

Motionera Mera
A cross-platform application for physical exercise

Sebastian Eriksson
Aki Käkelä
Eric McNabb
Alexander Yeh

Department of Computer Science and Engineering
Chalmers University of Technology
Gothenburg, Sweden 2014
Bachelor of Science Thesis

The Authors grant to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial pur-
pose make it accessible on the Internet. The Authors warrant that they are the authors
of to the Work, and warrant that the Work does not contain text, pictures or other
material that violates copyright law.

The Authors shall, when transferring the rights of the Work to a third party (for example
a publisher or a company), acknowledge the third party about this agreement. If the
Authors have signed a copyright agreement with a third party regarding the Work, the
Authors warrant hereby that they have obtained any necessary permission from this third
party to let Chalmers University of Technology and University of Gothenburg store the
Work electronically and make it accessible on the Internet.

Motionera Mera
A cross-platform application for physical exercise

SEBASTIAN ERIKSSON
AKI KÄKELÄ
ERIC MCNABB
ALEXANDER YEH

c© SEBASTIAN ERIKSSON, June 2014
c© AKI KÄKELÄ , June 2014
c© ERIC MCNABB, June 2014
c© ALEXANDER YEH, June 2014

Examiner: Jan Skansholm

Chalmers University of Technology University of Gothenburg Department of Computer
Science and Engineering SE-412 96 Göteborg Sweden Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Gothenburg, Sweden 2014

Abstract

The City of Gothenburg wanted an application for their current campaign promoting
physical exercise for the citizens of Gothenburg. The work consists of digitizing their
current card system where users make marks on the card when they exercise. This report
discusses the various aspects of adapting the application for both mobile and desktop
devices, as well as the server components required to manage the campaign and user
data. The result is an application primarily built with web technologies, which makes
it compatible with any device that has a web browser, including smartphones, tablets,
desktops, and TVs. The discussion comprises the user interface and differences in the
mobile and desktop platforms, primarily relating to Android and iOS on the mobile side.
The discussion also involves security and privacy in the client-server communication.

Sammanfattning

Göteborgs Stad önskade en applikation för deras nuvarande kampanj för att främja
fysisk träning för Göteborgs medborgare. Arbetet best̊ar av att digitalisera deras nu-
varande kortsystem där användarna gör markeringar p̊a kortet när de motionerar. Denna
rapport behandlar olika aspekter av att anpassa programmet för b̊ade mobila och sta-
tionära enheter, samt att utveckla de serverkomponenter som krävs för administration
och synkronisering av användardata. Resultatet är en applikation i första hand byggd
med webbtekniker, vilket gör den kompatibel med alla enheter som har en webbläsare,
inklusive smartphones, surfplattor, datorer och TV-apparater. Diskussionen omfat-
tar användargränssnitt och skillnader i de mobila och stationära plattformar, främst
avseende Android och iOS p̊a den mobila sidan. Diskussionen handlar även om säkerhet
och integritet i klient-server-kommunikationen.

Acknowledgements

We would like to thank our supervisor, Prof. Graham Kemp, for supporting us through-
out the project. Johanna Tidholm and Martin Berglund working for the City of Gothen-
burg for making the project possible and for their assistance and feedback throughout
the project. Åza Larsson, for the help we received with regards to graphics. Naomi
Hoang, for having the patience to teach us how illustrator works. We would also like to
thank PhD student Susanne M. Bernhardsson, Fredrik Hieronymus MD for their help
with proofreading and suggestions for this report. Lastly, we would like to thank every-
one who gave us feedback and advice during the project.

The Authors

Contents

1 Introduction 1

1.1 Background . 1

1.2 Purpose . 2

1.3 Overview . 2

2 Problem specification 4

2.1 Functional requirements . 5

2.2 Non-functional requirements . 7

2.2.1 Server . 7

2.2.2 Privacy . 7

2.2.3 Security . 7

2.2.4 Portability . 8

2.2.5 Synchronization of user data . 8

2.2.6 Language of the user interface . 8

2.2.7 Swedish privacy law . 9

i

CONTENTS

2.2.8 Lottery . 9

2.3 Platforms . 10

2.4 User experience . 10

2.4.1 Graphical user interface . 10

2.4.2 User interaction . 10

2.4.3 Responsiveness . 11

3 Implementation 12

3.1 Work process . 12

3.2 Milestones . 13

3.3 Cross-platform development tool . 14

3.3.1 iOS development tools . 15

3.3.2 Emulation . 15

3.4 Server tools and framework . 16

3.5 External code . 16

3.5.1 MIT License . 17

3.5.2 jQuery Mobile . 17

3.5.3 Mobiscroll . 18

3.5.4 Map . 19

3.5.5 Other plugins . 19

3.5.6 Server-side modules . 20

3.6 System architecture . 20

ii

CONTENTS

3.6.1 Persistent data with HTML5 Web Storage 21

3.6.2 Server . 21

3.7 Platforms . 22

3.8 User interface . 22

3.8.1 Landing page . 23

3.8.2 Tiles . 23

3.8.3 Login screen . 23

3.8.4 Scaling . 25

3.9 Performance and optimization . 27

3.10 Security and authorization . 27

3.10.1 Token authentication . 28

3.10.2 OpenSSL . 28

3.10.3 Authorization . 29

3.10.4 Password security . 29

3.10.5 Synchronization . 30

3.10.6 Input validation . 30

3.10.7 Database constraints . 30

3.10.8 SQL injections . 30

4 Results 32

4.1 Graphical user interface . 32

4.1.1 Splash screen . 33

iii

CONTENTS

4.1.2 Card view . 34

4.1.3 Login . 36

4.1.4 Register . 37

4.1.5 Profile recovery . 38

4.1.6 Activity logging . 39

4.1.7 Map . 40

4.1.8 News . 41

4.1.9 Saved activities . 43

4.1.10 Settings . 44

4.1.11 Notifications . 45

4.2 Server . 46

4.3 Administrative interface . 46

5 Discussion 47

5.1 Planning . 47

5.2 Development environment and platforms 48

5.3 Unforeseen outcomes . 49

5.4 Limitations . 50

5.5 Reflections . 50

5.5.1 Change of goals . 51

5.5.2 Change of method . 51

5.6 Designing for native . 52

iv

CONTENTS

5.7 Interaction with the City of Gothenburg 52

5.8 Future work . 52

6 Conclusions 54

Bibliography 57

v

1

Introduction

This chapter describes the background for the project and its purpose, and concludes
with an overview of the report.

1.1 Background

In 2001, the City of Gothenburg began developing a promotion designed to encourage
people to exercise more in their daily life. The promotion began simply as “Promenera
Mera,” or “walk more,” but grew over time to eventually include other physical activities
such as swimming and cycling. The promotion involves filling out cards consisting of
25 squares. For each day that the user exercises for 30 minutes or more they check one
square. With the card filled, the user can mail the card to the City of Gothenburg to
qualify for a chance to win a prize.

10,000 cards were submitted in 2013. The cards are received by mail, after which one is
drawn manually; an avoidably laborious and time-consuming process. With the popular-
ity of the promotion also in decline, the City of Gothenburg decided that an application,
or app, would revitalize the campaign while making it more accessible to a broader
audience.

Although the promotion is currently most popular with an older demographic, the ap-
plication does not have the same target audience as the physical cards. However, the
transition from physical cards to digital cards includes usability requirements for the

1

CHAPTER 1. INTRODUCTION

product for those less versed in technology, but also brings interesting opportunities for
an expansion of the promotion.

In line with the City of Gothenburg’s strategy of reaching their goal with a mobile
application there has been an extensive study[1] collecting data on exercise habits with
the aid of mobile devices. The purpose of the study was to see if mobile devices and
applications could be used for gathering data and what information could be extracted
from that data. The study showed that several factors could improve exercise habits,
some of which are mentioned in Table 2.1. It also showed that applications are a powerful
way of gathering data for future studies.

1.2 Purpose

The primary goal of the project is to digitize the current physical card system by de-
signing and building a functional mobile application prototype. By digitizing it, the
application is set to reach a wider audience. Other goals include ensuring ease of use,
added functionality, and more efficient administration. The application must also be
available for the majority of users, meaning that it should be targeted at multiple plat-
forms (Android, iOS, Windows, Mac).

The application focuses largely on creating a habit out of exercise by providing a logging
system for physical activities. Currently, the most popular applications of similar nature,
including Fitocracy1, Runkeeper2, and Nike+3, tend to focus on utilizing GPS features,
counting calories, or timing runs. Our application aims to instead serve as a casual and
social exercise utility with a lower barrier of entry.

1.3 Overview

Chapter 2 specifies the goals and requirements of the application, and describes the
planning that was made over the initial two weeks of the project. The chapter also
explains the problems in the project, which are specified with key points described in
some detail.

Chapter 3 describes the method by which the problems were solved. One of the main
areas of the chapter is the choice of tools and frameworks, as they affect both the process

1https://www.fitocracy.com/
2http://runkeeper.com/
3https://secure-nikeplus.nike.com/plus/

2

https://www.fitocracy.com/
http://runkeeper.com/
https://secure-nikeplus.nike.com/plus/

CHAPTER 1. INTRODUCTION

and the end result considerably. The chapter also describes the subsystems and their
communication, primarily the communication between client and server.

Chapter 4 presents a prototype of the final application. The chapter includes multiple
figures showing the application from the perspective of the end user. It also describes
some of the aspects that are not visible to the user, such as the client-server implemen-
tation.

Chapter 5 brings up some of the authors’ own reflections and presents a critical evalu-
ation of the project. The current limitations of the application are described and some
suggestions of future work are presented. The chapter also presents the changes that
could have been made with the experience gained from working on the project.

Chapter 6 concludes the report with some of the more prominent results of the project.

3

2

Problem specification

This chapter provides information about the features suggested by the City of Gothen-
burg and those suggested by the authors. The main categories are the functional and
non-functional requirements, described briefly in this section. This is followed by a short
section describing difficulties with cross-platform development. Concluding this chapter,
the requirements concerning user interaction and the visual aspects are specified sepa-
rately. This chapter contains all considerations made regarding the goals and design of
the application.

The components that were eventually implemented in the resulting prototype are detailed
in Chapter 4, and the process is described in Chapter 3. In other words, this chapter
also describes features that were not included in the prototype, such as the leaderboard,
the calendar, and the social features presented in Table 2.1.

