originally developed specifically to meet the requirements of several research areas in an 

interdisciplinary project and which is based on two laboratory strains) represented a good 

compromise between the properties asked for and was subsequently chosen as a platform for 

cell-factory research (van Dijken et al., 2000). This is also the strain family employed 

throughout this work. 

2.2 Carbon	metabolism		

Glucose is the preferred carbon source for S. cerevisiae, though several different carbon 

compounds, including other sugars as well as C2 and C3 compounds, can support growth of 

it. Some of these compounds, such as galactose, fructose, mannose, maltose and sucrose, are 

fermentable like glucose, whereas ethanol for example is non-fermentable by S. cerevisiae 

and requires aerobic conditions (Barnett, 1997). In previous chapter I discussed using biomass 

as the raw material. The main carbons source in this is glucose from the cellulose, however 

biomass also contains the sugar xylose. It has been shown that some S. cerevisiae strains are 

capable of metabolizing xylose at a low rate to support slow growth (Attfield and Bell, 2006; 

Wenger et al., 2010), however most xylose using strains have been developed by expressing 

heterologous pathways. Scientifically growth on glucose is the most studied for S. cereviaise.  

The term metabolism is defined by the Oxford dictionary as “The chemical processes that 

occur within a living organism in order to maintain life” (Oxford Dictionaries, 2014) and is 

usually divided into catabolic (decomposing) and anabolic (synthesizing) reactions. One of 

the backbones of the metabolism of S. cerevisiae is the central carbon metabolism, through 

which the supplied (or available) carbon source is ultimately converted into biomass 

precursors and ATP (Noor et al., 2010). The system is composed of several metabolic 
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pathways whose activities are dependent on environmental factors such as presence of oxygen 

as well as on the type and sometimes amount of C-source present. As glucose is the preferred 

carbon source this is also the most commonly used. The metabolism of glucose starts with the 

uptake of the molecule from the surrounding environment. This occurs through facilitated 

diffusion via one of the many hexokinases present in the cell. The affinity for glucose of these 

transporters spans from low to high (Km 100 mM to Km 1 mM) giving that glucose can be 

taken up even at small externals concentrations (Reifenberger et al., 1997). The internalized 

glucose is then metabolized into pyruvate in what is known as the glycolysis, a pathway 

which has been found to be metabolically highly optimized (Bar-Even et al., 2012). In the 

glycolysis two ATPs are formed through so called substrate phosphorylation where a 

phosphate group is transferred from a pathway intermediate to ADP to form ATP. The 

pathway further supplies two reducing equivalents in the form of NADH.  

Under anaerobic conditions the formed pyruvate will be converted via pyruvate decarboxylase 

into acetaldehyde which is subsequently reduced into ethanol by alcohol dehydrogenase using 

NADH as electron donor, thereby giving a redox neutral process for glucose degradation (Fig. 

8). Under this conditions all the cells ATP is hence derived through the glycolysis. Under 

aerobic conditions the pyruvate is instead transported into the mitochondria where pyruvate 

dehydrogenase converts it into acetyl-CoA, which in turn combines with oxaloacetate to form 

the first step of the tricarboxylic acid cycle (TCA cycle). Pyruvate hence makes up the branch 

point between fermentative (anaerobic) and respirative (aerobic) growth. Further, as the TCA 

cycle will be partially drained on some intermediates as these are used in the formation of 

certain amino acids (Jones and Fink, 1982) pyruvate can also be used to replenish the 

oxaloacetate pool through the pyruvate carboxylase (Fraenkel, 1982; Pronk et al., 1996) (Fig. 

8). This might be extra important when the EFE is introduced as it might cause an extra 

drainage of the intermediate 2-oxoglutarate as this is a substrate of the enzyme.  

In the TCA cycle the acetyl group of the acetyl-CoA is oxidized through conversions via a 

number of acid intermediates. In the process several reducing equivalents (NADH and 

FADH2) are formed. These equivalents will function as electron donors in the electron 

transport chain in which the donated electrons are passed through a series of carrier molecules 

of increasing electronegative potential finally reducing molecular oxygen to water. During the 

process of electron transfer, the release of Gibbs free energy is utilized to pump protons 

across the inner mitochondrial membrane, thus forming an electrochemical gradient. The 

proton motive force of this gradient is utilized by the ATPase to form ATP. The process is 
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known as oxidative phosphorylation as the electron donors are oxidized upon the transmission 

of the electrons. As respirative growth generates ATP in both the glycolysis and the electron 

transport chain it hence provides more ATPs/glucose than does fermentative metabolism. 

Also, as the glucose is fully converted to biomass and CO2 under aerobic conditions, in 

contrast to under anaerobic were parts of the carbon will go to ethanol formation, the biomass 

yield is higher; usually 0.5 g biomass / g glucose under aerobic conditions compared to only 

0.1 biomass / g glucose during anaerobic growth (Fiechter et al., 1981; Käppeli, 1986; Rieger 

et al., 1983a) 

 

 
Figure 8. Central carbon metabolism of S. cerevisiae  

Linked to ethylene formation via EFE. Each dot indicates a new metabolite in the pathway.  
Metabolites of specific interest are written out. 

Cytosolic expression of EFE has been employed throughout this study.  
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2.2.1 2‐oxoglutarate	–	mitochondrial	and	cytosolic	pool	

The EFE substrate 2-oxoglutarate is an important intermediate of the TCA cycle and during 

respirative growth there will hence be a mitochondrial pool of the compound. As pyruvate 

makes up the branch point between respirative and ferementaive growth, one could draw the 

conclusion that there would be no flux through the TCA cycle during fermentative growth and 

hence that the formation of 2-oxoglutarate would be limited, however 2-oxoglutarate is an 

important metabolic precursor for formation of amino acids of the glutamate family and is 

thus always required by the cell for proliferation (Cooper, 1982). Flux analysis of anaerobic 

chemostat cultures have shown that there is a significant flux to 2-oxoglutarate also under 

anaerobic conditions (Nissen et al., 1997). Apart from the mitochondrial pool of 2-oxoglutarte 

there is a cytosolic one as well. Parts of this could come via transportation from the 

mitochondrial pool via one of the two known mitochondrial transporters of 2-oxoglutarate; 

Odc1p and Odc2p (Palmieri et al., 2000). There are further cytosolic iso-enzymes to those of 

the TCA-cycle, enabling direct cytosolic formation of 2-oxoglutarate (Fig. 8). This is of 

importance as we throughout our studies have been expressing EFE cytosolically and 

cytosolic availability of 2-oxoglutarate is therefore required. Mitochondrial localization of the 

EFE has been tried via addition of a localization tag at the N-terminal, however no ethylene 

formation was seen with this construct (Pirkov et al., 2008).  

2.3 Respiration	and/or	fermentation	

As seen from the above S. cerevisiae is a facultative anaerobe, i.e. it respires in the presence 

of oxygen and ferments if oxygen is absent. S. cerevisiae further belongs to the so-called 

Crabtree positive yeasts (De Deken, 1966) as it will ferment even in the presence of oxygen 

under certain conditions, giving a respiro-fermentative growth (Crabtree, 1929). This mixed 

type of growth will be observed when the external glucose level exceeds 0.8 mM (Verduyn et 

al., 1984) and when growth rates are high. It has the biological advantage of increased energy 

production rate compared to either of the two “pure” growth versions (Käppeli, 1986). Under 

conditions were the cells are suddenly exposed to a sharp increase in glucose levels overflow 

ethanol formation in a short-term version of the Crabtree effect can also be seen (Pronk et al., 

1996). The metabolic explanation for the phenomenon of fermentation also under aerobic 

conditions can be found within the capacity and regulation of the central carbon metabolism 

pathways of the yeast. 

