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Abstract 
 
 
In recent years, Unmanned Aerial Vehicles (UAVs) have been entering new application areas. 
The objective of this thesis is to implement autonomous target tracking for a quadrotor UAV 
through the use of vision-based technology. The purpose is to implement a third-person view 
experience, where the UAV hoovers behind and follows a targeted user, while sending a live 
video feed to a pair of virtual reality glasses, called Oculus Rift, worn by this user. Using vision-
based tracking, one can minimise the overall equipment mounted on UAVs by utilizing the 
cameras that are already critical for the application area. Target tracking is achieved through the 
use of an image processing algorithm using Hough Circle Detection. A comprehensive analysis 
of this algorithm, also utilizing two different colour space filtering algorithms, is presented. 
Hardware choices made in building the quadcopter are also presented, supported by vibration test 
data showing the flight stability of it. 
 
This thesis proposes a candidate model for using autonomous UAVs, with image processing as 
main navigational tool, in a third-person view application. Due to noise in the transmission of 
video sent from the UAV to the ground station that transforms image data to maneuvering 
commands, target user recognition have not reached the preferred level of accuracy, which have 
negatively affected the general performance of the application. This issue is presented and 
discussed. 
Image processing is concluded to be a valid alternative as a way of implementing autonomous 
control of UAVs. Successful video transmission from the UAV to the Oculus Rift is 
demonstrated, as well as semi-successful autonomous control of the UAV. 
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Sammandrag 
 

Under de senaste åren har obemannade luftfarkoster börjat tillämpas inom nya tekniska områden. 
Syftet med denna rapport är att presentera autonom målföljning för en obemannad farkost, med 
hjälp av bildanalysering. Målet är att implementera en tredjepersonsvy, där en quadcopter håller 
sig bakom och följer efter ett mål (användaren), samtidigt som den strömmar video till en Oculus 
Rift, ett par glasögon framtagna för användning inom virtuell verklighet. Med hjälp av 
bildanalysering kan man minimera den totala utrustningen på quadcoptern genom att utnyttja de 
kameror som redan är kritiska för applikationsområdet. Målsökningen uppnås genom en 
bildanalyseringsalgoritm vid namn Hough Circle Detection. En omfattande analys av denna, 
samt två olika färgfiltreringsalgoritmer, presenteras. Även val av den hårdvara som behövs i 
ihopsättningen av en quadcopter presenteras och stöds med data från vibrationstester som visar 
flygstabiliteten. 
 
Denna rapport föreslår en modell för att autonomt styra luftfarkoster med bildbehandling som 
huvudsakligt navigeringsverktyg, i en tredjepersonsvy-applikation. På grund av bildstörningar 
vid videoöverföringen från quadcoptern till markstationen som översätter bilddata till 
styrkommandon, har måligenkänningen inte nått en tillräcklig precision. Detta har negativt 
påverkat systemets prestanda. Detta problem presenteras och diskuteras i rapporten. Bildanalys 
som ett sätt att implementera autonom flygning utvärderas och en positiv slutsats dras. Lyckad 
bildöverföring från quadcopter till Oculus Rift presenteras, tillsammans med delvis lyckade 
försök till autonom styrning av quadcoptern. 
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Vocabulary 
  

APM Ardupilot Mega, an inertial measurement unit autopilot based on 
the Arduino Mega platform. 

ESC Electronic speed controller, an electronic circuit used to vary the 
speed of a brushless electric motor. 

FOV Field of view. 

Frame grabber USB device for converting analog video to digital video to be 
used with a computer 

HSV Colour model, stands for Hue, Saturation and Value. Value is a 
separate light channel 

IMU Inertial measurement unit, an electronic device used to measure 
movement data from the vehicle. 

Oculus Rift A pair of head-mounted glasses with displays used to give the 
user a virtual reality. 

PAL Phase Alternating Line, a colour encoding system for analog 
video 

RGB Colour space containing Red, Green, and Blue. 

Third-person view A bird’s-eye view of the person as viewed from behind the 
head. 

YCrCb Family of colour spaces. Containing a luma component as well 
as blue-difference and red-difference chroma components. 
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1 Introduction 
 
1.1 Background 
 
During the past few years, the use of Unmanned Aerial Vehicles (UAVs) has grown rapidly 
within various research areas as well as civilian and military applications. There are a few 
different types of UAVs, all with different flight dynamics. One of these is the quadcopter, which 
is propelled by four rotors, and manoeuvres by altering the rotation of the four rotors in various 
ways. With its unique design and small size it is very agile and has the ability to loiter and 
perform complex aerial manoeuvres. Omnidirectional flight capability also extends its flight 
dynamics and movability. Because of its manoeuvrability, quadcopters are planned to be used in 
civilian applications such as firefighting (Hatchet, 2014) and rescue operations (Solon, 2013). 
 
In most applications that provide autonomous control of UAVs, non-visual sensors such as gyros, 
accelerometers, inertial measurement units (IMU) and global positioning systems (GPS) are 
utilised in order to position the vehicle properly (Azrad, 2010, p.255). This can limit the amount 
of application-critical equipment that can be mounted to the quadcopter, due to the fact that it 
needs four motors to operate and therefore consumes more power than traditional UAVs. In order 
to get around this problem, researchers are analysing the viability of image data as main 
positioning tool. Using a vision-based technique comes with a few advantages other than 
decreasing the overall size and weight of the quadcopter. One of these is the decoupling from 
other critical systems, such as GPS. As a result of this, vision-based UAVs can operate in 
environments that traditional UAVs can not. 
 
The work presented in this thesis addresses the problem of autonomous target tracking through 
the use of vision-based technology. 
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1.2 Purpose 
 
This thesis describes the planning, design, and implementation of a system in which a quadcopter 
autonomously follows and films its target at close range, with the intent of creating a third-person 
view experience. The quadcopter is to maintain a constant distance from its target, while adapting 
position and rotation in order to face the camera towards the target. 
 
Image processing will be used as the main navigation tool in the system. As this is not a widely 
used technique for navigating UAVs, this puts emphasis on the theoretical nature of this thesis. 
 
For clarity, the thesis is divided into two separate tracks: evaluating whether or not image 
processing is a good way of implementing autonomous control of airborne vehicles; and 
assessing the quality of the immersive experience achieved by the third-person view. 
 
1.3 Delimitations 
 
Since the development of a quadcopter is not among the purposes of this project, commercial 
products will be used in assembling it. This goes for both mechanical parts, such as the frame and 
the motors, and for the software used to interpret radio signals into electromagnetic pulses. 
 
Due to time limitations, the quadcopter will not be fully aware of its surrounding in the sense that 
it can steer away from all objects in its path. As an implication of this, testing will only be done 
in open spaces where the problem does not arise. The project does not focus on developing image 
analysis software, but merely utilises available technologies in order to meet the objective. 
 
1.4 Prospective applications 
 
The results of this thesis could be seen as a candidate model for autonomous control in 
applications in which a camera is mounted to a quadcopter. Utilizing the equipment already 
mounted to it, one can minimise its weight and power consumption. This can be useful in various 
situations where the need of a bird’s-eye view is required, including riots, firefighting and on 
various applications within the army. Not having to control the quadcopter by hand gives the user 
freedom to meanwhile do other things. 
 
Another prospective application is within the field of entertainment, perhaps gaming in 
particular. Games with a digital third-person view are common, and this thesis will bring a 
correct, physical third-person view into the equation. 
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1.5 Method 
 
Due to the small size of the project team and the fast paced development that was required, agile 
methods has been used throughout the project. A lightweight version of Scrum1 has essentially 
meant fast prototyping through the use of existing frameworks, volatile and regulated 
requirements, and adaptable groups and roles within the team. During weekly team meetings, the 
previous week’s priorities has been reviewed and adjusted. The workload and team roles for next 
week were set, and this iterative process carried on throughout the project, making regular 
adaption to changing circumstances and an unexpected level of progress easy. 
 
Throughout the project, an approach with iterations of researching, implementing, and finally 
testing has been used. This has been effective in both assessing what solutions are viable, as well 
as evaluating the solutions that were implemented. This approach has been effective throughout 
the project, since it has made research faster and the results of it easier to comprehend. 
 
Software has mainly been developed in groups of two. Emphasis has been put on the importance 
of co-operative development, and the weekly meetings has brought up any major issues that team 
members have. These issues has then been considered in the following week’s priorities, often 
meaning that one or several of the other team members assist in solving the problem at hand. 
Research that has been carried out is evaluated to determine if the researched technology is a 
viable part of the solution. 
  

                                                
1 For more information about scrum see (Scrum Alliance, n.d.) 
2 For more information about the example application the Oculus Distortion module is based on see (remote-eyes - 
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2 Hardware design choices 
 
This chapter will highlight some of the choices made in regards to what hardware to order and 
assemble. The issues and choices presented below represent the ones that are considered to have 
influenced the project the most. Some of these choices largely impact the details for a couple of 
the quadcopter components. As a result of this, design choices are presented and discussed in this 
chapter before Chapter 4, which will go into detail on the quadcopter components that were 
chosen for this project. 
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2.1 Quadcopter 
 
High customizability as well as precise control were two priorities when considering quadcopter 
solutions. This has meant that most of the research focused on comparing different open source 
software solutions and their supported hardware platforms rather than closed end-user products. 
 
This resulted in more time being spent assembling and configuring the quadcopter as well as 
grasping how the open source software should be used together with its hardware . 
 
