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Fast and Accurate Analysis of Reflector Antennas

with Phased Array Feeds including Multiple

Reflections between Feed and Reflector
O. A. Iupikov, Student Member, IEEE, R. Maaskant, Senior Member, IEEE, M. V. Ivashina, Senior

Member, IEEE, A. Young, Member, IEEE, and P. S. Kildal, Fellow, IEEE

Abstract—Several electrically large Phased Array Feed (PAF)
reflector systems are modeled to examine the mechanism of mul-
tiple reflections between parabolic reflectors and low- and high-
scattering feeds giving rise to frequency-dependent patterns and
impedance ripples. The PAF current is expanded in physics-based
macro domain basis functions (CBFs), while the reflector employs
the Physical Optics (PO) equivalent current. The reflector-feed
coupling is systematically accounted for through a multiscattering
Jacobi approach. An FFT expands the reflector radiated field
in only a few plane waves, and the reflector PO current is
computed rapidly through a near-field interpolation technique.
The FEKO software is used for several cross validations, and
the convergence properties of the hybrid method are studied
for several representative examples showing excellent numerical
performance. The measured and simulated results for a 121-
element Vivaldi PAF, which is installed on the Westerbork
Synthesis Radio Telescope, are in very good agreement.

Index Terms—phased array feeds, radio astronomy, method of
moments, characteristic basis function method, physical optics.

I. INTRODUCTION

FOCAL plane arrays can be used to form multiple reflector

beams covering a wide field-of-view (FoV) and large

bandwidth. Among these feeds, one can distinguish between

a cluster of horns yielding one beam per feed [1], [2], and

the more densely packed beamforming array antennas com-

monly referred to as Phased Array Feeds (PAFs) capable of

providing a continuous FoV of simultaneous beams. Examples

that benefit from these technologies are radars and terrestrial

communications; while since recently, PAFs have also been

developed for astronomical and geoscientific instruments, as

well as for commercial satellite communication terminals [3]–

[6]. Thanks to their electronic beamforming capabilities, these

new systems potentially enable much faster studies of the

Earth and Space than currently possible and are an attractive

alternative to bulky mechanically beam steered antennas.
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Fig. 1. Reflector antenna and a Phased Array Feed (PAF) system.

The characterization of feeds in unblocked reflectors and

on-axis beams can be handled by the traditional spillover,

illumination, polarization and phase subefficiency factors de-

fined for rotationally symmetric reflectors in [7], and be ex-

tended to include excitation-dependent decoupling efficiencies

of PAFs [8], [9]. The present paper investigates the effects

of aperture blockage and multiple reflections on the system

performance in a more generic fashion than in [10] and [11]

for rotationally symmetric antennas.

An accurate analysis of these PAF systems, which include

an array of many closely-spaced antenna elements and an

electrically large reflector (see e.g. Fig. 1), requires a modeling

approach for the entire feed-reflector structure accounting

for the array mutual coupling and the multiple scattering

effects between the reflector and the feed, whose aperture

diameter can be in the order of several wavelengths for multi-

beam applications [12], [13]. These effects give rise to a

ripple in the antenna impedance and radiation characteristics

over frequency leading to impedance mismatch effects and

a periodically perturbed beam shape [14]–[18]. The level of

these variations depends on several factors related to the

reflector geometry and feed design, among which the blockage

area of the reflector aperture caused by the feed, the antenna

array scattering characteristics [19, Sec. 2.2], the weighting

coefficients of the beamforming network, and the presence of

the (metal) structure in the vicinity of the feed [20]. In order

to solve these challenging problems, a method is needed that

is fast and physically-insightful for understanding how the EM

coupling mechanism between the PAF and reflector antenna
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impacts the overall system performance.

During the last decades, a number of analytical and numer-

ical techniques have been developed to model feed-reflector

interaction effects. For example, in [10] the multiscattered field

is approximated by a geometric series of on-axis plane wave

(PW) field scattered by the antenna feed due to an incident

PW at each iteration, where the amplitudes of these PWs

are expressed analytically for a given reflector geometry. This

method is very fast and insightful, while MoM-level accuracy

can be achieved for single-horn feeds, but not for array feeds

as demonstrated in this paper. An alternative approach is

to use more versatile, though more time-consuming, hybrid

numerical methods combining Physical Optics or Gaussian

beams for the analysis of reflectors with MoM and/or Mode

Matching techniques for horn feeds [21], [22]. The recent

article [23] has introduced the PO/Generalized-Scattering-

Matrix approach for solving multiple domain problems, and

has shown its application to a cluster of a few horns. This

approach is generic and accurate, but may require the filling of

a large scattering matrix for electrically large PAFs and/or mul-

tifrequency front-ends (MFFEs) that often have an extended

metal structure [17]. Other hybrid methods, which are not

specific for solving the present type of problems, make use of

field transformations, field operators, multilevel fast multipole

approaches (MLFMA), and matrix modifications [24]–[27].

Recently, a Krylov subspace iterative method has been

combined with an MBF-PO approach for solving feed-reflector

problems [28], and complementary to this, an iteration-free

CBFM-PO approach has been presented by Hay, where a

modified reduced MoM matrix for the array feed is constructed

by directly accounting for the reflector [16].

Among the above methods, the iterative methods have

shown to be most useful for gaining insight in the feed-

reflector multiscattering effects. In the present paper, we

therefore employ the Jacobi iterative approach as a simplified

version of the full orthogonalization method (FOM [28]), and

combine it with an CBFM-PO approach enhanced by field

expansion (see also [18]) and interpolation techniques. The

method is shown to converge within a few iterations.

The paper is arranged as follows: first, the numerical

approach is formulated and then validated through a few

representative examples, after which the field expansion and

interpolation techniques are described along with a numerical

accuracy and efficiency assessment; second, the performance

and the multiscattering mechanism between electrically large

reflector antennas and several fundamentally different types of

feeds, including single-pixel horn feeds as in practical MFFEs,

and 121-element PAFs of dipoles and tapered slot Vivaldi

antennas are studied for different port termination schemes.