 



24 
 

2.3.1 Regulation	of	the	central	carbon	metabolism																					

The underlying reason for the overflow metabolism of aerobic fermentation has been studied 

intensely through the years. Early studies indicated that the onset of the Crabtree effect was 

due to limitations in respiration capacity (Rieger et al., 1983b). This hypothesis was 

strengthen by experiments showing that expression of an alternative heterologous oxidase 

resulted in lower aerobic ethanol levels (Vemuri et al., 2007). It has been reasoned that 

Crabtree negative yeast have higher respiratory capacity and hence therefor no overflow 

metabolism, Verduyn et al. (1992) however showed that at low dilution rates S. cerevisiae 

could attain oxygen consumption rates even higher than those measured for Crabtree negative 

yeast when the uncoupler benzoic acid was added to the media, thus contradicting the claim 

somewhat.  

Enzymes at the pyruvate branch-point have also been specified as central to the onset of 

aerobic ethanol formation (Pronk et al., 1996). It was shown that the activity of pyruvate 

decarboxylase is higher in a Crabtree positive yeast than in negative ones under glucose 

excess, while the activities of acetaldehyde dehydrogenase and acetyl-CoA synthetase are 

higher in Crabtree negative yeasts indicating that the so called pyruvate dehydrogenase by-

pass is more active in Crabtree negative yeasts. This would thus give that in Crabtree negative 

yeasts excess acetaldehyde is effectively oxidized to acetyl-CoA while in e.g. S. cerevisiae it 

has to be reduced to ethanol (van Urk et al., 1989).  

Another factor influencing the onset of aerobic fermentation is glucose governed down 

regulation of the respiratory metabolism (often known as glucose repression) (see eg. Carlson, 

1999; Cortassa and Aon, 1998). Heyland et al. (2009) reported that in batch cultivations the 

flux through the TCA cycle is inversely correlated to the specific glucose uptake rate. 

Correlating to the previous finding that the higher the glucose uptake capacity of the glucose 

transporter is, the higher the ethanol production is (Elbing et al., 2004). Further, limiting the 

glucose uptake capacity of the yeast can eliminate aerobic fermentation almost completely 

even at high external glucose levels (Otterstedt et al., 2004) indicating a regulatory function of 

glucose on the central carbon metabolism. It has been suggested that it is the glucose 

consumption rate which is the trigger signal for this gene regulation (Reifenberger et al., 

1997).  
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2.4 Nitrogen	metabolism	

The nitrogen metabolism is made up of an intrinsic network of metabolic reactions, at the 

center of which are the two amino acids glutamate and glutamine (Cooper, 1982; Holmes et 

al., 1991). The two are inter-convertible (Fig. 9); glutamate is aminated into glutamine via the 

ATP dependent glutamine synthase (GLN1) (Mitchell and Magasanik, 1983), whereas 

glutamine can be converted to glutamate via the NADH-dependent glutamate synthase 

(GOGAT or GLT1) (Cogoni et al., 1995).  

The commonly used nitrogen source ammonia is assimilated via glutamate, through a reaction 

with 2-oxoglutarate catalyzed by the two enzymes NADPH-dependent glutamate 

dehydrogenase 1 and 3 (GDH1 and GDH3) (Avendano et al., 1997; DeLuna et al., 2001; 

Nagasu and Hall, 1985). The metabolite 2-oxoglutarate is hence not only an important 

intermediate of the TCA cycle (and one of the main substrates of the EFE), it also plays a 

significant role in the nitrogen metabolism of S. cerevisiae. Ammonia is also required by 

GLN1 to convert glutamate into glutamine (Fig. 9). It has been found that in nitrogen starved 

cells supplied ammonium will initially be assimilated into only glutamine and glutamate 

before the nitrogen is redirect throughout the cell metabolism (Holmes et al., 1991). It has 

further been found that independent of nitrogen source utilized a relatively large pool of 

glutamate will be kept intracellularly indicating its important and central role (Watson, 1976). 

In  the end approximately 85 % of all incorporated nitrogen of the cell will have come via 

glutamate while the remaining 15 % is derived from glutamine (Cooper, 1982). The formation 

of amino acids as well as nucleotides is dependent on the two either as precursors or as amine 

donors in so called transamination reactions. (Jones and Fink, 1982; Ljungdahl and Daignan-

Fornier, 2012). In transamination reactions with glutamate as donor 2-oxoglutarate will be 

formed as a side product. It has been shown that in anaerobic cultivations grown on glutamate 

2-oxoglutarate levels are substantially increased (Albers et al., 1998; Albers et al., 1996; 

Lewis and Rainbow, 1963). We have observed the same for aerobic cultivations (paper II 

and III) (Fig. 11B). This is likely due to the effect of transamination reactions (Lewis and 

Rainbow, 1963). Another effect of utilizing glutamate as nitrogen source is a large increase in 

biomass as compared to cells grown on ammonia, as the carbon backbone of the glutamate is 

shunted into biomass formation. 
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2.4.1 Selected	amino	acid	metabolism	

One of the glutamate derived amino acids central to this work is the EFE substrate/co-factor 

arginine. In short biosynthesis of arginine is a multi-step process where glutamate is first 

converted to ornithine via several enzymatic steps. The ornithine is combined with 

carbamoyl-phosphate in the first step of the urea cycle to form citruline which is subsequently 

converted into arginine via two enzymatic steps (Jauniaux et al., 1978)(Fig. 9). We have 

investigated the effect of using arginine as nitrogen source, either on its own (paper III) or in 

combination with glutamate (paper II and III). We found that when arginine was used as the 

sole  nitrogen source large amounts of pyruvate were produced (paper III), interestingly the 

same has been found when glycine was used as nitrogen source, but is not seen when 

ammonia or glutamate is utilized (Albers, 2000). Indicating that the carbon backbone of some 

amino acids can feed into pyruvate formation and the central carbon metabolism, or has a 

regulatory function on the carbon metabolism.  

Another amino acid whose metabolism is worth a short discussion is proline. Like arginine, 

proline is formed from glutamate (Fig. 9). The pathway goes via the metabolite P5C, which is 

also a product of EFE. The catabolism of proline will render glutamate again. Interestingly the 

first step in the catabolic metabolism is the re-conversion of proline into P5C again. To avoid 

a futile circle between proline and P5C the anabolic and catabolic pathway are 

compartmentalized to the cytosol and mitochondria respectively (Brandriss and Magasanik, 

1980; Brandriss and Magasanik, 1981; Cooper, 1982). Larsson et al. (2011) suggested that 

adding external proline might increase ethylene yields as in silico results showed that when 

proline flux was allowed to vary the predicted ethylene yield increased 65 % due to an 

increased flux to glutamate. The model did however not take the localization of the different 

pools into account. 

It is obvious that the central carbon and nitrogen metabolisms are highly interlinked and 

dependent on each other, especially for amino acid and nucleotide formation. The question is 

how coordinated are the two and what governs the coordination? It has been put forward that 

in E.coli 2-oxoglutarate is the coordinating metabolite, down-regulating carbon metabolism 

via competitive inhibition of the citrate synthase and 3-phosphoglycerate dehydrogenase 

when nitrogen becomes limiting (Doucette et al., 2011). Perhaps the same function is true in 

S. cerevisiae, where 2-oxoglutarate is also found in the intersection of the central carbon and 

nitrogen metabolisms.  
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Figure 9. Selected parts of the nitrogen metabolism of S. cerevisiae 
showing the intimate link between the EFE substrate 2-oxoglutarate and the central  
amino acids glutamate and glutamine. Indicated in the figure is also the pathway to  

the EFE substrate/co-factor arginine and the EFE product P5C, which is part of the proline metbaolism 
 

 

2.5 Preferred	nitrogen	source	utilization	

S. cerevisiae can support growth on a multitude of nitrogen source apart from ammonia, 

including urea, allantoin, γ-aminobutyrate (GABA) and all L-amino acids except lysine, 

histidine and cysteine. However, just like glucose is a preferred carbon source certain nitrogen 

sources are preferred over others. Comparing the generation times of S. cerevisiae grown on 

different nitrogen sources (with glucose as carbon source), good nitrogen sources will support 

generation times around 2 hours, whereas poorer ones can result in generation times well 

above 4 hours (Cooper, 1982; Niederberger et al., 1981).   
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As second factor, apart from growth rate, which is commonly take into account when ranking 

nitrogen sources into good/poor is their effect on the utilization of other nitrogen sources 

present. So called nitrogen catabolite repression (NCR) is the cells way of regulating the 

nitrogen source used to the best option available. A good nitrogen source will inhibit the 

transcription activators Gln3 and Gat1 required for uptake and degradation of poorer nitrogen 

sources, thereby minimizing the need for expression of excess catabolic routs. In the absence 

of a rich nitrogen source, de-repression of Gln3 and Gat1 will occur and expression of 

required metabolic genes is initiated (Cooper, 2002; Hofman-Bang, 1999). Generally it is said 

that the stronger the NCR effect the more preferred as a nitrogen source the compound is.  