The final quadcopter solution consists of the components listed in Table 1. 
 
Table 1. Quadcopter hardware parts 

IMU AutoPilot ArduPilot Mega (APM 2.6) 

Frame Flamewheel F450 

Landing Gear DJI F450 Flamewheel Landing Gear 

Motors 4x DJI 2212 Brushless 920 kV motor  

Speed Controllers 4x DJI 30A Opto ESC 

Height Sensor Maxbotix HRLV-EZ4 

Radio Set 3DR Radio Set 433 Mhz 

Remote controller and 
reciever 

WFly WFT07 2.4 GHz 7-kanaler, incl receiver 

Gimbal DJI Phantom Brushless Gimbal w/ Simple BGC 

Camera GoPro Hero 3 White 

Video Link AH-5.8 GHz 200 mW 

Battery Gravity 5500 mAh 3S 30-40 C LiPo 

Charger EV-Peak V6AC 50 W Multi charger 230 V/12 V 
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2.2 Choice of autopilot 
 
A quadcopter needs an autopilot to be able to keep stable as it is inherently instable (Niroumand, 
F-J., 2013). For this project, the IMU Autopilot APM (Ardupilot Mega) was used. The APM is 
based on an open-source platform called Arduino Mega and is capable of autonomous 
stabilisation, two-way communications with telemetry, and navigation. 
 
The APM consists of specialised hardware and well documented software. This, combined with 
the fact that the software is open source, motivated the choice of using it for the project. 
 
More about autopilots in chapter 4.1. 
 
2.3 Video resolution presented to the user 
 
In order to achieve an experience as realistic as possible, the user should not be able to 
distinguish pixels in the images displayed by the Oculus Rift. However, the system has two 
bottlenecks when it comes to resolution: the Oculus Rift and the hardware used for analog video 
transmission. 
 
The developer version of the Oculus Rift that has been used during the project has a relatively 
low resolution at 1280×800 which results in 640×800 pixels per eye (Oculus VR, 2012). The low 
resolution has been criticised from the launch of the developer kit (Orland K., 2013) and is said 
to be improved for the consumer release. In fact, the second version of the developer kit, which 
was released after this thesis project had started, increases the resolution to 1920×1080 giving 
each eye 960×1080 pixels (Oculus VR, 2014). With these developments in the Oculus Rift’s 
resolution, this should not pose as an issue had this project been continued on to develop a more 
thorough solution. 
 
Furthermore, the analog video transmitter that streams the video from the quadcopter to the 
ground station only supports a resolution of 640×480 pixels. The difference between analog and 
digital transmission from the GoPro can be seen in Figure 1. 
 
Analog transmission was chosen over digital transmission because research done early in the 
project favored this. This was partly because the GoPro camera that was decided to be used has a 
long latency for its built in WiFi video transmission (martcerv, 2010). Analog transmission was 
also recommended by multi-rotor expert Mr M Hjalmarsson, when interviewed on 29 Jan 2014. 
 
Thus, the limit for end-user resolution is set by the video link used to transmit the video from the 
quadcopter to the ground. 
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Other cameras aside from the GoPro Hero 3 could have been used. There exists so called FPV 
cameras made specifically for RC vehicles that most likely could fit the needs of the project. 
Meaning they are lightweight, small and can transmit their video well. One of the bigger reasons 
for choosing the GoPro was that a gimbal was to be used and many of these are made specifically 
for the GoPro. The GoPro  is an extreme sport camera made to withstand vibrations and deliver 
high quality images and it is also lightweight and small enough therefore the GoPro was 
considered a good choice of camera. 
 

 
Figure 1. Analog quality (left) and digital quality (right) from GoPro Hero 3 White 

 
2.4 Mobility and ease of use 
 
The ideal system would be easily transportable by the user. When ordering and assembling the 
hardware, focus has been put on documentation transparency and customisation more than 
mobility and durability. Therefore, the prototype is quite cumbersome and requires much 
knowledge of both the hardware and software before it can be used. 
 
This cumbersomeness is a by-product of choosing open source components rather than closed 
end-user commercial products, which are more geared towards, and designed for, mobility and 
durability. This downside is however conquered by the fact that the project team has been able to 
maintain and troubleshoot single components within the system when issues have arisen. 
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3 Software implementation 
 
Chapter 2 explains the hardware design choices that is believed to have influenced the outcome 
of the project the most. This chapter will explain and motivate the way the software was 
implemented. 
 
In the beginning of the project, a choice was made to focus on modularising the system’s 
software components as much as possible. 
 
These subchapters describes how the modules were derived from the domain, as well as briefly 
specifies the techniques used to achieve the modularity needed. 
 
3.1 Domain model 
 
The software is created in a module-based design and consists of four core modules, which 
together provides the functionality of the concept (see Figure 2).  
 
Below, each module will briefly be described as for purpose, and when appropriate, a short 
paragraph on the approach taken. 
 
Theory and important implementation details are presented Chapter 4 and Chapter 5. 
 
The whole domain relies on receiving a video stream which is utilised in two different ways. 
Firstly, it is output to screen, to be displayed on the Oculus Rift. Secondly, it is used as input to 
control the quadcopter. The video stream is read by the Cam-Share module from a camera, which 
distributes it to the Oculus Distortion and Image Processing modules. Oculus Distortion is an 
end-point for the video as it displays the stream on screen, whereas Image Processing is an 
intermediary step, and outputs a 3D position utilised by the Quadcopter Control module. 
 
For repositories and basic usage documentation of the software please refer to Appendix A. All 
the modules inside this core package have been implemented for this project, by the project 
group, except when stated otherwise. 
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Figure 2. Domain model 

 

3.1.1 Cam-Share 
 
The system requires two independent copies of the video stream from the camera. This is solved 
by writing the latest frame to a shared memory segment that other processes can access. This 
enables multiple processes to simultaneously access the video stream, thus enabling the 
possibility of running Oculus Distortion and Image Processing as two separate processes. 
 

3.1.2 Image Processing 
 
The image received from the Cam-Share module is copied and analysed. The output of the Image 
Processing module is the position data, consisting of a 3D vector and angles describing the 
relations between the camera and the user. 
 
The position data is obtained by equipping three preset objects on the target and track these. To 
be able to calculate a relative position from the camera to the user these objects are triangulated 
so that pixel dimensions can be compared to real world measurements. 
 

3.1.3 Oculus Distortion 
 
For the user to be able to see the image properly in the Oculus Rift, the video output from the 
Cam-Share module must be transformed into a format appropriate for the Oculus Rift. 
 
To achieve this, a modified example application2 from Oculus VR is forked.  

                                                
2 For more information about the example application the Oculus Distortion module is based on see (remote-eyes - 
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3.1.4 Quadcopter Control 
 
The Quadcopter Control module utilises input from other modules to determine commands to the 
quadcopter. These commands are sent to the quadcopter through a radiolink making the 
quadcopter follow its target. The Quadcopter Control module only handles data from image 
processing, but the module-based design of the system enables further development of this 
module to add additional modules that help to improve the regulation of the quadcopter. 
 
3.2 Software communication protocols 
 
It was apparent from the start of the project that the software developed would become quite 
complex over time. Each module in the design, which was described in the Domain Model 
chapter, would therefore need to specify its exact output. This resulted in a system where each 
module compiles its own binary, and all communication is handled by the operating system with 
input- and output streams through pipes3 when possible. When pipes are inadequate for a 
communication channel, Shared Memory4 is used. This architecture is inspired by the UNIX 
principle of doing one thing and only that (Gancarz, 2003).  
 
Having each module run as a standalone binary enabled the system to include modules written in 
different programming languages. This allows for implementing computationally heavy and 
performance critical applications in performant programming languages such as C++, and 
modules that are not performance critical in languages that are easy to prototype in, such as 
Python. 
 

                                                                                                                                                        
Videograbber to Oculus Rift for FPV - Google Project Hosting, n.d.) 
3 For more information about pipes see (pipe(7) - Linux manual page, 2005) 
4 For more information about shared memory see (shm_overview(7) - Linux manual page, 2010) 
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3.2.1 Pipes 
 
When possible, modules use the standard output from a program, called stdout, to communicate 
their output. Further, all input variables are also read from the standard input, stdin, when 
possible. This makes it easier to combine the modules within the system, and has the advantage 
that they can be written in different languages, as well as completely without knowing the 
internal structure of the other modules. 
 

$ modA | modB > logfile 

Figure 3. Piping from module A to B, then piping from B to a logfile 
 
This method can not be applied as easily when a module must be able to handle writing output to 
several other modules, as implied in Figure 3 the syntax has no natural way of splitting the output 
through a pipe. Following the same reasoning, reading input from several pipes would require a 
less standardised approach, which decreases the value for pipes in this solution. 
 

3.2.2 Shared memory 
 
When pipes are not applicable, modules use shared memory for communication. This method is 
especially useful when several processes depend on a stream of data produced by the same I/O 
device. In this case, that is the camera.  
 
The contrary to shared memory would be for one module, the owner module, to take ownership 
of the I/O device and then produce output for one or several other modules, the reading modules. 
This solution would make the performance of the reading modules dependent on the performance 
of the owner module. For instance, if the owner module becomes slow at some point, the reading 
modules would suffer from low frame rate, in the case of a camera as a source. 
 