Functional requirements involve tangible scenarios that the user should be able to do, for
instance the ability to view news, announcements or log activities. Consequently, most
of the client’s requests are contained within this category. An example of a functional
requirement is feedback upon selecting GUI1 elements, which usually involves vibration
on touch devices, or graphical effects on non-touch devices.

Non-functional requirements comprise the measurable and structural aspects of the ap-
plication, such as scalability to different devices and graphical profiles, responsiveness
to user interaction, and the security and privacy in handling personal data. It consists

1The GUI, or Graphical User Interface, allows users to interact with the system. It is composed of
graphical elements such as buttons, input fields, and views.

4

CHAPTER 2. PROBLEM SPECIFICATION

of the aspects unseen by the end user, such as the maintainability and robustness of the
code in the application.

Additional features originated both from early discussions with the client and later from
suggestions by the authors. The client provided no designs for the application itself, but
their suggestions are noted in Table 2.1 with an asterisk (*). In other words, the design
of the application had not been established, meaning fewer constraints for the authors.
The additional features were prioritized lower.

The platforms to be supported are both desktop and mobile devices. Since the platforms
are inherently different some functionality must be implemented in multiple ways, such
as notifications2 or vibrations which are standard on the mobile side, but not on laptops
or desktop computers.

2.1 Functional requirements

The main features requested were the capability to use the currently active promotion
involving physical cards in the application, and the capability to view the locations of
announced tracks and facilities. The application should therefore allow users to partic-
ipate in the promotion by allowing the user to mark 25 exercise sessions, to view how
many marks they have made toward a full card, and to submit a full card. Details about
the lottery are provided in Section 2.2.8. Additionally, a map should be implemented
with which the user can interact.

Additional features were added in order to provide more substance to the application.
They were discussed with the client, but were prompted by the authors. The most
demanding additional features planned are the leaderboard system and the news and
announcements feature. Other goals discussed with the client are introduced and briefly
described in Table 2.1.

2A standard way on e.g. the Android operating system to present concise information to the user.
Our simulated notifications are presented in Section 4.1.11.

5

CHAPTER 2. PROBLEM SPECIFICATION

Feature Description

Administrative
interface

To handle events, facilities, and other administrative tasks.
Also to show statistics about how the application is used.

Splash screen The client wanted Gothenburg City’s logo shown in the appli-
cation. An unobtrusive location for it was the splash screen:
the image shown while the application loads.

Map* Shows the locations of Gothenburg City’s exercise facilities,
running tracks, and organized events. In addition, it should
show the user’s own position, their privately stored tracks, and
tracks shared to them.

User profiles Register users with shipment information, should the user win
the lottery. Additionally, the user data storage must com-
ply with the Swedish Personal Data Act (Personuppgiftslagen,
PUL), as discussed in Section 2.2.7.

Leaderboard Users can view personal statistics for exercises they have logged,
and how they are doing compared to other users. Note: de-
pends on the completion of user profiles.

Calendar View past exercise sessions and plan future ones. To be com-
bined with the training schedule.

Pedometer* Counts steps taken by utilizing the sensors of the smartphone.
Shown to improve the training experience [1].

Calorie counter* Counts calories burned based on GPS calculations, achieved for
instance by measuring distance traveled with the GPS feature
or entered manually.

Social media Interact with friends and share events through social media,
e.g. Twitter or Facebook. Implementing such a feature has
shown to increase frequency in training [1].

Training schedule Schedule and view exercise sessions. Has been shown to im-
prove adherence to training regime [1].

Table 2.1: Additional features planned for the application. Items marked with an asterisk
(*) refer to features suggested by the client. These features are of lower priority than
digitizing the card, and are ordered roughly in descending priority, taking an estimated
implementation cost in mind. Although planned, not all of these features were implemented
in the resulting prototype.

6

CHAPTER 2. PROBLEM SPECIFICATION

2.2 Non-functional requirements

The features presented in Section 2.1 lead to certain non-functional demands, including
privacy and security issues. Some important aspects are the storage of personal data and
the fairness of the lottery draw. Additionally, some usability aspects are important to
consider, including responsiveness. Usability can be improved by building the application
around the fact that mobile devices may lose connectivity while roaming.

The following sections introduce the categories of non-functional requirements that were
considered at the start of the project.

2.2.1 Server

In addition to the application built for the end user, the project requires server-side
components. This includes a database to store user data, scripts to handle interaction
with the database, and an administrative interface to manage the database.

2.2.2 Privacy

Registering a user’s information and personal data leads to security and privacy concerns.
The application should therefore store the data in a secure manner. The user’s personal
details and activities should not be available to anyone but friends they have added
and the system administrator. The system administrator should only have access to the
information about the user that is required to moderate and maintain the application.

The usage statistics mentioned in Table 2.1 should reflect the total population of users
and not be presented in a way that discloses the activities of any individual user.

2.2.3 Security

The application will store and transfer personal details about the users and their activ-
ities. It is therefore important to ensure that the data transferred between the appli-
cation and the server, where it is stored, is secure. As described in Section 2.2.2, user
data should only be available to the server administrator if it is required to moderate
and maintain the application.

Users will register information consisting of their name and address information but also
their email and password details. It is important that passwords are kept secure even if

7

CHAPTER 2. PROBLEM SPECIFICATION

they are breached. This is important to ensure that the user’s personal information and
activities are not compromised, seeing as users are commonly reusing the same personal
details with the same password.

2.2.4 Portability

An important point to consider is what data are accessible without a server connection.
A practical example is storing the latest copy of some elements retrieved from the server
when a connection was last established, such as news and announcements, but also user-
specific data. The portability problem introduces subtle challenges in synchronizing user
data. The user should be allowed to save user data while the device is offline. Similarly,
the user should also be able to access their stored data in an offline state.

In short, the application should be as usable as possible even without a server connection.

2.2.5 Synchronization of user data

The application should allow the user to access their profile content from both desktop
and mobile devices. It should also allow for concurrent sessions from these devices, as
the user may be using the desktop version while making changes to the user data from
their phone. A practical example is that the user should be able to plan their routes at
home on a desktop device, then use the data on a mobile device.

The synchronization requires the data to be stored on a remote server to ensure that
there is a single, reliable set of data that the clients retrieve. This means that there is
only one place where the data stored are verified to be correct.

As an example, when the user views the activity logs, the application should attempt to
update the list. If the device is not connected to the server, the update will fail. The
locally stored copy of activities should then be displayed. If the device is connected to
the server and the update succeeds, the device should have new data to overwrite the
locally stored copy. The implementation of this is explained in Section 3.6.1.

2.2.6 Language of the user interface

The application will potentially be used by people with diverse mother tongues who
may not be proficient in Swedish or English. Therefore, the application should rely on
visuals over text as much as possible. In cases where text must be used, the City of

8

CHAPTER 2. PROBLEM SPECIFICATION

Gothenburg required the application to solely support Swedish since they did not want
to discriminate against speakers of other languages by not including their language as
well.

2.2.7 Swedish privacy law

Because the application will store personal details, the data have to be stored and man-
aged in accordance with the Swedish Personal Data Act, as mentioned in Table 2.1. Since
the application will ultimately be delivered to and used by a government agency, there
are several important considerations, including the governmental handling of personal
data [2].

Upon registering a user profile, the user must first agree to the terms and conditions
of the application which state how their personal details are to be stored, managed,
and what they are used for. Additionally, the application should also inform who is
responsible for the storage of personal details together with contact information to this
party. Users should be informed of the purpose of storing the information, and of the
possibility for any individual user to retrieve the information stored.

The personal details should not be accessible by anyone, not even people within the City
of Gothenburg. Only the people who have been assigned this responsibility should have
access. The personal details have to be protected, and there are strict requirements on
the authentication if the data are classified as sensitive, according to 13 § PUL [3]. As
the data stored by the system does not have that classification, there are no specific
requirements on the authentication.

2.2.8 Lottery

One of the main points of the application is that all registered users will participate in
a lottery as soon as a card is submitted. Since the promotion is to be made into an
application, this process will be automated. When the user reaches 25 logged activities
on unique days and connects to the server to authenticate, they should automatically be
made eligible to win a prize. Each set of 25 logged activities, i.e full card, results in an
additional chance to win a prize in the quarterly lottery. A user can participate with a
maximum of four submissions during each lottery period.

For the lottery to be fair it is required that the algorithm for choosing a winner will
have to adhere to Swedish law, more precisely the lottery law (sw. Lotterilagen). The
algorithm should therefore pool the submissions and randomly select a winner. The data

9

CHAPTER 2. PROBLEM SPECIFICATION

in a submission should also be anonymized, which can be accomplished by encryption.
The lottery law handles who is eligible to hold a lottery which is outside of our control.

2.3 Platforms

The application was requested to work for both desktop and mobile platforms, in par-
ticular Windows and Mac OS X on the desktop side and Android and iOS on the mobile
side. Desktop support suggests supporting a large portion of the desktop users, and
therefore a variety of desktop browsers, including Google Chrome, Firefox, Internet Ex-
plorer, Safari, and Opera.

The administrative interface requires only desktop support.

2.4 User experience

Beyond the functional requirements, the user interaction aspect was of particular interest,
as the client had specified that they had a wide user base. The application should not
only be appealing to a younger demographic but also an older one.

2.4.1 Graphical user interface

The application needs to run smoothly, without inconsistencies, on multiple devices and
versions. Therefore, the user interface (UI) must be responsive: icons and text must
be similar in relative size across various devices and therefore scalable [4]. The client
presented a graphical profile, which they wished to have included in the application.
The implementation process was not specified, but it was important for the City of
Gothenburg that their graphical profile was adhered to. A challenge was to develop a
design that would represent the same look and feel in the application as in the rest of
the provided material. The clients did not have a clear picture of what they wanted from
the application and needed assistance with the design.

2.4.2 User interaction

Beyond the visuals of the interface there are several design aspects which are important,
especially when considering users of different age. Special regard has to be made with

10

CHAPTER 2. PROBLEM SPECIFICATION

consideration to the older demographic, such as ease of understanding in how to use
the application. Use of text is also to be minimized in order to give more space for
other elements. Icons were the primary elements used in the space given, particularly
due to the small screens of mobile devices. They were also designed to be as universally
understandable as possible in order to remove much of the language barrier, as described
in Section 2.2.6.

