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Mixed-Mode Sensitivity Analysis of a Combined
Differential and Common Mode Active Receiving

Antenna Providing Near-Hemispherical
Field-of-View Coverage

D. S. Prinsloo Student Member, IEEE, R. Maaskant Senior Member, IEEE, M. V. Ivashina Senior Member, IEEE,
and P. Meyer Member, IEEE

Abstract—A theoretical framework for a mixed differential and
common mode sensitivity analysis of active receiving antennas is
presented, which includes the derivation of a novel set of noise
parameters for dual-mode balanced amplifiers. The analysis is
applied to an example of a mixed-mode active wire antenna
design, consisting of an integrated monopole and dipole structure.
Results of numerical simulations and experimental measurements
are presented which show that, for a single-polarized design, the
judicious use of both differential and common modes enables the
field-of-view coverage to be extended over the entire hemisphere
with a variation in receiving sensitivity of less than 3dB in the
E-plane.

Index Terms—Receiving antennas, sensitivity, active antennas,
differential amplifiers, microwave circuits.

I. INTRODUCTION

THE vast majority of present-day receiving antennas are
balanced in nature and therefore require baluns for use

with Single-Ended (SE) Low-Noise Amplifiers (LNAs). The
Common Mode (CM) component of the signal in such a sys-
tem is then rejected by the antenna+balun and/or differential
LNA, so that it suffices to optimize the antenna Differential
Mode (DM) radiation and impedance characteristics only.
However, baluns compromise compactness and increase ohmic
losses, thereby reducing the antenna signal-to-noise ratio [1],
[2].

Direct differential feeding obviates the use of baluns and
represents a potential low-loss, low-cost antenna topology
which allows for high integration with differential front-end
electronics. Differential low-noise amplifiers (dLNAs) have
therefore become increasingly popular amongst the microwave
community during the last years [3]–[5]. However, the absence
of baluns removes the suppression of CM signals in the
system, and therefore an accurate analysis and design of these
active antennas require proper handling of both common and
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differential modes of the antenna. Furthermore, an understand-
ing of how these modes propagate through the entire receiver
system is crucial; for instance, it has been observed that CM
signals can have a detrimental effect on the DM antenna
performance when these undesired CM signals are excited at
certain frequencies [6]–[9].

In this paper, we propose a novel dual-mode antenna design
intrinsically supporting both the DM and CM signals, thereby
creating an additional beamformer degree-of-freedom for im-
proving the antenna impedance and radiation characteristics.
The dual-mode antenna is based on a dipole combined with
a parasitic monopole antenna to effectively exploit – rather
than reject – the CM response. It should be noted that
the associated common and differential mode patterns are
dissimilar to the difference and sum patterns in monopulse
radar tracking systems, where one typically employs a pair of
identical antennas [10]. In wireless communication systems,
the combination of a dipole and monopole into a single
antenna element provides antenna diversity that can improve
the reliability of the system in rich isotropic multipath (RIMP)
environments [11], [12]. Furthermore, by combining the CM
and DM patterns with arbitrary complex-valued weights, the
beam may potentially be steered electronically over the entire
hemisphere [13]. This extended scan range is of significant
importance for the next generation radio telescopes requiring
full sky surveys through the use of wide-scan phased array
antenna systems [14], [15]. It is worth mentioning that S. Hay
has shown that the aperture efficiency of the Australian
Checkerboard phased array feed increased by 10–20 percent
when all the outputs of pairs of SE LNAs making up the
differential LNAs were beamformed individually, even though
the antenna elements in that system were aimed to suppress
CM signals [16].

Low-noise design for dense antenna arrays is in general a
complex procedure due to the presence of mutual coupling
between array elements [17]. Moreover, the introduction of
an antenna element utilizing both common and differential
modes adds extra complexity, as its design would require the
knowledge of a full noise model, including all four noise
parameters for both DM and CM cases, a full S-parameter
description for both modes, as well as both DM and CM active
impedances over a range of frequencies and scan angles.

While Mixed-Mode (MM) S-parameter theory is well es-
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tablished [18], the work on the MM noise performance of
differential active antennas has been limited to the reporting
of the presence of CM associated noise effects [6], [7]. This
paper therefore presents a theoretical framework that can be
used for the analysis and experimental characterization of
receiving sensitivity of active antenna elements utilizing both
CM and DM excitation. The framework includes a novel MM
formulation of the standard noise parameters and extends the
equivalent system representation of SE active array antennas,
as proposed by [19], to the MM case.

The developed model has been validated numerically and
through measurements, both by using a SE modeling approach.
Note that the practical noise characterization of dLNAs,
nonetheless, remains a challenging task because: (i) standard
measurement techniques apply to two-port devices only, and;
(ii) new methods for modeling and experimental characteri-
zation of the multi-port noise behavior reported thus far are
limited to SE antenna-amplifier combinations with uncorre-
lated noises sources [3]–[5], [20]–[23].

