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Abstract

For some real-world optimization problems where the best behavior is sought, it is
infeasible to search for a solution by making a model of the problem and performing
calculations on it. When this is the case, good solutions can sometimes be found
by trial and error. Reinforcement learning is a way of finding optimal behavior
by systematic trial and error. This thesis aims to compare different reinforcement
learning techniques and evaluate them. Model-based interval estimation (MBIE)
and Explicit Explore or Exploit using dynamic bayesian networks (DBN-E3) are
two algorithms that are evaluated. To evaluate the techniques, learning agents
were constructed using the algorithms and then simulated in the environment In-
vasive Species from the Reinforcement Learning Competition. The results of the
study show that an optimized version of DBN-E3 is better than MBIE at finding
an optimal or near optimal behavior policy in Invasive Species for a selection of
environment parameters. Using a factored model like a DBN shows certain advan-
tages operating in Invasive Species, which is a factored environment. For example
it achieves a near optimal policy within fewer episodes than MBIE.

Keywords: Reinforcement learning, Artificial intelligence, MBIE, DBN-E3, Inva-
sive Species, Learning algorithms
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Sammanfattning

För vissa verklighetsbaserade optimeringsproblem där det gäller att finna ett bästa
beteende är det orimligt söka efter det optimala beteendet genom att skapa en
modell av problemet och sedan utföra beräkningar p̊a den. När s̊a är fallet, kan
man hitta bra lösningar genom trial and error. Reinforcement learning är ett sätt
att hitta optimalt beteende genom att systematisk pröva sig fram. Detta kandi-
datarbete har som m̊al att jämföra olika inlärningstekniker och utvärdera dessa.
Model-based interval estimation (MBIE) och Explicit Explore or Exploit med dy-
namiska bayesnät (DBN-E3) är tv̊a självlärande algoritmer som här utvärderas.
För att utvärdera de olika teknikerna implementerades agenter som använde al-
goritmerna, och dessa testkördes sedan i miljön Invasive Species fr̊an tävlingen
Reinforcement Learning Competition. DBN-E3 är bättre än MBIE p̊a att hitta
en optimal eller nära optimal policy i Invasive Species med valda parametrar. Att
använda en faktoriserad modell, s̊a som DBN-E3 visar p̊a tydliga fördelar i fakto-
riserade miljöer, som i till exempel Invasive Species. Ett exempel p̊a detta är att
den n̊ar en nästan optimal policy p̊a färre episoder än MBIE.
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Chapter 1

Introduction

Reinforcement learning, a subfield of artificial intelligence, is the study of algo-
rithms that learn how to choose the best actions depending on the situation. In
a reinforcement learning problem the algorithm is not told which actions give the
best results, but instead it has to interact with the environment to learn when and
where to take a certain action. When the agent has learned about each situation
or state of the environment, it will arrive at an optimal sequence of actions (Barto
and Sutton 1998).

Reinforcement learning can be exemplified by how a newborn animal learns how
to stand up. There is no tutor to teach it, so instead it tries various combinations
of movements, while remembering which of them lead to success and which of them
lead to failure. Probably, at first, most of its attempted movement patterns will
lead to it falling down — a negative result, making the animal less likely to try
those patterns again. After a while, the animal finds some combination of muscle
contractions that enables it to stand — a positive result, which would make it more
likely to perform those actions again.

In the real world, in order to decide what actions lead to success, one almost
always needs to consider the circumstances, or the state of the environment, in
which the actions are taken. For instance, a person might be rewarded if they
sang beautifully at a concert, but doing the same at the library would probably get
them thrown out. Furthermore, for many real world domains it is common that
the state space (the set of possible states of the environments in which actions can
be taken) is very large (Guestrin et al. 2003). To continue our example, there are
probably countless places and situations where it is possible to sing. In this case,
how does one abstract and find the qualities of the environment that are important
for deciding on the optimal action?

There are two practical problems connected to reinforcement learning in large
state spaces. First, it is hard to store representations of the states of the environ-
ment in the main memory of a computer (Szepesvári 2010). Second, it takes too
long to repeatedly visit all the states to find the best action to take in all of them
(Dietterich, Taleghan, and Crowley 2013).

1.1 Purpose and problem statement

This thesis aims to further the knowledge of reinforcement learning or more specifi-
cally, algorithms applied to reinforcement learning problems with large state spaces.
Reinforcement learning algorithms struggle with environments consisting of large
state spaces due to practical limitations in memory usage and difficulties in estimat-
ing the value of actions and states within reasonable processing time. Therefore, we
aim to evaluate techniques to circumvent or reduce the impact of these limitations.
This is done by implementing algorithms that use these techniques and comparing
the algorithms in an environment with a large state space.
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Limitations Due to time constraints only two algorithms are tested, which apply
different techniques. Furthermore, the evaluation of the selected algorithms is done
in only one environment covering a certain problem with a large state space.

Simulation environment The environment used is Invasive Species from the
Reinforcement Learning Competition, described in section 3.1. Depending on the
parameters, the problem can have both a large state space and/or a large action
space. This makes Invasive Species a good choice with the given problem statement.