Another enhancement is to utilize the senses of hearing, movement, and touch, which can
be achieved by making use of sounds, animations, and vibrations, respectively. When
the user selects a graphical element on the interface, the use of vibrations on mobile
devices act as an indicator of the application registering the user input. The application
should therefore utilize senses other than vision, when appropriate.

2.4.3 Responsiveness

One of the early goals for the project was to make the interface responsive. This means
minimal use of animations, especially those that cause delay, such as page transitions.
This is not to be confused with the term responsive design which refers to adapting the
visual content to the available space in the browser window.

An early concern regarding responsiveness was the use of web languages instead of native
code3 as web code introduces lag and other issues, as explained in Section 3.3.

3While C and C++ are native to Android, Google does not recommend using those languages for
Android development [5]. Java will be referred to as native as it is the recommended language to use.

11

3

Implementation

This chapter outlines the process of solving some of the goals of Chapter 2 and provides
details regarding the implementation. The first section describes the initial plan which
was divided into three milestones. The plan is followed by a description of the choice
of tools and frameworks and the motivations for using them. This is followed by an
overview of the system architecture, summarized in Figure 3.1. The chapter concludes
with some considerations about the topics introduced in Chapter 2.

3.1 Work process

The process involved two meetings with the client, the first of which was about the goals
for the project, and the second about the status halfway. Additional meetings were
difficult to plan due to scheduling conflicts. This led to more initiative being taken by
the authors.

Each meeting was initiated with three short questions to each team member which
contributed to a better understanding of the project as a whole:

1. What have you done since our previous meeting?

2. What are you planning to do until the next meeting?

3. Any impediments or stumbling blocks?

12

CHAPTER 3. IMPLEMENTATION

These questions are a component of the Scrum1 software development method.

The development followed the cyclic development of Scrum, i.e smaller parts of the
whole were completed iteratively. The idea of creating cycles in development is mainly
to facilitate changes occurring during development, but as meetings with the City of
Gothenburg were few and far between, significant changes rarely took place and the
development method was changed. Eventually, the work process consisted simply of a
list of tasks with assigned responsibilities, although a group meeting agenda was regularly
kept. While Scrum involves additional development strategies such as team roles, they
were not followed in this project.

3.2 Milestones

As Scrum was used early on, milestones were made to correspond with the end of each
Scrum sprint. A sprint duration of three weeks was chosen, as it led to three milestones,
each with clear main objectives from the backlog of features for the product. These
milestones are summarized with their most important features below, in chronological
order.

1. Digitize the card
To achieve this goal there are several requirements to fulfill. Firstly, the ground-
work for the system architecture had to be developed. Secondly, a UI was required
to enable the user to access the promotion and interact with the application. Fi-
nally, a database was required to handle the storage of user data.

2. Statistics tool and calendar
For the statistics tool to function there must be support for it on the server side.
Past activities must be saved. There should be support for individual statistics,
for instance the number of times a user has been running over the last year. There
should also be support for comparing users with each other for a competitive aspect.

The calendar is strictly graphical and requires similar functionality from the database
as the statistics tool. The calendar should give a simple overview of past exercise
sessions for the previous week, month, and year. It should also be possible to plan
future activities and add reminders. This has been shown to be positive for the
user’s physical health as it increases motivation to exercise [1].

3. Map and schedule
A possibility to view where the City of Gothenburg’s exercise facilities and running
tracks are located was requested. A map that can show where the user is and where

1https://www.scrum.org/

13

CHAPTER 3. IMPLEMENTATION

the facilities are located requires geographical coordinates of the facilities. There
must also be server-side support for adding new points on the map through an
administrative interface. The coordinates must be retrievable from the server.

For added usefulness of the calendar a simple training schedule should be combined
with it. For example, a user who wants to run the Gothenburg Half Marathon may
want to know how to practice for it. The schedule function requires the calendar or
a similar interface to display the planned exercise sessions. It also requires space for
storage in the database for the different schedules. This will stop the application
from taking too much memory as the number of schedules increases. It will also
enable multi-device access to user data.

3.3 Cross-platform development tool

In the initial phase of the project, different development options were researched. The
main attribute sought was performance, since the requirements in Section 3.7 stated
cross-platform support. The IDE2 Titanium Studio was initially chosen, largely because
of its platform-oriented design. The IDE would allow for development closer to individual
platforms, such as coding in Java for Android instead of coding in JavaScript for web
browsers. Since JavaScript is an interpreted language, meaning that it is not compiled
before run, it has lower performance than, for instance, Java.

Using Titanium Studio, the final product would benefit from being faster and having
better support since standard features and code, specific to the platform would be used.
In other words, the code would be optimized for the particular device, as opposed to the
browser running on the device. The IDE also packages several useful enhancements to
the web programming languages including the MVC3 framework Backbone.js, which in
Titanium Studio is relabeled Alloy.

From previous experience, one of the authors suggested the mobile development frame-
work PhoneGap4. It was briefly tested in the first week of the project, in fact before
Titanium Studio. By the time the planning was finished we nonetheless transitioned to
using Titanium Studio, as the advantages it promised made it considerably more appeal-
ing. Most of all, the native code would mean greater responsiveness and reliability. The
stability and the low number of bugs from native coding were highly valued, making the
decision to use Titanium Studio easy.

2Integrated Development Environment, generally a text editor which incorporates a compiler, but
often much more. A popular example is Eclipse.

3The model-view-controller design pattern separates code by concern, such that graphical, functional,
and data sections are separate.

4A mobile development framework. It started out as a means for web developers to create iOS
applications without knowing Objective-C.

14

CHAPTER 3. IMPLEMENTATION

It was quickly discovered that Titanium Studio suffered from several problems, including,
long compilation times and various errors with the emulator. The tool never worked well
enough to justify its use: the authors all had different, well-known issues hindering usage.
After re-evaluating the options, PhoneGap was reinstated as the primary development
tool, as the research into using the tool yielded mostly positive results. The primary
sign of comfort in using PhoneGap was its relatively long history, dating back to 2009,
which is a long development period within the field of mobile phones. A drawback was
its reliance on web technologies as opposed to the more native orientation of Titanium
Studio. This lead to the applications built with PhoneGap considerably slower than
native[6].

As PhoneGap was chosen as the development framework there was no IDE dependency,
so the authors were free to use any development environment. The IDEs have no signif-
icant effect on the final product other than in the process of developing the application.
Development was nevertheless made easier by the use of integrated tools such as debug-
gers and built-in code convention checkers. JavaScript allows for optional semicolons in
code, and there is no single standard in, for instance, the naming scheme of variables.
Hence, a code convention checker would greatly help with standardizing the code.

3.3.1 iOS development tools

Development for iOS is only available for Macs, i.e. an Apple computer, running its
operating system OS X with Xcode installed. Xcode is an IDE required to develop
for iOS devices and other OS X-specific applications, but can also be used for other
types of software development. To be able to run applications on an iOS device, an
Apple developer’s account is required. Xcode proved to be quite useful, as it would
detect specific errors in the iOS build, and also give informative feedback about the
benchmarking of iOS devices such as memory utilization. Only one of the authors had
previous experience with Apple devices. Since iOS development requires Apple hardware,
this resulted in limited bug testing and development on iOS devices.

3.3.2 Emulation

Mobile devices have a wide variety of resolutions and screen sizes, and therefore different
pixel densities. The smartphone simulation plugin Ripple5 was used to test the appli-
cation on different devices, mainly to ensure that the GUI was consistent throughout
various devices.

The process of scaling the graphical components is discussed in Section 3.8.4.

5http://emulate.phonegap.com/

15

http://emulate.phonegap.com/

CHAPTER 3. IMPLEMENTATION

3.4 Server tools and framework

The requirement on the server-side tools and framework were that the application should
be able to run on a web server. This is in order for the client to communicate with the
server but also for hosting the administrative interface and the client interface for reset-
ting the password. Additionally, it should have a model-view-controller (MVC) structure.
It would also be of importance that it was scalable, well-tested and documented.

Since the client already had a web host set up on Loopia6 supporting PHP and ASP.NET
our choice was between those technologies. PHP is the most widely supported server-side
scripting language since it is running well on Linux servers and there are more readily
available frameworks and libraries. Thus PHP was chosen, and naturally MySQL7 with
it, since it is well integrated with PHP and supported by most web hosting solutions.
It then followed that the server would have to support PHP version 5.4 or later, due to
OpenSSL dependency as discussed in Section 3.10.2.

It was deemed useful to have one system divided into multiple controllers for handling
everything instead of having separate systems. This was mainly to avoid code duplica-
tion as the administrative interface and server then could share the same codebase and
primary models. This also has the advantage of providing consistency in not having mul-
tiple systems and codebases performing different tasks. Dividing into multiple systems
could have performance advantages. Based on the number of requests the possible gain
in performance would however not be sufficiently significant.

Partly due to a limited time span, but also for security reasons, as described in Section
3.10, an open source framework was sought rather than developing a custom frame-
work. Based on the above requirements, CodeIgniter8 was determined to be the most
appropriate. It fulfilled all of our requirements and is widely used and thus tested and
secure.

3.5 External code

Some of the initially desired features were discussed without regard to the technical dif-
ficulty in implementing them. Some of the features were also large enough to merit their
own project. A solution to this problem was to use external modules and frameworks.
External modules provide purpose-built APIs, which are programming interfaces that
specify how applications should communicate with them. The APIs allow for more rapid

6https://www.loopia.se/ A web host company
7MySQL is an open source database management system (DBMS)
8http://ellislab.com/codeigniter

16

https://www.loopia.se/
http://ellislab.com/codeigniter

CHAPTER 3. IMPLEMENTATION

progress, especially in the case of cross-platform development, as they provide complete
and tested solutions to common problems.

External code was also used to expand the programming possibilities. In this section, we
present the frameworks, libraries, and plugins that the application builds upon. Frame-
works can be viewed as large-scale modules for the architecture of an application. Li-
braries are collections of utilities or smaller modules. Plugins are small-scale utilities,
usually with a single, clear purpose. A plugin may, for instance, reformat dates or pro-
vide a simple element such as a time picker9. Although the developers of jQuery call
it a library [7], it has a significant impact on the resulting application, as described in
Section 3.5.2.

3.5.1 MIT License

All of the chosen external modules are under the MIT license, which states that the
author of the work gives permission for anyone to use, change, distribute or sell the
author’s work in any way they choose [8].