The MM model introduced in this paper is applied to the
newly proposed dual-mode antenna, showing that the receiving
sensitivity increases significantly over the Field-of-View (FoV)
relative to the purely differentially excited case.

II. MIXED-MODE FORMULATIONS

A. Mixed-Mode Antenna Analysis

The operation of the proposed dual-mode antenna is illus-
trated in Fig. 1. The antenna consists of a dipole over ground
and a parasitic monopole antenna integrated with a balanced
transmission line feed. When excited differentially, no current
is present on the monopole, creating a pure dipole-over-ground
radiation pattern. In the case of a CM excitation, the dipole
arms are excited in-phase and the monopole out-of-phase with
respect to the dipole arms, realizing a near pure monopole
radiation pattern.

(a) (b)

Fig. 1. Operation principle of the considered dual-mode antenna: (a)
differential mode (dipole) radiation; (b) common mode (monopole)
radiation.

When excited by two SE wave sources, two Embedded
Element Patterns (EEPs) f1 (θ, φ) and f2 (θ, φ) result, and a
SE two-port description is obtained in the form of the S-matrix
Sant

SE . Due to linearity, the DM and CM patterns and S-matrix
are obtained by superposition of the SE excitations, to yield
f d (θ, φ), f c (θ, φ), and Sant

MM as:

f d (θ, φ) =
1√
2

[f1 (θ, φ)− f2 (θ, φ)] (1a)

f c (θ, φ) =
1√
2

[f1 (θ, φ) + f2 (θ, φ)] , (1b)

and

Sant
MM =

[
Sant

dd Sant
dc

Sant
cd Sant

cc

]
, (2)

where from [18]

Sant
dd = (Sant

11 − Sant
12 − Sant

21 + Sant
22 )/2 (3a)

Sant
dc = (Sant

11 + Sant
12 − Sant

21 − Sant
22 )/2 (3b)

Sant
cd = (Sant

11 − Sant
12 + Sant

21 − Sant
22 )/2 (3c)

Sant
cc = (Sant

11 + Sant
12 + Sant

21 + Sant
22 )/2. (3d)

Using the complex-valued beamforming weights wd (θ, φ) and
wc (θ, φ) for the DM and CM EEPs, the receiving sensitivity
can be optimized over the FoV as explained in Sec. III. While
the mechanism of combining weighted antenna patterns to
achieve a new pattern follows that of standard arrays, the
approach presented here differs in the fact that the array
elements are collocated and the EEPs which are combined
are not the same. This allows the MM receiver to exploit
the different DM and CM element patterns to achieve an
improved FoV coverage.

B. Mixed-Mode Circuit Analysis

The active antenna system comprises a balanced Differential
Low-Noise Amplifier (dLNA), whose mathematical model in-
volves the formulation of the MM S-parameters and an equiv-
alent set of MM noise parameters. The combined antenna-
amplifier model, in turn, enables the receiving sensitivity to
be modeled as explained in Sec. III.

The theory presented in [18] is used to derive the MM S-
parameters of the balanced dLNA. Fig. 2 shows two SE Low-
Noise Amplifiers (LNAs) with the corresponding SE incident
and reflected power waves, and an equivalent LNA with MM
incident and reflected waves.

The MM S-parameters can be derived from the SE ones
using the transformation

SdLNA
MM = MdLNA

S SdLNA
SE

(
MdLNA

S

)−1

, (4)

where the transformation matrix MdLNA
S is defined as

MdLNA
S =

1√
2


1 0 −1 0
0 1 0 −1
1 0 1 0
0 1 0 1

 . (5)
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Fig. 2. Incident and reflected power waves at the SE and MM input and
output ports of the corresponding LNAs.

It is useful to block-partition the MM scattering matrix as

SdLNA
MM =

[
SdLNA

dd SdLNA
dc

SdLNA
cd SdLNA

cc

]
(6)

where SdLNA
dd , SdLNA

cc , and {SdLNA
cd ,SdLNA

dc }, denote the 2×2 DM,
CM, and cross-mode S-parameter matrices of the dLNA, re-
spectively. For the balanced system considered in this analysis,
the two SE LNAs are assumed to be identical and perfectly
isolated, i.e. SLNA1 = SLNA2 = SLNA, so that the four-port SE
scattering matrix takes the form

SdLNA
SE =


SLNA

11 SLNA
12 0 0

SLNA
21 SLNA

22 0 0
0 0 SLNA

11 SLNA
12

0 0 SLNA
21 SLNA

22

 , (7)

which, after the application of (4), renders the cross-terms
SdLNA

cd = SdLNA
dc = 0 in (6).