The actual classification of different nitrogen sources into preferred and non-preferred does 

however not seem to be as straight forward as one could believe, and as some suggest, as 

different studies group the possible nitrogen sources differently (Godard et al., 2007; 

Magasanik and Kaiser, 2002). It has further been noticed that some strain variability does 

exist (Magasanik and Kaiser, 2002; Rytka, 1975). One of the amino acids which vary in 

classification dependent on study is the EFE substrate/co-factor arginine. Godard et al. (2007) 

did an extensive study on the effect of 21 different nitrogen sources on the gene expression, 

with special focus on genes connected to NCR. They found that short generation times were 

linked to a clear NCR effect. They classified ammonia, glutamate as well as arginine as 

preferred nitrogen sources though arginine was found to support slightly slower growth.  

What has been noticed is that many good nitrogen sources upon either deamination or 

transamination will give compounds found within the central carbon metabolism (Godard et 

al., 2007), which is true for e.g. arginine glutamate and glutamine, whereas non-preferred 

ones often give non-usable fusel acids and alcohols (Hazelwood et al., 2008). Some good 

nitrogen sources also easily connect to the central nitrogen metabolism and are hence quickly 

and effortlessly utilized by the cell as is the case with ammonia.  

Though several compounds are classified as preferred, there is a hierarchy also in-between 

these. We saw that in batch cultivations where glutamate and arginine were used in 

combination as nitrogen source the uptake of arginine was delayed until the available 

glutamate was spent (paper III) (Fig. 10). This correlates with previous findings that most 

amino acids will be used sequentially and that glutamate so to say trumps arginine as it is an 

early consumed nitrogen source whereas arginine is a later consumed one (Crepin et al., 

2012).  
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Figure 10. Arginine uptake in mixed nitrogen source cultivations 

Extracellular concentration of arginine in batch culture with  
3.5 g L-1 glutamate and 3.5 g L-1 arginine as nitrogen sources. 

 

2.6 Growth	in	batch	vs	chemostat		

Bioreactors can be operated in several different ways; batch, fed-batch and chemostat, giving 

different growth patterns and physiology of the cultivated yeast. In a batch culture the system 

is closed in the sense that after inoculation (i.e. addition of yeast) no extra media is added to 

the system. In aerobic cultures on glucose this will give a so called diauxic growth pattern for 

S. cerevisiae. Initially when the glucose levels are high respiro-fermentative growth with 

ethanol formation will occur due to the Crabtree effect, when glucose is spent the cells will go 

through an adaptive phase, the diauxic shift, and switch to purely respirative growth based on 

the ethanol formed in the first phase of the cultivation. A thorough study of the diauxic shift 

revealed that the readjustment of the metabolism will occur well before all glucose is spent 

with reduced glycolytic flux and increased flux towards storage molecules occurring (Zampar 

et al., 2013). A batch-type of set-up hence has a clear beginning and end, is easy to set up and 

productivity of the sought after product can be followed for different physiologic stages of the 

yeast.  

In contrast in a chemostat setting media is pumped into the vessel at a set dilution rate, while 

culture is pumped out of the system at the same rate. This gives the culture a constant volume 

and at the same time a controlled environment and constant growth rate governed by the 

dilution rate, the culture enters a so called steady state. The yeast will grow purely respirativly 

at low dilution rates, however as the dilution rate is increased the cells will at one point switch 

to respiro-fermentative growth and start to form ethanol. Usually this will occur at dilution 

rates between 0.25 and 0.3 h-1 (Frick and Wittmann, 2005; Van Hoek et al., 1998). However, 

it has been shown that the respiro-fermentative growth can be prompted early or that an 
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extended period of respiro-fermentation can take place, if the increase in dilution rate is done 

at to large increments (Postma et al., 1989; Rieger et al., 1983b). Finally a dilution rate is 

reached at which the yeast is unable to maintain the growth rate required and it will 

subsequently be washed out of the bioreactor. The main advantage of this type of culture is 

that it allows for direct correlation between physiological state of the cell and selected 

environment conditions as the steady state is time-independent. Chemostat cultures were 

hence classically used to study fundamental issues.  

A third version (which has not been applied in our studies) is the fed-batch system, in some 

ways a mix of the two previous ones. In this setup fresh media or substrate is added to the 

system either continuously or pulse wise, but no culture is withdrawn. The volume of the 

culture will hence increase throughout the cultivation (there are also methods where the 

limiting growth factor is added without increasing the volume, e.g. through dialysis). This 

cultivation type can give high biomass concentrations as well as controlled growth rates, 

however accumulations of toxins could in some circumstances become an issue.  

2.7 Ethylene	toxicity	and	transportation	

An issue which always has to be addressed in biotechnical production of chemicals is the 

toxicity of the product for the host microorganism. In general it has been observed that 

unsaturated gases are more growth inhibiting than corresponding saturated gas and that the 

more hydrophobic the gas is the higher is its toxicity (Kawachi et al., 2010). Extracellularly 

applied ethylene has also been suggested to reduce the glucose uptake rate of S. cerevisiae 

(Thomas and Spencer, 1978) and high extracellular pressure of ethylene leads to invagination 

of the yeast cells (Kawachi et al., 2010). With that said, the IP50 (pressure where growth is 

inhibited by 50 %) of ethylene on S. cerevisiae was found to be 0.607 MPa (i.e. 6 atm) 

(Kawachi et al., 2010), which is several magnitudes of order higher than what we have 

achieved in our cultivations. Another issue which could become problematic for the 

production is intracellular accumulation of the product, both due to toxicity and from a 

processing point of view. No membrane transporters linked to ethylene has been reported, 

however as small uncharged gaseous molecules such as oxygen and carbon dioxide pass 

through the membrane via diffusion it is very likely that ethylene, also being small and 

uncharged, likewise passes through the cell membrane through diffusion. 

. 
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2.8 Ethylene	production	in	bioreactors	
All of our bioreactor cultivations were set up in 3.5 L Belach (Belach Bioteknik AB, Skogås, 

Sweden) bioreactors. The off gas of this system was led via a pumping system and overflow 

release system directly to a GC-FID thus enabling on-line and real-time measurements of 

ethylene concentrations. As the ethylene levels measured are real-time values and given as 

production rates (production per hour), the total production of a batch cultivation will be 

given by the area under the curve in a rate-time graph. Determination of this area can easily 

be achieved by employing the trapz(x,y) function in MatLab (MathWorks, USA). One 

concern for the measurements is the solubility of ethylene in the culture broth. It has been 

determined that solubility of ethylene in culture media has an Ostwald coefficient (mL of gas 

per mL of liquid) of 0.11 at 30˚C (Serra et al., 2011). However as the bioreactor has a 

constant air flow through it a gas stripping effect will occur, something which has been 

proven effective for extraction of ethylene from liquid (Bassi et al., 1981). We have further 

determined experimentally that the stripping effect was independent of dilution rate 

(unpublished data).  