Agents to be evaluated Two algorithms that are suitable to the purpose and
problem statement, since they apply different techniques for working with large
state spaces, are Explicit Explore or Exploit in dynamic bayesian networks (DBN-
E3) and model-based interval estimation (MBIE). They are described in detail in
chapter 3.
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Chapter 2

Technical background

The term artificial intelligence was coined by John McCarthy who described it as
“the science and engineering of making intelligent machines” (McCarthy 2007).
More specifically, it addresses creating intelligent computer machines or software
that can achieve specified goals computationally. These goals can comprise any-
thing, e.g. writing poetry, playing complex games such as chess or diagnosing
diseases. Different branches of artificial intelligence include planning, reasoning,
pattern recognition and the focus of this thesis: learning from experience. This
chapter gives a more formal description of reinforcement learning and the main
topics and concepts necessary to understand the rest of the report.

2.1 Reinforcement learning

In artificial intelligence, reinforcement learning is the problem of learning from
experience. A reinforcement learning algorithm uses past experiences and domain
knowledge to make intelligent decisions about future actions (Barto and Sutton
1998).

ENVIRONMENT

AGENT

O
bs

er
va

tio
n

Re
w
ar
d Action

Figure 2.1: The reinforcement learning process

The reinforcement learning problem is modeled as a sequential decision problem,
see figure 2.1 for a graphical representation of the process. A learning agent per-
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forms an action and receives a reward according to some measure of how desirable
the results of the action are. After the action is taken, the state of the environment
changes and the agent then receives a new observation and the process repeats.
The goal of the reinforcement learning agent is to maximize the reward received
over a certain time period, the horizon, finding a balance between immediate and
future rewards (Barto and Sutton 1998).

There are several ways of further dividing reinforcement learning problems into
other subcategories. Some examples are the dichotomies episodic/non-episodic
problems, problems with continuous/discrete state spaces, problems with continu-
ous/discrete action spaces, problems with one/multiple concurrent agents etc. In
the text below, the two first of these dichotomies, which are relevant to this thesis,
are discussed.

2.1.1 Episodic and non-episodic problems

One can categorize reinforcement learning problems based on whether or not the
time steps are divided into episodes. If they are, the problem is called episodic and
otherwise it is called non-episodic. Episodic problems are common in for example
games, which end when they are won or lost. An episode here corresponds to a full
game from start to finish. In a non-episodic problem, the interaction between the
actor and environment goes on continuously without end (Barto and Sutton 1998).
Two examples of non-episodic applications are controlling a robot arm (as well as
other robotics problems) and maneuvering a helicopter (Ng et al. 2006).

2.1.2 Continuous and discrete problems

Reinforcement-learning problems can also be categorized by their state spaces.
Some problems have a discrete state space whereas for some problems the state
space is continuous. An important difference between the two kinds of problems is
how an agent can treat similar states in the model. In a continuous problem it is
much easier to classify states located around the same “position” as belonging to
the same group, since the states usually more or less meld together. For example,
if the reinforcement learning problem is to control a robot arm whose position
constitutes the state of the environment, states corresponding to positions in the
same general area are not very different. This means that these states might be
treated in the same way or a similar way by an agent. In contrast, consider the
discrete problem of a game of chess, wherein the placement of a pawn in one of
two adjacent squares could dramatically change the evaluation of the state and the
outcome of the game (Barto and Sutton 1998).

2.2 Markov decision process

Within reinforcement learning, the concept of Markov decision processes (MDP)
is central. An MDP is a way to model an environment where state changes in it
are dependent on both random chance and the actions of an agent. An MDP is
defined by the quadruple (S,A, P (·, ·, ·), R(·, ·)) (Altman 2002):

Definition 2.1. MDP

S A set of states that the environment can be in.

A A set of actions that are allowed in the MDP.

P : S × A × S → [0, 1] A probability distribution over the transitions in the
environment. This function describes the probability of ending up in a certain
target state when a certain action is taken from a certain origin state.

R : S × A → R A function for the reward associated with a state transition.
In some definitions of MDPs the reward function only depends on the state.
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MDPs are similar to Markov chains, but there are two differences. First, there
is a concept of rewards in MDPs, which is absent in Markov chains. Second, in a
Markov chain, the only thing that affects the probabilities of transitioning to other
states is the current state, whereas in an MPD both the current state and the action
taken in that state are needed to know the probability distribution connected with
the next state (Altman 2002).

If there are only a few states s′ for which P (s, a, s′) > 0, the MDP is called
a sparse MDP. That is to say, when an agent performs a certain action, a, in a
certain state, s, the environment can only end up in a small fraction out of the
total number of states (Dietterich, Taleghan, and Crowley 2013).

2.2.1 Utility

The concept of utility is used as a measurement of how well an agent performs over
time. In the simplest case, the utility is just the sum of all rewards received in
an episode. See equation (2.1), where T is the length of an episode and rk is the
expected reward at time step k.

U0 = r0 + r1 + · · ·+ rT−1 =

T−1∑
k=0

rk (2.1)

However, in a non-episodic environment, the interaction between the environ-
ment and the agent can go on forever. Here the concept of a discount factor, γ, is
essential. This parameter is a value between 0 and 1 which describes how fast the
value of expected future rewards decays as one looks further into the future (Barto
and Sutton 1998). Thus, the utility can be expressed as in equation (2.2) in the
case that discounting is used.