The predicted system sensitivity is in very good agreement

with the measurements of a single horn and Vivaldi PAF

system feeding one of the 25-m Westerbork Synthesis Radio

Telescope reflector antennas [29].

II. ITERATIVE CBFM-PO FORMULATION

The below proposed iterative CBFM-PO approach is based

upon the Jacobi method for solving a system of linear equa-

tions in an iterative manner [30], [31].

Suppose the Method of Moments (MoM) matrix equation

of the entire antenna system comprised of both the parabolic

reflector and the antenna feed is given by

ZI = V, (1)

where the elements of the K ×K MoM matrix Z and K × 1
excitation vector V are computed as

Zpq = 〈fp,E
s(fq)〉, Vp = −〈fp,E

i〉 (2)

for p, q = 1, 2, . . .K . Furthermore, fp,q are the K basis/test

functions for the current/field (Galerkin method); Ei,s is the in-

cident/scattered electric field, and 〈a, b〉 =
∫∫

Sa∩Sb
[a · b] dS

is the symmetric product, where Sa and Sb are the supports

of the vector functions a and b, respectively. The expansion

coefficient vector is given by I = [I1, . . . IK ]T , where T
denotes the transposition operator.

To allow for a multiscattering analysis between the feed and

reflector, the MoM matrix equation in (1) is first partitioned

into matrix blocks as
[

Z
rr

Z
rf

Z
fr

Z
ff

] [

I
r

I
f

]

=

[

V
r

V
f

]

(3)

where Z
rr

and Z
ff

are the MoM matrix self-blocks of the

reflector and feed, respectively1, and V
r and V

f are the

corresponding excitation vectors. The matrix Z
rf = (Zfr)T

contains the mutual reactions involving the basis functions

on the feed and reflector. The unknown current expansion

coefficient vectors are denoted by I
r and I

f. Next, Eq. (3) is

written as
([

Z
rr

0

0 Z
ff

]

+

[

0 Z
rf

Z
fr

0

])[

I
r

I
f

]

=

[

V
r

V
f

]

. (4)

Upon multiplying both sides by [Zrr, 0; 0,Zff]
−1

, the final

solution for the combined problem can be obtained as

[

I
r

I
f

]

=

(

[

1 0

0 1

]

+

[

Z
rr

0

0 Z
ff

]−1 [
0 Z

rf

Z
fr

0

]

)−1
[

I
r
0

I
f
0

]

. (5)

where 1 is the identity matrix, and where the initial expansion

coefficient vector for the reflector current I
r
0 = (Zrr)

−1
V

r,

while for the feed current I
f
0 = (Zff)

−1
V

f. These initial

currents are obtained by solving the reflector and antenna feed

problems in isolation. It is observed that Eq. (5) is of the form

I =
(

1+ (Zd)−1
Z

o
)−1

I0 (6)

where

Z
d =

[

Z
rr

0

0 Z
ff

]

and Z
o =

[

0 Z
rf

Z
fr

0

]

. (7)

Upon using the matrix equivalent of the scalar infinite

geometric series
∑

∞

n=0 r
n = (1 − r)

−1
, where |r| < 1 for

the series to converge, Eq. (6) can be rewritten in terms of the

infinite series

I =

∞
∑

n=0

(

−(Zd)−1
Z

o
)n

I0 (8)

1Here Z
ff includes the effect of the antenna port terminations [32].
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where the spectral radius ρ((Zd)−1Z
o)

def
= max

i
(|λi|) of the

matrix (Zd)−1Z
o with eigenvalues {λi} must be smaller than

unity for the series to converge. The physical multiscattering

interpretation of the geometric series in (8) is apparent when

expanding it as:

I = I0 − (Zd)−1
Z

o
I0 +

(

(Zd)−1
Z

o
)2

I0 + . . . =
∞
∑

n=0

In (9)

where the last summation is supposed to add up successively

smaller contributions for the currents on the reflector and

antenna feed in order to converge. It is conjectured that

ρ((Zd)−1Z
o) ≪ 1 for the practical reflector antenna systems

that we consider, since most of the energy is radiated out

after each iteration and where the feeds have relatively small

aperture areas (weak reflector-feed coupling), so that the sum

converges within a few iterations (cf. Sec. IV-A and IV-C).

Finally, using (7), the infinite series summation in Eq. (9) can

be written in the cross-coupled recursive scheme

Reflector

I
r =

∞
∑

n=0

I
r
n (10a)

I
r
n+1 = −(Zrr)

−1
Z

rf
I
f
n (10b)

I
r
0 = (Zrr)

−1
V

r
0 (10c)

Feed

I
f =

∞
∑

n=0

I
f
n (11a)

I
f
n+1 = −(Zff)

−1
Z

fr
I
r
n (11b)

I
f
0 = (Zff)

−1
V

f
0 (11c)

where V
r
0 = V

r and V
f
0 = V

f are the initial excitation voltage

vectors of the reflector and the feed, respectively (in transmit

situation V
r
0 = 0).

The cross-coupled recursive scheme as formulated by

Eqs. (10) and (11) is exemplified in Fig. 2 as a five-step

procedure, in which the problem is first solved in isolation

to obtain I
r
0 and I

f
0. Afterwards, the feed current If0 is used to

induce the reflector current I
r
1, which is then added up to the

initial reflector current. Likewise, the initial reflector current

I
r
0 is used to induce the feed current If1, which is then added

to the initial feed current, and so forth. It is pointed out that

this recursive scheme can be used for any pair of radiating

and/or scattering objects, provided that the system is weakly

coupled – due to radiation and/or dissipation losses – in order

to obtain a convergent solution.