2.8.1 Ethylene	sampling	in	different	culture	set‐ups	

Quick evaluations of different strains for ethylene production can be performed by employing 

shake flask cultures. As these reach an OD of approximately 1.0 the regular gas passing plug 

is exchanged for a rubber plug with a syringe needle through it. The culture is incubated for a 

further 30 min, to accumulate gas, after which a head space sample is extracted via the needle 

using a syringe. The gas sample is subsequently directly injected into the GC-FID. This was 

the system used in the evaluation of mutations of the EFE presented in previous chapter. 

Evaluation of the effect of metabolism on ethylene formation was however performed in 

bioreactors to enable increased control of the cultivation conditions. In batch cultivations the 

off-gas was in general sampled every 30 minutes through-out the cultivation. For chemostat 

cultivations samples were only taken at more disperse time points during the start-up. As 

steady state was approached sampling was switched to every 30 min until a steady ethylene 

level was seen and kept at this frequency throughout the sampling.  
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2.9 Effect	of	nitrogen	source	on	ethylene	production		

One of the factors we have studied extensively is the effect of nitrogen source on ethylene 

formation. Experiments have been performed in batch as well as chemostat cultivations. The 

effect was initially investigated in chemostat (paper II), and like previous studies (Larsson et 

al., 2011; Pirkov et al., 2008) changing the nitrogen source from ammonia to glutamate led to 

an almost 50 % increase in ethylene productivity (µg L-1 h-1). The specific ethylene 

productivity (µg gDW
-1 h-1) was however similar for the two conditions as the biomass 

concentration was also increased considerably with glutamate (Table 2). In follow-up batch 

cultivations (paper III) some distinct differences was observed between cultures on 

glutamate and the reference cultures with ammonia. The ethylene productivity of the 

ammonia based cultivations peaked during the late glucose phase, whereas for the glutamate 

cultures the maximal productivity was reached during the later parts of the ethanol phase. 

  

Table 2. Effect of nitrogen source on ethylene formation in chemostat cultivations 

Production data and biomass formation when three different nitrogen sources are employed in  
chemostat cultivations with 10 g glucose L-1. All cultivations performed at at D=0.1 h-1. 
± Minimal and maximal ethylene production levels 
 

Comparing the specific ethylene productivities of the two conditions it became obvious that 

with glutamate a relatively high and stable ethylene level was kept also in the ethanol phase, 

whereas with ammonia the level was declining and much lower (Fig. 11a and b – upper 

graph). Studies of extracellular metabolites determined that the levels of 2-oxoglutarate were 

more than 10 times higher in the ethanol phase of the glutamate cultures compared to those of  

the ammonia cultures (Fig. 11a and b – lower graph). Hence, there is a considerably increased 

availability of the substrate 2-oxogltuarate for the EFE in glutamate cultures, especially 

during the second respirative phase, explaining the higher ethylene levels reached in these 

cultures. 

 Ethylene    

N-Source  

Biomass 

[g L-1] 

Productivity  

[µg LCulture
-1 h-1] 

Specific productivity 

[µg gDW
-1 h-1] 

Yield 

[µg gGlucose
-1] 

(NH4)2SO4  (7.5 g/L) 5.72 ± 0.95  178 ± 25 30.4 ± 2.8 164 ± 21 

Glutamate (7.5 g/L) 7.48 ± 0.14 242 ± 2 32.3 ± 0.3 233 ± 0.8  

Glutamate + Arginine 

(3.5 g/L each) 
7.34 ± 0.03 101 ± 1 13.8 ± 0.2 96.8 ± 1.0  
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The EFE substrate/co-factor arginine has been proposed to be a limiting metabolite within 

glucose controlled continuous cultures of S. cerevisiae (Boer et al., 2010). It was hence 

investigated if arginine could be a restricting factor for ethylene formation in chemostat 

cultivations by replacing parts of the glutamate with arginine as nitrogen source (paper II).  

Surprisingly it was found that in these cultures the ethylene levels were severely reduced 

(Table 2). Subsequent batch cultivations on arginine as sole nitrogen source confirmed that 

ethylene levels were negatively affected when using arginine (Fig. 11c). Contradictory to in 

the situation in the chemostat, batch cultures on a mixture of glutamate and arginine did not 

show reduced ethylene levels, but rather showed levels similar to those on purely glutamate 

(paper III) (Fig. 11d). For the mixed batch cultivations it was shown that arginine, as a 

poorer nitrogen source than glutamate, was only consumed after the glutamate was spent late 

in the experiment (Fig. 10). Calculating the nitrogen requirements of the biomass formed in 

the mixed chemostat samples, it was concluded that co-consumption of the nitrogen sources 

were necessary to reach the requirements. It hence seems that the intracellular concentration 

or the metabolism of arginine has a negative effect on the ethylene formation via EFE. 

Strategies to clarify and get around this issue is further discussed in chapter 3 

  

Figure 11. Production pattern in batch cultures depending on nitrogen source  
In cultures with 10 g glucose L-1 and either 7.5 g L-1 ammonia (A), glutamate (B) or arginine (C)  
or 3.5 g L-1 glutamate in combination with 3.5 g L-1 arginine (D). 
Upper graphs: ethylene productivity (open diamonds) and specific ethylene productivity (solid squares). 
Lower graphs: 2-oxoglutarate (open circles), pyruvate (closed circles), succinate (open triangles)   
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2.10 Influence	of	growth	and	respiration	rate	on	ethylene	formation	

Variations in growth rate are linked to genetic and metabolic differences (Fraenkel, 2011; 

Regenberg et al., 2006). As the growth rate can be controlled via the dilution rate in a 

chemostat, ethylene production was determined at different dilution rates varying from 0.033 

h-1 to 0.35 h-1, thus spanning from pure respirative growth to mixed respiro-fermentative 

(paper II). The specific ethylene productivity (µg gDW
-1 h-1, closed circles in Fig. 12) 

increased throughout the dilution span, though not in a linear fashion. Between dilution rates 

0.15 h-1 and 0.25 h-1 a lower increases in specific productivity was seen with the dilution rate 

increases. Between dilution rates 0.25 h-1 and 0.3 h-1 a big jump in specific productivity is 

seen, this correlates with the shift to respiro-fermentative growth, which can further be seen 

on the onset of ethanol formation and on the typical overflow of pyruvate from the glycolysis 

as well as increased acetate formation and reduced biomass formation (Fig 12b and c). The 

opposite trend to that of the specific productivity was seen for the yield, which decreased with 

each increase in dilution rate. 
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Figure 12. Growth and product characteristics with increasing dilution rate 
A: Ethylene productivity (open diamond), specific productivity (closed circle) and yield (closed square).  
B: Biomass (closed diamond) and ethanol (open square). C: Pyruvate (open circle) and acetate (open triangle). 
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Through metabolic modeling it was suggested that respiration rate and NADH re-oxidation 

could be a limiting factor for ethylene formation (Larsson et al., 2011). As mentioned 

previously the respiration rated could be increased via the addition benzoic acid to the media 

(Verduyn et al., 1992). We saw that the addition of 7.5 mM benzoic acid had a positive effect 

on specific ethylene production (µg gDW
-1 h-1), increasing it 65 % compared to the standard 

condition without addition (Table 3). When the benzoic acid enters the cell it will dissociate 

and thus disturb the cytosolic pH and possibly also membrane organization (Hazan et al., 

2004), the acid is therefore pumped out of the cell via a plasma membrane ATPase (Holyoak 

et al., 1999). The increased usage of ATP is met by an increase in respiration rate. However, 

as a large part of ATP is used for the pumping, a significant decrease in biomass follows as an 

effect of benzoic acids addition (Warth, 1988; Verduyn et al., 1992). This was also seen in our 

cultures and hence the productivity (µg L-1 h-1) was low (paper II).  

To further examine the coupling between ethylene formation to the respiration rate, the effect 

of blocking the respiration via addition of the cytochrome c oxidase inhibitor sodium azide 

(Duncan and Mackler, 1966) was investigated. Addition completely abolished ethylene 

formation, supporting the hypothesis that ethylene formation is intimately linked to the 

respiration and that increasing respiration could be one step in achieving higher ethylene 

production levels, more on this will follow in chapter 3.  