19 

 
Figure 4. A simple producer-consumer visualisation 

 
 
The shared memory implementation for this project uses one producer and two consumer 
modules (see Figure 4). This means that all consumers depend on the producer to exist and 
perform well (maximise frame rate at a low computation cost). This setup requires only a 
minimal producer module, which in this case only captures the frame and writes it to the shared 
memory segment. Having this minimal producer reduces the risk of a bottleneck occurring at the 
camera capture. 
 
The implementation of the producer-consumer pattern is simplified in the sense that it does not 
ensure mutual exclusion on the memory segment, and thus does not require a queue to put 
elements in. This has the drawback that a consumer can read parts of an old frame and parts of a 
new frame, as well as read the same frame multiple times. However, this has not had any 
noticeable or measurable effects in the regulation of the quadcopter, nor has it produced any 
visual distortion for the user. Therefore, solving this issue has not been prioritised. 
 
3.3 Programming languages 
 
The programming language Python was used in the development of the quadcopter control 
module. The main reason for this is that the quadcopter control module was built on top of the 
existing code base for MAVProxy, which was coded in Python. 
 
The OpenCV library used for the image-processing software could be used with a variety of 
programming languages, such as C, C++, Python, Java, and Matlab (OpenCV, 2014). For the 
image analysis parts of this project, performance was a major point in deciding which 
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programming language to use. Another thing taken into consideration was how good the 
documentation was for the different languages, where C and C++ turned out to have a much 
greater collection of documentation and examples than Java or Python. Therefore, C++ was the 
desired language for this part of the project. There is a possibility that coding it in C would have 
provided a small performance boost, but during runtime, it was found not be to be necessary. 
 
The Cam-Share and Oculus distortion software also uses C++ as the developing language. The 
main reason for why Cam-Share uses C++ is because it was ported to handle the camera input 
from the already written parts within the Image Processing module. This made it easy to port the 
capture part into a new program. The oculus distortion program was, as mentioned when 
introducing the module, a fork of an already finished program which was written in C++. Also, 
the Oculus Rift examples provided by the Oculus Rift SDK were mostly written in C++. 
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4 Quadcopter 
 
This chapter will go into detail about the theoretical concepts that are important for 
understanding how the system works and why certain decisions were taken. Mostly, this will be 
about describing aerial concepts for the quadcopter and how the Quadcopter Control software 
module is utilised for autonomous control. 
 
4.1 Components and assembly 
 
In Chapter 2 the full list of quadcopter hardware in the system is specified along with some 
decision highlights. This chapter will describe, in detail, the individual components found on the 
quadcopter. For visualisations on the different parts, please refer to Appendix C I. 
 
The quadcopter used in this project has four propellers which are assembled on a cross-shaped 
rigid frame. The propellers are installed as counter-rotating pairs, one pair that spins clockwise 
and another that spins counter-clockwise (see Figure 6). This setup removes the need for a tail 
rotor and prevents the quadcopter from spinning around its vertical axis (Bresciani, 2008). 
 

 
Figure 6. Motor layout as seen from above 

 
The propellers are mounted on four motors with each motor being controlled by an Electronic 
speed controller (ESC). An RC transmitter is installed on the quadcopter to enable a 
microcontroller or a computer to control the ESCs. A video transmitter is installed to enable 
video feed transfer from the camera to a computer. 
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To power the quadcopter, a three cell lithium polymer battery with a capacity of 5500 mAh and a 
discharge rating of 30C is used. The C rating is a measure of the rate of which the battery 
discharges relative to the maximum capacity of the battery. For this battery 5500 mAh * 30C = 
165000 mA may be continuously drawn from the battery. 
 

4.1.1 Autopilot 
 
Autopilots are used together with quadcopters as they are inherently instable. By using sensors 
that measure the angular velocity, orientation, linear acceleration and other important data from 
the quadcopter, the autopilot can control the quadcopter to keep it stable. To measure data, an 
IMU is added. The IMU measures the acceleration with accelerometers and detects rotational 
changes with gyroscopes (Deyle, T.J. 2008). IMUs with inertial sensors are commonly used to 
improve flight stabilisation and autonomous hovering for helicopters or quadrotors (Höflinger et 
al, 2013). 
 
The sensor data collected by the IMU is used by the autopilot which parses the data and sends 
commands to the motors and servos on a remote controlled vehicle. 
 
To prevent vibration from disturbing the autopilot some cushioning is installed between the 
frame and the autopilot board. 
 

4.1.2 Radio signal receivers 
 
To be able to control the quadcopter from the ground, a radio link is needed. In this project, two 
different radio receivers are being used. One which handles radio signals from a microcontroller, 
used by a human for testing purposes, and one used to receive radio signals from the computer. 
The computer uses a 3DR Radio Set, communicating at the frequency 433 MHz. The 3DR Radio 
Set modules are interchangeable and uses two-way full-duplex communication which means the 
modules can both send and receive data simultaneously. Duplex communication is useful since 
the autopilot can send feedback data on the same radio link that the computer uses to send the 
control commands. 
 
The radio link uses a protocol called MAVLink. MAVLink is a lightweight header-only message 
communication protocol. It is designed to be used with air vehicles to transmit messages with 
high speed and safety5. 
 

                                                
5 For more information about MAVLink see (MAVLink Micro Air Vehicle Communication Protocol - 
QGroundControl GCS, n.d.) 
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4.1.3 Camera 
 
A camera is needed to provide video for the Oculus Distortion and Image Processing modules 
explained in section 3.1. As discussed in section 2.1 it is important the camera has low latency, is 
lightweight and has a high resolution. 
 
As an implication on how the quadcopter maneuvers, the quadcopter will tilt when moving on the 
horizontal plane. To avoid this affecting the video feed, a gimbal mount is used for stabilisation 
of the camera. 
 

4.1.4 Gimbal mount 
 
Gimbal mounts are a way of keeping the camera fixed on the horizontal plane, they are often 
custom made for specific camera models or brands. 
 
The gimbal mount used in this project is a device with two mutually perpendicular and 
intersecting axes of rotation, this makes it possible for a camera attached to the gimbal mount to 
have free angular movement in two directions, in this case on the roll and pitch axes. The gimbal 
mount is equipped with two motors, one for the lateral and longitudinal axis each. These motors 
actively try to keep the camera in a stabilised position by counteracting the quadcopters angular 
movements. 
 

4.1.5 Video transmission 
 
Analog video transmission is used to send a video feed from the camera mounted on the 
quadcopter to the computer. For this, a video transmitter is mounted on the quadcopter. The 
video transmitter works on the frequency 5.8 GHz with a signal strength of 200 mW. According 
to the transmitter manual6, a signal strength of 200 mW has a working range of about 100 meters. 
Since the quadcopter is never supposed to be more than a few meters behind the user, a signal 
strength of 200 mW is sufficient. 
 
On the ground, a video receiver connects to a frame grabber, which converts the analog video to 
digital, making it available for the computer. The image is sent to the Cam-Share software, which 
in turn can share it to both the Image Processing and Oculus Distortion modules. 
 

                                                
6 See (BOSCAM TS 351 - RC 805 Manual. n.d.) for the manual 
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4.2 Aerial maneuvering 
 
A quadcopter is able to rotate in three dimensions, commonly referred to as roll, pitch, and yaw.  
Roll is rotation around the longitudinal axis, pitch is rotation around the lateral axis and yaw is 
rotation around the normal axis. This can be seen in Figure 5 where the longitudinal, lateral and 
normal axis is represented by Z, X and Y respectively. The quadcopter can do these rotations by 
adjusting the four rotors in certain ways. Quadcopters commonly expose separate radio channels 
for each of these dimensions through their autopilot, with a fourth channel for handling throttle. 
 
 

 
Figure 5. The three axes upon which quadcopters can maneuver 

 
The following sub chapters will describe the four radio channels that were used in this project in 
order to control the quadcopter, both through the RC controller for testing, as well as through the 
Quadcopter Control module that was introduced in Chapter 3. 
 
To complement the different radio control channels that are used to maneuver the quadcopter, the 
APM used as autopilot utilises different flight modes. Each of these flight modes slightly 
modifies the autopilots interpretation of input from the channels, often shifting between more or 
less autonomous control. 
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4.2.1 Roll 
 
Manipulating roll has the effect of moving the quadcopter left or right (when no other channel is 
manipulated). Rolling clockwise is accomplished by decreasing the thrust on the two rotors on 
the right side, and increasing the thrust on the two rotors on the left side. Similarly, rolling 
counter clockwise is accomplished by decreasing the left side rotors’ thrust and increasing the 
right side rotors’ thrust. The combined vertical thrust remains the same, which means that the 
quadcopter will move left or right while maintaining the same altitude. 
 

4.2.2 Pitch 
 
Pitch is the action of tilting the quadcopter forwards or backwards to provide forward or 
backward momentum. To tilt the quadcopter forwards, thrust is increased on the two rotors at the 
back of the quadcopter, and the thrust is decreased on the front two rotors. This results in a 
forward tilt, while maintaining the total combined vertical thrust which causes the quadcopter to 
move forwards, while keeping the same altitude as before. Analogously, to move the quadcopter 
backwards, thrust is increased on the front pair rotors, and decreased on the back pair rotors. 
 

4.2.3 Throttle 
 
Throttle is used to increase or decrease the rotation of all four motors simultaneously. When 
increased, it produces a force downwards, which makes the quadcopter go up in a straight motion 
and gain altitude. When decreased, the force downward is reduced, which results in a loss of 
altitude. When used in conjunction with roll and/or pitch, different movements can be 
accomplished. 
 