3.5.2 jQuery Mobile

The jQuery Mobile library was used as it enables simpler scripting and expands the
possibilities of manipulating HTML elements. The library is so extensive that the ap-
plication is built around it: each page in the application is defined as a jQuery Mobile
page, and navigation between them is also handled by the library. Some of the inherent
features of the library are events, e.g. mobileinit, which tells the application that the
mobile code has been loaded, and various page events such as pagecreate or pageshow.
In order to execute code only when the page is first created, for instance, one would bind
code to the pagecreate event. During development, these jQuery Mobile-specific func-
tions became integral to the application. As a result, porting the application to other
frameworks would be more difficult, unless equivalent features were to be provided.

jQuery Mobile also offers extensive, mobile-adapted style sheets. These change the
standard layouts of regular elements, such as lists and buttons, to make them both more
appealing and better suited for mobile devices. The issue with styling frameworks is
that they regularly cause unexpected stylings as they apply to practically every element
defined. Some problems include arbitrary thin lines across pages, tab bars either being
shortened or stretching beyond the viewport, and elements such as radio buttons flashing
upon selection. These problems are usually solved by excluding certain styles in the

9An element for selecting a duration or a time, e.g. in an alarm clock.

17

CHAPTER 3. IMPLEMENTATION

jQuery Mobile style sheet files. Nevertheless, there is a good reason not to alter the files:
as the library is popular, it may have already been downloaded on the user’s device, in
which case it will be available for use immediately.

As jQuery Mobile provides a large set of style sheets, they often override those written
by the programmer. In order to prevent this, various alterations have to be made to the
specificity10 of the styling rules, e.g. using identifiers (IDs) to trump the jQuery Mobile-
defined rules. A good practice is to avoid using the !important tag in CSS, but the work
in overriding the styles of the framework may sometimes be greater than the work in
following the standards. If the framework is modified and supplied with the application
directly, the problem of specificity disappears as the programmer simply removes the
rules causing the unwanted overrides. In this project, specificity was a considerable issue
to work with, as the choice to leave the framework unmodified was made to reach a
greater potential with the application. One advantage is that, by using a URL to access
the style sheets, the application can automatically apply the latest updates without the
developer updating the application.

The use of jQuery Mobile during the development process is further discussed in Section
3.8.3.

3.5.3 Mobiscroll

The scroll wheel plugin implementation was a fairly simple process. The biggest problem
was finding it as most scroll functions used in HTML and JavaScript are just up and
down arrows. The advantage of the scroll wheel is its simplicity of usage, which is in line
with the goal of being easy to use for a wide audience. The scroll wheel plugin found
was MobiScroll11.

Mobiscroll is an entire library based on JavaScript and CSS that supports multiple
platforms. The Mobiscroll library provides several choices for selecting a duration, which
was a function sought for logging exercises. Only a light white android theme and time
function were used with slight modifications to fit the application better.

The scroll wheel allows the user to swiftly choose a duration for the exercise by spinning
the wheel by touch. The wheel responds intuitively with inertia, slowly decelerating
after the user has finished the swiping12 motion.

10The list of rules can be found in http://cssspecificity.com/.
11http://mobiscroll.com/faq
12Swiping means moving the finger quickly across the touch surface and releasing.

18

http://cssspecificity.com/
http://mobiscroll.com/faq

CHAPTER 3. IMPLEMENTATION

3.5.4 Map

It was difficult to find a plugin which offered the functionality that was sought. The map
function is a very useful feature, no matter where one is by simply opening an application
a person can find out where they are and how to get to where they are going. Because of
the great benefits of maps in smartphones there are a large number of solutions available.

When looking for which plugin to use there were several requirements. Firstly markers
were needed to indicate where the City of Gothenburg has its facilities. Secondly, the
map feature needed to work for all platforms. Lastly, it needed to be reasonably easy to
implement considering the timeframe for this project.

The different options were jQuery’s Google Maps plugin, Google Maps API by itself
and Bing Maps API. Both Google Maps and Bing Maps were estimated to take up more
development time than the chosen jQuery Google Maps plugin. The problem with Google
Maps API was also that Google has a restriction on the number of users, which could
become a problem in the future. One way to solve this is to store the map coordinates
in the database and load it from there. This removes some functionality, as it becomes
less dynamic and geolocation and zooming might be affected negatively.

3.5.5 Other plugins

The application uses plugins to enhance both the user interaction and the visuals. The
news and announcements page utilizes two plugins for the time stamps on the news posts:
moment.js13 converts the times to display as differences in time, such as five minutes
ago, while livestamp.js14 extends this feature by providing live updates of the stamps.

The WebKit15 engine running on mobile devices will, by default, introduce a delay of 300
milliseconds for the simulated touch events [9]. This is because of the existence of double
tap events: the system must wait to be able to determine whether a single tap or double
tap event was given [10]. Double tap events were not required in the application, so the
touch delay proved only to be a burden. The fastclick16 plugin was used to effectively
remove the delay.

13http://momentjs.com/
14http://mattbradley.github.io/livestampjs/
15A web page renderer used in the Safari web browser, previously also used in Chrome.
16https://github.com/ftlabs/fastclick

19

http://momentjs.com/
http://mattbradley.github.io/livestampjs/
https://github.com/ftlabs/fastclick

CHAPTER 3. IMPLEMENTATION

3.5.6 Server-side modules

The CodeIgniter framework includes a large set of available libraries. The application is
using the database and session libraries. The database library manages the connection
to the database and allows the application to construct and run queries, but also pro-
vides methods to create custom transactions for synchronization of queries. The session
library provides a set of methods to create and manage sessions which are used in the
administrative interface in order to verify that the administrator is logged in. Addi-
tionally, an authorization library was developed to handle the token17 authorization as
discussed in Section 3.10.

3.6 System architecture

The system architecture is composed of several smaller systems, largely divisible into
two categories: the client side and the server side. These, in turn, also make up smaller
systems. For an overview, see Figure 3.1. The code of the application is structured by
separation of concern, that is, smaller sections manage only a limited part of the whole
problem. This is to make the system more manageable.

Figure 3.1: An illustration of the communication between subsystems. For example, the
client makes use of the HTML5 Local Storage API, as detailed in Section 3.6.1.

As seen in Figure 3.1, the client stores data into its associated HTML5 local storage,
which is then synchronized with the remote server to ensure that the data on the remote
storage is correct.

The remote server communicates with external APIs which consists mainly of APIs from
the City of Gothenburg’s so called open data18. The data the server retrieves are stored
temporarily on the file system. The data are then parsed and stored in the remote

17A token is a string or key that is used to receive authorization to perform certain operations.
18http://data.goteborg.se/ Gothenburg open data

20

http://data.goteborg.se/

CHAPTER 3. IMPLEMENTATION

storage, i.e. the database. This data can then be retrieved by the client directly from
the server. In this way, the server works as a cache for the external APIs.

The remote server also has an administrative interface that is sharing the same codebase
as the server but is separated in that it is only accessible by the system administrator.
The administrative interface is what allows the system administrator to maintain and
moderate the system and data, as discussed in Section 4.3.

3.6.1 Persistent data with HTML5 Web Storage

The application uses the HTML5 Web Storage API to store persistent data for the user.
The API consists of storing and retrieving data in a key-value pair. User data includes
activity logs, log in details in the form of a token, and the news and announcements.

The idea behind storing data on-device is to provide offline access to the latest infor-
mation. As such, the server is responsible for maintaining a correct copy. This has the
added benefit of enabling users to use several devices, most importantly both the desktop
and the mobile versions of the application, and maintain a single, reliable set of data.

In the case that a server connection is not available, which is not to be considered
an unusual case for mobile phones, local storage is also used to store data yet to be
synchronized with the server. A practical scenario for this event is when a user is out
for a run and decides to log the activity, but the devices fail in establishing a connection
with the server. The data are stored on-device and synchronization is reattempted when
the application is next started.

3.6.2 Server

As presented in Figure 3.1 the client and server will have to communicate. The client
will send requests to the server and the server will respond by performing some operation
and communicating back the response to the client.

In order for the client and server to communicate the request and response format and
parameters had to be agreed upon in order to understand each other. An API was
created for this purpose. All the operations that are available to the client are described
in the servers API discussed in Section 4.2.

In accordance with the MVC structure, the server is implemented as a controller that
loads the libraries that it requires. The server has as described above several methods
that perform different operations. The methods are using the libraries that were loaded

21

CHAPTER 3. IMPLEMENTATION

in the controller but also load and use models to perform and process data from the
database. The administrative interface uses the same structure and uses the same models
but has a separate authentication library.

3.7 Platforms

The platforms specified were found to be too wide at the beginning due to our choice
of development tool: Titanium Studio. It would allow us to create the application for
mobile devices considerably easier than for desktop browsers. However, as the transition
to PhoneGap was made the platforms supported were once again expanded, although
the mobile side remained the primary focus.

The end result is compatible with both desktop and mobile, albeit in varying degrees.
Certain functions do not translate directly from one environment to another, such as
location sensing for the map feature, and notifications, which are built specifically for
the mobile platforms.

The main focus was the Android platform as it was the easier mobile platform to de-
velop for of the two main mobile platforms, since iOS requires proprietary hardware and
software, including licenses. A majority of the authors are also in possession of android
devices.

3.8 User interface

The principles that the iOS Human Interface Guidelines provide state that a splash screen
is prefered to be avoided [11]. The Android GUI principles suggest the same, stating
that they are “interruptions” and “not necessary” [12]. However, as the application does
need some loading at the beginning, a splash screen is preferable over just an empty
loading screen. The splash screen presents the logo of Gothenburg City.

As one of the main objectives was to digitize the physical card into an application, the
UI should not differ too much compared to the original card. The original graphical
profile was reused to make tiles, as described in Section 3.8.2.

At the beginning of the project the authors were not only struggling with trying to figure
out a design that would fit the wide variety of users of the card campaign, but also
designing the paper prototype into a digital form. The authors had limited knowledge
of graphic applications leading to a steep learning curve to learn Adobe Indesign.

22

CHAPTER 3. IMPLEMENTATION

Some important aspects to consider are the differences in mobile and non-mobile devices.
The devices utilize different forms of input. Mobile devices makes use of touch screens,
accelerometers, compasses, and keyboards, while the older mobile devices may also use
trackballs or D-pads19 [13]. On the other hand, desktop computers and laptops generally
incorporates only the keyboard, the mouse, and sometimes the track pad [13]. Different
input methods have different strengths and weaknesses, which must be kept in mind
when designing cross-platform applications.