 

Table 3. Effect of respiration rate on ethylene formation 

Condition 

Ethylene 

Specific productivity 

[µg gDW
-1 h-1] 

Productivity  

[µg LCulture
-1 h-1] 

Reference cond. 30.4 ± 2.8 178 ± 25 

+ 7.5 mM Benzoate 50.3 ± 1.3 37.7 ± 0.9 

+ 1 mM Azide 0 0 

Benzoic acid was added in order to increase respiration rate, while azide was added to block  
the respiratory chain. Experiments were performed in chemostat cultivations operated at  
D=0.1h-1 and with 10 g glucose L-1.  
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2.11 Some	additional	factors	evaluated	

A few other factors apart from the ones mentioned above have also been evaluated for their 

effect on ethylene formation. None of these results have been included in the manuscripts I, 

however, still thought that the results were worth mentioning here. One factor which was 

investigated was the effect of cultivation temperature on ethylene formation. The temperature 

optima of the P. syringae EFE has been determined to be 20-25˚C (see table 1), at 

temperatures above this increased inclusion body formation of the enzyme was seen in E. coli 

(Ishihara et al., 1995). Batch cultivation of our S. cerevisiae strain at 25˚C however only led 

to slower growth and decreased specific productivity.  

Heyland et al. (2009) showed that employing sub-optimal pH (3.2 and 6.9) led to increased 

TCA cycle flux. As ethylene formation is linked to the TCA intermediate 2-oxoglutarate, 

increased TCA flux could possibly positively influence the ethylene formation, thus batch 

cultivations were performed at pH 3.5 and 7.0. These showed an increase in production rates 

as well as yields. However, when the same was tried in a chemostat the effect was not 

replicable. There pH 3.5 still gave a higher ethylene productivity, while at pH 7.0 ethylene 

formation was substantially reduced. The effect of pH on ethylene formation is hence 

inconclusive. 

From the experiments described it this chapter several factors have been identified as possible 

targets for improved ethylene formation. Intracellular arginine concentration seems to 

function negatively on ethylene formation whereas increased availability of the substrate 2-

oxoglutarate seems to have a positive effect. It is further obvious that the respiration rate of 

the host is central for improved ethylene formation. The next chapter covers how these points 

could be met via metabolic engineering of the host. 
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CHAPTER 3 

METABOLIC	IMPROVEMENTS	OF	THE	S.	CEREVISIAE‐EFE	CELL	

FACTORY	

In the early 1900’s the first industrial processes using pure microbial cultures for controlled 

production of chemicals emerged, with the production of acetone using the bacterium 

Clostridium acetobutylicum (1916) and citric acids production using the fungus Aspergillus 

niger (1923) (Springham et al., 1999). Through the past century this microorganism based 

production has expanded and a multitude of bio-based chemicals are industrially available or 

under development today including different biofuels, bulk and fine chemicals, polymers or 

their building blocks and pharmaceutical compounds (for reviews see e.g. Hong and Nielsen, 

2012; Otero and Nielsen, 2010). Central for the progress of this field is strain development, in 

order to expand both the product and substrate range as well as to increase the yields, titers 

and rates of production of the microbial producers in place today (Buschke et al., 2013; Tyo et 

al., 2007). In this chapter I will review how these strain developments can be guided and 

implemented. I present how metabolic targets for improved production of ethylene in S. 

cerevisiae were identified and the effects they had on in vivo ethylene production.  

3.1 Metabolic	engineering	

The first microorganism based chemical production set-ups were developed through screening 

of strains for native production abilities and choosing the best (or only) producer of these. 

Quickly the idea of improving the productivity through alterations of the original strain grew 

strong. This was mainly achieved through application of chemical mutagens and screening for 

an increase in production (Stephanopoulos et al., 1998). The knowledge of the underlying 

genetic and metabolic alteration giving rise to the change was hence very limited. The 

technique was however still relatively successful in certain instances such as for penicillin 

production (Nielsen, 1995; Ågren, 2013). With the determination of the structure of DNA 

(Watson and Crick, 1953) and the understanding of the molecular basis underlying the central 

dogma (i.e. DNA→RNA→Protein) (Crick, 1970) methods for more directed alterations were 

being developed.  In the 1970’s the first so called genetically engineered organisms were 

created and in the following decades the molecular biology toolbox for performing directed 

genetic modifications grew. Various terms were used to describe this area, the persistent one 

became ‘metabolic engineering’ (Bailey, 1991; Stephanopoulos and Vallino, 1991) and has  
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been defined as “the directed improvement of product formation or cellular properties 

through the modification of specific biochemical reaction(s) or the introduction of new one(s) 

with the use of recombinant DNA technology“ (Stephanopoulos et al., 1998). This is today a 

central area within biotechnology.  

3.1.1 Impact	of	rewiring	of	the	nitrogen	metabolism	on	ethylene	formation	

In paper II it was found that high levels of arginine had a detrimental effect on ethylene 

formation (as discussed in chapter 2), in paper III metabolic engineering of the arginine 

metabolism was used to try to meet this finding. In an attempt to understand the underlying 

reason for the effect and to see if reduced arginine availability could improve ethylene 

formation two different metabolic strategies were developed and implemented. In order to 

increase the degradation of arginine, overexpression of the arginine catabolic enzyme Car1, 

which catalyzes the reaction from arginine to ornithine (Middelhoven, 1964) (Fig. 13), was 

tried. This had only a minor effect on ethylene formation, 84.0 ± 10.7 µg gglucose
-1 compared to 

75.4 ± 18.7 for the reference strain with ammonia as nitrogen source (paper III). Further 

investigations into the arginine metabolism reviled that the next step in the arginine 

degradation pathway, catalyzed by Car2, is 2-oxoglutarate dependent (Middelhoven, 1964). 

This could be the underlying reason for why increased concentrations of arginine reduce 

ethylene formation. It resulted in depletion of the EFE substrate, rather than the initial 

hypothesis of paper I that arginine availability shifts the ration between the two reactions of 

the EFE in favor of the non-ethylene forming reaction, for which a larger effect of the 

Car1overexpression would have been expected. 

Arginine

Glutamate semialdehyde

Urea-cycle ARG4

CAR1

Argininosuccinate

Ornithine

CAR2
glutamate

2-oxoglutarate

Proline

P5C

 
Figure 13. Arginine metabolism in S. cerevisiae 

indicating the 2-oxoglutarate dependent step in the catabolism catalyzed by Car2.  
Arg4: Argininosuccinate lyase, Car1: Arginase, Car2: L-ornithine transaminase,  

P5C: 1-Pyrroline-5-carboxylic acid. 
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If it is the metabolism of arginine which is influencing, a minimization of the arginine 

availability to only cover the basic requirements could hence have a postive effect on ethylene 

formation. To investigate this hypothesis, a Δarg4 strain was contructed. This gives a strain 

which should be unable to grow without the addition of arginine to the media as Arg4 

catalyzes the final step in the arginine anobolic pathway (Fig. 13). An evaluation of the 

arginine requirment of the Δarg4 strain was thus perferomed via addition of a wide span of 

arginine concentrations to shake flask cultivations and measuring the final OD of the cultures. 

When no arginine was added the strain did not grow at all, showing that the deletion of ARG4 

was effective in restricting the arginien formation, while addition of 1 mM arginine led to 

normal growth. As ethylene production peaks at late glucose phase, arginine concentrations 

which would lead to an arrest in growth before the diauxic shift were therefore chosen for 

further tests in bioreactors. However, no increase in ethylene formation could be seen as 

arginine concentration became low, rather there was a rapid decrease in ethylene formation 

even though there was still glucose present and biomass formation continued (Fig. 14). 

Hence, it has to be concluded that a fine balancing of the available argininge is required for 

optimal ethylene production (paper III). 