4.2.4 Yaw 
 
The yaw channel is used to make the quadcopter rotate around the normal axis (commonly 
referred to as the Z or vertical axis). This is done by increasing the thrust on the clockwise pair 
rotors, and decreasing the thrust on the counter-clockwise pair rotors (or the other way around, 
for rotating in the opposite direction). The combined total vertical thrust remains the same, so the 
only movement that occurs is rotational movement around the normal axis. 
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4.2.5 Flight modes 
 
The autopilot has several built in flight modes. The different flight modes range from simple 
stabilisation, still allowing manual control of all channels of the quadcopter, to fully automating 
the flight and navigating the quadcopter by GPS. 
 
To achieve the movements required for this project a mode called altitude hold was used 
exclusively. Altitude hold mode is an automatic state where the autopilot controls the thrusts on 
the motors to ensure it keeps a stable and constant altitude while allowing yaw, pitch and roll to 
be controlled normally. The throttle channel is controlled autonomously as long as the controller 
has the throttle in its middle position. If the throttle is increased, the altitude at which the 
quadcopter will hover is increased, and if it decreases the altitude will decrease. This means that 
the quadcopter can be manoeuvred the desired way by controlling yaw, pitch and roll without 
having to worry about keeping the altitude.  
 
4.3 Automatically maneuvering the quadcopter 
 
As described in section 4.1.1 an autopilot will be used to stabilise the quadcopter, but for 
controlling the quadcopter a separate computer on the ground will be used. It will handle the 
image-processing calculations that controls how the quadcopter should move in order to stay 
behind its target, as well as transmit the actual data packets to the quadcopter radio receiver. 
 
For the quadcopter to follow its target, software is needed to automatically control the quadcopter 
according to feedback about the quadcopters location. The automatic control is accomplished by 
first having the software command the quadcopter to go into altitude hold mode, and in that 
mode override the RC channels and transmit the commands over the radio link. The software has 
the ability to override the four primary RC channels: roll, pitch, throttle and yaw. The throttle 
channel is used to set the altitude at which the quadcopter will hover. When the altitude is set, the 
three other RC channels are manipulated to move the quadcopter towards the correct position.  
 
To achieve this, a module has been developed to be used with an existing code base called 
MAVProxy7. MAVProxy is a command-line-based ground control station, which uses the 
MAVLink protocol. It provides a simple way of sending commands and receiving status data 
from the quadcopter. This project mainly uses MAVProxy to override the four RC channels and 
choose flight mode, as well as gather altitude data.  
 
The custom MAVProxy module implemented during this project, named quadcontrols, provides 
an additional layer of abstraction to help control the quadcopter. The commands implemented 
                                                
7 For more information about MAVProxy see the official website (Dade, S. n.d.). 
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and used in this module further abstracts: moving along the horizontal plane; rotating the 
quadcopter on this plane; and maintaining altitude over time. 
 
The altitude, provided as input from the sonar and gyroscope on the quadcopter combined, is 
used in conjunction with the calculated position from the image-processing software in order to 
calculate how the quadcopter should move to get closer to the desired position. 
 
To achieve the regulation, a module named Quadcopter Control, has been developed that 
implements a proportional-integral-derivative controller (PID-controller) to regulate the relative 
position to the user. The regulating is done separately for movement along the longitudinal, 
lateral and normal axes depending on its position in the different axes. Basically the PID-
controller calculates how fast the quadcopter should move along these axes depending on its 
current and previous positions as well as its current speed. To properly find good constants for a 
PID-controller, a good model for the physics behind how a quadcopter is controlled in form of 
aerodynamics and external impact is required. As this is complex and not a part of this project, 
the values for the PID-controller are optimised in a more practical way; by trial and error. 
 
The Quadcopter Control module depends on position input from the Image Processing module 
and is the last step in the system as it sends maneuvering commands to the quadcopter’s 
autopilot. 
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5 Imaging 
 
This report speaks of imaging for two subjects. Firstly, the Oculus Rift has been researched and 
evaluated, this chapter will describe the hardware and highlight some of the important steps. 
Secondly, the image processing framework OpenCV is applied to the problem of extracting a 3D 
position for a set of tracking objects within an image. 
 

5.1 Oculus Distortion 
 
The Oculus Rift provides an approximately 100° FOV (Oculus VR, 2012). In order to do so, it 
magnifies the images with the help of lenses. A by-product of this is that the image suffers from 
pincushion distortion, causing it to be pinched at the center. This image defect can be corrected 
by applying barrel distortion, causing a spherised effect and thus neutralizing the defect (see 
Figure 7). The main purpose of the Oculus Distortion module is to apply said barrel distortion to 
an image and transfer it to the Oculus Rift. 
 

 
Figure 7. Pincushion distortion (left) and barrel distortion (right) 

 
In order to render the image correctly for the Oculus Rift, the calculated FOV needs to be 
corrected. Since the lense increases the perceived screen height from 2x to 2x’, see Figure 8 and 
equation (1), the FOV is calculated from the following: 
 

(1) 
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Figure 8. Explaining how a lense changes the FOV 

 
5.2 Image Processing 
 
The goal with the image processing software implemented for this project is to determine a 
relative position of the camera in regards to the target. As mentioned in earlier chapters, this 
position is used as the main source of input to the regulation of the quadcopter control. 
 
The calculated position includes depth, which is the distance from the camera to the target, 
relative height, and lateral distance from the camera to the target. Figure 9 shows the camera’s 
position relative to the target’s position P in offsets along the lateral, longitudinal and normal 
axis. These offsets are denoted as X, Y, and Z, respectively. 
 

 
Figure 9. The position of the camera, relative to the target’s position P 

w 
These distances are used to create a 3D vector which will determine the relative position of the 
target to the camera. By knowing this position of the target, the quadcopter can be regulated to 
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keep a certain distance to it. To achieve a 3D position of the target, three colourful balls in a 
triangular pattern are used (see Figure 10). They serve as the tracking objects. 

 
Figure 10. The tracking objects to be tracked 

 
The tracking objects are tracked by colour filtering and circle detection. By having colourful 
tracking objects, the tracking is made easier as they can easily be distinguished from other parts 
of the surroundings. Balls are especially useful since they always appear as circles on screen 
independent of the angle they are viewed from.  
 
The tracking objects are filtered from the camera image and their size and position on screen can 
be obtained. By knowing the actual size of the tracking objects, their individual distance from the 
camera can be calculated. This is done using equation (4), which is a combination of equation (2) 
and (3). Equation (2) describes the relation of the longitudinal distance (denoted as Z) and the 
width of everything seen on screen, (denoted as W). Equation (3) describes the relation between 
the width of everything on screen and the width of the screen in pixels (denoted as Wp), utilizing 
the known relation of the ball on and off screen (b/bp). 
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Figure 11. Visualising the trigonometrical relations used to calculate distance 
 

     (2)              (3)              (4) 
 

For full variable explanation, please refer to Table 2 below. 
 
Similarly, the relative height and lateral distance can be obtained through the relation between the 
screen size of the tracking objects and their actual size, and the distance from the center of the 
image, as seen in equation (5) and (6). 
 

     (5)               (6) 
 

For full variable explanation, please refer to Table 2 below. 
 
 
Table 2. Explanations of position formula abbreviations 

W Width of everything visible to the camera at the distance of the balls 

Wp Screen width in pixels, the horizontal camera resolution 

Hp Screen height in pixels, the vertical camera resolution 

b Actual radius of the balls in centimeters 

bp Radius of the balls in pixels 

by The y-part of the balls position on screen 

bx The x-part of the balls position on screen 

α Angular view of the camera (FOV) 

X Lateral position of a ball in centimeters 

Y Height of a ball in centimeters 

Z Distance to ball in centimeters 
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The three tracking objects will, together, form a plane. With a 3D position for all tracking 
objects, the normal of this plane can be calculated (see Figure 12). Using this normal, it is 
possible to calculate the relative angle of the target as seen from the camera. This is useful in the 
case of a third person view, for instance, when the user turns around. When this happens, the 
quadcopter can change its direction and the camera can capture what the user is seeing. 
 

 
Figure 12. The tracking objects spans a plane and a normal is calculated 

 

5.2.1 OpenCV 
 
OpenCV is used as the base for the Image Processing module. It is a framework that provides 
algorithms and methods for image processing and computer vision. As these algorithms and 
methods were already implemented, more time could be spent improving the image processing 
and tracking of the tracking objects. The main applications of OpenCV in this project is for 
colour filtering and circle detection. 
 

5.2.2 Target tracking 
 
The tracking developed in this project is done in several steps and uses two colour filtrations and 
a circle detection. The reason the program uses two colour filtrations is to better distinguish the 
tracking objects from any possible noise that can occur if the filtering is not perfect, or if other 
objects in the surroundings have the same colour as the tracking objects. It also makes the 
software able to find the tracking objects, even if one part of the tracking falters.  
 
Before the colour filtering can be performed, the captured image (see Figure 13) is converted 
from the RGB colour space to HSV and YCrCb colour space. These colour spaces have 
independant luma channels (V and Y respectively), which makes the filtering less dependant on 
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the lighting of the tracking objects (as long as no filtering is done for any of the luma channels). 
Two different colour spaces is used since the combination is likely to have variation in their 
noise, which makes noise elimination more effective. 
 