Rather than computing the reflector and feed currents

through the large-size MoM matrix blocks Z
rr, Zrf, Zfr, and

Z
ff
, additional computational and memory efficient techniques

can be used for the rapid computation of these currents at

each iteration; we propose to employ the Physical Optics

(PO) current on the reflector and invoke the Characteristic

Basis Function Method (CBFM, [33]) as a MoM enhancement

technique for computing the current on the feed.

Note that (11b) represents the MoM matrix solution I
f
n+1 =

(Zff)
−1

V
f
n, where V

f
n = −Z

fr
I
r
n is the voltage excitation

vector of the feed at iteration n. Hence, one can obviate the

construction of the large matrix Z
fr

by directly computing V
f
n.

This is done through testing the incident electric field Ei,f
n (r)

Step (i)

Zload

V

I
f
0

Transmit case:

I
r
0 = 0

Step (ii)

I
r
1

Step (iii)

I
f
1

Step (iv)

I
r
2

Step (v)
Zload

V

I
f = I

f
0 + I

f
1 + I

f
2 + . . .

I
r = I

r
0 + I

r
1 + I

r
2 + . . .

Fig. 2. Illustration of the cross-coupled iterative scheme for multiscattering
analysis of the feed-reflector interaction effects, as formulated by Eqs. (10)
and (11): (i) The antenna feed radiates in the absence of reflector; (ii) the
radiated field from feed scatters from the reflector; (iii) the scattered reflector
field is incident on the terminated feed and re-scatters; (iv) the re-scattered
field from the feed is incident on the reflector; etc. (v) the final solution for
the current is the sum of the induced currents.

by the P basis functions {f f
p}

P
p=1 supported by the feed, i.e.,

I
f
n+1 = −

(

Z
ff
)−1[

〈Ei,f
n ,f

f
1〉, 〈E

i,f
n ,f

f
2〉, . . . , 〈E

i,f
n ,f

f
P 〉
]T

(12)

where Ei,f
n is taken equal to the E-field radiated by the PO

current Jr
n on the reflector, which is directly known through

the reflector incident H-field H
i,r
n , so that there is no need to

compute the basis function coefficients I
r
n explicitly.

For electrically small triangular cells on the reflector surface

(with edge length < 0.2λ), the smoothly-varying PO current

can be considered constant over each cell, so that the electric

field produced by the qth reflector triangle at the pth obser-

vation point, Ei,f
n,pq , can be computed through the near-field

formula for an incremental electric current source, i.e. [34, p.

102],

Ei,f
n,pq =

−jηk

4π
[C1;pqℓn,q − C2;pq(ℓn,q · r̂pq)r̂pq]

e−jkrpq

rpq
(13)
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where

C1;pq = 1 +
1

jkrpq
−

1

(krpq)2
, C2;pq = 3C1;pq − 2, (14)

and where the dipole moment is computed as ℓn,q = J r
n,qAq ,

with Aq the area of qth reflector triangle (q = 1, 2, . . . , Q).

Hence, by using the expression for the PO current for J r
n,q [35,

p. 343], we find that

ℓn,q = 2Aqn̂q ×H i,r
n (r

r
q), (15)

where rr
q ∈ S is the centroid of the qth triangle on the

reflector surface S (cf. Fig. 3); n̂q is the normal to the

reflector surface of the qth triangle, and H i,r
n is the incident

H-field generated by the feed current at iteration n. Using (15)

and (13), the incident E-field in (12) is readily computed as

Ei,f
n,p =

∑Q

q=1 E
i,f
n,pq. The computation of (11b) can be further

accelerated as explained in Sec. III-A.

Once V
f
n is known, the current on the feed I

f
n+1 at the next

iteration can be computed through solving the linear system of

equations Zff
I
f
n+1 = V

f
n. For complex-shaped and electrically

large antennas, such as the wideband tapered slot antenna array

feeds [13], it becomes necessary to use both memory- and

time-efficient methods, such as the CBFM. The CBFM solves

the current Ifn+1 through the following set of equations:







I
f
n+1 = J

CBF
I
CBF
n+1

I
CBF
n+1 = Z

CBF
V

CBF
n

V
CBF
n = (JCBF)TVf

n

, (16)

where Z
CBF = (JCBF)TZff

J
CBF is the CBFM-reduced MoM

matrix of the feed; J
CBF = [JCBF

1 |JCBF
2 | . . . |JCBF

L ] is the

column-augmented matrix of Characteristic Basis Functions

(CBFs), i.e., JCBF
l is the set of CBFs (pre-defined expansion

coefficient vectors) on the lth macro domain of the feed, and

l = 1 . . . L, where L is number of macro domains on the

feed. Specific details on the generation of CBFs can be found

in [33], where the feed is analyzed as a phased array antenna

in the absence of the reflector. Also, it is worth pointing out

that the computation of Z
CBF (i.e. the CBF coupling terms)

is performed in a time-efficient manner through utilizing the

Adaptive Cross Approximation (ACA) algorithm [36].

III. ACCELERATION OF THE FIELD COMPUTATIONS

The above-described iterative CBFM-PO approach requires

the field to be computed at numerous points on both the feed

and the reflector surfaces, thereby rendering the field computa-

tions inefficient, in particular for complex-shaped electrically

large feed antennas employing hundreds of thousands of

low-level basis functions. Similarly, one has to cope with

a computational burden when calculating the PO equivalent

current on electrically large reflectors.

However, it has been shown that the PO radiated field for

on-axis beams can be approximated rather accurately through

a single plane wave (PW) field [10], [37]. This observation

opts for employing a Plane Wave Spectrum (PWS) to speed

up the field computations [38]–[40]. In fact, the on-axis PW

corresponds to the Geometrical Optics (GO) contribution of

the PO-radiated field (originating from the stationary phase

point), as will be demonstrated in Sec. III-A, while the higher-

order PWs are needed to model the edge-diffracted fields from

the rim of the reflector, which are associated with the end-point

contributions of the PO current in the radiation integral.