Ut = rt+1 + γrt+2 + γ2rt+3 · · · =
∞∑
k=0

γkrt+k+1 (2.2)

2.2.2 Markov property

A defining characteristic of an MDP is the Markov property—that, given the cur-
rent state of the environment, one cannot gain any more information about its
future behavior by also considering the previous actions and states it has been
in. Equation (2.3) defines the Markov property: the probability of state st+1 only
depends on the previous state st and action at.

Pr(st+1|st, at, . . . , s1, a1) = Pr(st+1|st, at) = P (st, at, st+1) (2.3)

This can be compared to the state of a chess game, where the positions of
the pieces at any time completely summarizes everything relevant about what has
happened previously in the game. That is, no more information about previous
moves or states of the board is needed to decide how to play or predict the future
outcome of the game (disregarding psychological factors). A chess MDP that uses
a chess board as its state representation could thus be an example of an MDP with
the Markov property (Altman 2002).

2.2.3 Representations

Two ways to represent an MDP are extensional and factored representation. De-
pending on what problem domain is used, it can be advantageous to use a factored
representation due to computational considerations(Boutilier, Dean, and Hanks
1999).
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Extensional representation The most straightforward way to model an MDP
is called extensional representation, where the set of states and actions are enu-
merated directly. It is also commonly referred to as an explicit representation and
this is the definition we have used so far in the report when discussing the abstract
view of an MDP (Boutilier, Dean, and Hanks 1999).

Factored representation A factored representation of the states of an MDP
often results in a more compact way of describing the set of states. Certain prop-
erties or features of the states are used to factor the state space into different sets.
Which properties or features are used is chosen by the algorithm designer, to fit
the environment. Formally a state s is in a state space S = S1 × · · · × Sk of k
factors, with the state at time t being st = (st(1), . . . , st(k)).

When the MDP is factored, it enables factored representations of states, ac-
tions and other components of the MDP as well. When using a factored action
representation, an action can be taken based on specific state features instead of
on the whole state. If the individual actions affect relativity few features or if
the effects contain regularities then using a factored representation can result in
compact representations of actions (Boutilier, Dean, and Hanks 1999).

2.3 Basic algorithms for solving MDPs

A policy π is a function from a state s to an action a that operates in the context
of a Markov decision process, i.e. π : S → A. A policy is thus a description of
how to act in each state of an MDP. An arbitrary policy is denoted by π and the
optimal policy (the policy with the maximal utility in the MDP) is denoted by π∗.
The rest of this section describes some basic algorithms for solving an MDP, that
is to say, finding an optimal policy for it (Barto and Sutton 1998).

2.3.1 Value functions

To solve an MDP, most algorithms use an estimation of values of states or states
and actions. Two value functions are usually defined, the state-value function
V : S → R and the state-action-value function Q : S×A→ R. As the names imply,
V signifies how good a state is, while Q signifies how good an action in a state is.
The state-value function, V π(s), returns the expected value when starting in state s
and following policy π thereafter. The state-action-value function, Qπ(s, a), returns
the expected value when starting in state s and taking action a and thereafter
following policy π. The value functions for the optimal policy, the policy that
maximizes the utility, are denoted by V ∗(s) and Q∗(s, a) (Barto and Sutton 1998).

Equations (2.4) and (2.5) show the state-value function V and the state-action-
value function Q defined in terms of utility (section 2.2.1). The future states, st,
are stochastically distributed according to the transition probabilities of the MDP
and the policy π (see section 2.2).

V πt (s) = E {Ut| st = s} (2.4)

Qπt (s, a) = E {Ut| st = s, at = a} (2.5)

Both V π and Qπ can be estimated from experience. This can be done by
maintaining the average of the rewards that have followed each state when following
the policy π. When the number of times the state has been encountered goes to
infinity, the average over these histories of rewards converges to the true values of
the value function (Barto and Sutton 1998).
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Using dynamic programming to find V and Q Another way to find value
functions is to use dynamic programming techniques. Dynamic programming is a
way of dividing a problem into subproblems that can be solved independently. If
the result of a particular subproblem is needed again, it can be looked up from a
table (Bellman 1957). Examples of dynamic programming algorithms are policy
iteration and value iteration, which are discussed in sections 2.3.2 and 2.3.3. These
algorithms are often the basis for more advanced algorithms, among them the ones
described in chapter 3.

2.3.2 Policy iteration

Policy iteration is a method for solving an MPD that will converge to an optimal
policy and the true value function in a finite number of iterations if the process is a
finite MDP. The algorithm consists of three steps: initialization, policy evaluation
and policy improvement (Barto and Sutton 1998).

Initialization
Start with an arbitrary policy π and arbitrary value function V0.

Policy evaluation
Compute an updated value function, V , for the policy π in the MDP by using
the update rule (2.6) until V converges. Convergence means that |Vk+1(s)−
Vk(s)| ≤ ε,∀s, where ε is chosen as a small value. In the update rule, π(s, a)
is the probability of taking action a in state s using policy π.

Vk+1(s) =
∑
a

π(s, a)
∑
s′

P (s, a, s′) [R(s, a) + γVk(s′)] (2.6)

Policy improvement
Improve the policy by making it greedy with regard to V , equation (2.7)1.
This means that the policy will describe the action in each state that maxi-
mizes the expected V -value of the following state.