In addition to the MM S-parameters, a corresponding set
of MM equivalent noise parameters of the dLNA is required.
The derivation of such a set of noise parameters is presented
in the Appendix, and summarized in (8) for the case of two
identical and isolated LNAs of which the noise contributions
are uncorrelated. In (8), Rn, Fmin, and Yopt are the standard
SE noise parameters.

DM Noise Parameters CM Noise Parameters
F d

min = Fmin F c
min = Fmin

Rd
n = 2Rn Rc

n = Rn/2
Y d

opt = Yopt/2 Y c
opt = 2Yopt

(8)

In general the LNAs in active antenna systems are fed by
coupled transmission lines. The DM and CM characteristic
impedances of a pair of coupled transmission lines can,
respectively, be related to the odd mode (Zo

0 ) and even mode
(Ze

0) characteristic impedances of each line, i.e., [18]

Zd
0 = 2Zo

0, and Zc
0 = Ze

0/2 (9)

from which the equivalent SE characteristic impedance is
calculated as [24]

Z0 =
√
Zo

0Z
e
0 (10)

where Z0 is the real-valued SE characteristic impedance. As-
suming uncoupled transmission lines results in Zo

0 = Ze
0 = Z0.

Together with (8), and for identical SE LNAs, each with
optimum source reflection coefficient Γopt, this results in

Γd
opt = Γc

opt = Γopt. (11)

III. RECEIVING SENSITIVITY MODELING

Modeling the receiving sensitivity requires a detailed de-
scription of the receiver noise. In [17] it is shown that higher
sensitivity is achieved when the receivers are noise matched to
the active reflection coefficient of a beamforming array rather
than the passive reflection coefficient of the array antennas.
This section applies a similar analysis to the dual-mode
active antenna to solve both the SE and MM active reflection
coefficients, effectively noise-decoupling the two channels (or
modes). The noise analysis presented in [19] is then applied
to the noise-decoupled receivers, of both the SE and MM rep-
resentations, in order to evaluate the respective receiver noise
temperatures. In the analysis to follow, [p, q] denotes either the
channels [1, 2] or the modes [d, c], and {S(p),S(q)} represent
the scattering parameters {SLNA1,SLNA2} or {SdLNA

dd ,SdLNA
cc }

for the SE and MM representations, respectively.

A. Receiver Noise

Fig. 3(a) shows the dual-mode active antenna connected
to two SE LNAs with complex beamforming weights w1

and w2 applied to the respective channels. The correlated
noise waves emanating from the input and output of each
LNA are denoted by [c(1)

1 , c(1)
2 ] and [c(2)

1 , c(2)
2 ], respectively. The

equivalent MM representation of the active dual-mode antenna
is shown in Fig. 3(b) with the respective DM and CM complex
beamforming weights wd and wc applied to each mode. In
the MM representation each antenna represents one of the two
modes and their coupling is defined by the cross-mode antenna
scattering parameters. The equivalent DM and CM correlated
input and output noise waves are denoted by [c(d)

1 , c(d)
2 ] and

[c(c)
1 , c

(c)
2 ], respectively.

+

c
(2)
2

c
(2)
1

ctot = c
(1)
tot + c

(2)
tot

c
(1)
1

c
(1)
2

w2

SLNA2SLNA1

w1

+

wc

c
(d)
1

c
(d)
2

c
(c)
1

c
(c)
2

ctot = c
(d)
tot + c

(c)
tot

SccSdd

wd

(a) (b)
Fig. 3. Propagation paths of the (a) single-ended noise waves and (b) mixed-
mode noise waves in the coupled dual-mode active antenna.

The active reflection coefficients of the individual chan-
nels/modes are solved by expressing the noise wave at the
output of the ideal power combiner – due to the respective
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channel/mode – as the superposition of three noise wave
contributions, i.e.,

c
(p)
tot = Direct Part + Reflected Part + Coupled Part (12)

= wpc
(p)
2 + wpc

(p)
1 Sant

ppS
(p)
21 + wqc

(p)
1 Sant

qpS
(q)
21 ,

For identical LNAs, with gains SLNA
21 , the expression in (12)

reduces to

c
(p)
tot = wp

[
c
(p)
2 + c

(p)
1 SLNA

21

(
Sant
pp +

wq
wp
Sant
qp

)]
= wp

[
c
(p)
2 + c

(p)
1 SLNA

21 Γ
(p)
act

]
, (13)

from which it follows that for a reciprocal antenna, the active
reflection coefficient of channel p equates to Γ

(p)
act = Sant

pp +
wq

wp
Sant
pq . Similarly, the active reflection coefficient of channel

q can be shown to equal Γ
(q)
act = Sant

qq +
wp

wq
Sant
qp . Using these

active reflection coefficients the antenna can be represented as
two noise-decoupled channels/modes, as illustrated in Fig 4.