Furthermore, one can accelerate the computation of the PO

current itself by using an interpolation technique of the near-

field antenna feed pattern as detailed below.

A. Plane Wave Spectrum Expansion – FFT

With reference to Fig. 3, a grid of sampling points in the

xy-plane P in front of the feed at z = 0 is chosen for the

expansion of the PO radiated field in terms of a PWS. Each

PW propagates to a specific observation point r on the feed

where the field Ei,f is tested. This process of field expansion

and PW propagation is realized through the application of the

truncated Fourier Transform pair [38]

A(kx, ky) =
1

2π

ymax
∫

−ymax

xmax
∫

−xmax

Ei,f(x, y, z = 0)ej(kxx+kyy) dx dy

(17a)

Ei,f(r) =
1

2π

kmax
x
∫

−kmax
x

kmax
y

∫

−kmax
y

A(kx, ky)e
−jkzze−j(kxx+kyy) dkx dky

(17b)

where

kz =







√

k2 − k2x − k2y if k2 > k2x − k2y

−j
√

k2x − k2y − k2 otherwise.
, (18)

and where the spectrum of PWs is limited to only those that are

incident on the feed from directions within an angle subtended

by the reflector and seen from the center of the plane P (see

Fig. 3); hence, the maximum wavenumbers kmax
x and kmax

y

d

n̂

P

xf
max

xmax

S

x̂
ŷ

ẑ

kmax
x x̂

r

∆x

∆y
z = 0

E
i,f

Fig. 3. The FFT-enhanced PWS expansion method for the fast computation
of the feed current due to the E-field from the reflector. Firstly, the incident
field E

i,f is sampled in the xy plane P in front of the feed in order to obtain
the sampled PWS A(kx, ky); Secondly, each spectral PW propagates to an

observation point r on the feed where E
i,f is tested to compute the induced

feed current.
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in (17b) are chosen to be equal to

kmax
x = kmax

y = k sin



tan−1





8
(

F
D

)

16
(

F
D

)2
[

1−
(

F
d

)−1
]

− 1









(19)

where k = 2π/λ is the free-space wavenumber; F and D
are the focal distance and diameter of the parabolic reflector,

respectively; and d is the distance between the plane P and the

geometrical focal plane of the reflector. Since the maximum

spectral components kmax
x and kmax

y are known, the minimum

step size ∆x and ∆y for the spatial sampling of the field is

found from Nyquist’s sampling theorem:

∆x = π/kmax
x , ∆y = π/kmax

y . (20)

Furthermore, if (17) is evaluated through a Fast Fourier Trans-

form (FFT), the discretely sampled field functions are periodic

in both the spatial and frequency domains. To minimize the

field artifacts that are associated with this periodicity, xmax and

ymax must be chosen sufficiently large, that is, at least equal

to the maximum size xf
max and yf

max of the feed coordinates.

The examination of how the error of the feed current depends

on xmax and ymax is presented in Sec. IV-B.

As a result, the total number of sampling points in the x
and y directions are Nx = 2xmax/∆x and Ny = 2ymax/∆y,

respectively, and the spectral spacings and the spatial extents

are related through ∆kx = 2kmax
x /Nx = π/xmax and ∆ky =

2kmax
y /Ny = π/ymax.

B. Near-Field Interpolation

While the previous section describes how the PWS-

expanded E-field from the reflector accelerates the compu-

tation of the induced feed current, this section explains how

the reflector incident H-field can be computed for the rapid

determination of the induced PO current. For this purpose,

the radiated H-field from the feed is first computed at a

coarse grid on the reflector surface (white circles in Fig. 4),

after which the field at each triangle is determined on the

reflector (yellow square markers) through an interpolation

technique. This interpolation technique de-embeds the initially

sampled field to a reference sphere with radius R whose origin

coincides with the phase center of the feed to assure that

the phase of the de-embedded field will be slowly varying.

Consequently, relatively few sampling points are required for

the field interpolation, after which the interpolated fields are

propagated back to the reflector.

In summary, and with reference to Fig. 4, the H-field in-

terpolation algorithm for determining the reflector PO current

1) Defines a grid on the reflector surface (white circles) for

computing the H-field.

2) De-embeds the H-field to a reference sphere around the

feed phase center (green points):

Hsph
m = Hmdmejkdm , (21)

where dm is the distance between the reflector surface

and the sphere of radius R along the line connecting the

dm

R

initial field sampling points

de-embedded field points

interpolation points

final field testing points

feed phase center

Hm

H sph
m

Hsph
q

dq

H i,r(rr
q)

∆θ

Fig. 4. The near-field interpolation technique for the rapid determination of
the induced PO current on the reflector.

mth sample point on the reflector and the feed phase

center.

3) Computes the fields on the sphere in the same directions

as the reflector triangle centroids are observed (blue

square markers) through interpolating the fields at the

adjacent (green) points.

4) Propagates the field to the reflector surface; that is, at

the qth triangle, the H-field

H i,r(rr
q) = H sph

q d−1
q e−jkdq . (22)

5) Computes the reflector PO current by using (15).

Sec. IV-B examines the error in the reflector current as

a function of the sample grid density, in addition to the

improvement in computation time that this method offers.

IV. NUMERICAL RESULTS

In this section, we start with the validation of the pro-

posed iterative MoM-PO approach for a relatively strongly

coupled feed-reflector system, comprised of a small reflector

(D = 14λ) fed by a dipole antenna over a ground plane for

which we examine the convergence rate of the solution for

the antenna input impedance. Furthermore, we validate the

frequency-dependent radiation characteristics of a dipole array

feed through the commercially available software FEKO [41].