πk+1(s) = arg max
a

∑
s′

P (s, a, s′) [R(s, a) + γV (s′)] (2.7)

Repeat evaluation and improvement until π is stable between two iterations.

2.3.3 Value iteration

Value iteration is a simplification of policy iteration where only one step of policy
evaluation is performed in each iteration. Value iteration does not compute an
actual policy until the value function has converged (Barto and Sutton 1998).
Value iteration works as follows:

Initialization
Start with an arbitrary value function V0.

Value iteration
Update the value function for each state using the update rule (2.8).

Vk+1(s) = max
a

∑
s′

P (s, a, s′) [R(s, a) + γVk(s′)] (2.8)

1argmaxa f(a) gives the a that maximizes f(a).

7



Repeat value iteration until V converges and set V = Vk. As in policy iteration,
by convergence is meant that |Vk+1(s) − Vk(s)| ≤ ε,∀s, where ε is a small
value.

Compute the policy using equation (2.9).

π(s) = arg max
a

∑
s′

P (s, a, s′) [R(s, a) + γV (s′)] (2.9)

2.4 Dynamic bayesian networks

A bayesian network is a graphical model that represents random variables and their
dependencies on each other (see figure 2.2). Each random variable corresponds to
a node and a directed edge represents a dependency between the target and the
source node (Heckerman 1998). For instance in figure 2.2, Z depends on the setting
of X and Y .

X

Z

Y

Figure 2.2: A simple bayesian network

A dynamic bayesian network (DBN) is a bayesian network where the random
variables are allowed to depend on prior settings of the same random variables as
well as each other, see figure 2.3.

X

Y

Z

t

X

Y

Z

t+1

Figure 2.3: A simple dynamic bayesian network

In bayesian networks as well as dynamic bayesian networks one can define the
parents of a random variable to be the variables that it depends on. In the bayesian
network in figure 2.2 the parents of Z are pa(Z) = {X,Y } and in figure 2.3 the
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parents of Y are pa(Yt+1) = {Yt, Xt}. A random variable X is not a parent of Y if
they are independent, i.e. Pr(X,Y ) = Pr(X) Pr(Y ).

States in an MDP can be factored into several state variables representing dif-
ferent features of the state. Using this factorization transition probabilities can be
represented by a set of bayesian networks, one network for each possible action.

In each network every state variable, st(i), is a node representing the state
variable at time t, as well as a node, st+1(i), representing the same state variable
at time t + 1. If the probability distribution of a certain state variable st+1(i)
is affected by the value of another state variable st(j) if action a is taken then
there is a directed edge from st(j) to st+1(i) in the DBN corresponding to action
a (Guestrin et al. 2003).

9



Chapter 3

Environment and algorithms

This chapter gives a description of the environment and the algorithms that were
used in the experiment described in chapter 4. The environment Invasive Species is
a simulation of a river network with invading species, where to goal is to eradicate
unwanted species. It is further described in section 3.1.

Two algorithms are covered in this chapter, both of which deal with the prob-
lems that arise with large state spaces; however, they differ in the methods they
apply. In the following chapter the general ideas behind the algorithms, as well
as specific details, are presented. The model-based interval estimation algorithm,
described in section 3.2, utilizes clever estimations of confidence intervals for the
state-action value functions to improve performance in sparse MDPs. Section 3.3 is
on an algorithm that uses dynamic bayesian networks and factored representations
to improve the E3 algorithm to efficiently deal with factored MDPs.

3.1 Environment specification, Invasive Species

When the agents were tested, the Invasive Species environment from the 2014
edition of the Reinforcement Learning Competition was used. The environment is
a simulation of an invasive species problem, in this case a river network where the
goal of the agent is to eradicate unwanted species while replanting native species.

The environment’s model of the river network has parameters, such as the size
of the river network and the rate at which plants spread, which can be configured
in order to create different variations of the environment. The size of the river
network is defined by two parameters: the number of reaches and the number of
habitats per reach. A habitat is the smallest unit of land that is considered in
the problem. A habitat can either be invaded by the tamarix tree, which is an
unwanted species, empty or occupied by native species. A reach is a collection
of neighboring habitats. The structure of the river network is defined in terms of
which reach is connected to which (Taleghanand, Crowley, and Dietterich 2014).
In figure 3.1 a model of a river network is shown.

There are four possible actions (eradicate tamarix trees, plant native trees,
eradicate tamarix trees and plant native trees and a wait-and-see action), and the
agent chooses one of these actions for each reach and time step. If the agent chooses
to eradicate tamarix trees or plant native trees in a reach, all habitats of that reach
are targeted by this action. What actions are available to the agent depends on
the state of each reach. It is always possible to choose the wait-and-see action, but
there has to be one or more tamarix-invaded habitats in a reach for the eradicate or
eradicate-and-plant actions to be available and there has to be at least one empty
habitat in a reach for the plant-native-trees action to be available (Taleghanand,
Crowley, and Dietterich 2014).
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Figure 3.1: A river network, as modeled by the Invasive Species reinforcement
learning environment.

3.2 Model-based interval estimation

Model-based interval estimation (MBIE) is a version of value iteration whose main
feature is its use of confidence intervals for the state-action values. Optimistic
bounds to these confidence intervals are computed, by means of finding an opti-
mistic bound for transition probabilities. The optimistic bounds for the transition
probabilities are then used in standard value iteration to compute state-action val-
ues, from which an optimal policy can be found. State values are also computed
at this point.