+

S(p)

wp

Γ
(p)
act

Γ
(q)
act T

(q)
LNA

T
(p)
LNA

G
(q)
av

G
(p)
av

TLNA
out

Z0

S(q)

wq

Fig. 4. Equivalent noise-decoupled representation of the dual-mode active
antenna.

Fig. 4 can be used to calculate the equivalent input referred
noise contributed by the receiver for both the SE and MM
representations. The total noise contribution due to the LNAs
is given by the weighted sum of the uncorrelated noise
contributions

T LNA
out = G(p)

av T
(p)
LNA +G(q)

av T
(q)
LNA, (14)

where the noise temperature T (ν)
LNA is referred to the input of

channel/mode ν = p, q and is weighted by the respective
available gain G(ν)

av – defined from the output of the antenna
to the output of the ideal power combiner, i.e.,

G(ν)
av =

1

2
|S(ν)

21 |2|wν |2
(

1− |Γ(ν)
act |2

)
, for ν = p, q. (15)

The input referred noise temperature of each channel (or
mode) is obtained using the well-known formula for noisy
two-ports:

T
(ν)
LNA = Tmin +

4R
(ν)
n T0

Z
(ν)
0

 |Γ(ν)
act − Γopt|2

|1 + Γopt|2
(

1− |Γ(ν)
act |2

)
 (16)

for ν = p, q, where R(ν)
n , Tmin, Γopt are the noise parameters of

the LNA, T0 is the standard temperature (290 K) and Z(ν)
0 the

real-valued characteristic impedance for the specific channel
or mode.

Dividing (14) by the equivalent available gain of the LNAs
yields the equivalent input referred noise of the receiver, i.e.,

Teq = T LNA
out /Geq

av, (17)

where

Geq
av =

1

2

[
|wp|2|S(p)

21 |2
(

1− |Γ(p)
act|2

)
+ |wq|2|S(q)

21 |2
(

1− |Γ(q)
act|2

)]
. (18)

Furthermore, for equal SE LNA gains, (17) reduces to

Teq =
|wp|2

(
1− |Γ(p)

act |2
)
T

(p)
LNA + |wq|2

(
1− |Γ(q)

act |2
)
T

(q)
LNA

|wp|2
(

1− |Γ(p)
act |2

)
+ |wq|2

(
1− |Γ(q)

act |2
) .

(19)

B. Receiving Sensitivity

The receiving sensitivity of the active antenna is defined
as the ratio of the effective antenna area to the total sys-
tem noise temperature, i.e., Aeff/Tsys, where the well-known
reciprocity relation Aeff = (4π)−1λ2G relates the effective
area to the antenna gain G(Ω), defined as the ratio of the
radiated power per solid angle, P (Ω), to the accepted input
power of the antenna, Pin. Here, P (Ω) can be expressed
in terms of the weighted EEPs for wave excitations, i.e.,
P (Ω) = (2η)−1|wpfp(Ω) + wqf q(Ω)|2, with η denoting the
free-space impedance. The effective area is therefore expressed
as

Aeff =
λ2

2η

|wpfp(Ω) + wqf q(Ω)|2

Pin
, (20)

where λ denotes the wavelength, and Pin = wH(I − SHS)w
is the total accepted input power, with I the 2 × 2 identity
matrix, and where {w,S} either denotes {[w1, w2]T ,Sant

SE}
or {[wd, wc]

T ,Sant
MM} for the SE and MM representations,

respectively.
Generally, Tsys consists of three main contributions: (i) the

spillover noise; (ii) the noise due to dissipation losses of the
antenna, and; (iii) the noise due to the LNAs which depend
on the noise properties of the LNAs and active reflection
coefficients at the antenna ports [19]. Since the focus of this
paper is on the MM receiver characterization of an active dual-
mode antenna, only the latter noise contribution is taken into
account, so that Tsys = Teq, where the equivalent input referred
noise of the receiver, Teq, is calculated using (19). Hence, the
final receiving sensitivity is given by

Aeff

Tsys
=

λ2

2ηTeq

|wpfp(Ω) + wqf q(Ω)|2

wH
(
I− SHS

)
w

. (21)

IV. DUAL-MODE ANTENNA DESIGN WITH LARGE
FIELD-OF-VIEW COVERAGE

In [13], a simple proof-of-concept dual-mode antenna, con-
sisting of a balanced microstrip transmission line feed and an
inverted-V dipole on the top layer of a Rogers Duroid RO4003
substrate, and a monopole which extends out from a ground
plane on the bottom layer, was demonstrated theoretically and
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verified experimentally. Whilst demonstrating the viability of
a dual-mode structure, this antenna exhibited limited band-
width and significant sensitivity variation over the FoV. The
present paper proposes an improved dual-mode antenna design
exhibiting a smaller gain variation and receiving sensitivity
variation over the FoV.