Afterwards, a relative error analysis of the antenna transmit

(a) (b)

(c) (d)

Fig. 5. Considered feed geometries (in addition to the dipole feed with PEC
ground plane): (a) a classical pyramidal horn with aperture length ∼1λ; (b) the
same horn but with extended ground plane (∼3.7λ), where the ground plane
may model the presence of a large feed cabin; (c) an antenna array consisting
of 121 0.45λ-dipoles above a ground plane of the same size; (d) the same
array, but with the dipoles replaced by wideband tapered slot Vivaldi antennas.
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characteristics is performed when the acceleration techniques

in Sec. III are utilized. Finally, a more practical study is carried

out, where the impact of the feed-reflector coupling on the

performance of the antenna reflector system for different types

of low- and high-scattering feeds is analyzed and discussed.

For the latter study, two parabolic reflectors with diameters

D = 38λ and 118λ are considered, in conjunction with the

four types of feeds that are shown in Fig. 5. It is shown that

the measured and simulated results for a 121-element Vivaldi

PAF, which is installed on the Westerbork Synthesis Radio

Telescope, are in very good agreement.

The MoM computations have been carried out on a 64-

bit openSUSE Linux server (kernel version: 2.6.37.6-0.20-

desktop), equipped with 144 GB of RAM and two quad-core

Intel(R) Xeon(R) E5640 CPUs, each operating at 2.67 GHz.

The FEKO Suite 6.0 EM solver runs on an Ubuntu Linux

server (kernel-release: 2.6.32-21-server), equipped with a Dual

Core AMD Opteron Processor 275 at 2.2 GHz with 16 GB of

RAM.

A. Validation of the Iterative Approach

For validating the implemented iterative MoM-PO ap-

proach, a relatively small reflector (D = 14λ, F/D = 0.35)

fed by a 0.5λ-dipole spaced 0.25λ above an 1λ × 1λ and

a 2λ × 2λ PEC ground plane has been simulated, both by

the proposed iterative and plain MoM approach. The dipole

reflection coefficient as a function of the iteration count is

shown in Fig. 6(a). Even though the feed-reflector coupling is

relatively large due to a relatively large blockage area of the

high-scattering feed, convergence of the impedance down to
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Fig. 6. The convergence of the feed radiation characteristics in the presence
of the reflector as a function of the number of Jacobi iterations, in terms of: (a)
the dipole input reflection coefficient, and; (b) the dipole illumination pattern
at 1 GHz (ground plane size is 2λ × 2λ). The convergence as a function of
the dipole load impedance is analyzed for a dipole antenna array feeding a
38λ reflector.

0.1% relative error level, measured as a change between the

last two iterations, is seen to occur within 5 and 9 iterations

for the 1λ× 1λ and 2λ× 2λ PEC ground planes, respectively.

This error ǫn at iteration n is computed as

ǫn =





√

∑

i

|Ini − In−1
i |2

/

√

∑

i

|Ini |
2



× 100%. (23)

The small residual error of order 1% is a result of the

PO-approximated reflector current. Fig. 6(b) shows how the
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(c)

Fig. 7. (a) The magnitude of the active reflection coefficient of the most
excited antenna array dipole element feeding a 38λ reflector as a function
of frequency, and; (b) reflector antenna radiation pattern, simulated in FEKO
(MLFMM) and using the described iterative CBFM-PO approach; (c) the
number of required iterations for reaching convergence (error in feed current
less than 0.5%). Interesting fact: the round marker indicates the impedance
that maximizes the decoupling efficiency (=power-matched case) when the
array feed is used as a broadside-scanned aperture array, which also happens
to coincide with the minimum number of iterations (=low multiscattering
effect).
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Fig. 8. (a) The relative error in induced feed currents [cf. (24)] as a function of the FFT sampling plane size P ; (b) the magnitude of the spatial frequency
spectrum |Aco(kx, ky)| (i.e. plane wave spectrum) for the 38λ reflector fed by the dipole array in case the FFT grid size is equal to size of the feed, and (c)
when it is eight times the feed size.

forward gain of the dipole illumination pattern changes due

to the feed-reflector coupling as the number of iterations

increases.

For cross-code validation purposes, a larger and more

complex 38λ reflector (F/D = 0.35) fed by an 121-dipole

array feed has been analyzed [cf. Fig. 5(c)], both by the

proposed iterative approach and the commercial FEKO soft-

ware. Fig. 7(a,b) demonstrates a good agreement between the

reflector antenna radiation patterns (includes the feed blockage

effect) and the magnitudes of the computed active reflection

coefficients as a function of frequency, where the frequency

interval ∆f of the oscillation period is consistent with the

electrical distance between the feed and the reflector vertex,

i.e., ∆f = c/2F . Here, the optimal port termination that max-

imizes the array decoupling efficiency [8] was found through

Matlab’s “fminsearch” unconstrained nonlinear optimization

routine (Nelder-Mead simplex direct search method) and was

found to be 147 + 45.6j Ω. Thus far, practical PAF antenna

elements have been optimized in phased array mode, broadside

scan, using periodic boundary conditions in EM simulation

software [42], hence, here too, the co-polarized elements of

the array feed are excited in-phase to determine the optimal

port loading. This optimal impedance is marked on Fig. 7(c)

(and Fig. 11), where its plot shows the number of iterations

– required to obtain an error in the dipole array feed current

between the two last iterations less than 0.5% – as a function of

the array loading. Note the interesting fact that the minimum

number of iterations (=lowest multiscattering effect) occurs

when the array is optimally loaded (=power matched), which

is in accordance with our expectations, and this applies even

though the antenna load impedance has been found for the

aperture-array-excited case.