Since the confidence intervals become less wide when the number of data points
that they are based on increases, the more times a state-action pair has been
observed, the less optimistic the bounds for these intervals will be (Dietterich,
Taleghan, and Crowley 2013). This has the net result of promoting exploration
of state-action pairs as long as the confidence intervals are wide, but as the state-
action pairs have been tried more and more times, the agent behaves in a less
exploratory fashion.

3.2.1 Value iteration with confidence intervals

The upper bounds of the confidence intervals for the state-action values are cal-
culated as in equation (3.1) and then, using these results, equation (3.2) gives the
state values by taking the best action for each state.

Qupper(s, a) =R(s, a)+

max
P̃∈CI(P (s,a),δ)

γ
∑
s′

P̃ (s′|s, a) max
a′

Qupper(s
′, a′) (3.1)

Vupper(s) = max
a

Qupper(s, a) (3.2)
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Section 3.2.3 describes a method, ComputeP̃ , that efficiently calculates the
maximization step in equation (3.1) by finding the probability distribution, P̃ ,
that maximizes the sum in the equation.

3.2.2 Optimistic estimations of transition probabilities

The first step of the MBIE algorithm is to find optimistic estimations of transition
probabilities. Equation (3.3) describes, as a set, the confidence interval (CI) used
by MBIE for the probability distribution over destination states when taking action
a in state s. So, the first task of the algorithm is to find the element within this set
that is maximally optimistic, meaning that it gives the best value to (s, a) in the
following value-iteration step of the MBIE algorithm. A description of how this is
done in practice is found in section 3.2.3.

In equation (3.3), P̂ is the observed probability distribution (treated as a vector)
for destination states from (s, a), N(s, a) is the number of times that the state-
action pair (s, a) has been observed, δ is a confidence parameter, ω is the value
given by equation (3.4) and ‖x‖1 denotes the L1-norm of the vector x. The L1-norm
is the sum of the absolute value of all elements of a vector.

CI
(
P̂ | N(s, a), δ

)
=
{
P̃ | ‖P̃ − P̂‖1 ≤ ω(N(s, a), δ), ‖P̂‖1 = 1, P̂i ≥ 0

}
(3.3)

In equation (3.4), ω gives a bound for how much the vector of transition prob-
abilities can be changed from the observed values, while remaining within the
confidence interval. In this equation, |S| is the number of states in the MDP and
the other variables have the same meaning as in equation (3.3). For the derivation
of this equation, see Strehl and Littman (2008).

ω(N(s, a), δ) =

√
2| ln(2|S| − 2)− ln δ|

N(s, a)
(3.4)

3.2.3 ComputeP̃

The method for finding the sought element within the set denoted by equation (3.3)
is referred to as ComputeP̃ in this thesis. The fundamental idea of the ComputeP̃
method is that it starts with the observed transition probabilities P̂ and then
it moves probability mass from “bad” outcomes to “good” outcomes and finally
returns the resulting probability distribution, P̃ .

Initialization The state transition probability distribution is initialized accord-
ing to equation (3.5), which corresponds to the observed probabilities.

P̃ (s′|s, a) := P̂ (s′|s, a) =
N(s, a, s′)

N(s, a)
(3.5)

In equation (3.5) N(s, a, s′) is the number of times action a has been taken in
state s and the agent ended up in state s′.

Moving probability mass The procedure of moving probability mass is done
by first finding the outcome state with the best state-value and observed probability
less than 1, calling it s. Analogously the outcome with the worst state-value with
an observed probability of greater than 0 is found, and this state is called s. If a
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state-value has not been computed yet for a certain state, it is assumed to have
the maximum possible value.

The probability values P̃ (s|s, a) and P̃ (s|s, a) are then increased or decreased
according to equations (3.6) and (3.7).

P̃ (s|s, a) := P̃ (s|s, a)− ξ (3.6)

P̃ (s|s, a) := P̃ (s|s, a) + ξ (3.7)

Since the sum of the probabilities needs to equal one and no single transition
probability may fall below zero or exceed one, the probability distribution can only
be modified by at most ξ, as given by equation (3.8), where ∆ω = ω/2. The variable
∆ω denotes the total mass that can be moved, without P̃ having a lower chance
than 1− δ of being within the confidence interval for the probability distribution.
If ξ is less than ∆ω, new states s and s are found, and probabilities are moved until
mass equal to ∆ω has been moved in total or the probability mass has all been
moved to an optimal state. The resulting vector, P̃ , is the one that maximizes the
sum in equation (3.1).

ξ = min{1− P̃ (s|s, a), P̃ (s|s, a),∆ω} (3.8)

3.2.4 Optimizations based on Good-Turing estimations

One problem with the method described above is that probability mass can be
moved to any destination state, without any consideration taken whether this out-
come has ever been observed. Dietterich, Taleghan, and Crowley (2013) and the
MBIE-algorithm in this thesis make use of an optimization that deals with this by
limiting the probability mass that can be moved to outcomes that have never been
observed. This leads to better approximations of sparse MDPs. The limit that
is used is the approximation of the probability mass in unobserved outcomes as
estimated by Good and Turing as M̂0(s, a) = |N1(s, a)|/N(s, a) (Good 1953). In
this equation, N1(s, a) is a set of the states that have been observed exactly once
as an outcome when taking action a in state s and N(s, a) is the number of times
that action a has been taken in state s in total.