A. Dual-Mode Antenna Design

Fig. 5. Cylindrical dual-mode antenna design with cut planes at the bottom,
middle (semi-rigid coaxial to air-core twinaxial transition) and top of the
antenna feed.

TABLE I
CYLINDRICAL DUAL-MODE ANTENNA DESIGN PARAMETERS.

Parameter Value [mm] Description
L1 141 Dipole length
L2 75 Dipole height
L3 70 Feed/Monopole height
L4 5 Dipole-Monopole separation
L5 35 Height of twinaxial transition
W1 3 Coaxial dielectric diameter
W2 0.91 Coaxial conductor diameter
W3 10 Feed ground shield outer diameter
W4 5 Dipole/Feed line separation
W5 13.66 Monopole sleeve inner diameter
W6 15 Monopole sleeve outer diameter
W7 2 Twinaxial inner conductor diameter
W8 1.15 Dipole arm diameter
W9 8 Twinaxial ground shield inner diameter
d1 1 Monopole Teflon support
d2 2 Twinaxial conductor Teflon support
d3 5 Twinaxial conductor Teflon support
d4 1 Monopole-Feed ground cap thickness
g1 2 Monopole-Ground plane gap height

The improved dual-mode antenna is realized by combining
a cylindrical dipole and monopole element with a single
twinaxial feed, as depicted in Fig. 5. The cylindrical dual-
mode antenna is realized by a single balanced transmission
line feeding a dipole element – where each of the two center
conductors is connected to one of the dipole arms. Rather
than extending the monopole from the ground conductor of
the transmission line, as is done in the planar design [13], the
monopole is realized by folding the ground conductor back
towards the ground plane – leaving a small gap between the
monopole and the ground shield of the feed as well as the
ground plane (g1). To keep the monopole sleeve in place,
a small Teflon spacer is placed at the foot of the antenna.
The antenna is excited through two 3 mm semi-rigid coaxial

cables extending midway into the antenna feed, from which
point the center conductors of the semi-rigid coaxial cables
extend further to form an air-core twinaxial transmission line.
To ensure the stability of the center conductors of the twinaxial
transmission line, another Teflon spacer is placed at the top of
the monopole sleeve. Table I summarizes the antenna design
parameters illustrated in Fig. 5.

(a) (b)

(c) (d)

Fig. 6. Simulated electric field distributions (a) DM antenna near field (b)
CM antenna near field (c) DM port excitation (d) CM port excitation.

Fig. 6 illustrates the MM operation of the antenna topology,
shown in Fig. 5, simulated over an infinite ground plane using
CST. The DM field distribution in the balanced transmission
line feed [c.f. Fig. 6(c)] is seen to excite the dipole arms out
of phase, realizing a typical dipole radiated electric near field
[c.f. Fig. 6(a)]. A CM excitation realizes the field distribution
of the feed as depicted in Fig. 6(d) and is shown to excite
the dipole arms in-phase, but out-of-phase with respect to the
monopole sleeve, resulting in a monopole-like radiated electric
near field [c.f. Fig. 6(b)].
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Fig. 7. Differential and common mode E-plane and H-plane gain simulated
at 1 GHz.

Fig. 7 shows the normalized E- and H-plane MM gain
patterns resulting from the DM and CM excitations depicted
in Fig. 6. The curves in Fig. 7 clearly illustrate that a typical
dipole-over-ground radiation pattern is realized by a DM
excitation, and that a CM excitation results in a monopole-
over-ground radiation pattern.
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B. Experimental Verification

In order to measure the performance of the antenna, the
design illustrated in Fig. 5 is placed in the center of a circular
ground plane with a diameter of 500 mm, and excited through
two 3 mm semi-rigid coaxial cables shown in Fig. 8.

Fig. 8. Dual-mode antenna on finite circular ground plane with 3 mm semi-
rigid coaxial feeds.

Using (3a) and (3d), the DM and CM input reflection
coefficients can be solved from the measured SE S-parameters
of the antenna, respectively. The graph in Fig. 9 compares the
measured MM input reflection coefficients to the simulated
results obtained using MM excitations in CST. Fig. 9 shows
that the measurements agree very well with the simulated
response, with both differential and common modes matched
at the center frequency of 1 GHz. Also shown in Fig. 9 is
the measured isolation between the DM and CM excitations
calculated using (3b). It is seen that an isolation below -30 dB
is achieved.

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
−45
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−35
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Fig. 9. Measured and simulated differential and common mode input
reflection coefficients and isolation.

Similar to the MM reflection coefficients, the DM and CM
radiation patterns are obtained by measuring the SE radiation
patterns of the antenna and applying (1a) and (1b), respec-
tively [13]. The co-polar MM radiation patterns measured and
simulated, at 1 GHz, in both principal planes are compared in
Fig. 10.