3.8.1 Landing page

The first view that the user sees is the card view. The design for the card originated
from the City of Gothenburg’s initial graphics for the exercises in the physical card,
shown in Figure 3.2. The colors and types of activities were kept, but additional tiles
were introduced to access the added functionality in the application. The motivation for
using the tiles in the application was their likeness to various popular UIs, perhaps most
recognizable in the Metro UI of Windows 8, shown in Figure 3.3. The tiles are explained
in more detail in Section 4.1.2.

3.8.2 Tiles

The tiles are the buttons which the user can interact with on the main page. There are
two categories of tiles: the tiles to log activities, and the tiles to access other features such
as the map and the news and announcements pages. The activity tiles are directly from
the physical card itself, and were provided by the City of Gothenburg. The additional
features required new tiles.

It was discovered early on that the additional tiles would have to follow the design of
the activity tiles. Initially, the design followed the same color patterns as the graphical
profile, but in order to avoid confusion the tiles were distinguished with a gray color
instead.

3.8.3 Login screen

Some features of the application require that the user is logged in, such as the cloud-
saving of user data. Since downloading the application requires a server connection, our
decision was to make profile creation prominent in the startup of the application. The
user could then create a profile in the same session as when downloading the application.

19A directional pad, usually with four directions leading to a plus sign shape.

23

CHAPTER 3. IMPLEMENTATION

Figure 3.2: The two sides of the physical card of the campaign. The back of the card is
shown on the right.

The application does nevertheless function without a profile attached, and user data can
always be synchronized with a profile at a later stage.

The login screen is displayed when the application determines that the user:

• has never logged in before;

• has had their session invalidated, i.e. the token has been rejected by the server;

• has cleared their cache.

The typical way of handling the process of logging in is to either provide an initial
page only shown if the user is not logged in, or by displaying a popup. Popups are
most frequently used on the desktop platform, and are less common on mobile phones.
However, due to the structure of jQuery Mobile, the popup option was chosen.

24

CHAPTER 3. IMPLEMENTATION

Figure 3.3: A screenshot of the UI of Microsoft’s Windows 8. The squares and rectangles
inspired the design for the landing page of the application.

jQuery Mobile uses the first page defined in the HTML document as the landing page.
This means that there is no condition that can alter the initial path: the condition would
be whether the user was logged in. If the login function were to be separated into its
own page, the application would have to immediately navigate away. This gives a poor
first impression of the application. The alternative would be to navigate from the initial
login page to the card view, but since the login popup was designed to be shown rarely,
this would effectively cause unnecessary delays each time the user starts the application.

The drawback of using a login page is that there must be a delay before it is displayed
since, for instance, the WebKit20 engine refreshes the page after loading it, causing the
popup to disappear. Additionally, it would have been ideal if the user would not interact
with any of the elements before the navigation, which is neither easy to guarantee nor a
trivial case to consider with the frameworks used.

3.8.4 Scaling

The scaling of the UI was of particular importance as the application should look the
same across different devices. We started adapting the interface to certain graphical
profiles as a first solution, which meant that we had to categorize devices into classes
based on the specifications of the devices. Google’s Android provides such standard
classes and is also a high authority in the field of mobile phones, which led us to follow

20http://www.webkit.org/

25

http://www.webkit.org/

CHAPTER 3. IMPLEMENTATION

their standards. This meant adapting to the tall mobile phones and the wide tablet
computers, desktop screens, and even TVs. Android makes use of the pixel density
profiles; low, medium, high, and extra high, and also considers small, medium, and large
screen sizes [14].

We found that some devices reported the pixel densities incorrectly, meaning the code
would assume the wrong device profile for the devices. The pixel densities are the relation
of the resolution, in pixels, of the device, and the physical screen area.

Density values of 0.75 are largely obsolete, while profiles of 1, 1.5, and 2.0 are common.
Densities of 3.0 and greater are usually found in the flagship mobile phones as of 2014,
such as the LG G221 or the Samsung Galaxy S522, with screen dimensions of 1080x1920
pixels and diagonal screen sizes of over 5 inches.

We later made use of a single set of larger image sizes which the application would
scale. For example, the tiles of the main page are 512x512 pixels, even though the de-
vice displaying them might not have sufficiently many pixels to display them without
scaling them down. The argument for using this method was that image loading is not a
performance-heavy enough operation to justify the exponential workload of supporting
both current devices and future devices; the application would eventually become unus-
able with this method. Another reason was that Google uses the same tactic for their
Play Store; a page they should wish to work well with many devices.

For the activity view, as detailed later in Figure 4.6, a contain method was used to scale
the image to the background of the screen. The method scales images such that the
shortest dimension, i.e. width or height, is the limiting dimension, such that no part
of the image is out of bounds of the window. Stretching images can make the image
appear pixelated on high-resolution, large displays. This is mitigated by providing larger
images.

The scaling of the tiles was implemented by the authors, as this provided better control
of fine-tuning the interface. Such control includes the number of displayed tiles in either
dimension, how large the margins should be between them, and how to position or align
them. It can also be changed more easily to work in special scenarios, such as when the
user changes from portrait view to landscape view by rotating their smartphone.

There are plugins available that solve similar problems, such as hammer.js23 or ma-
sonry24, but these add more functionality than required, such as animations, boxes of
different sizes, or texts on the tiles. Hence, they lead to greater overhead and lower

21http://www.lg.com/global/g2
22http://www.samsung.com/global/microsite/galaxys5/
23http://eightmedia.github.io/hammer.js/
24http://masonry.desandro.com/

26

http://www.lg.com/global/g2
http://www.samsung.com/global/microsite/galaxys5/
http://eightmedia.github.io/hammer.js/
http://masonry.desandro.com/

CHAPTER 3. IMPLEMENTATION

performance.

3.9 Performance and optimization

In order to achieve greater performance, page content was generated partly with JavaScript
code, such as in the news and announcements page. Generating the HTML content
means that the time it takes for the application to start is decreased, as there are fewer
elements to load: elements are only loaded when they need to be shown. This minimizes
the number of elements, consequently reducing query times and memory usage. In short,
generating page content allows for faster startup of the application in addition to lower
memory usage and faster queries.

Some performance-heavy operations have been avoided, such as overusing shadows on
elements, or images with transparencies. If the background behind the image is static,
then the image can be optimized by filling the transparent sections with that background
color instead. Another example of a performance-heavy feature is animation, particularly
on older devices. Animations during page transitions also result in the application feeling
sluggish. Further discussion regarding this topic can be found in Section 2.4.3.

There are also several aspects of server-side optimizations that were important to con-
sider when developing the server.

The database communication is using carefully constructed database queries that utilize
as much of the built in technologies in MySQL as possible, which is preferable over doing
the processing in PHP. Additionally, much of the data requested by the users are not
unique and it is possible to cache the queries and their corresponding resulting data.
This reduces the amount of queries and reduces the load on the database as data are
instead read from the cache on the file system. The Codeigniter framework has support
for query caching but also allows for loading models and libraries when they are needed
so that only the code that is required to run a particular method is loaded.

The administrative interface generates HTML markup which can be compressed in order
to reduce the data that has to be transferred. The same is possible for the CSS and
JavaScript files. Such compression is common and is referred to as minification.

3.10 Security and authorization

In securing the server and the user data, several aspects had to be taken into consider-
ation. The server therefore has several security mechanisms and levels of security put

27

CHAPTER 3. IMPLEMENTATION

into place.

The token authentication system discussed in Section 3.10.1 is the authentication system
that authorizes clients to perform operations on users data. The administrative interface
is instead using session variables25. Additionally the passwords are protected so that if
the database is compromised the passwords will remain difficult to obtain as discussed
in Section 3.10.4.

3.10.1 Token authentication

All requests to the server that retrieve and update any information regarding the user
are protected by a user authorization system. In order for a client to change or retrieve
any information related to a specific user, a token must be attained. A token is in essence
a key that is generated by the authorization system that grant the client permissions
to run certain operations on the server. This key is stored as a tuple in the database
containing the key itself, a user identifier index and an expiration date.

The client is allowed to query the server whether the key has expired. After it expires
the user will have to use their login credentials in order to generate a new token. The
token is however kept alive when the user is active by adding a time-to-live (TTL) from
the present time at any point the server authorizes an operation with that token.

Tokens are generated using the openssl random pseudo bytes function of the OpenSSL
library. The tokens are then encoded with the base64 function and converted from binary
data into 7-bit ASCII characters. They are only stored in the database if the generated
token is unique.

3.10.2 OpenSSL

Since the server is using OpenSSL to generate salts26 and tokens, it is important to take
the OpenSSL Heartbleed bug into consideration. The versions of OpenSSL vulnerable
to attacks following the heartbleed bug are OpenSSL 1.0.1 through 1.0.1f [15]. This
requires the system hosting the server not to run the affected versions of OpenSSL.

25Session variables are variables that are stored on the file system, meaning that they are not cleared
when the web page is refreshed.

26A salt is a unique string appended to the password before it is encrypted using a one-way encryption
algorithm, also known as hashing

28

CHAPTER 3. IMPLEMENTATION

3.10.3 Authorization

In order to create a user, a username and password must be provided. The user is then
stored in the database as a tuple containing a user identifier, username, password and
a salt. The password is simply an encrypted string based on the password provided by
the user and the random salt generated by the authorization system.

When a user tries to authenticate using their username and password, the authorization
system will encrypt the password using an encryption algorithm and the salt in the user
record associated with the provided username. The value of the encrypted string will
then be compared to the password stored in the database and, if they match, a token
with a TTL will be generated and returned to the user. Whenever a user already has
attained a token it can simply query the server with that token and the server will check
that the token is alive in which case it will perform the action, otherwise the user has to
reauthenticate.

3.10.4 Password security

If the passwords were to be compromised it is preferable to have them encrypted using
an algorithm that is computationally expensive forcing the attacker to spend more time
decrypting the passwords. The downside is that it will also require more computation for
the server to encrypt and compare passwords as is described in Section 3.10.3. Blowfish
was chosen as the algorithm for encrypting passwords since it is efficiently implemented
in PHP and there is no efficient cryptanalysis27 [16]. There exist weak keys in Blowfish
[17] but it is still a widely used algorithm that is viable for the purpose of this project.