3.3 E3 in factored Markov decision processes

The second algorithm studied in this thesis is a version of the E3 algorithm that
focuses on factored problem domains by modeling them as a dynamic bayesian
network. The original E3 algorithm is described in section 3.3.1, which gives a
broad overview along with the key strategies used in the algorithm. The following
section, 3.3.2, considers some ways to extend the original algorithm and make use of
factored representations and planning in factored domains to improve the running
time of the algorithm.

3.3.1 The E3 algorithm

E3 (Explicit Explore or Exploit) is an algorithm that divides the state space into
two parts — known states and unknown states — in order to decide whether it is
better to explore unknown states or to exploit the agent’s knowledge of the known
states. A state is considered to be known if the E3 agent has visited it enough times.
All other states are either unknown or have never even been visited. Unknown and
unvisited states are treated in the same way. In the following sections a description
is given of the three phases of operation of E3 which are called balanced wandering,
exploration and exploitation (Kearns and Singh 2002).
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Balanced wandering When the agent finds itself in a state that it has not
visited a large enough number of times to be considered a known state, it enters a
phase called balanced wandering. When in balanced wandering, the agent always
takes the action performed from this state the least number of times.

Exploration When the agent from the balanced wandering phase enters a state
that is known, it performs a policy computation to find a policy that maximizes
the agent’s chance of ending up in an unknown state.

This exploration policy calculation is performed on an MDP which contains all
known states and their experienced transition probabilities. All unknown states
are gathered in a super-state with transition probability 0 to all known states and
1 to itself. The rewards are set to 0 for known states whereas the reward for the
super-state is set to the maximum possible reward. A policy based on this MDP
definition will strive to perform actions that reach the super-state, i.e., an unknown
state.

If the probability of ending up in the super-state is below a certain threshold,
it can be proved that the agent knows enough about the MDP that it is probable
that it will be able to calculate a policy that is close to optimal (Kearns and Singh
2002).

Exploitation Thus when the agent knows enough about the MDP it performs a
policy computation to find a policy that maximizes rewards from the known part
of the MDP. This exploitation policy computation is performed on an MDP com-
prising all known states, their observed transition probabilities and their observed
rewards. A super-state representing all unknown states is also added to the MDP
with reward 0 and transition probability 0 to all known states and 1 to itself. This
MDP definition will result in a policy that favors staying in the known MDP and
finding a policy with high return.

Leaving the exploitation and exploration phases When the agent is in
either the exploration or exploitation phase, there are two events that can trigger
it to exit these phases. First, if the agent enters an unknown state, it goes back
to the balanced wandering phase. Second, if it has stayed in the exploration or
exploitation phase for T time steps, where T is the horizon for the discounted MDP,
it goes back to the behavior described in the “exploration” section above.

3.3.2 Factored additions to E3

The E3 algorithm does not exploit that the underlying Markov decision process
may be structured in a way that allows certain optimizations. For instance, by
factoring the problem as a dynamic bayesian network, the running time can be
improved dramatically (Kearns and Koller 1999).

When using a factored representation some changes to the original algorithm
are required to make it compatible. One issue that has to be solved is how to
perform planning with the new representation. In this thesis a modified version of
value iteration was used for planning and it is described later in this section. In
section 6.4.2 some other methods are presented.

Dynamic bayesian network structure Assume that the states of an MDP
each are divided into several variables. For instance, the Invasive Species MDP
described in section 3.1 constitutes such a case, where the status of each reach can
be considered a variable on its own. The number of tamarix trees, native trees and
empty slots in a certain reach at time step t + 1 depends not on the whole state
of the environment at time t, but only on the status of adjacent reaches. Those
variables on which another variable depend are called its parents.
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An MDP that follows the description in the previous paragraph is described as
factored. With the assumption of a factored MDP, it is possible to describe its
transition probabilities as a dynamic bayesian network, where one would have a
small transition probability table for each of the reaches in the MDP, instead of a
large table for the transitions for the whole states.
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Chapter 4

Method

This chapter covers the preliminaries and preparations carried out before the ex-
ecution of the experiments. It covers how the agents described in chapter 3 were
implemented and the additions and modifications that were made to them. The
chapter concludes with a description of the tools used for the experiment.

4.1 Algorithm implementation

We implemented two existing algorithms and we also added some extensions. The
experiment utilized RL-Glue (section 4.3) to connect the agents and environment
to each other. To verify the behavior of our agents we utilized smaller environments
(see sections 4.1.3 and 4.1.4) where the correct operation is either easy to derive or
obvious from inspection. By starting with smaller problems and using an iterative
approach it was possible to identify bottlenecks in our implementations and correct
possible errors early.

4.1.1 Implementation choices and extensions for MBIE

How often to perform planning It is possible to perform planning and com-
pute a new policy once for each action taken by the agent. However, this would
be unnecessarily slow to compute. The planning comprises iterating Q-value up-
dates to convergence and then using these converged values to update V-tables, a
considerable number of computations. So instead of planning after every action
taken, the algorithm only performs planning and updates the policy at some given
interval.