The measured differential and common mode radiation
patterns are seen to be in good agreement with the simulated
response [c.f. Fig. 10] in both principal planes. It should be
noted that the differences in the common mode pattern of the
measured antenna, shown in Fig. 10, and the radiation patterns
depicted in Fig. 7 can be attributed to the finite ground plane
used for the physical antenna. Regardless of these differences,
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Fig. 10. Measured and simulated co-polar differential and common mode
radiation patterns (a) E-plane and (b) H-plane.

the measurements still illustrate the dipole- and monopole-
like radiation characteristics of the antenna resulting from
differential and common mode excitations, respectively.

V. DUAL-MODE ACTIVE RECEIVER

A schematic representation of the MM active receiver
analyzed in this section is shown in Fig. 3(b), where the
active antenna element is realized using the cylindrical antenna
design in Fig. 5, placed on an infinite ground plane and
connected to two identical SE LNAs. For the purpose of
this investigation, an LNA model with typical noise-parameter
values for Fmin and Rn is chosen, while Γopt is selected to
provide a noise-match to the passive differential antenna input
impedance. In addition, idealized S-parameters are used, as
shown in Table II. The use of these ideal values does not
affect the conclusions of the analysis.

TABLE II
SINGLE-ENDED LNA NOISE AND S-PARAMETERS.

Noise Parameters S-Parameters
Tmin = 37 K S21 = 20
Rn = 3 Ω S12 = 0

Γopt = Sdd
ant S11 = S22 = 0

In order to analyze the MM sensitivity, the SE parameters
shown in table II are transformed into the equivalent MM S-
and noise parameters using (4) and (8), respectively.
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Fig. 11. Weighted MM E- and H-plane gain optimized for each scan angle
compared to purely differential excitation.

A. Effective Area

By solving the MM beamforming weight vector w =
[wd, wc]

T for maximum sensitivity at each scan angle [25],
the performance of a MM receiving element – allowing for
both DM and CM propagation – can be compared to that
of a conventional purely differential receiver. Fig. 11 com-
pares the MM antenna gain, with the respective MM weights
optimized for maximum sensitivity using the DM and CM
EEPs predicted by CST, to the antenna gain realized for a
purely differential excitation, in both the E- and H-planes. The
curves show the antenna gain at 1 GHz, and clearly indicate
the improved FoV realized by allowing CM propagation. With
the weighted MM antenna gain deviating by less than 3 dB
in the E-plane and by only 4 dB in the H-plane, this antenna
effectively realizes near hemispherical FoV coverage.

B. Equivalent Noise Temperature

Since this increase in effective area is maximized by apply-
ing complex-valued beamforming weights to each of the two
modes, the equivalent noise contribution of the MM receiver
should be computed using the active reflection coefficient
as discussed in Sec. III, rather than the passive reflection
coefficient considered in the purely differential receiver. Using
Sant

MM as calculated by CST, the noise contributed to the receiver
noise temperature due to the weighted differential and common
mode is shown for both the E- and the H-planes in Fig. 12.

Fig. 12 indicates that equivalent noise contributed by the
purely differential receiver remains constant at the minimum
noise temperature of the SE LNA listed in Table II. This
is to be expected given that the optimum source reflection
coefficient of the LNA equals the passive differential reflection
coefficient of the antenna.

For the MM noise contribution, first consider the E-plane
noise contribution in Fig. 12. The weighted MM antenna gain
in Fig. 11 (E-plane) is seen to be almost equal to a purely
DM excitation for scan angles of 0◦ ≤ θscan ≤ 20◦ from
zenith. For these scan angles the DM weights are found to be
significantly more dominant than the CM weights, resulting in

Fig. 12. Purely differential and MM equivalent input noise temperature in
both the E- and H-planes.

an active differential reflection coefficient close to the passive
reflection coefficient of the antenna. Together with low CM
weight values, this results in the MM receiver being noise
matched in the E-plane at 0◦ ≤ θscan ≤ 20◦ from zenith.
For 20◦ ≤ θscan ≤ 50◦ from zenith, the MM antenna gain
is seen to be greater than that of the the purely DM receiver.
This increase in gain is due to the addition of CM propagation
realized through an increase in the complex CM weight values.
Since the LNAs are noise matched to the passive differential
impedance of the antenna, the CM noise mismatch results
in a larger CM noise contribution. Considering Fig. 12 at
20◦ ≤ θscan ≤ 50◦ from zenith, this CM noise is seen to
increase the MM equivalent input noise proportionally to the
CM weight values applied at these scan angles. The E-plane
gain in Fig. 11 shows that the MM antenna gain is dominated
by a CM excitation at scan angles 50◦ ≤ θscan ≤ 90◦ from
zenith, realizing CM weights that are substantially larger than
the DM weights, and in turn resulting in CM noise dominating
the MM equivalent input noise. This behavior is noted in
the increase of the equivalent noise temperature of the MM
receiver in Fig. 12.