Additionally, the passwords are salted for essentially the same purpose: to make it
computationally expensive for the attacker. If the database has been compromised it
should be expensive to attain a password without compromising the performance of the
system. A common method for cracking passwords is to use or generate rainbow tables,
which are dictionaries or mappings from strings to hashes. An attacker will generate all
possible passwords of some length and encrypt those, comparing the output against the
values in the database. If a unique string is provided for each user and appended to the
password before encryption, this task will become very computationally expensive. The
attacker will have to generate such a table for each individual user, e.g. by brute force.
The security or secrecy of salts is thus not important, only that they are unique.

27Cryptanalysis describes ways of exploiting the cryptographic algorithm in order to decrypt the plain
text without knowing the key.

29

CHAPTER 3. IMPLEMENTATION

3.10.5 Synchronization

As described in Section 3.6.1, the local storage must be synchronized with the server.
Synchronization is done by having a unique time stamp assigned to each activity created.
When a set of activities is sent to the server, it inserts the time stamps and the associated
data only if the time stamp is not found in the database. After sending the data and
receiving a confirmation, the client can omit its local data and replace it with the data
on the remote server.

Another synchronization problem occurs since queries are running concurrently: the
server must ensure that there are no queries that need to be executed atomically28 but
are not. The server protects against this by creating a type of lock using transactions.
The server will create a lock that blocks any other queries than the ones specified inside
of the lock from executing. When the code and queries inside of the lock complete their
execution the server releases the lock.

3.10.6 Input validation

The application will not necessarily filter the user input and the server could also be
directly queried sending HTTP post requests. It is thus important to ensure that the
data are properly validated and filtered to prevent unwanted data to be stored in the
database.

3.10.7 Database constraints

The server scripts protect against and filter any input data in order to not break the
structure of the database. However, it also has constraints that ensure that no such
input will be stored. As an example of this, no two users may have the same username.
Therefore it has a constraint that enforces usernames to be unique. In the database
there are several constraints that protect against invalid input data.

3.10.8 SQL injections

In order to retrieve or store data to the database one uses queries that are written in a
variant of the SQL language to specify what data one wishes to retrieve or store. It is

28Atomically means that, given a set of queries, they are either all executed without interruption, or
none of them are executed.

30

CHAPTER 3. IMPLEMENTATION

often required to create SQL queries based on user input, for example in order to store
user profile information. SQL injections are ways of manipulating the user input in order
to modify the SQL queries and have it execute potentially malicious code.

In order to protect a system from SQL injections, the inputted data is filtered so that
it does not contain any unexpected characters that could potentially modify the SQL
queries. In CodeIgniter, the database queries are constructed using a database library
which is set up to automatically filter the input data. The filtering protects against
attackers attempting to inject SQL as no injected SQL is executed but rather interpreted
as a string.

31

4

Results

This chapter provides illustrations of the achieved features, and describes the end result
of both the client side and the server side of the application. Most of the client-side results
are presented with screen shots of a prototype for the application, as that presents the
results from the perspective of the end user. This chapter also presents results in both
the design of the application and the security aspect. As client-side performance has not
been measured, it is not presented.

The graphical components shown in the figures have been created solely by the authors,
with the exception of the Gothenburg City logo and the activity tiles of the physical
card, as noted in Section 3.8.2. Frameworks have provided a basis for the GUI. The
screenshots were taken with an Android smartphone.

The implementation process and explanations of the terms found in this chapter are
found in Chapter 3.

4.1 Graphical user interface

The GUI of the final application was of importance, since it was heavily involved with
the requirements set by the client, as detailed in Section 2.2. This section presents some
of the most important aspects of the GUI.

32

CHAPTER 4. RESULTS

4.1.1 Splash screen

The splash screen, or loading screen, as shown in Figure 4.1, is the first screen that greets
the user when starting the application. As explained in Section 2.1, the Gothenburg City
logo should be shown, and the authors suggested the splash screen as an unobtrusive
option. The splash screen is only shown while the application is loading, hence there is
no added delay. The load time, during which the splash screen is shown, is generally no
longer than a few seconds, and it may go unnoticed on faster devices.

Figure 4.1: The splash screen shown during startup. The image consists of Gothenburg
City’s official logo, provided by Gothenburg City themselves.

33

CHAPTER 4. RESULTS

4.1.2 Card view

The card view is the main page, or landing page, of the application, and is shown in
Figure 4.2. It is the root of the navigation tree, containing eight activity buttons and four
navigation buttons. These buttons are the tiles discussed in Section 3.8.2, and together
they comprise the entirety of the set of interactive elements on the landing page.

The user may use the navigation tiles to access the added features summarized in Section
2.1. As seen in Figure 4.2, the additional four tiles are colored gray to distinguish them
from the activity tiles.

At the bottom of Figure 4.2 is a progress bar which indicates how many of the 25
exercises, on unique days, that the user has saved.

34

CHAPTER 4. RESULTS

Figure 4.2: The card page explained. The figure separates the colored tiles (1) from
the gray ones (2) to give a visual clue that the gray buttons are not activities, and briefly
explains the five classes of tiles. The activity tiles (1) are part of the physical card in the card
campaign of the City of Gothenburg. The figure shows the tiles of the additional features
(2), (3), (4), and (5). (6) shows the progress bar indicating the number of logged activities
counted toward the full card of the campaign.

35

CHAPTER 4. RESULTS

4.1.3 Login

When a user starts the application for the first time, a login dialog is shown. The dialog
can be dismissed by pressing the area outside of it. As long as the user has not logged
in, the dialog will be available under the settings page, as shown in Figure 4.11b.

If the user wins a prize in the promotion they must register their shipment information.
Although it is possible to provide the information when registering, it is not required
at that point. The reason is that it would be a burden to the users who are either not
interested in the promotion or have not yet won.

Figure 4.3: The login dialog covering the main page.

36

CHAPTER 4. RESULTS

4.1.4 Register

The registration page allows the user to register a profile by providing at least a username
and a password. The other fields, shown in Figure 4.4, are optional.

Figure 4.4: The registration screen, accessed via the login dialog.

37

CHAPTER 4. RESULTS

4.1.5 Profile recovery

If a user forgets their password, the profile recovery page allows them to reset their
password. The user must have signed up with an e-mail address which they can access.
When submitting a properly formatted e-mail address to the recovery data field, an e-
mail with a password reset link is sent to the e-mail provided, if there is a profile tied to
the e-mail in the database. The recovery page is shown in Figure 4.5.

Figure 4.5: The password recovery page, accessed via the login dialog. The user may enter
their email address to be sent details regarding resetting their password.

38

CHAPTER 4. RESULTS

4.1.6 Activity logging

If one of the activity buttons of the card page is pressed, the application navigates to a
screen in which the user may log an activity, as shown in Figure 4.6. The user is required
to select a time from the two spinning wheels, as previously mentioned in Section 3.5.3.
By design, the wheels do not accept a duration under 30 minutes, as exercises under 30
minutes do not lead to a mark for the promotion. In addition to selecting the duration,
the user can optionally add notes connected to the exercise.

Figure 4.6: The screen that allows the user to save an activity. The background of the
page depends on the activity that was pressed in the card page.

39

CHAPTER 4. RESULTS

4.1.7 Map

The map page shows Gothenburg with all of the client’s facilities marked on the map.
There is also the possibility to filter between facilities and bicycle stands (Styr & Ställ).
An example is presented in Figure 4.7.

Figure 4.7: Displays the exercise facilities and “Styr & Ställ” bicycle stands of the City of
Gothenburg. The figure also includes events and running tracks which are not implemented.

40

CHAPTER 4. RESULTS

4.1.8 News

The news page displays the announcements that the City of Gothenburg are able to write
through the administrative interface, as mentioned in Section 4.3. The three components
are the headline, the main text area, and the time stamp. As described in Section 3.5.5,
the news section uses time stamps which update in real time. The news page is shown
in Figure 4.8.

Figure 4.8: The news and announcements view.

41

CHAPTER 4. RESULTS

As shown in Figure 4.8, the page has a tab bar which allows the user to navigate to the
activity history view, as described in Section 4.1.9.

News item details

Although the content of a news post is previewed in the news and announcements page,
as shown in Figure 4.8, there may be news posts which do not fit in the preview. The
user may select any news item to be displayed in a new page, an example of which is
shown in Figure 4.9.

Figure 4.9: Shows a single news post in full-screen. The area is scrollable and provides a
large amount of space for more content in each news post.

42

CHAPTER 4. RESULTS

4.1.9 Saved activities

The activities that the users save are synchronized to their profile if they are logged in.
Whether the users are logged in or not, their saved activities can be viewed. The activity
history page is shown in Figure 4.10.

Figure 4.10: Displays a list of the activities that the user has saved.

43

CHAPTER 4. RESULTS

(a) The user is logged in. (b) The user is not logged in.

Figure 4.11: The settings pages. The options available depend on whether the user is
logged in.

4.1.10 Settings

The user finds the options for managing profiles: logging out, changing profile, changing
password, editing their profile, or clearing their user data. Clearing the data results in
removing any locally stored user data, such as unsynchronized activity logs. The settings
page shown when the user is logged in is presented in Figure 4.11a, while Figure 4.11b
presents the options available when the user is not logged in.

44

CHAPTER 4. RESULTS

4.1.11 Notifications

Notifications are provided when appropriate to assist the user in following what the
application is doing. A special case where notifications are essential are when the client
attempts to connect to the server and fails. The user must then be made aware of this
event. The notification box implemented in this application is shown in Figure 4.12.
The visuals of the notification box are largely inspired by the default notifications of the
Android operating system, which are known as toasts1.

Figure 4.12: A notification is shown to the user noting that the registration failed due to
failure to establish a connection with the server. Notifications are used to display information
unobtrusively to the user in various scenarios where the user needs to be aware of the actions
of the application.

1http://developer.android.com/guide/topics/ui/notifiers/toasts.html

45

http://developer.android.com/guide/topics/ui/notifiers/toasts.html

CHAPTER 4. RESULTS

4.2 Server

The client communicates with the server according to the API that was created. The
API has support for essentially five classes of operations: authentication, user profiles,
activities, news and map. The different features of the API are described further in
Table 4.1.

Feature Description

Authorization Enable users to login and the client to test if they are still
logged in.