B. Field Approximation Errors

Sec. III-A and III-B describe a field expansion and interpo-

lation technique for accelerating the feed-reflector interaction

computations, respectively. In this section, we analyze the re-

flector induced feed current when the field from the reflector is

expanded in terms of a truncated spectrum of plane waves, and

compute the error in the feed current relative to a direct “full-

wave” solution where the number of field modes radiated by

the reflector equals the number of reflector triangles (=number

of incremental dipole sources on the reflector). The distance

d between the feed and the sampling plane P (cf. Fig. 3)

has been chosen equal to 0.5λ in all PWS computations; in

fact, our study shows that the selection of d in the range of

0.1 . . .5λ has a negligible (< 0.7%) effect on the antenna

characteristics, such as the aperture efficiency, even when

the size of the plane P is kept the same. Both the relative

error of the feed induced PO-reflector current and how the

near-field interpolation grid density affects this error will be

analyzed afterwards. Furthermore, the errors in the feed and

reflector currents, as well as those in the gain of the antenna

reflector system and the input impedance of the feed, will be

summarized in a table.

The relative error between vector (or matrix) quantities

– such as between the current expansion coefficient vectors

I
approx and I

ref for the iterative CBFM-PO solution with and

without field approximations, respectively – is computed as

ǫ1 =





√

∑

i

|I ref
i − Iapprox

i |2
/

√

∑

i

|I ref
i |2



× 100%, (24)

while the relative error for scalar functions (antenna gain,

impedance characteristics, etc.), is computed as

ǫ2 =
(

|Aref −Aapprox|
/

|Aref|
)

× 100%. (25)

Fig. 8(a) illustrates the relative error in the feed surface

current as a function of the FFT sampling plane size when

the PWS is employed for expanding the reflector radiated

field (for PWS parameters see Sec. III-A), and when only

the dominant on-axis PW term is used. As expected, the error

decreases for an increasing sampling plane size, since more

spectral PW terms are taken into account while the effect of

the FFT-related periodic continuation of the spatial aperture

field decreases. Henceforth, we choose the sampling plane size

equal to that of the feed, for which the feed current error is

about −35 dB for all the considered feeds, while it represents a

good compromise from both a minimum number of sampling
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TABLE I
ERRORS DUE TO APPLYING THE FIELD APPROXIMATIONS, %

Feed surface current Reflector surface current Gain (on-axis) Gain (@−3 dB) Impedance

Reflector diameter D 38λ 118λ 38λ 118λ 38λ 118λ 38λ 118λ 38λ 118λ

Feed: Pyramidal horn

PWS approximation 0.09 0.02 0.11 0.03 0.09 0.03 0.07 0.02 0.16 0.04

NFI approximation 0.01 <0.01 0.06 0.06 0.05 0.04 0.01 0.02 0.01 <0.01

Both approximations 0.09 0.02 0.13 0.07 0.13 0.07 0.07 0.04 0.15 0.04

Feed: Pyramidal horn with extended ground plane

PWS approximation 0.28 0.02 0.41 0.02 0.06 0.01 0.09 0.01 0.44 0.04

NFI approximation 0.3 0.01 1.01 0.16 0.16 0.07 0.37 0.07 0.52 0.02

Both approximations 0.53 0.03 1.02 0.16 0.15 0.08 0.34 0.07 0.88 0.05

Feed: 121-element dual-polarized dipole array

PWS approximation 0.05 0.02 0.1 0.02 0.03 0.01 0.01 0.01 0.03 0.01

NFI approximation 0.02 0.01 0.21 0.20 0.09 0.07 0.12 0.13 0.02 0.01

Both approximations 0.06 0.02 0.23 0.21 0.10 0.07 0.13 0.14 0.05 0.02

TABLE II
TOTAL SIMULATION TIME (FOR D = 118λ REFLECTOR)

Horn Horn with ground plane Dipole array Vivaldi array

MoM-PO, no approximations 70 min (100%) 192 min (100%) 801 min (100%) 3906 min (100%)

PWS approximation 27 min (39.0%) 63 min (32.9%) 190 min (23.8%) 1312 min (33.6%)

NFI approximation 57 min (81.3%) 152 min (79.4%) 548 min (68.5%) 2108 min (54.0%)

Both approximations 13 min (19.2%) 17 min (9.0%) 16 min (2.0%) 33 min (0.9%)

points and accuracy point of view. Conversely, if only the

dominant on-axis PW term is used to approximate the reflector

field, the error increases when the plane P becomes larger.

This is due to the tapering of the reflector scattered field which

becomes more pronounced when the plane size P increases, so

that the PW amplitude A(kx, ky) is underestimated when using

the field averaging in (17a) for kx = ky = 0, as opposed to the

direct on-axis point sampling method that has been presented

in [10].

Note that the magnitude of the co-polarized spatial fre-

quency spectrum |Aco(kx, ky)| in Figs. 8(b) and (c) exhibit

several interesting features; as expected, the dominant spec-

tral component corresponds to the on-axis PW, for which

kx = ky = 0, while the second strongest set of PWs originate

from the rim of the reflector, as observed by the spectral ring

structure for which k2x + k2y = (kmax
x )2 = (kmax

y )2.

Regarding the interpolation method for the radiated near-

fields of the feed (Sec. III-B), Figs. 9(a) and (b) show that the

 

 

Horn with ext. ground plane Dipole array Horn

0 2 4 6 8 10
−80

−60

−40

−20

0

∆θ, [deg]

E
rr

o
r,

 [
d

B
]

 

 

∆φ = 2.5 deg

(a)

0 2 4 6 8 10
−80

−60

−40

−20

0

∆φ, [deg]

E
rr

o
r,

 [
d
B

]

 

 

∆θ = 2.5 deg

(b)

Fig. 9. The interpolation error in the 38λ reflector current as a function of
(a) the sampling step ∆θ, and (b) the sampling step ∆φ of the near fields of
the feed.

error in the resulting induced reflector current depends on the

angular step size ∆θ and ∆φ of the initial field sampling grid

(before interpolation). As expected, the error increases when

the sampling grid coarsens. Furthermore, the error is larger

for larger feeds, especially for high-scattering ones, for which

the scattered fields (i.e. 2nd iteration and further) vary more

rapidly than for smaller low-scattering antennas for which a

coarser grid can be applied.