Next, consider the H-plane antenna gain patterns and equiv-
alent receiver noise contribution shown in Figs. 11 and 12,
respectively. Fig. 11 shows that the weighted MM gain equals
the gain of the purely differentially excited antenna for scan
angles 0◦ ≤ θscan ≤ 60◦ from zenith. The CM weights at
these scan angles are therefore nearly negligible compared to
the DM weights, and hence the equivalent noise contribution
of the weighted MM receiver equals that of the DM receiver
as shown in Fig. 12. For scan angles 60◦ ≤ θscan ≤ 90◦ from
zenith, the H-plane MM antenna gain is realized primarily
due to a CM excitation, resulting in dominating CM weights.
Analogous to the E-plane, the increase in CM weights at these
larger scan angles are seen to result in CM noise dominating
the MM equivalent noise contribution in Fig. 12.

C. Receiving Sensitivity

As indicated in (21), the receiving sensitivity is approxi-
mated by only accounting for the noise contributed by the
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LNA. The normalized sensitivity, in both the E- and H-
planes, of the MM receiver is compared to the sensitivity
of a conventional differential receiver in Figs. 13(a) and (b),
respectively.

(a)

(b)

Fig. 13. Purely differential and dual-mode sensitivity (a) E-plane and (b)
H-plane.

Fig. 13 indicates that, regardless of the increase in the
equivalent noise temperature attributed to the CM present
in the MM receiver, the utilization of CM propagation can
result in an increase in the sensitivity over the entire FoV
coverage when compared to the conventional receivers where
CM is completely rejected – realizing a variation in sensitivity
of less than 50% in the E- and 60% in the H-plane. A
comparison between the variation in sensitivity in Fig. 13 and
the gain variation depicted in Fig. 11 shows that the variation
in sensitivity corresponds to the gain variation in both planes.

As a final validation of the MM receiver model presented
in this paper, Fig. 13 shows that the MM sensitivity analysis
produces the same result obtained when analyzing the antenna
and receiver using the equivalent SE S-matrix Sant

SE and EEPs
f1 (θ, φ) and f2 (θ, φ) with the corresponding SE complex
beamforming vector w = [w1, w2]T solved for maximum
sensitivity at each scan angle.

VI. CONCLUSIONS AND RECOMMENDATIONS

With the theoretical framework presented in this paper,
single-polarized active receiving antennas can be modeled

using a mixed differential and common mode analysis. The
proposed mixed-mode model has been used to investigate
the sensitivity of a novel active dual-mode receiving antenna
utilizing, rather than rejecting, CM propagation. It was shown
that, regardless of the additional noise contributed by the
presence of a CM channel, the active dual-mode antenna
exhibits only a 3 dB sensitivity loss at 60◦ E-plane scan, as
compared to a 10 dB loss for a conventional active receiver
rejecting CM propagation.

Previous works [26], [27] have shown that similar an-
tenna structures, referred to as tripole antennas, were found
to have good polarimetric beam properties and polarization
discrimination capabilities over the field of view when used
as a receiving antenna, which is of particular importance in
radio astronomy applications [28]. Hence, the polarimetric
analysis of a dual-polarized mixed differential and common
mode active receiving antenna will be considered in future, as
well as an array thereof operating over an increased frequency
bandwidth.

APPENDIX

In addition to the MM S-parameters, we derive a cor-
responding set of MM equivalent noise parameters of the
dLNA. Toward this end, the equivalent MM noise parameters
of the balanced dLNA are expressed in terms of the SE noise
parameters of the constituent SE LNAs shown in Fig. 2 (left).
Note that the derivation presented here assumes that the SE
LNAs are identical, isolated, and with their noise contributions
uncorrelated.
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(a) (b)
Fig. 14. Equivalent noise sources and corresponding noiseless network for two
isolated LNAs in (a) chain representation, and; (b) admittance representation.

Each SE LNA can be represented by a noiseless ABCD-
matrix with a noise voltage and current source applied to the
input of the noiseless two-port, as shown in Fig. 14(a). This
representation is referred to as the chain representation [29].
A physically significant representation of these noise sources
is given by their self and cross-power spectral densities, which
when arranged in matrix form constitutes the so-called noise
correlation matrix, henceforth referred to as the correlation
matrix. One of the fundamental advantages of the chain
representation of the correlation matrix is the direct relation
of its elements to the noise parameters of the two-port device,
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i.e.,

CA1 =
1

2

[
〈en1, e

∗
n1〉 〈en1, i

∗
n1〉

〈in1, e
∗
n1〉 〈in1, i

∗
n1〉

]
=

[
CA;11 CA;12
CA;21 CA;22

]

= 2kBT0

 Rn
Fmin − 1

2
−RnY

*
opt

Fmin − 1

2
−RnYopt Rn|Yopt|2

 ,
(22)

where {〈en1, e
∗
n1〉, 〈in1, i

∗
n1〉} and {〈en1, i

∗
n1〉, 〈in1, e

∗
n1〉} denote

the auto- and cross-correlated spectral power densities, re-
spectively, of the noise sources en1 and in1, and where kB is
Boltzmann’s constant, T0 is the standard temperature (290 K),
Fmin is the minimum noise figure, Rn is the noise resistance,
and Yopt is the optimal source admittance [29].