Users Enable the client to register user profiles, reset password
and logged in users to update their user profile, change
password, add and remove friends.

Activities Enable logged in users to register, update, retrieve and
remove exercise activities.

Map Enable the client to receive location geocodes and their
corresponding metadata.

News Enable clients to receive news headlines and article con-
tent, which is published using the administrative interface
4.3.

Table 4.1: Summary of server-side features.

4.3 Administrative interface

An administrative interface was constructed in which the system administrator can create
and manage news articles, users and their information, and facilities as summarized in
Table 4.2.

Feature Description

News publishing View, edit, add, and delete news and announcements.

User administration View, edit, add, and delete user profiles.

Manage the map View, edit, add, and delete locations on a map that shows
all of the currently added locations.

Usage statistics View some key statistics about the users and their usage.

Table 4.2: The features of the administrative interface.

46

5

Discussion

In this chapter, we discuss some questions that were prompted by the development pro-
cess, and reflect back on the choices that we made. We also describe the limitations
of the application and explain particular cases where the end result was not what was
anticipated. We begin by relating mainly to the contents of Chapter 3: the planning,
the development environment, and the process. After that we expand on unforeseen cir-
cumstances, limitations with the prototype, and reflections on the choice of development
tools and their impact on the end result.

5.1 Planning

The planning was made with a larger set of features than we expected to finish, in order to
add more substance to the project. The main feature to implement was the digitization
of the physical card. In retrospect, the card function could have been implemented more
thoroughly had the scope not been widened. Whereas it would have led to more time
for user testing, for instance, it would also have resulted in an application with limited
functionality. It would also not have been as challenging as a project. We and the City
of Gothenburg both wanted more than the card system implemented in the prototype.

While the requirements specified by the client were fulfilled, we were not able to put
our efforts into making another large-scale feature such as a leaderboard system. The
results do, however, show a working prototype with both client and server sides handling
the promotion. We did not achieve some of the planned results, in part because the

47

CHAPTER 5. DISCUSSION

promotion card feature took longer than anticipated to implement.

An early version was developed specifically for one of our devices. At that point, the
GUI was hard-coded for a particular device. The biggest challenge was adapting the
application to other devices, mostly due to the scaling of the user interface, as discussed
in Section 3.8.4.

A significant task in the planning of the project was to create the core of the application
around which other features would be built. Due to the nature of web languages, the core
had to be continuously reworked. For instance, we learned that generating HTML code
by JavaScript was more efficient, so existing HTML code was converted to JavaScript
generation instead. Similarly, the web languages do not inherently allow for the MVC
model which makes the coding more difficult since we are used to object-oriented pro-
gramming. In short, the designing of the system core meant that features that were to
be integrated were somewhat slowed down.

Relating to the milestones of Section 3.2, what was eventually accomplished was the first
milestone and one of two features of the third. We implemented the card promotion and
added partial GPS functions. However, the map feature was redesigned to show both
facilities and the bicycle stands of “Styr & Ställ.” The priority of features changed during
the project, both as we learned more about the implementation languages, but also as
the progress gave us a better picture of the entire project. Among the initially planned
features, some either saw no progress or were continually postponed, as discussed in
Section 5.4.

We learned that cross-platform development can make a relatively easy task more de-
manding, especially when developing for both desktop computers and mobile phones.
Some of the basic features largely did not require adapting the code to different plat-
forms. For example, the difference in how browsers interpret the code relating to styling
of the GUI is minimal.

5.2 Development environment and platforms

One of the main challenges was our lack of familiarity with the different coding lan-
guages and the tools used. Most of us have not created web applications before. Since
cross-platform implementation was an important goal, another challenge was the partial
unfamiliarity with other operating systems. With only one of the authors having access
to iOS hardware, the implementation toward that platform in particular became mini-
mal. On the other hand, the rest of us were familiar with the Android system and could
offer our own experiences with what is expected in Android applications. Some features

48

CHAPTER 5. DISCUSSION

are unique to mobile devices, for example that the display rotates when the device is
turned.

As development was made with web languages, any browser could interpret the code.
This meant that the testing was continuously done while developing on the primary
browsers and devices used, in this case the Android platform and the Chrome and
Firefox browsers. The application may therefore show bias toward these platforms.

5.3 Unforeseen outcomes

When Titanium Studio was initially chosen as the main cross-platform tool as opposed
to PhoneGap, it was easy to build the code conditionally depending on the platform
used. An example is the navigation bar which is required on iOS devices since iOS
lacks a built-in back button. On Android devices, the back button is provided either
by a hardware button or by a panel of buttons in software on the screen of the device
itself. Similarly, back buttons are implemented in software in desktop browsers and
as hardware buttons on desktop mice. This makes ensuring that navigation works on
iOS an unexpected issue. With PhoneGap, we did not realize a way of conditionally
inserting a navigation bar only when it is needed, so the navigation bar was integrated
with the application for the builds of each platform. The navigation bar was not a major
problem, as vertical space was sufficient. The bar also introduced a label for each page
which would assist the user in knowing where in the application they were.

Another unexpected, but mostly minor difficulty arising from the chosen tools was the
general unreliability in how the interpreters of different browsers handle the code. The
elements could be wrongly positioned or displayed in a way not truthful to the code
written. Most of these issues were found to originate from the jQuery Mobile framework.
The framework changed the design in various ways, such as the exclusion of a checkbox
on the login screen. The reason was that it caused the page to flash when selected. The
state of the checkbox, that is, whether it was checked or not, would have decided whether
user details would have been saved once inserted. The combination of many such small
issues had an impact on the final design of the application.

We were also hoping to be able to implement a calendar since it was originally included
in the first milestone. We found a suitable plugin for the map that was estimated to
take less time than we thought during our planning phase. After assessing the priority
of the calendar and map, we realized that the map had a higher priority since it was
a request by the City of Gothenburg, which lead to prioritizing the development of the
map function instead.

49

CHAPTER 5. DISCUSSION

5.4 Limitations

The activity logs were originally designed so that the durations on each day would be
summed up to check whether the threshold of 30 minutes was reached. Currently, the
application only checks for single activities. This makes logging activities under 30
minutes not affect the progress of filling the card.

Although the map feature is aware of the location of the user by initially centering the
view on them, the GUI does not indicate where they are. This may lead to disorientation
should the user pan or zoom in on the map.

We would also have liked to implement the leaderboard system. As it currently stands, it
is only a sketch. Although some functionality is implemented server-side on the database,
mainly in the connections of user profiles through a friends system, the development of
the leaderboard feature was not started for the prototype.

User testing was also part of the original plan. We asked the City of Gothenburg if they
could provide assistance, but they lacked the capacity to do so. We also found that time
invested in implementation would be more rewarding instead of focusing on user testing.
Even though the application was tested on various browsers on desktops and on multiple
mobile devices, the application would benefit from additional, thorough testing before it
can be regarded as complete.

An aspect which is affected by other limitations is navigation in the application. The
navigation was designed relying on the implementation of the planned features, thereby
leading to gaps in the GUI. As an example, the calendar would have been grouped in a
tabbed page with both the training schedule and the list of activities logged. Instead,
the activity list is grouped in the tabbed page with the news and announcements screen.

5.5 Reflections

As the core goal of digitizing the card was expected to be reached well before the end
of the project, additional features were planned. Adding more substance to the project
was made simpler by the choice of making a web application, since a significant portion
of the code would be compatible with all of the target platforms.

The prototype did not include enough of the planned features to make the application
feel complete. Had the project group been larger, there would have been more manpower
to allow for dividing the group to work specifically on different platforms.

50

CHAPTER 5. DISCUSSION

An example of an early adaption to a native platform is the Android menu, partially
implemented in the Android-specific build of the application. The native code consists
of Java, but could also send JavaScript code from the native environment. The Android
menu had lower priority than other tasks, and was not integrated.

While we chose to use PhoneGap as the main cross-platform tool there were other al-
ternatives, such as Titanium Studio and Xamarin. Titanium Studio was error-prone,
making development difficult. As for Xamarin, there were additional costs for organi-
zational usage, thus the City of Gothenburg would have to submit it to App Store and
Google Play, which they did not have a budget for. This made it difficult to consider
the alternatives to PhoneGap as viable options.

5.5.1 Change of goals

If we were allowed to change the purpose of the application, or rather if we were simply
requested to create an unspecified exercise application with free reign, the resulting
application would likely have become more of a training application in line with the
currently most popular health and fitness applications rather than a casual exercise
application. Planning would have gone more smoothly as there would have been fewer
constraints and more space for innovation.

Limiting the scope to only one platform, either iOS or Android, would help focus the
process as well as the application as the developers could work together more closely. It
would be easier to implement and test since there would only be one code base. It would
also have likely produced a prototype with higher quality and fewer bugs.

5.5.2 Change of method

Scrum started well, but after only a few weeks we started diverging from it. The problem
was partly that we were interrupted by the planning report once we started development,
but also because Scrum works better when working every day and for longer periods of
time than two to four hours. Scrum might have also worked better if it was physically
implemented with post-its on a white board, as there would be no need to log in back-
and-forth to check on what had been done and what needed to be done. One would
visually and directly see a greater summary of what tasks needed to be completed.

The Scrum meetings were still useful in that it helped to keep us up to date with the
progress of the project. It also made it clear when we were behind schedule, and made
it easier to learn about the issues the others in the group were having.

51

CHAPTER 5. DISCUSSION

5.6 Designing for native

One thing we had to consider was how to make our application feel like a native appli-
cation. There have been some complaints from the PhoneGap development community
that their applications have been rejected from Apple’s App Store [18]. The main reason
seems to have been that the application did not feel native enough, which means the
feeling of a native coded application compared to one with web language.

Apple provides clear guidelines and principles for designing UIs for their devices. iOS 7
embodies deference, clarity and depth as their main subjects [11]. Android’s UI guide-
lines focus on Enchant me, Simplify my life and Make me amazing, which are topics
that are not as clear as what Apple have defined [12].

It seems that Apple is stricter in letting applications into the App Store than Google
Play, some amount of effort has been into making the application as native as possible.

5.7 Interaction with the City of Gothenburg

During our meetings with the City of Gothenburg we showed them what we had been
working on. We also received feedback and explained the plans we had regarding future
development. One of the ideas that they were especially pleased with was the statistical
usage data that the application could potentially gather. They had not thought of that
possibility earlier, which is not surprising as it is a relatively new way of gathering
exercise data as mentioned in Section 1.1.