Table I summarizes the relative errors in both the currents

and relevant antenna characteristics, while Table II shows how

the simulation time of a “plain” iterative CBFM-PO (or MoM-

PO) approach reduces when the field approximations of Sec. II

are used. Note that the PWS approximation leads to a small

relative error in the surface current of the high-scattering feed

for the 38λ reflector, i.e. 0.28%, while if only a single on-

axis PW is used, the relative error is found to be two orders

larger [37]. It is also observed that, when applying the field

approximations for both the reflector and feed, the error in the

considered antenna characteristics remains less than 1%, while

the computational speed advantage is significant, i.e., a factor

5 to 100, depending on the reflector size and feed complexity.

C. Feed-Reflector Antenna System Performance Study

The performance of several reflectors fed by low- and

high-scattering feeds is studied in detail in this section. It

is shown how the frequency ripple in the antenna radiation

characteristics is formed and how the feed termination affects

the magnitude of this ripple. The system performance and pros

and cons of the different feeds are summarized in a table and

discussed from a multiscattering point of view.

Fig. 10 illustrates the level of the total (including feed-

reflector interaction) and the scattered field distributions in the

aperture of a 38λ reflector fed by the horn with an extended
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Fig. 10. Distribution of the field in the aperture of a 38λ reflector fed by:
(a) horn with extended ground plane; (b) dipole array, and; (c) Vivaldi array.
Left and right columns correspond to the short-circuited (SC) and average
power-matched (PM) feeds, respectively.

ground plane, the dipole array, and the Vivaldi array, for

both the short-circuited (left column) and the power-matched

(right column) loading schemes. Although the short-circuited

case is not very practical, it does showcase how two very

different loading scenarios affect the aperture field variation,

and how it depends on the type of the feed. The two solid lines

in each sub-figure show the extrema that the aperture field

distribution attains within one period of the ripple’s frequency

interval ∆f = c/2F . The dashed lines show the aperture

field due to the scattered field of the feeds. Clearly, for array

feeds, the aperture field distribution is strongly dependent on

the antenna port termination; the re-scattered fields from the

array feeds affect the aperture field distribution significantly

when the antenna ports are short-circuited, as opposed to

the power-matched array feeds, whose scattered fields are

significantly weaker. Note the differences in results for the

horn with extended ground plane, for which the dominant

part of the scattered field is primarily attributed to the metallic

ground plane, while the impedance mismatch of the horn itself

has only a minor effect (i.e. the residual component of the

Radar Cross Section is large, but the antenna component is

small [19]).

From the above analysis, one concludes that more Jacobi

iterations are required to reach convergence for feeds that are

poorly impedance matched as they tend to scatter a larger por-

tion of the incident field (stronger multiscattering effects). It is

therefore likely that the number of Jacobi iterations is closely

related to the magnitude of the ripple on the antenna radiation

characteristics; this fact is demonstrated in Fig. 11, which
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Fig. 11. Effect of the antenna port loading on (a) the aperture efficiency
without feed-reflector coupling, and (b) aperture efficiency ripple when the
feed-reflector coupling is present; (c),(d) the same for the mismatch efficiency.
A 38λ reflector is fed by the 121-element dipole array. The round marker
denotes the optimal load impedance that maximizes the decoupling efficiency
(cf. Sec. IV-A).

shows the aperture efficiency, mismatch factor [8], [43] and

their ripples as a function of the port termination impedance.

The ripple Rν for a frequency-dependent parameter ν(f) is

herein defined as

Rν =
maxf [∆ν(f)]−minf [∆ν(f)]

meanf [νwith coup(f)]
× 100%, (26)

where ∆ν(f) = νwith coup(f)−νno coup(f) is the difference be-

tween the considered parameter ν, with and without account-

ing for the feed-reflector coupling. The considered frequency

band is herein taken relatively narrow as it corresponds to

one period of the ripple only, i.e., ∆f = c/2F . We further

point out that these results apply to a feed that is excited at

all its ports such as to realize a maximum gain pattern of the

combined feed-reflector system, hereafter referred to as the

Conjugate Field Match (CFM) beamformer. Furthermore, to

be able to compare the results with the commonly employed

uniformly excited array case analyzed above, the CFM exci-

tations are fixed and determined only once for the optimal

antenna port loading, i.e., pertaining to the uniformly excited

array.

One concludes from Fig. 11(a) that the aperture efficiency is

a function of the antenna port loading, and that the impedance

for which ηap attains a maximum is close to the optimal power-

match impedance found in Sec. IV-A for the uniformly excited

array case. This apparently even holds in the absence of the

feed-reflector interactions, in which case the array illumination

pattern has changed slightly due to perturbed array embedded

element patterns while the CFM excitation coefficients remain

unaltered. In Sec. IV-A we maximized the decoupling effi-

ciency to find the optimal port loading. For the present CFM

all-excited array case the decoupling efficiency reduces to the
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TABLE III
MAXIMUM PARAMETER DIFFERENCE DUE TO FEED-REFLECTOR COUPLING EFFECT W.R.T. THE CASES WHEN NO COUPLING IS TAKEN IN ACCOUNT, %

Feed surface current Reflector surface current Gain (on-axis) Gain (@−3 dB) Impedance