For each colour space, colours that do not match the specified range are filtered out. When 
visualising this, pixels that match the filter range are coloured white and the ones that are not 
within the filter range are coloured black, see Figure 14 and 15 for example. Please note that in 
these figures a noiseless filtering was obtained. If other objects in the surroundings have similar 
colour as the tracking objects, they will of course be found as objects by the program as well. For 
each object that is identified by the filter, the software uses OpenCV to find the object’s contour 
which finally can be used to find a center position within the image, as well as the radius of the 
object. 
 

 
Figure 13. Colour image from camera when the tracking objects has been identified. 

Please note that the figure includes a lot of debug information. 

 
Figure 14. Filtered image using YCrCb colour space 
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Figure 15. Filtered image using HSV colour space 

 
To further improve the tracking of the tracking objects, circle detection is used. This works by 
analysing a grayscale version of the captured image as seen in Figure 16 and applying the Hough 
Circle Detection algorithm that is provided by OpenCV. This works as extra security and will not 
by itself determine if a circular object is one of the tracking objects or not. It merely increases the 
priority for the already found objects if the found circle is within a distance and has somewhat 
the same radius as the colour-filtered tracked objects. In this figure the tracking object is 
unfortunately not distinguished from the surroundings and do not help the software to become 
even more sure that the found objects is actually the desired ones. 
 

 
Figure 16. Grayscale version of image used for detecting circle objects 
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5.2.3 Priority system 
 
One of the main responsibilities of the the Image Processing module is the priority system. This 
part of the module is used to determine if any of the identified objects from the camera frame, is 
one of the targeted tracking objects. The prioritisation algorithm consists of five main steps. 
 
First, the objects found from the two different colour filterings are checked against each other to 
see if any objects match in both position and size (using the object’s radius). The software returns 
a match if their position is off with no more than half a radius of one of the objects and if the 
ratio between their radiuses is no more than 1.5. If this matches, the two objects are merged and 
treated as one object, which gets an increased priority. This new object will be copied into a new 
list, from here on called L, and used later in the image processing. 
 
When all objects from the two colour filterings have been checked and the matched objects have 
been merged into one, the objects that did not match against anything are simply transferred into 
the new list L as well, without any increased priority. 
 
Secondly, the L list is then used in the same matching method against any detected circles 
coming from the circle detection. This means that if an object also has a circle in the same 
position and with the same size, that object will get a further increase in priority. 
 
In every loop in the algorithm, the objects with the highest priority in the list L, are saved to be 
used in in the third step in the priority system. This is done for the last five objects, resulting in a 
new list containing 5 * 3 = 15 objects. This list is then matched against L, and the priority for the 
objects within L is increased if they have matching position and size to any of the objects in the 
new list. Here, the position and size is less accurately compared than in the previous matching 
method, since the tracked objects might have moved since the previous frame. The position and 
size are matched dynamically depending on how old the objects are. The youngest objects have 
stricter position and radius criteria, which incrementally decreases for older objects. Equation (7) 
and (8) describes the criterium for position and radius respectively. Note that for equation (7) the 
same criterium applies analogously for the Y axis. 
 

 (7) 
 

 (8) 
 
The index i in equation (7) and (8) will go through all objects in L, j will go through the three 
objects from the index last frame. 
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The priority system uses the identified objects received from the three filtering and detection 
steps, and tries to figure out which objects on the screen really are the three tracking objects. This 
needs to be done since there can be noise left after the various filterings. For example, the circle 
detection can find many different circles in the image and there might be other objects on the 
screen with the same colour as the tracking objects. 
 
The fourth step will not actually increase the priority on any objects, but is used in the last, fifth, 
step. The objects are matched into pairs with the criterium that their approximated distance in 3D 
space, must match the tracking objects’ real distance from each other. The real distance between 
the tracking objects has been measured to 45 cm between AB and AC and 50 cm between BC 
(see Figure 10). The module pairs two objects if their approximated 3D distance is between 26 
and 52 cm. 
 
Each pair found in the previous steps can be seen as an edge, and the objects as nodes. The fifth 
and last step in the priority system tries to connect these edges into triangles, which if found 
further prioritises the nodes in each triangle. The algorithm uses a root node and using its edges, 
tries to go to all neighbours, and from that, to all neighbours of the visited node, and then from 
that point back to the root node. If the algorithm succeeds in returning, it can positively identify a 
triangle (see Figure 17). This will increase the priority on all objects included in the triangle both 
with a fixed number and dynamically based on the highest priority found in the triangle since 
before. This can be seen in equation (9). 
 

 
Figure 17. Showing white lines (edges) between objects (nodes) which has been matched into a 

pair. 
 

 (9) 
 

When the priority system is finished, the three objects with the highest priority are used to 
determine the relative position of the camera. 
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5.2.4 Debugging 
 
To help with debugging and analysing the image data and result from the image processing 
different flags can be set on startup to enable different debug features. For a full list, please see 
Appendix A III. One very important debug feature is the ability to save all different frames used 
during runtime as video files using the video flag. This include the original camera feed (in RGB 
colour, see Figure 13) together with various debug text, depending on the debug flag, both 
filtered frames (see Figure 14 and 15) as well as the grey scaled frame (see Figure 16). By saving 
these frames as video files, it is possible to step, frame by frame, to get a better understanding of 
how the priority system is working and how to better optimise the program to be more sure that 
the found objects actually is the tracking objects. 
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6 Testing 
 
To be able to evaluate the performance of the hardware and software, tests were performed. This 
chapter will highlight how the tests were done and what results were obtained. However, the 
conclusions are discussed more thoroughly in Chapter 7 and Chapter 8, where appropriate for the 
context of the results and discussion respectively. 
 
6.1 Quadcopter speed 
 
A speed test was done on the quadcopter to find its top speed and acceleration. By knowing the 
max speed and acceleration of the quadcopter, the parameters for the regulator could be 
optimised. These values serve as a good reference to know if the chosen values for the regulator 
is within a good range, and to get a better understanding of what the chosen regulator values will 
result in for the quadcopters speed. The maximum speed was roughly measured to 15.4 m/s. For 
the full speed test, please see Appendix B. 
 
6.2 Video latency 
 
To improve the user experience and the quadcopter control, a low latency on the video is desired. 
Tests were made to evaluate whether or not the latency could be problematic. The test technique 
used was very simple. Each test included the GoPro camera filming a stopwatch and a display 
showing the output, either a TV or a PC using basic video playback software. A second camera 
was then used to take a photo of the stopwatch and the display. The delay of the third-person 
view setup was interpreted as the difference in time of the stopwatch and the displays view of the 
stopwatch, see equation (10). 
 

  (10) 
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Figure 18. Test setup, a camera is capturing the display and PC screen at the same time 

 
To achieve accurate results, each test was performed several times and an average of the 
measurements was calculated.  
 
This procedure was repeated with different equipment between display and the GoPro, to analyse 
what impact different hardware had on our solution. Noteworthy is that while Figure 18 only 
shows a wireless connection between the GoPro and the display, solutions with a cable 
connection was tested this way as well.  
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6.2.1 Test data 
 
Some latency was experienced during the transmission of the video stream to the computer and 
application of the barrel distortion to the frames. The following latencies were measured on the 
final product: 
 
Table 3. Summary of video latency test data 

Test Devices and software Delay Deviation 

1 Camera to grabber, using Cam-Share 190.4 ms 11.36 ms 

2 Camera to grabber, using Cam-Share and Oculus Distortion 235.2 ms 14.96 ms 

3 Camera to grabber wirelessly, using Cam-Share 208.3 ms 15.38 ms 

4 Camera to grabber wirelessly, using Cam-Share and Oculus 
Distortion 

204.9 ms 15.92 ms 

5 Camera to TV 167.4 ms 18.08 ms 

6 Camera to TV wirelessly 164.7 ms 14.44 ms 

 
The most interesting data is the delay when sending the video wirelessly to the grabber while 
using Cam-Share and Oculus Distortion, as this is what will be used in the full system. The rest 
of the data shows that the biggest delay seems to come from the camera itself. According to a 
white paper on latency (Cast, 2013), an acceptable delay in video, when playing for example 
video games is below 100 ms as this will not be noticeable in most cases. Since the worst case 
from the measured data is 235 ms the system does not have acceptable latency. Of Course 
acceptable latency is subjective and dependant on what the video is used for. 
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6.3 Vibration 
 
To ensure that the quadcopter performed as good as possible and did not make any unnecessary 
disturbances that could affect other equipment, a vibration test was performed. This showed (see 
Figure 19) that the quadcopter was well within the optimal limits for the accelerometer 
vibrations. 

 
Figure 19. Graph of vibrations experienced by accelerometer 

 
Figure 19 shows the alterations in acceleration during time. the accelerations are measured in  the 
longitudinal, lateral and normal axes, shown as AccY, AccX and AccZ respectively in the figure. 
As seen AccZ lies around -10 due to the gravitational pull of the earth. According to the 
Ardupilot homepage on measuring vibration (Ardupilot, 2014) these values are acceptable when 
-3 < AccX < 3, -3 < AccY< 3, -5 < AccZ <  -15. 
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7 Results 
 
A system has been designed that creates an immersive experience by letting a user view itself 
from a third-person perspective. Software to control the quadcopter to follow the user around has 
been implemented, as well as software to receive a wireless camera feed. The control is regulated 
through image processing of the camera feed, and the camera feed is barrel distorted to match the 
display correctly on the Oculus Rift. 
 