 

      
Figure 14. Effect of arginine on OD and ethylene production in a Δarg4 strain 
Left) Final OD of the shake flask cultures of the Δarg4 strain with varying amounts of arginine added.  
Right) Ethylene productivity (open diamonds), specific ethylene productivity (closed squares) and OD (open 
circles) of batch cultivation of the Δarg4 strain with 2 mM arginine addition and 2% glucose. 
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3.2 Metabolic	modeling	

Even though there is a large tool box for performing metabolic engineering and a vast 

biochemical knowledge has been accumulated through the years the technique can still be 

limited by the complexity of the organism’s metabolism. Interconnectivity together with co-

factor and re-dox balancing means that getting a complete overview and understanding of a 

biological system is hard. To get a more holistic view, scientists started to put together 

extensive maps of the metabolic networks and network reconstruction became an important 

tool in metabolic engineering. Simple metabolic network models of first E. coli (Varma et al., 

1993) and subsequently also for S. cerevisiae (van Gulik and Heijnen, 1995) were published 

in the mid 90’s. A few years later the breakthrough of genome sequencing laid the foundation 

for so called genome scale metabolic models.  

The construction and evaluation of a genome scale metabolic model is a major, iterative work, 

the starting point of which is the reconstruction of the metabolic network based on gene 

annotation and biochemical knowledge. When a draft version of the network is pieced 

together, which links genes to reactions and metabolites, it has to be curated, removing falsely 

identified genes and gene products. This is to a large extent a manual work. Co-factor usage, 

reaction stoichiometry and directionality have to be examined for each reaction and 

compartmentalization as well as transportation taken into account (Thiele and Palsson, 2010; 

Österlund et al., 2012). Once this is done the information is converted into a mathematical 

model by translating the reactions from the reaction network into mass balance equations. 

Here the assumptions are often made that the effect of growth correlated volume increase is 

neglectable (as shown by Zupke and Stephanopoulos, 1995) and that the concentration of 

intracellular metabolites is at a steady state and does not change over time (as discussed by 

Varma and Palsson, 1994). The complete set of mass balance equations can then be 

represented by a stoichiometric matric (S) and a flux vector (v) as S•v = 0 (the stoichiometric 

matrix is composed with reactions as columns and metabolites as rows, a substrate has a 

negative coefficient while a product has a positive one). Boundaries are set to the system by 

defining exchange reactions of metabolites consumed and excreted by the cell. Finally 

constraints are set to reduce the number of possible solutions for the system (Thiele and 

Palsson, 2010). 
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Once a genome scale metabolic model is worked out, it has to be quality controlled and 

validated. This can for example be done by comparing predicted results from the model to 

available experimentally observed values (Duarte et al., 2004). Usually this reveals some 

discrepancies between model and reality and the iterative process takes place where faults in 

the model, such as dead end or orphan reactions, unbalanced charges and inconsistencies in 

stoichiometry, are identified and corrected followed by a new prediction (Thiele and Palsson, 

2010; Österlund et al., 2012).  

When a model is in place it can then be used for many different applications. Österlund et al. 

(2012) defined four major areas; i) guidance for metabolic engineering – this is the 

application area used for our research (paper IV), ii) biological interpretation and discovery – 

to help analyze and understand omics data, iii) application of novel computational framework 

– through which several different methods for modeling has been develop e.g. Flux variability 

analysis (FVA) (Mahadevan and Schilling, 2003) as used in paper IV, and iv) evolutionary 

elucidation – helping identify preserved pathways (Vitkup et al., 2006) and evaluating the 

effect of gene duplication (Kuepfer et al., 2005) etc.. 

The benefit of using metabolic modeling obviously is the ability to view the complete system 

at once. This way issues, solutions and effects which could not be seen by looking at only the 

specific pathway can be identified. Comparing to the traditional rational (or reductive) way of 

identifying metabolic engineering targets, metabolic modeling gives a much more holistic 

view and can hence help drive development and understanding further, faster.  

3.2.1 S.	cerevisiae	models	

As developing a metabolic model is an iterative process the work with them can be almost 

endless. Often it is the aim of the project or the objective functionality of the model which 

defines when it is done. Hence, several genome scale metabolic models of S. cerevisiae have 

been developed through the years. The first version (iFF708) was released in 2003 by Förster 

et al. (2003) and contained 1145 reactions. However a number of the included reactions were 

dead end ones and the model was hence developed further during the following decade e.g.; 

iLL672 (Kuepfer et al., 2005),  iND750 (Duarte et al., 2004), iMH805/775 (Herrgård et al., 

2006), iIN800 (Nookaew et al., 2008) and iMM904 (Mo et al., 2009). However, as different 

modelers used different modelling approaches there were discrepancies between the models 

and it was decided within the community to form a consensus model. The first version of this 

(Yeast 1.0) was thus released in 2008 (Herrgård et al., 2008). Some of these genome scale 
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metabolic models have since been used successfully to identify metabolic strategies for 

increase product of bioethanol (Bro et al., 2006) and sesquiterpene (Asadollahi et al., 2009). 

Metabolic modelling has also been used to compare the plant and EFE pathways for ethylene 

production in S. cerevisiae (Larsson et al., 2011). This model was however only based on the 

central carbon metabolism of the yeast and no compartmentalization was taken into account, 

therefore a full genome scale metabolic model of the EFE-S. cerevisiae cell factory, based on 

the iAZ900 model (Zomorrodi and Maranas, 2010), was also developed through a 

collaboration within this project.  

3.3 Metabolic	modeling	&	engineering	of	the	S.	cerevisiae‐EFE	cell	factory	

The modeling of ethylene production in S. cerevisiae performed by Larsson et al. (2011) 

investigated several different conditions, including changing nitrogen source and altering the 

proline flux. In all their modeling they found that the respiratory activity was high,  

5 moleNADH / moleglucose. When limiting the respiration rate to 0.8 moleNADH / moleglucose the 

ethylene production was severely affected, decreasing from 0.78 moleethylene / moleglucose to 

0.02 moleethylene / moleglucose.  They further showed that specifying the co-factor specificity of 

Gdh to NAD+ increased the predicted ethylene levels with 7 %. Hence, it seems that the 

respiratory capacity is a limiting factor of ethylene production in S. cerevisiae. As mentioned 

in the first chapter oxygen restriction severely affected the ethylene formation in vivo already 

at relatively small changes in dissolved oxygen tension, this can then be linked to two 

reasons; the reaction of the enzyme itself for which oxygen is substrate, as well as to the 

requirement of oxygen for the increased usage in re-oxidation of NADH (chapter 1, paper 

II).  

Different approaches can be used to meet this limitation. In paper II benzoic acid was added 

to increase the respiration rate and a positive effect was seen on the specific ethylene 

formation, however the biomass formation was severely reduced (as discussed in chapter 2). 

Further, S. cerevisiae lacks transhydrogenase activity (Bruinenberg et al., 1985) which means 

that an imbalance in NADH cannot be met by conversion to NADPH. Expression of the 

soluble transhydrogenase (sth) of Azotobacter vinelandii (Chung, 1970) (Fig. 15) did however 

not lead to an increase in ethylene formation (unpublished data). In paper IV expression of 

heterologous oxidases was investigated as a mean to meet the limitations. Two different 

oxidases were tested, the alternative oxidase (AOX1) of the fungi Histoplasma capsulatum 

and the water-forming NADH oxidase (nox) of the bacteria Streptococcus pneumonia, both of 
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which have been shown previously to increase respiration when expressed in S. cerevisiae 

(Johnson et al., 2003; Vemuri et al., 2007). The Aox1 has further been shown to localize to 

the mitochondria when expressed in S. cerevisiae (Vemuri et al., 2007) whereas the nox will 

affect the cytosolic NADH metabolism. Aox1 functions by using electrons from the electron 

transport chain to reduce molecular oxygen (Akhter et al., 2003), whereas nox catalyzes direct 

oxidation of NADH to NAD+ using molecular oxygen (Auzat et al., 1999) (Fig. 15). 