For small variants of the Invasive Species environment the policy computation is
performed every time the number of observations of a state-action pair has doubled.
For large variants we perform planning when the total number of actions taken has
increased by 50% since the last time when planning was performed. A large variant
is defined as one where the number of state variables exceeds 9. This number
was determined by running some preliminary tests and choosing a value giving a
reasonable run time.

Optimizing bounds Another optimization that can be performed is tweaking
∆ω in equation (3.8) to fit the environment that the agent is used with. Equa-
tion (3.8) gives bounds for which it can be proved that the method converges to an
optimal policy, given some confidence parameter. In practice, however, this value
can be reduced by quite a bit in order to speed up the rate at which the agent
considers state-action pairs known.

A simple linearly declining function can be used instead of equation (3.8). In
the so called realistic implementation of MBIE we have used ω = 1−αN(s, a). The
value of the α parameter was decided through experimentation (see section 4.2).
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4.1.2 Implementation choices and extensions for DBN-E3

Planning in dynamic bayesian networks The DBN-E3 algorithm does not
in itself define what algorithm should be used for planning when the MDP is
structured as a DBN (Kearns and Koller 1999). It considers planning a black box,
leaving the choice of planning algorithm to the implementers.

Value iteration can be done with a factored representation of an MDP in a fairly
straightforward manner. The same equations that normal value iteration (sec-
tion 2.3.3) is based on can be used when the MDP is factored too. The only differ-
ence is that in order to calculate the probability of a state transition, P (st, at, st+1)
one has to find the product of all the partial transitions,∏

i

P (st+1(i) | pa(st(i)), at) (4.1)

where i ranges over all partial state indices, s(i) is the partial state of s with index
i and pa(s(i)) is the setting of the parents of the partial state s(i) as described in
section 2.2.3.

When an MDP has this structure, observations of partial transitions can be
pooled together when the state variables are part of similar structures in the MDP.
In the version of DBN-E3 described here, all state variables that have the same
number of parent variables have their observations pooled together. This means
that state variables corresponding to reaches that have no other reaches upstream
all share the same entry in the transition probability table. In the same way,
reaches with the same number of directly adjacent reaches upstream share their
entries.

One policy per state variable For some MDPs it is possible to compute a
separate policy for each state variable individually. This is the case when there is a
separate action taken for each state variable, which is true for the Invasive Species
environment (section 3.1). In the implementation of E3 used in this thesis, this
policy computation is performed in two steps.

In the first step, a policy is calculated for state variables that have no other state
variables than themselves as parents in the DBN, and these states are marked as
done. This calculation is done by value iteration where the reward function is
described in equation (4.2). Since there is now a decided action for each value
for these state variables, the transition probabilities for these variables can be
considered as pure Markov chains in the next step. In this step, a policy is found
for state variables whose parents are marked as done, until all state variables are
done. In this second step, the transition probabilities of the parents are thus treated
as independent of the action taken.

The reward function for the partial action a(i) and the partial state s(i) in the
Invasive Species environment can be described as follows:

R(s(i), a(i)) = c(s(i))rc + t(s(i))rt

+ n(s(i))rn + e(s(i))re

+ x(a(i))t(s(i))rx + p(a(i))e(s(i))rp (4.2)

where

c(s(i)) is 1 if s(i) is infected, 0 otherwise.

x(a(i)) is 1 if action was taken to exterminate tamarix trees, 0 otherwise.

p(a(i)) is 1 if action was taken to plant native trees, 0 otherwise.

t(s(i)), n(s(i)), e(s(i)) is, in s(i), the number of tamarix-infested habitats, habitats
with native trees and empty habitats, respectively.
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rc, rt, rn, er, rx and rp are rewards given for each infected reach, tamarix-invaded
habitat, native habitat, empty habitats, extermination of tamarix tree and
restoration of native tree in empty slot, respectively.

Since equation (4.2) is a simple linear equation, the unknown variables (ri, rt, rx
and rp) can be calculated exactly once a few data points have been collected. Once
this is done, the agent can use equation (4.2) to calculate the reward for any partial
state-action pair.

Planning for each state variable individually has the benefit of making the plan-
ning algorithm linear in the number of state variables, greatly reducing the time
needed to calculate a policy. However, there are several downsides to using this
kind of approximation, some of which are discussed in section 6.1.1.

4.1.3 GridWorld

The GridWorld environment was implemented to easily be able to verify the cor-
rectness of the MBIE algorithm. It consists of a grid of twelve squares with one
blocked square, one starting square, one winning square, one losing square and
eight empty squares. The agent can take five actions, north, south, west, east or
exit. The exit-action is only possible from the winning or losing state. When tak-
ing an action being in one state and the action is directed to another empty state
there is an 80% probability to succeed and 10% probability to fail and 10% to go
sideways.

4.1.4 Network simulator

A simple computer network simulation was implemented to verify the behavior of
an early version of E3 algorithm. In this environment, the agent tries to keep a
network of computers up and running. All computers start in the running state,
but there is a chance that they randomly stop working. If a computer is down, it
has a chance to cause other computers connected to it to also fail. In each time
step, the agent chooses one computer to restart, which with 100 percent probability
will be in working condition in the next time step. The agent is rewarded for each
computer in the running state after each time step.

4.2 Test specification

The testing of the agents required us to choose certain sets of parameters, for the
environment, the two different agents and the experiment itself.