7.1 In-flight video transmissions 
 
The system has been developed by a process of hardware design decisions that were discussed in 
Chapter 2, complemented with a software implementation described in Chapter 3. The project 
has come a long way in reaching its goals in implementing a third-person view. 
 
The first milestone that presented results relating back to the purpose of this thesis, was the first 
successful in-flight transmission of video. This milestone was reached through an experiment to 
evaluate how the transmitted video would appear in the Oculus Rift, in terms of quality. The 
figure below shows a frame of the video as it was stored in the shared memory segment by the 
Cam-Share module. 
 

 
Figure 20. Video frame from first in-flight video transmission experiment 
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There are two comments that should be made on the quality of the video feed that the frame in 
Figure 20 is captured from. Firstly, the low resolution; and secondly, the visible horizontal line 
distortions. These are both consequences of using analog video transmission, but as discussed in 
Section 2.3, the requirement of a low latency on the video feed favors analog over digital video. 
Therefore, analog video was kept as the favored format for video transmission. 
 

7.1.1 Immersive user experience 
 
This experiment made it possible to relate back to the purpose of assessing the immersive quality 
of the system. Setting quadcopter positioning aside, this experiment was an indication on the 
effects on user experience from both the predicted low image resolution as well as video latency.  
 
The effects of the low image resolution were not as dampening to the experience as one could 
believe. During high speed maneuvering of the quadcopter for example, the experience was 
rather immersive in the sense that it was easy to forget about your actual surroundings. 
 
However, combined with the latency it was quite clear that what you saw inside the Oculus Rift 
glasses was merely a recorded video of yourself moving around, rather than an out of body 
experience. 
 
7.2 Attempting autonomous control through image processing 
 
As all of the core package modules described in Chapter 3 about software implementation relied 
on a video feed, the transmission experiment from Section 7.1 was a major milestone for the 
project. It meant a fair chance of also being able to process this image using the Image 
Processing module. Figure 21 displays one of the experiments where the Image Processing 
module is activated and tries to locate the target inside the video. The same figure also introduces 
the largest issue found so far with analog video streams from the quadcopter. 
 
Apart from using the streamed video as input to the Oculus Distortion module, the project team 
had to evaluate how it could be used as input to the Image Processing module. In order to 
evaluate this, an experiment with two separate phases was conducted. 
 
Phase one of the experiment simply lets the Image Processing module analyse the transmitted 
video stream and output the relative position of the user (along with other debug information). As 
seen in the left image of Figure 21 below, a feasible distance in all three axes is printed on 
screen. This phase was considered a success. 
 
Phase two was carried out similarly to phase one, but with the modification that the position was 
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used as input to the Quadcopter Control module. What this means in practice, is that the system 
running uses the position as input to regulate the radio control of the quadcopter. As seen by the 
broken white triangle in the right image of Figure 21 below, this phase was not successful. Noise 
in the image prevents the Image Processing module from acquiring a stable position of the user, 
which in turn has the effect on Quadcopter Control that it refuses to take control of the 
quadcopter. 
 
As Quadcopter Control utilises the 3DR radio set to send control commands to the quadcopter, it 
is a fair guess that this hardware might be what is causing disturbances in the image. A couple of 
attempts to reduce the disturbance was made by moving the 3DR radio set and the video 
transmitter to opposite sides of each other, so that the signals and electromagnetic fields 
generated by the current should affect each other as little as possible. However, these attempts 
were rather futile as no significant decrease in disturbance could be seen. 
 

 
Figure 21. Image without disturbances (left), Image with disturbances (right) 

The circles and lines drawn represent the objects that are being identified in the algorithm 
 
7.3 Image processing evaluation 
 
Part of the purpose of this thesis was to evaluate whether or not image processing is a good way 
of implementing autonomous control of airborne vehicles. From the previous results and tests, it 
can be concluded that using image processing to implement autonomous control has a few 
problems, mainly image disturbances and latency during video transmission. Although, when 
using the camera without radio transmission, the Image Processing module could determine the 
position of the user in a way that should be sufficient for autonomous flight. 
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8 Discussion 
 
It was apparent from the beginning that assembling a quadcopter which autonomously follows a 
user would turn out to be a challenging task, requiring a lot of research and planning. The final 
solution required a combination of several different technologies, such as image analysis, control 
systems engineering and virtual reality.  
 
Chapter 7 presents two major blocks that the results can be categorised within, namely image 
processing and video presentation to the user. The first category has been tougher to succeed with 
and the latter has been easier. Sections 8.1 and 8.2 will discuss the image processing category 
whereas video presentation will be discussed in Section 8.3. The last sections will discuss other 
important aspects that have either helped or delayed the progress as well as how the system can 
be improved on a more visionary scale. 
 
8.1 Negative aspects of using image processing for autonomous control of 
UAVs 
 
The results in Chapter 7 presents the positive and negative aspects of controlling a quadcopter 
autonomously using image processing. Two major downsides can be distinguished. The first one 
by looking at the test results from Section 6.2, video latency. The second one by looking at 
Section 7.2, image noise. 
 

8.1.1 Video latency analysis 
 
The latency from the video transmission was a lot higher than desired and expected. As seen in 
Table 3 from Section 6.2.1, the biggest culprit for the latency was the GoPro camera. Aside from 
the camera, the largest delay came from the frame grabber used to convert the analog signal to a 
digital signal. For latency optimisation, the main section to improve would be the camera and 
frame grabber device. The average latency using only the GoPro camera connected via an analog 
cable to a display was 167.4 ms, with a deviation of 18.08 ms. The other components combined 
only increased it by an additional average of 67.8 ms. 
 
As no expertise in analog video and the transmission of it was obtained prior to the project, much 
research is still left on the subject, thus a possible solution to the latency issue could be to 
investigate further which hardware should be used for image capturing, as well as transmission. 
This in turn could lead to the user of the system seeing her own movements earlier, thus 
increasing the immersive experience. 
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8.1.2 Image noise analysis 
 
As noise in analog signals are common, some noise was tolerated in the system during 
development, as long as it did not disturb the Image Processing. This type of noise was also 
present during normal flight using an RC controller.  
 
However, the video disturbance during autonomous flight posed a huge problem in the Image 
Processing module. One part of the distortion was that the image went black and white from time 
to time. This was a problem since one of the main properties the image software utilised when 
analysing the image was the colour of the tracking objects. This also made the backup feature, to 
detect circles, useless since detected circles could not be matched to any filtered objects. The 
distortions also made the image move around and added black bars randomly or switched the top 
and bottom part of the image completely which prevented the image-processing software to work 
as intended. 
 
An option to reduce the problem affecting the regulation caused by the disturbances would be to 
do the calculation on the quadcopter, rather than on a ground control station. However, it is 
questionable whether or not a computer with low enough power consumption and yet high 
enough processing power to do this can be easily obtained. Putting further strain on the battery 
used to power the APM and the motors would reduce the air-time per battery as well. This 
solution would however be quite reasonable for larger UAVs, drones used in military operations 
for example.  
 
Let us assume that the observation presented in Section 7.2 is true, namely that the cause of the 
image noise making autonomous flight fail is the signals from the radiolink. This makes one 
apparent solution, to try to isolate the video transmission from the source of the disturbing 
signals. For example, manually by trying setups with different placements of all pluggable 
components, such as the radiolink and the video transmitter itself. However, this was evaluated 
during the test flights and no noticeable improvements were observed. Further experiments, using 
for example aluminium to shield the video link from disturbances is a natural next step that could 
be taken. This was considered a rather complex experiment due to how it could affect the 
aerodynamics of the quadcopter, and therefore not prioritised within the time limit of the project. 
 
It might seem simple to have switched to another camera setup and transmit the video digitally. 
However, the gimbal used during this project was manufactured and optimised for use with a 
GoPro camera, which in turn has a high latency for digital video over its WiFi. This limits the 
choice of cameras that can easily be mounted on the quadcopter while still being able to stabilise 
the camera as the quadcopter moves around. 
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8.2 Positive aspects of using image processing for autonomous control of UAVs 
 
Image processing can be a viable method for autonomous control, if the two downsides discussed 
in the two previous sections can be negated. The motivation is based on the fact that this project, 
which was carried out without prior experience within the area of image processing, managed to 
accomplish feasible results from the Image Processing module with limited resources. The 
positive results from using image processing rather than other methods is that no additional non-
application critical components besides the camera is needed on the quadcopter. This reduces the 
total weight and complexity of the quadcopter.These results were presented in Section 7.2. 
 

8.2.1 Predicting movements using previous data 
 
An example of a large scale project that heavily relies on image processing as input to 
autonomous control of vehicles is Google Cars. They have successfully been able to navigate 
cars in real city traffic by using image processing (Madrigal, 2014). According to Madrigal there 
are two major reasons for why the Google Cars project manages this. Firstly, they use additional 
sensors to cameras (as well as a full rig of cameras instead of just one) to process the world 
around them. Secondly, in addition to process their surroundings in real time, they also utilise an 
extremely detailed 3D model of the surroundings which has been generated from vast amount of 
previously gathered data. 
 
Relating back to this thesis. Using data from previous flights as Google Cars is doing with their 
drives, and recording flight experience from the system, could prove to be an interesting way of 
preventing collisions with other objects than the one(s) tracked. 
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8.3 Implementing a third-person view in real life 
 
Two key factors for getting a pleasant display of oneself is easily argued as clear and current, 
which can be translated into high resolution and low latency. 
 