Often when engineering students communicate among each other, they tend to use sim-
ilar terminology, since they have similar backgrounds. It was a valuable experience for
us to work with people with other backgrounds.

5.8 Future work

The application was developed with more features planned than implemented. This
means that the navigation is not as planned: in order to access the activity history, for
instance, the user would select the news tile, which is not as intended. With the planned
features complete, the flow of the application would make more sense as the training
schedule, calendar, and activity log history would be grouped in the tabbed view, with
the news and announcements feature having its own full page.

52

CHAPTER 5. DISCUSSION

The primary example of incomplete features is the leaderboard view, which lacks func-
tionality but remains present in the prototype. Implementing the leaderboard feature
would also justify the work put into the user profiles. It would also add substance to
the currently implemented features, as the leaderboard could work in tandem with the
news feature by allowing for group events among users that are friends. In addition, the
user statistics feature would also have served as a stepping stone toward the leaderboard
feature.

We also had plans to implement social functions such as profiles and to be able to
synchronize with Facebook or Twitter. Similarly, the possibility of taking pictures was
initially discussed with the client. These would also be connected to the leaderboard
feature in that the user profile picture could be taken from the same page. Another
possibility would have been to be able to upload images so that other users can view
them on the map.

As the application gathers a lot of data, there is a possibility of reusing the data in user
statistics, which was of interest for the City of Gothenburg. One simple use for the data
are that if they find that the most common activity is running, then they could host
more running events to get more people active.

There are also some events which are initially overlooked when designing an application,
such as the user receiving a phone call while using the application. These events can be
controlled natively on Android by executing specific code during these events, such as
when the application becomes paused or resumed.

Another aspect to take into consideration is that the user data are currently sent using an
unencrypted communication. In order to further enhance security, the user data should
use an SSL-encrypted connection, which would prevent eavesdropping.

53

6

Conclusions

The goal of the project was to deliver a prototype application to the City of Gothenburg.
The application was required to implement the functions of their currently active card
campaign. The application was also required to contain a map showing the locations of
their facilities. As the prototype incorporates the requested features, the main goal of
the project was achieved. While there are still small adjustments to make, mostly related
to integrating the additional features, the application is functional for its purpose.

The application provides the possibility of publishing news and announcements. The
feature is supported by an administrative interface which allows for creating, editing,
and removing news posts.

The map showing the exercise facilities of the City of Gothenburg was one of the two
primary goals of the project. The feature was implemented and extended by including
the “Styr & Ställ” bicycle service, which the City of Gothenburg also administrates. The
map feature uses the Google Maps API meaning that the user can interact with the map
by panning and zooming instead of viewing a static image of a map.

The application was required to store user data in order to track the progress the user
has made toward a full card. Our solution was to store the data on a server and keep
the latest copy on-device. This means that the user has offline access to their data.

Another advantage of storing user data server-side is the synchronization feature that
allows users to keep multiple devices up to date. To store user data server-side, user
profiles were implemented. Encrypted passwords and a token authorization system are

54

CHAPTER 6. CONCLUSIONS

used to ensure the privacy of users.

Since the application was built relying on web technologies, it can be used on any device
with a web browser. User data can therefore be managed through multiple devices.

Finally, the graphical user interface scales to the device the application is running on.
It is responsive to resizing the application window and adapts to orientation changes on
mobile devices.

55

Bibliography

[1] J. Bort-Roig, N. Gilson, A. Puig-Ribera, R. Contreras, S. Trost, Measuring and
Influencing Physical Activity with Smartphone Technology: A Systematic Review,
Sports Medicine 44 (5) (2014) 671–686.
URL http://dx.doi.org/10.1007/s40279-014-0142-5

[2] PUL, Statliga myndigheters behandling av personuppgifter, [Online; accessed
2014-05-18] (2014).
URL http://www.datainspektionen.se/lagar-och-regler/

personuppgiftslagen/e-forvaltning/statliga-myndigheters-behandling-

av-personuppgifter/

[3] Regeringskansliet / Lagrummet, Personuppgiftslag (1998:204), [Online; accessed
2014-05-18] (2010).
URL http://www.riksdagen.se/sv/Dokument-Lagar/Lagar/

Svenskforfattningssamling/Personuppgiftslag-1998204_sfs-1998-

204/?bet=1998:204

[4] E. Marcotte, Responsive Web Design, [Online; accessed 2014-05-15] (2010).
URL http://alistapart.com/article/responsive-web-design

[5] Google, Android NDK, [Online; accessed 2014-06-05] (2014).
URL https://developer.android.com/tools/sdk/ndk/index.html

[6] S. Diwakar, Titanium vs Phonegap vs Native application development, [Online;
accessed 2014-05-11] (2012).
URL http://www.sapandiwakar.in/api-research-study-iphone-and-

android-applications/

[7] jQuery Foundation, jQuery: The write less, do more, JavaScript library, [Online;
accessed 2014-05-04] (2014).
URL http://jquery.com/

56

http://dx.doi.org/10.1007/s40279-014-0142-5
http://www.datainspektionen.se/lagar-och-regler/personuppgiftslagen/e-forvaltning/statliga-myndigheters-behandling-av-personuppgifter/
http://www.datainspektionen.se/lagar-och-regler/personuppgiftslagen/e-forvaltning/statliga-myndigheters-behandling-av-personuppgifter/
http://www.datainspektionen.se/lagar-och-regler/personuppgiftslagen/e-forvaltning/statliga-myndigheters-behandling-av-personuppgifter/
http://www.riksdagen.se/sv/Dokument-Lagar/Lagar/Svenskforfattningssamling/Personuppgiftslag-1998204_sfs-1998-204/?bet=1998:204
http://www.riksdagen.se/sv/Dokument-Lagar/Lagar/Svenskforfattningssamling/Personuppgiftslag-1998204_sfs-1998-204/?bet=1998:204
http://www.riksdagen.se/sv/Dokument-Lagar/Lagar/Svenskforfattningssamling/Personuppgiftslag-1998204_sfs-1998-204/?bet=1998:204
http://alistapart.com/article/responsive-web-design
https://developer.android.com/tools/sdk/ndk/index.html
http://www.sapandiwakar.in/api-research-study-iphone-and-android-applications/
http://www.sapandiwakar.in/api-research-study-iphone-and-android-applications/
http://jquery.com/

BIBLIOGRAPHY

[8] MIT, The MIT License (MIT), [Online; accessed 2014-05-18] (2014).
URL http://opensource.org/licenses/MIT

[9] M. Dellanoce, Fast Touch Event Handling: Eliminate Click Delay, [Online; accessed
2014-05-04] (2014).
URL http://phonegap-tips.com/articles/fast-touch-event-handling-

eliminate-click-delay.html

[10] R. Fioravanti, Creating Fast Buttons for Mobile Web Applications, [Online; accessed
2014-05-04] (2014).
URL https://developers.google.com/mobile/articles/fast_buttons

[11] Apple, Designing for iOS 7, [Online; accessed 2014-05-10] (2014).
URL https://developer.apple.com/library/ios/documentation/

UserExperience/Conceptual/MobileHIG/index.html

[12] Google, Design principles, [Online; accessed 2014-05-10] (2014).
URL http://developer.android.com/design/get-started/principles.html

[13] R. Ghatol, Y. Patel, Beginning PhoneGap: Mobile Web Framework for JavaScript
and HTML5, Apress, 2012.

[14] Google, Supporting Multiple Screens, [Online; accessed 2014-05-04] (2014).
URL http://developer.android.com/design/get-started/principles.html

[15] OpenSSL Security Advisory, TLS heartbeat read overrun (CVE-2014-0160) (2014).
URL https://www.openssl.org/news/secadv_20140407.txt

[16] T. Nie, T. Zhang, A study of DES and Blowfish encryption algorithm, in: TENCON
2009-2009 IEEE Region 10 Conference, IEEE, 2009, pp. 1–4.

[17] O. Kara, C. Manap, A new class of Weak Keys for Blowfish, in: Fast Software
Encryption, Springer, 2007, pp. 167–180.

[18] A. Trice, PhoneGap advice on dealing with Apple application rejections, [Online;
accessed 2014-05-10] (2012).
URL http://www.adobe.com/devnet/phonegap/articles/apple-application-

rejections-and-phonegap-advice.html

57

http://opensource.org/licenses/MIT
http://phonegap-tips.com/articles/fast-touch-event-handling-eliminate-click-delay.html
http://phonegap-tips.com/articles/fast-touch-event-handling-eliminate-click-delay.html
https://developers.google.com/mobile/articles/fast_buttons
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/MobileHIG/index.html
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/MobileHIG/index.html
http://developer.android.com/design/get-started/principles.html
http://developer.android.com/design/get-started/principles.html
https://www.openssl.org/news/secadv_20140407.txt
http://www.adobe.com/devnet/phonegap/articles/apple-application-rejections-and-phonegap-advice.html
http://www.adobe.com/devnet/phonegap/articles/apple-application-rejections-and-phonegap-advice.html

	Introduction
	Background
	Purpose
	Overview

	Problem specification
	Functional requirements
	Non-functional requirements
	Server
	Privacy
	Security
	Portability
	Synchronization of user data
	Language of the user interface
	Swedish privacy law
	Lottery

	Platforms
	User experience
	Graphical user interface
	User interaction
	Responsiveness

	Implementation
	Work process
	Milestones
	Cross-platform development tool
	iOS development tools
	Emulation

	Server tools and framework
	External code
	MIT License
	jQuery Mobile
	Mobiscroll
	Map
	Other plugins
	Server-side modules

	System architecture
	Persistent data with HTML5 Web Storage
	Server

	Platforms
	User interface
	Landing page
	Tiles
	Login screen
	Scaling

	Performance and optimization
	Security and authorization
	Token authentication
	OpenSSL
	Authorization
	Password security
	Synchronization
	Input validation
	Database constraints
	SQL injections

	Results
	Graphical user interface
	Splash screen
	Card view
	Login
	Register
	Profile recovery
	Activity logging
	Map
	News
	Saved activities
	Settings
	Notifications

	Server
	Administrative interface

	Discussion
	Planning
	Development environment and platforms
	Unforeseen outcomes
	Limitations
	Reflections
	Change of goals
	Change of method

	Designing for native
	Interaction with the City of Gothenburg
	Future work

	Conclusions
	 Bibliography