 

 

Figure 15. Metabolic engineering targets 
in relation to the metabolism and respiratory chain of S. cerevsiaie as well as to the introduced EFE reaction. 
ALT1: Alanine transaminase, CIT1: Citrate synthase, IDP2: Isocitrate dehydrogenase, AOX1: Alternative 

oxidase of Hisoplasma capsualtum, nox: Water forming NADH oxidase of Streptococcus penumoniae,  
sth:Transhydrogenase of Azotobacter vinelandii 

 
 
 
 
Both oxidases led to increased specific ethylene formation (µg gDW

-1 h-1), however the effect 

of Aox1 on ethylene production was more pronounced (table 4). Further, both oxidase strains 

showed large increases in oxygen consumption indicating increased respiration rate. In the 

yeast the redox-metabolism is compartmentalized as the redox-couples cannot pass over the 

mitochondrial membrane, implying that the redox-state has to be balanced in the mitochondria 

and cytosol separately. During aerobic conditions mitochondrial NADH is re-oxidized in the 
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electron transport chain of S. cerevisiae whereas cytosolic NADH can be re-oxidized by the 

external NADH oxidases (Nde1p and Nde2p) (Luttik et al., 1998; Small and McAlister-Henn, 

1998) or through the glycerol-3-phosphate shunt (Larsson et al., 1998), however both of these 

cytosolic systems channels the electrons of the NADH from the cytosol into the electron 

transport chain of the mitochondria (Rigoulet et al., 2004). As Aox1 functions by removing 

electrons from the electron transport chain, it might hence have an influence also on the 

cytosolic redox balance, which could be part of the explanation of the larger effect seen with 

Aox1. The expression of AOX1 has further been shown to increase the expression of genes 

involved in the TCA cycle (Vemuri et al., 2007). Elevated levels of 2-oxoglutarate were also 

seen in our cultures, again linking increased 2-oxoglutarate levels to increased ethylene 

production as seen previously in paper III. nox on the other hand was shown to rather down-

regulate expression of the Nde1p and Nde2p as well up-regulate NADH forming pathways, 

explaining the lesser effect of this enzyme on ethylene formation.  

 

Table 4. Ethylene production in strains expressing heterologous oxidases 
 
      Ethylene     

  Specific 
productivity 
µg gDW

-1 h-1  ± 
Productivity 
µg L-1 h-1  ± 

Yield 
µg g-1glucose  ± 

Biomass 
g L-1  ± 

qO2  
mole O2 h

-1 gdw
-1  ± 

REF 45,85  1,00  231,62  2,09  240,19  2,17  5,05  0,04  1,68  0,20 

AOX 62,39  3,16  299,59  13,79  307,08  14,13  4,80  0,02  3,44  * 

NOX 51,15  0,49  234,41  4,16  236,76  4,20  4,58  0,04  3,97  0,59 

 
All strains contained an integrated copy of the EFE and the pYX212 plasmid either empty (REF) or with the 
Aox1 (AOX) or nox (NOX) gene. Cultivations performed as chemostats at D=0.1 h-1 and with 10g glucose L-1. 
± indicates min/max of duplicate steady states.  
* only single measurement. 

 

Larsson et al. (2011) concluded their paper with the suggestion that a more extensive genome 

scale metabolic model should be developed. This was performed in paper IV, where the 

iAZ900 model (Zomorrodi and Maranas, 2010) was extended with the complete ethylene 

reaction (reaction 3, page 11). FVA, where the fluxes of the ethylene model was compared 

those of the native yeast model, was then used to identify metabolic targets for increased 

ethylene formation. Growth rate was enforced to be at least 80% of the maximal rate and 

target ranking took ethylene and biomass formation rates as well as non-lethality and number 

of encoding genes into consideration. A list of the top 20 candidates was returned (table 5). 
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From this a selection of three candidates was made based on two criteria; the flux increase 

should be a minimum of 100% and the predicated increase in ethylene production rate should 

be at least 5 fold. The three selected target hence became; CIT1 as a TCA cycle intermediate 

and mitochondrial target (Kim et al., 1986), IDP2 as a representative of the cytoplasmic 

alternative to the TCA cycle (Haselbeck and Mcalister Henn, 1993), and finally ALT1 as a 

non-TCA cycle intermediate with good supply of substrate (Garcia-Campusano et al., 2009) 

(Fig. 15). However, none of the overexpression strains showed any substantial increase in 

neither ethylene production nor in the extracellular metabolite pattern (data not shown).  

From the above it becomes obvious that increasing the ethylene formation is difficult. Re-

oxidation of NADH seems limiting, but can be met by co-expression of an alternative 

oxidase. However, attempts to increase the availability of the substrate 2-oxoglutarate through 

metabolic engineering did not give any results. As 2-oxoglutarate is linked to two central and 

heavily regulated metabolic networks; that of carbon and that of nitrogen, perhaps looking 

into regulation of these pathways could be an alternative strategy. It has been shown that for 

lysine production (a pathway also originating from 2-oxoglutarate) deletion of the pleiotropic 

negative regulator Mks1, resulted in both increased lysine production and a significantly 

increased intracellular 2-oxoglutarate concentrations without affecting growth rate (Quezada 

et al., 2013), this could hence be an interesting target. 
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Table 5. FVA results of metabolic model iAZ900 extended with the complete EFE reaction 

 

 
Target selection enforced a growth rate above 80 % of theoretical maximum.  
A fold change below 1.0 means down-regulation, while one above 1.0 requires up-regulation.  
 

 

 

 	

Name Identifier Formula

Ethylene exchange flux EX_eth(e) ethylene out <=>

Ethylene transporter ethtex2 Ethylene in <=> ethylene out 

Ethylene synthase Ethylene_synthase_bact
3 2-oxoglutarate + arginine-L + 3 O2 -> 
succinate + 7 CO2 + 2 ethylene+ guanidine + 1-Pyrroline-5-carboxylate + 3 H2O

Guanidine transporter  guadtex2 Guanidine in <=> guanidine out
Guanidine exchange flux Guanidine out <=>

Model1

Name Gene Metabolic Process Essential

Predicted fold 
change in 

expression2

Predicted fold 
increase in specific 

ethylene 
productivity

HOM6 YJR139C Aspartate, 2-oxo and Arginine metabolism yes 1,21 7,3
IDP2 YLR174W TCA yes 3,26 7,3
THR1 YHR025W Aspartate, 2-oxo and Arginine metabolism no 1,62 7,3
TPI1 YDR050C TCA input flux yes 1,05 7,3
TDH3 
TDH1 
TDH2

YGR192C 
YJL052W 
YJR009C

TCA input flux yes 1,02 7,3

HOM2 YDR158W Aspartate, 2-oxo and Arginine metabolism yes 1,41 7,2
HOM3 YER052C Aspartate, 2-oxo and Arginine metabolism no 1,41 7,2
CIT1
CIT3

YNR001C 
YPR001W

TCA yes 2,15 7,2

PYC2
PYC1

YBR218C 
YGL062W

TCA input flux yes 2,25 6,9

RKI1 YOR095C TCA input flux yes 3,11 6,9
CDC1 (PYK1)
PYK2

YAL038W 
YOR347C

TCA input flux yes 1,10 6,7

MET10
MET5

YFR030W 
YJR137C

Aspartate, 2-oxo and Arginine metabolism yes 1,57 6,7

THR4 YCR053W Aspartate, 2-oxo and Arginine metabolism no 1,43 6,7
IPP1 YBR011C TCA input flux yes 2,75 6,1
ALT2 (ALT1) YDR111C Aspartate consumption yes 3,13 5,8
PMI40 YER003C TCA input flux no 1,20 5,7
PGK1 YCR012W TCA input flux yes 1,02 5,6
HIS1 YER055C Utilization of asparate precursor no 0,98 4,9
ADE1 YAR015W Arginine precursor competition (from aspartate) yes 0,74 3,6
ADE6 YGR061C Arginine precursor competition (from aspartate) yes 0,74 3,6
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CONCLUSIONS	

In order to get a cell-factory to function at its optimal it is crucial to develop a deep 

knowledge about all the system parts as well as gaining a holistic understanding of the 

system. In this work I have aimed at extending the knowledge base of the EFE-S. cerevisiae 

system for ethylene production in order to enable evaluation of its suitability as a production 

entity.  