The components that are responsible for capturing, transporting, and presenting the video in the 
system implemented for this thesis, is the Oculus Distortion module, the Oculus Rift, the GoPro, 
and the video transmission hardware. As presented in Section 2.3 the video resolution presented 
to the user on the displays of the Oculus Rift is quite low and has quite some negative critique. 
Furthermore, the use of analog video transmission prevents the system as it is implemented today 
from using a higher actual resolution than this. 
 
Combine the low resolution cap with how digital video, which is discussed as a candidate for 
video transmission in Section 2.3, but then discarded due to the expected high latency points to 
the conclusion that alternative approaches must be made. Or maybe even that further 
development on hardware is still very much in need of development before an ideal third-person 
view in real life can be implemented. 
 
8.4 Quadcopter speed and vibration tests 
 
Two quadcopter tests were performed to evaluate the performance of the UAV, a speed test and a 
vibration test. 
 
The speed test from Section 6.1 was used as a reference for the regulation of the quadcopter. The 
test also shows that the product is not limited by the speed of the quadcopter, a person could run 
as fast as desired and the quadcopter would be able to keep up in a straight line, although turning 
to change direction could still be a limiting factor. The high maximum speed of the quadcopter 
also allows the quadcopter to follow for example cars and other vehicles, as well as skiers and 
bicyclists. 
 
As described Section 6.3 the vibration test results are well within the optimal range. From this, it 
can be concluded that the vibration dampening was well implemented and the vibration did not 
cause any problems affecting the flight of the quadcopter. 
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8.5 Autopilot board damage 
 
Due to lack of understanding from the project group and lack of documentation from the open 
source community, there was a major setback during the project when attempting the final 
assembly steps, i.e. when connecting the APM board to a laptop for firmware installation and 
configuration. The problem faced was that the APM’s external sensor circuit was extremely 
sensitive to low voltage8, which was exactly what it was exposed to when powering the board 
with a USB source. This resulted in a damaged APM unable to connect to any external sensors 
and further configurations were impossible. 
 
Once proper research had been done on this issue, a functional APM was used and the 
configuration and real flight testing could begin. 
 
Due to the APM board problems, all the software had to be tested on a software-in-the-loop 
simulation of a quadcopter. This caused a major delay in the project and prevented proper testing 
of the software on a real quadcopter. This caused further problems like the picture disturbance to 
be discovered very late in the project, resulting in this issue still being unsolved. 
 

                                                
8 For more information about the APM board low voltage problem see (Mackay, 2013) 
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8.6 Future development potential 
 
To improve the user experience further and provide a more immersive feeling, the head tracking 
data from the Oculus Rift should be gathered and used together with the image-processing and 
regulator software when moving the quadcopter. The gyroscope of the Oculus Rift could 
determine if the user moved his/her head to the left or to the right and let the quadcopter move 
correspondingly. By letting the quadcopter go to the right or left, and at the same time yaw 
counter clockwise or clockwise, it will result in an arc motion (see Figure 22), which would 
mimic how the user actually moved his/her head when looking in a certain direction. 
 

 
Figure 22. Example of rotational implementation of the quadcopter 

 
 
Further, the system could create immense virtual realities with immersive environments, which 
could be used to create games or other entertainment projects where users can see themselves as 
the main character with the third-person view. Virtual reality experiences with the Oculus Rift 
has been done before, but rarely in a way where the users see themselves in the real world with a 
partially virtual overlay. 
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As stated under chapter 1.3 delimitations, the quadcopter could be equipped with ultrasonic 
sensors on its sides to be able to detect walls. This would result in a safer flight and a lower risk 
of impact with the surroundings. If the target rotates while walking beside a wall or other 
obstacles, the quadcopter could notice that something is approaching it too close (see Figure 23) 
and abort its movement in the direction to avoid a crash and instead move, for example, only 
forward to continue follow the target.  

 
Figure 23. Quadcopter not being aware of its surroundings can cause crashes if the target is not 

aware of its movements in regard to the surrounding. 
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8.6.1 Real-world applications 
 
After accomplishing autonomous control of the quadcopter, such that it is able to safely and 
precisely follow the user, adding additional commands that the user is able to send to the 
quadcopter, such as regulating heights or scouting the environment, could prove to have 
interesting applications to real problems people are facing. Missing people could be sought for in 
narrow or otherwise dangerous places, and policemen could get a bird eye view that does not 
require any additional personnel in order to maneuver the field of vision.  
 
The hardware used in this project makes it possible to add additional sensors and other 
accessories such as GPS, which could increase the quadcopter’s ability to fly autonomously with 
waypoints and, for example, be able to map a disaster site by flying to different waypoints and 
give the user a better understanding of their surroundings. 
 
While this system as a whole may not be easily applied to these kinds of situations, parts of it is. 
Video transmission with low latency and autonomous control of UAVs based on data originating 
from the vehicle are both areas that could help development of systems that could really help in 
these kind of situations.  
 
8.7 Ethics 
 
UAVs with the possibility to record or transmit video can cause several ethical implications. By 
using normal means, such as a fence or wall, people can easily be restricted from private areas, 
however, a ground based perimeter can not hinder an unauthorised UAV. With greater 
accessibility to mobile remote-controlled vehicles, the privacy could be disturbed more easily. In 
countries where it is legal for people to take pictures of private areas from a public area, this may 
become a problem. The scenario where a quadcopter takes a sneak peak through the fifth floor 
window is possible and would be legal given that the pilot has a permit for flying the quadcopter. 
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9 Conclusions 
 
This thesis proposed a vision-based autonomous target tracking system for a UAV that can be 
used to present a third-person view of any kind of object. Image processing as a way of 
autonomously controlling a quadcopter was analysed and proved to be a somewhat viable 
solution. However, issues in video transmission were found. Due to these issues mainly, a 
complete system as the one stated in the objective of this thesis could not be developed to its full 
extent. Other than that, all important milestones were reached, and the project is seen as 
successful. Hopefully, future works will be devoted to carry on this project to fulfill its objective. 
Ways of visually detecting a target without the use of external objects, such as balls, can be 
evaluated, and faster video transmission hardware can be used to improve data transfer between 
the quadcopter and the ground station. 
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Appendix A - Software Documentation 
 
 
This document will describe the interfaces between different modules (separate applications) 
within the core of the Third Person Immersion software. 
 

I. Cam-Share 
Github: https://github.com/third-person-immersion/cam-share 
Input:  

● Reads the video input stream from camera 
Output:  

● Writes a textfile “caminfo.log” on the format “width\nheight\nmemorySize\n” 

Description 

The Cam-Share application reproduces the video stream by fetching the frames from the video 
stream and place them in a shared memory space. This enables multiple processes to 
simultaneously access the video stream. 
 
The module is split into two parts as follows: 

Init 

Starts writing to the shared memory segment 
Binary: ./init 

Read 

Binary: ./read (NOTE: This binary is not needed for the system, it is merely a test of the Read 
class) 
 
The class Read_<os>.h can be included in external applications. 
Use Read.getFrame().copyTo for getting your own modifiable frame. 
 
Note: no reading application may write to the shared memory. Modifications must be made on 
copied frames. 
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Command line arguments 

 
USAGE:  
 
   ./init  [-l <string>] [-c <int>] [--] [--version] [-h] 
 
 
Where:  
 
   -l <string>,  --log <string> 
     Select log file 
 
   -c <int>,  --camera <int> 
     Select camera 
 
   --,  --ignore_rest 
     Ignores the rest of the labeled arguments following this flag. 
 
   --version 
     Displays version information and exits. 
 
   -h,  --help 
     Displays usage information and exits. 
 
 
   Command description 
 
Writes video input to the shared memory segment 
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II. Third-person-remote-eyes 
Github: https://github.com/third-person-immersion/third-person-remote-eyes 
Input:  

● Reads video frames Shared Memory using identifier 2581 (Cam-Share output) 
Output:  

● Produces a barrel distorted video stream on screen viewable on the Oculus Rift 
(positioning of the video is up to OS) 

 

Description 

 
Third-person-remote-eyes is a forked project1 which produces a distorted image for the Oculus 
Rift and have been modified to fetch video from the shared memory. 
 

Usage 

 
Press F9 to go fullscreen press Pos1/Home or End to change picture size.  

 

  

                                                
1 remote-eyes: https://code.google.com/p/remote-eyes/ 
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III. Image Processing 
Github: https://github.com/third-person-immersion/image-processing 
Input:  

● Reads video frames Shared Memory using identifier 2581 (Cam-Share output) 
Output:  

● Vector describing the 3D position of the user (triangle) from the Quadcopter (camera) 
● Vector holding the angles of the user (triangle) 

○ Yaw 
○ Pitch 
○ Roll 

Description 

 
Image processing reads video from the shared memory space and performs filtering to 
triangulate and decide the location of an object in 3D space relative to the camera.  