Reflector diameter D 38λ 118λ 38λ 118λ 38λ 118λ 38λ 118λ 38λ 118λ

Pyramidal horn 7.9 2.5 4.2 1.3 2.0 0.6 4.0 2.2 15.1 4.7

Horn with ext. ground plane 23.2 3.5 65.1 11.9 19.2 3.4 29.4 3.6 43.4 6.1

Dipole array 13.8 4.2 3.2 0.8 1.8 0.3 3.7 0.7 5.8 1.7

Vivaldi array 14.1 4.1 3.4 1.0 1.9 0.3 3.4 0.4 4.6 1.4

TABLE IV
SYSTEM CHARACTERISTICS (AND THEIR RIPPLE) OVER FREQUENCY BAND

38λ reflector 118λ reflector

Horn Horn + gnd Dipole array Vivaldi array Horn Horn + gnd Dipole array Vivaldi array

ηill 0.71 (7.2%) 0.67 (34.1%) 0.86 (1.0%) 0.92 (0.6%) 0.71 (2.2%) 0.72 (4.1%) 0.85 (0.4%) 0.92 (0.2%)

ηmis 0.992 (1.0%) 0.987 (5.1%) 0.830 (1.2%) 0.910 (0.9%) 0.999 (0.2%) 0.999 (0.2%) 0.853 (0.5%) 0.926 (0.4%)

Tsp 7.7 K (18%) 6.8 K (39%) 4.2 K (16.8%) 8.8 K (9.6%) 7.7 K (6.0%) 7.2 K (6.8%) 3.8 K (5.7%) 8.7 K (3.4%)

mismatch factor ηmis. The maximum of ηmis does, however, not

coincide with the earlier optimal load impedance primarily due

to the difference in array excitation schemes. Nonetheless, the

observed quantities are only weakly dependent on impedance

variations around their maximums. As for the feed-reflector-

induced ripple of ηap and ηmis [Fig. 11(b) and Fig. 11(d)], we

can conclude that the ηmis ripple is more sensitive to variations

in the array loading relative to the ripple in ηap. In practice,

however, when the amplifier/LNA impedance changes up to

10-20%, this only weakly affect ηap and ηmis and their ripple.
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Fig. 12. Illumination efficiencies of the 118λ reflector antenna, either fed
by the 121 Vivaldi PAF, or the single-horn feed. The CBFM-PO simulated
results are compared to the measured ones for a 25 m reflector antenna of the
Westerbork Synthesis Radio Telescope [4]. Bottom of the figure: a photo of
the experimental PAF system placed at the focal region of the reflector, and
an image of a smaller-scale PAF-reflector model.

Table III and IV summarize the maximum difference in

mean values and ripple, respectively, of several other rele-

vant antenna radiation characteristics when the feed-reflector

coupling is taken into account. For the computation of this

difference Eq. (24) is used, where the superscripts “ref” and

“approx” denote in this case the considered antenna parameter

after the 1st (no coupling) and final iteration, respectively,

and where the summations are taken over frequency samples.

Hence, this table allows us to estimate how strong the feed-

reflector coupling is and how it affects the antenna charac-

teristics. As expected, the high-scattering horn feeds cause

stronger multiscattering effects, which is further excercebated

for smaller dishes due to the larger relative blockage area. The

difference in the antenna characteristics and their ripples are

largest for the case of the 38λ reflector fed by the horn with

extended ground plane, while these values are comparable and

weakly dependent on the antenna element type in case of the

array feeds.

Table IV shows the mean values of various antenna ra-

diation characteristics as well as their ripple caused by the

multiscattering phenomenon, where the reflector antenna is

assumed to be pointed at zenith for the computation of the

spillover noise temperature Tsp. Upon comparing the values

in the table, one conludes that the spillover noise temperature

Tsp is most sensitive to the feed-reflector coupling, which may

be of importance in radio astronomy applications where high

receiving sensitivity is required.

Fig. 12 shows the illumination efficiencies ηill of a 118λ
reflector antenna (D = 25 m, F/D = 0.35), either fed

by the Vivaldi array feed, or a single horn antenna. The

numerically computed results are compared to measurements

at the Westerbork Synthesis Radio Telescope (WSRT) [4]. As

one can see, the agreement is very good. In the simulations,

the size of the ground plane has been chosen equal to the size

of the feed cabin (≈ 1×1 m). The fact that ηill is higher for the

array feed than for the horn antenna nicely demonstrates the

superior focal field sampling capabilities of dense phased array

feeds. Furthermore, one can also observe a rather strong ripple

in ηill for the case of the horn feed with extended ground plane.

This ripple is caused by the relatively high feed scattering of

the reflector field.

V. CONCLUSIONS

An FFT-enhanced Plane Wave Spectrum (PWS) approach

has been formulated in conjunction with the Characteristic

Basis Function Method, a Jacobi iterative multiscattering ap-

proach, and a near-field interpolation technique for the fast

and accurate analysis of electrically large array feed reflector

systems. Numerical validation has been carried out using the

multilevel fast multipole algorithm method available in the

commercially available FEKO software.
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This physics-based numerical modeling offers the possibil-

ity to pull the feed-reflector interaction effects apart in a sys-

tematic manner and has demonstrated that: (i) a relation exists

between the number of Jacobi iterations and the magnitude of

the ripple on the frequency-dependent antenna radiation char-

acteristics introduced by the feed-reflector coupling; (ii) the

on-axis plane wave of the reflector field and the ones originat-

ing from the reflector rim are the strongest PWS components;

(iii) the reflector-feed-induced ripple reduces when the array

port termination is near a power-matched situation; (iv) the

array feeds demonstrate a higher illumination efficiency than

a single-horn feed with extended ground plane as a result of a

better synthesized illumination pattern, and; (v) the level of the

ripple as a function of frequency is smaller due to a smaller

fraction of the scattered field from the array feed. The latter

two findings have also been observed in measurements [4] for

a horn feed and a 121-element Vivaldi PAF system installed

at the Westerbork Synthesis Radio Telescope (118λ-diameter),

where we have shown that the relative difference between the

simulated and measured antenna efficiencies is only in the

order of a few percent.
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