Several issues have been addressed such as i) how does the introduction of EFE into S. 

cerevisiae effects the growth and metabolism of the host, ii) how can the metabolism of the 

host be improved for ethylene production, iii) increase the knowledge on the enzyme 

functionality, and if possible improve it in regards of ethylene production and iv) evaluate 

cultivation conditions in regards of improved ethylene production. Taken together the 

findings help evaluate the functionality if the system. 

What has been learnt about the EFE, its structure and reaction process and which are the 

main challenges to be met regarding it? 

Despite the fact that structural determination has proved difficult, several crucial structural 

features and amino acids have been identified using structure prediction tools and amino acid 

substitution. An unstructured loop has been identified as essential for ethylene formation, 

further a handful of amino acid residues have been found important either for substrate or iron 

binding (paper I). The proposed reaction mechanism of EFE is unusual and does not conform 

with the mechanism of related enzymes (chapter 1). To really untangle the reaction 

mechanism of this enzyme and thereby be able to truly relate it to the metabolism of the host I 

believe structure determination, preferably with and without substrate(s), is a must. 

How suitable is S. cerevisiae as a host and how can its metabolism be further optimized in 

order to improve ethylene production? 

When doing an inventory of the productivity of alternative cell factories for ethylene 

production tested until today S. cerevisiae stands out as one of the best host organisms. 

However, I have shown that its respiratory capacity limits ethylene formation (paper II). This 

can to some extent be relieved by the expression of heterologous oxidases (paper IV). 

Furthermore, a majority of the conditions which have given higher ethylene productivity have 

also shown increased levels of 2-oxoglutarate (paper III and IV). Increasing the net flux to 

this hence seems crucial. Rewiring of the fluxes through the central carbon or nitrogen 

metabolisms is however difficult, as shown in paper III and IV. 
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What have been learnt about optimal processing conditions for ethylene production via this 

cell factory and which challenges does the process of ethylene formation via the EFE stand 

in for? 

Two crucial cultivation factors for ethylene formation have been identified during this study;  

1) the oxygenation level has to be kept high to ensure good ethylene production, even 

relatively small decreases in oxygen availability will negatively affect the ethylene production 

(paper II). This effect can be connected to two separate issues; that oxygen is a substrate for 

the enzyme and that oxygen is required to meet an increased demand of NADH re-oxidation 

(paper I1 and IV).  

2) the nitrogen source used can have both a positive and a detrimental effect on the ethylene 

formation as glutamate increases levels whereas arginine reduced them. This is most likely 

connected to the metabolism of the compounds, as glutamate catabolism results in increased 

levels of the EFE substrate 2-oxoglutarate, whereas the catabolism of arginine consumes 2-

oxoglutarate (paper II and III).  

In an industrial setting both of these facts can be seen as problems. To cultivate the strain on 

glutamate is likely not relevant on an industrial scale, however more metabolic engineering 

strategies could be possible for increasing levels of 2-oxolgutarate. Further to maintain a high 

oxygenation level in large scale fermenters is expensive and difficult as stirring of large 

volumes often is non-homogenous and energy intensive. 

Concluding remarks 

My work has hence revealed several obstacles which must be overcome to make this system a 

viable biotechnical solution for ethylene production. It has also given hints about how to solve 

parts of them. In general I must conclude that there is a long, long way to go before an EFE-

based ethylene cell-factory is a reality. It is implausible that the process will ever be as 

effective at a g/g basis as the bio-ethanol based production, however if one takes the entire 

production process into perspective, the outcome could be that the lower energy demand of 

the direct conversion could decrease the production costs enough to still make the technique 

economically competitive.  	
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FUTURE	DIRECTIONS	

One of the main obstacles of the set-up used in this study, and which has become even more 

obvious during thus study, is the enzyme itself. One does ask oneself, did the original 

ethylene producers have that much to gain from producing ethylene that it would develop an 

enzyme specifically for ethylene production? Perhaps the main purpose of the enzyme really 

is to perform the non-ethylene forming reaction, and supply the cell with an alternative 

pathway for production of proline?  

Interestingly it has been put forward that the flexibility in the reaction mechanism of the 

enzyme family as a whole is kept by the cell as a starting point for the development of new 

enzymes and enzymatic reactions (Hewitson et al., 2005). If this bears any truth is hard to say, 

however this work highlights that the low stability of the enzyme and the lack of steerability 

of its reactions are major issues which has to be addressed if the system is to ever have any 

future. This does rely heavily on the determination of the enzymes structure and true reaction 

mechanism.  Learning from our results showing that 2-oxoglutarate is crucial for stability 

reasons as well as for the formation of crystal nucleuses (unpublished data, chapter 1), and 

combining this with the fact that crystallization of other enzymes containing a coordinating 

iron shows that it might be necessary to perform the crystallization under anaerobic conditions 

as to not oxidize the iron and disturb the enzyme structure (something we did not have the 

possibility to try) the basis for further crystallization experiments has been laid. 

When it comes to NMR based structure determination, EFE is at the very maximum of what is 

achievable size wise with this technique today. This work was hence always a bit of a gamble, 

however the technique is ever evolving and within a not too far away future developments 

might have been accomplished which enables measurements of even larger enzymes at even 

lower enzyme concentrations. Instability issues of the enzyme during purification and 

measuring can partly be met by the addition of 2-oxoglutarate and arginine (as shown in 

chapter 1). The  introduction of so-called solubilization tags (Zhou et al., 2001) could also be 

an alternative solution, however adding the tag does add to the size of the protein and the type 

of tag used has to be chosen with care.  

The instability or misfolding of the EFE is likely a major issue also in vivo as the presence of 

inclusion bodies have been identified at least in E. coli. This needs to be met, though the 

difficulty of increasing the folding stability is well known there are methods to apply. We did 

show that altering the enzyme source to one phylogenetically closer to the host was not 
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beneficial for ethylene formation (paper I), likewise neither did the co-expression of the 

bacterial folding chaperones GroEL and GroES help ethylene formation via the bacterial  

P. syringae version (unpublished data, chapter 1). There are other ways to increase the 

folding stability of an enzyme, such as altering the charges of surface groups of the enzyme 

(Grimsley et al., 1999). This is however a major work, especially as long as the structure of 

the enzyme is unknown.  

In paper II and IV I showed that the productivity of ethylene is intimately linked to 

respiration capacity and redox metabolism, hence more work can be done on this. 

Specifically, it has been suggested that altering the co-factor dependence of the glutamate 

dehydrogenase from NADP+, which is usually used during growth on ammonia, to NAD+ 

could improve the yields further (Larsson et al., 2011), this would hence be a good next step 

for metabolic engineering. 

Paper II and III as well as the modeling results from paper IV showed the centrality of  

2-oxoglutarate metabolism and provision for optimal ethylene formation. Many of the top 

targets of the metabolic modeling were enzymes involved in 2-oxoglutarate formation. Much 

more could be done with the information from the modeling and especially combining targets 

within the same pathway within one strain would be interesting for the further evaluation.  

From our results one can question the suitability of the EFE production pathway and it would 

be of interest to evaluate other production option. However as discussed in this thesis the 

known alternative biological pathways (the plant version and the KMBA pathway) both have 

major drawbacks. Nevertheless there might be other alternatives, such as mimicking the bio-

ethanol dehydration process, i.e. manufacturing a strain capable of direct enzymatic 

dehydration of formed ethanol. A patent for such a method  was published in 2011 (Marliere, 

2011) and could be worth looking into.  

There are hence many alternative pathways to go in order to try and improve the direct 

biotechnological production of ethylene, but for now the ethanol based process remains by far 

the best bio-based alternative.  
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