Usage 

 
Output to the console if -r flag is set, meaning release. Also the output will start with a error 
output to check if everything regarding the camera opening etc worked OK. 
rflag = 1: 

● Only distance from the camera (Z distance) 
rflag = 2: 

● All above 
● Full 3D position (X, Y and Z distance) 

rflag = 3: 
● All above 
● Full angle vector 
● Sureness (How accurate the program is that the objects found really is the tracking 

objects) 
 
For more details of ASCII, please see http://www.asciitable.com/ 
 
The 3D position is considered one group, the angles another and sureness value yet another. 
Inside every group there will be a maximum of three (3) records (e.g. X, Y and Z position in 3D 
position group). To separate these the ASCII group separator (char GS, Dec 29) will be used. 
To separate the records the ASCII record separator (char RS, Dec 30) will be used. Using these 
dedicated separators, we ensure not to separate our data faulty. 
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Please note! To be able to display the format of the output, <GS> and <RS> will be used where 
the group/record separator will be used! The output is formatted as: 
 
X-DISTANCE<RS>Y-DISTANCE<RS>Z-DISTANCE<GR>X-ANGLE<RS>Y-ANGLE<RS>Z-
ANGLE<GR>SURENESS 
 
Example where rflag is set to 1: 
 
202.123412 
 
The value 202.123412 says that the object is roughly two meters from the camera 
 
Example where rflag is set to 3: 
 
20.123<RS>11.441<RS>187.3123<GR>-35.192<RS>41.333<RS>0.312<GR>0.63 
 
Here there are three values in each group except the last group (and all three groups are 
present). The last value indicates that the program is 63 % sure that the found objects really is 
the tracking obejcts. 
 
Parsing: 
Parsing the output will be done by reading, line by line, and splitting the string first using <GR> 
character. Then by checking the length of the new array, one can determine how many values 
are present. If length is 1, then only 3D position is present, if length is 3, then 3D position data, 
angle data, and sureness data is present. 
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Command line arguments 

 

USAGE:  
 
   ./image-processing  [-s <int>] [-r <int>] [-f <string>] [-v <string>] 
                       [-d <int>] [--] [--version] [-h] 
 
 
Where:  
 
   -s <int>,  --distance <int> 
     Set the desired distance 
 
   -r <int>,  --release <int> 
     Activate release mode 
 
   -f <string>,  --logfile <string> 
     Set log file path 
 
   -v <string>,  --video <string> 
     Save video 
 
   -d <int>,  --debug <int> 
     Activate debug mode 
 
   --,  --ignore_rest 
     Ignores the rest of the labeled arguments following this flag. 
 
   --version 
     Displays version information and exits. 
 
   -h,  --help 
     Displays usage information and exits. 
 
 
   Image processing reads video from shared memory space and performs filtering to triangulate and decide 
location of an object in 3D space relative to the camera.  
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IV. Quadcopter control 
 
Github: https://github.com/third-person-immersion/quadcopter-control 
Input: A 3D vector from image-processing describing the distance from the user to the 
quadcopter 
Output: A mavlink signal readable by the 3DR radio set, steering the quadcopter closer to the 
desired location 
 

Description 

 
The Quadcopter controller is used to receive the relative distance to the user from the Image-
processing software and with this data calculate how the quadcopter should move and in which 
direction. 

Usage 

 
A ground control station called MAVProxy is a prerequisite for Quadcopter controller to work. A 
module called quadcontrols is also needs to be loaded into Quadcopter controller by using the --
load-module start parameter. 
 

Quadcontrols module 

 
Github: https://github.com/third-person-
immersion/MAVProxy/blob/master/MAVProxy/modules/mavproxy_quadcontrols.py 
 
A module for the MAVProxy ground control station used by Quadcopter controller. The module 
adds commands to move a quadcopter in various ways.  
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Command line arguments 

 
USAGE:  
 
   ./regulator [--master] [--baudrate <int>] [--load-module] [--quadcopter] 
 
 
Where:  
 
   --master  
     Specifies which port (serial, USB or network address) the UAV uses for communication 
 
   --baudrate <int> 
     Sets the baudrate for 3DR Radio 
 
   --load-module 
     Load a specific module on startup 
 
   --quadcopter 
     Enables quadcopter controls 
 
 
   Quadcopter Control regulates a Quadcopter using MAVProxy with help of a 3D vector containing the 
current relative location to the user. 
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Appendix B - Test Results 
 

I. Latency Test Data 
 
Test data measuring the latency of setup. In total, 6 tests were performed to measure the delay 
of different parts of the system to find the cause of delay. 

Test Data 

 
Test1 (Camera to grabber, using cam-share and read) 

# Display Camera Delay Deviation 
1 485344 485163 181 9,4 
2 482915 482702 213 22,6 
3 470711 470529 182 8,4 
4 466370 466188 182 8,4 
5 462361 462178 183 7,4 
6 460567 460385 182 8,4 
7 456827 456645 182 8,4 
8 455249 455065 184 6,4 
9 454096 453883 213 22,6 

10 407734 407532 202 11,6 
  Average: 190,4 11,36 

 
Test2 (Camera to grabber, using cam-share and Oculus Distortion) 

# Display Camera Delay Deviation 
1 6732 6519 213 22,2 
2 7173 6900 273 37,8 
3 6922 6684 238 2,8 
4 5244 4999 245 9,8 
5 8171 7933 238 2,8 
6 7100 6893 207 28,2 
7 5727 5484 243 7,8 
8 5906 5677 229 6,2 
9 1450 1201 249 13,8 

10 4344 4127 217 18,2 
  Average: 235,2 14,96 
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Test3 (Camera to grabber wirelessly, using cam-share and read) 

# Display Camera Delay Deviation 
1 52502 52290 212 3,7 
2 49462 49280 182 26,3 
3 43848 43636 212 3,7 
4 41270 41057 213 4,7 
5 28164 27932 232 23,7 
6 19414 19203 211 2,7 
7 13365 13182 183 25,3 
8 11326 11143 183 25,3 
9 9077 8833 244 35,7 

10 4304 4093 211 2,7 
  Average: 208,3 15,38 

 
Test4 Camera to grabber wirelessly, using cam-share and Oculus Distortion 

# Display Camera Delay Deviation 
1 9046 8835 211 6,1 
2 5234 5050 184 20,9 
3 2728 2541 187 17,9 
4 5938 5724 214 9,1 
5 3870 3622 248 43,1 
6 1398 1186 212 7,1 
7 8567 8382 185 19,9 
8 4298 4083 215 10,1 
9 1554 1370 184 20,9 

10 4782 4573 209 4,1 
  Average: 204,9 15,92 

 
Test5 (Camera to TV) 

# Display Camera Delay Deviation 
1 78019 77836 183 15,6 
2 78688 78536 152 15,4 
3 78840 78658 182 14,6 
4 78962 78780 182 14,6 
5 79448 79296 152 15,4 
6 79690 79538 152 15,4 
7 79755 79600 155 12,4 
8 79811 79659 152 15,4 
9 79963 79750 213 45,6 

10 813 662 151 16,4 
  Average: 167,4 18,08 
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Test6 (Camera to TV wirelessly) 

# Display Camera Delay Deviation 
1 42852 42700 152 12,7 
2 42548 42395 153 11,7 
3 42245 42061 184 19,3 
4 41788 41606 182 17,3 
5 41486 41304 182 17,3 
6 38633 38480 153 11,7 
7 43277 43124 153 11,7 
8 37632 37480 152 12,7 
9 37208 37025 183 18,3 

10 29383 29230 153 11,7 
  Average: 164,7 14,44 

 
 
 

Summary 

 
 

Test Devices and software Delay Deviation 
1 Camera to grabber, using cam-share and read 190,4 11,36 
2 Camera to grabber, using cam-share and Oculus Distortion 235,2 15,36 
3 Camera to grabber wirelessly, using cam-share and read 208,3 15,38 

4 
Camera to grabber wirelessly, using cam-share and Oculus 
Distortion 204,9 16,32 

5 Camera to TV 167,4 18,08 
6 Camera to TV wirelessly 164,7 14,44 
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II. Quadcopter Speed Test 
 
 

Test1 Still Standing Start (time to travel 20 meters) 
# Time[s] 
1 2,6 
2 3,1 
3 2,5 
4 2,4 
 Speed[m/s] 

Min Speed 6,45 
Max Speed 8,33 

Average Speed 7,55 
Median Speed 8,16 

 
 

Test2 Flying start (time to travel 20 meters) 
# Time[s] 
1 1,2 
2 1,5 
3 1,2 
4 - 
 Speed[m/s] 

Min Speed 13,33 
Max Speed 16,67 

Average Speed 15,38 
Median Speed 16,67 
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Appendix C - Hardware 
 
 

I. Quadcopter 
 

IMU AutoPilot ArduPilot Mega (APM 2.6) 

Frame Flamewheel F450 

Landing Gear DJI F450 Flamewheel Landing Gear 

Motors 4x DJI 2212 Brushless 920 kV motor  

Speed Controllers 4x DJI 30A Opto ESC 

Height Sensor Maxbotix HRLV-EZ4 

Radio Set 3DR Radio Set 433 Mhz 

Remote controller and 
reciever 

WFly WFT07 2.4 GHz 7-kanaler, incl receiver 

Gimbal DJI Phantom Brushless Gimbal w/ Simple BGC 

Camera GoPro Hero 3 White 

Video Transmitter/Reciever AH-5.8 GHz 200 mW 

Battery Gravity 5500 mAh 3S 30-40 C LiPo 

Charger EV-Peak V6AC 50 W Multi charger 230 V/12 V 
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AutoPilot - ArduPilot Mega (APM) 2.6 
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II. Oculus Rift 

 

III. Remote Controller 

 



 

17 

IV. Radio Receiver 

 

V. Charger 

 
 