To derive the MM noise parameters, the chain correlation
matrix is transformed to the equivalent admittance correlation
matrix CY1 using the transformation matrix TY introduced
in [29]. In the equivalent admittance representation, shown
in Fig. 14(b), the LNAs are represented by their noiseless
two-port admittance matrices with two noise current sources
applied to the input and output ports, respectively. The admit-
tance correlation matrix is given by

CY1 = TYCA1T
H
Y , (23)

where TY is expressed in terms of the SE admittance param-
eters, i.e.,

TY =

[
−YSE;11 1
−YSE;21 0

]
. (24)

Solving the admittance correlation matrix of the second LNA
in a similar manner, the total admittance correlation matrix of
the two uncorrelated LNAs can be formulated as

CdLNA
Y;SE =

[
CY1 0
0 CY2

]
, (25)

where 0 denotes a 2×2 zero-matrix. To obtain the MM admit-
tance correlation matrix, the transformation matrix MdLNA

I is
used, where MdLNA

I relates the DM and CM input and output
currents to the respective SE currents. That is,

IdLNA
MM = MdLNA

I IdLNA, (26)

where IdLNA
MM = [Id1, Ic1, Id2, Ic2]T , IdLNA = [I1, I2, I3, I4]T ,

and

MdLNA
I =


1
2 0 − 1

2 0
1 0 1 0
0 1

2 0 − 1
2

0 1 0 1

 . (27)

Hence, for identical LNAs, the MM admittance correlation
matrix is given by

CdLNA
Y;MM = MdLNA

I CdLNA
Y;SE

(
MdLNA

I

)H
=


〈id1, i

*
d1〉 0 〈id1, i

*
d2〉 0

0 〈ic1, i
*
c1〉 0 〈ic1, i

*
c2〉

〈id2, i
*
d1〉 0 〈id2, i

*
d2〉 0

0 〈ic2, i
*
c1〉 0 〈ic2, i

*
c2〉

 . (28)

The non-zero terms in (28) can be grouped into two equivalent
DM and CM two-port admittance correlation matrices that can
be related to the SE admittance correlation matrices, i.e.,

CY;DM =

[
〈id1, i

*
d1〉 〈id1, i

*
d2〉

〈id2, i
*
d1〉 〈id2, i

*
d2〉

]
=

1

2
CY1 (29a)

CY;CM =

[
〈ic1, i

*
c1〉 〈ic1, i

*
c2〉

〈ic2, i
*
c1〉 〈ic2, i

*
c2〉

]
= 2CY1. (29b)

Since the LNAs are isolated, the DM and CM admittance
matrices can be expressed in terms of the SE admittance matrix
YSE, where, similar to the correlation matrices, the DM and
CM admittance matrices, respectively, result in

YDM =
1

2
YSE, and YCM = 2YSE. (30)

The DM and CM admittance correlation matrices can now
be transformed to their equivalent chain representations, after
which the MM noise parameters can be solved through com-
parison with (22). From [29] it follows that the DM chain
correlation matrix is given by the transformation

CA;DM = TA;DMCY;DM (TA;DM)
H (31)

where the transformation matrix TA;DM is expressed in terms
of the DM ABCD-parameters:

TA;DM =

[
0 BDM
1 DDM

]
(32)

where, on account of (30), BDM = −1/YDM;21 = −2/YSE;21,
and DDM = −YDM;11/YDM;21 = −YSE;11/YSE;21. Substitut-
ing (23) in (29a), and then in (31), enables us to relate the
elements of the DM chain correlation matrix CA;DM to the
corresponding SE ones. That is, for CA1 = CA2 = CA,

CA;DM = 2kBT0

 Rd
n

F d
min − 1

2
−Rd

n

(
Y d

opt

)∗
F d

min − 1

2
−Rd

nY
d

opt Rd
n|Y d

opt|2


=

[
2CA;11 CA;12

CA;21
1
2CA;22

]
(33)

Finally, by using (33), the DM noise parameters, and similarly
the CM ones, can be expressed in terms of the standard two-
port SE noise parameters {Fmin, Rn, Yopt}, yielding the rather
intuitive result:

F d
min = Fmin

Rd
n = 2Rn

Y d
opt =

1

2
Yopt

F c
min = Fmin

Rc
n =

1

2
Rn

Y c
opt = 2Yopt.

(34)
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