Environment parameters The Invasive Species environment requires a number
of parameters. For further explanation of the environment parameters consult the
environment webpage1. The parameters used in testing the agents were as follows.

Table 4.1: Dynamic parameters common to both species

Parameter Value

Eradication rate 0.85
Restoration rate 0.65
Downstream spread rate 0.5
Upstream spread rate 0.1

1http://2013.rl-competition.org/domains/invasive-species
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Table 4.2: Dynamic parameters, for the two species of trees

Parameter Native Tamarix

Death rate 0.2 0.2
Production rate 200 200
Exogenous arrival Yes Yes
Exogenous arrival probability 0.1 0.1
Exogenous arrival number 150 150

Table 4.3: Cost function parameters

Parameter Value

Cost per invaded reach 10
Cost per tree 0.1
Cost per empty slot 0.01
Eradication cost 0.5
Restoration cost 0.9

Table 4.4: Variable costs depending on number of habitats affected by action

Parameter Value

Eradication cost 0.4
Restoration cost for empty slot 0.4
Restoration cost for invaded slot 0.8

Agent Parameters The agents evaluated required different types of parameters.
Some preliminary tests were run and then the parameters giving best results were
chosen. Parameters for MBIE are found in table 4.5 and table 4.6.

Table 4.5: Parameters for proper MBIE

Parameter Value

Discount factor, γ 0.9
Confidence, δ 95%

∆ω 1
2

√
2| ln(2|S|−2)−ln δ|

N(s,a)

Table 4.6: Parameters for realistic MBIE

Parameter Value

Discount factor, γ 0.9
∆ω max{0, 1− 0.05N(s, a)}

For DBN-E3 a higher exploration limit resulted in the agent starting to exploit
earlier but with a slightly lower final return. A higher partial state known limit
resulted in later exploitation but no appreciable difference in final return. The
values in table 4.7 were a good middle ground.
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Table 4.7: DBN-E3 parameters

Parameter Value

Discount factor, γ 0.9
Exploration limit 5%
Partial state known limit 5

Experiment parameters The tests performed had to be long enough to sample
enough data to extract relevant results without making the running time too long.
A single test consisted of a specific number of episodes with a specific length. A
good combination was required to efficiently evaluate the agents. If a single episode
consisted of too many samples it would be difficult to see the learning process as
results are reported as total reward over an episode and that process might be
hidden as its impact on the total reward is smaller with a longer episode. On the
other hand, if an episode length is too short it would end before the agents could
do any valuable learning.

In addition to a satisfactory episode length, a reasonable number of episodes
needs to be sampled for it to be possible to draw conclusions from the results.
If the number of episodes is too small, the convergence of the agents cannot be
seen. However, too many episodes would lead to unnecessary data collection, since
the algorithms would already have converged and no interesting changes would
happen. Some preliminary experiments were run in order to tune the experiment
parameters to suitable values. The episode length was set to 100 samples and there
were 100 episodes per test.

To evaluate the agents in the Invasive Species environment combinations of
reaches and number of habitats per reach that can be seen in table 4.8 were chosen.
Combinations were chosen to have a wide range in the total number of states for
the agents to deal with and to test how the agents deal with taking actions that
have to take into account several state components.

As seen in table 4.8, the state count increases rapidly when habitats are added
to the problem. This is obvious from the fact that the state count depends expo-
nentially on the total number of habitats; see equation (4.3), where h is the number
of habitats per reach and r is the number of reaches.

|S| = 3hr (4.3)

Table 4.8: Combinations of reaches and habitats used in testing.

Reaches Habitats per reach Total state count

5 1 243
3 2 729
3 3 19 683

10 1 59 049
4 3 531 441
5 3 14 348 907

4.3 RL-Glue

To evaluate the agents the RL-Glue framework was used, which acts as an interface
for communication between the agent and the environment. The software uses the
RL-Glue protocol, which specifies how a reinforcement learning problem should
be divided when constructing experiments and how the different programs should
communicate (Tanner and White 2009).
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RL-Glue divides the reinforcement learning process into three separate pro-
grams: an agent, an environment and an experiment. RL-Glue provides a server
software that manages the communication between these programs. The agent
and the environment programs are responsible for executing the tasks as specified
by RL-Glue and the experiment program acts as a bridge between the agent and
environment (Tanner and White 2009).

The modular structure of RL-Glue makes it easier to construct repeatable rein-
forcement learning experiments. By separating the agent from the environment it
is possible to reuse the environment and switch out the agent. It also makes it a lot
easier to cooperate and continue working on existing environments implemented
by other programmers.
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Chapter 5

Results

In figures 5.1, 5.2 and 5.3 we present test results from running our agents on the
Invasive Species environment on different sizes of river networks.

0 20 40 60 80 100
Episode

1000

800

600

400

200

R
e
w

a
rd

DBNE3
MBIE
MBIE realistic

(a) 3 reaches and 3 habitats per reach

0 20 40 60 80 100
Episode

1200

1000

800

600

400

200

0
R

e
w

a
rd

DBNE3
MBIE
MBIE realistic

(b) 3 reaches and 2 habitats per reach

Figure 5.1: Test runs with different number of reaches and habitats

The agent learns for 100 episodes with 100 samples per episode, other param-
eters are specified in section 4.2, each test was run five times and these are the
average results. The Invasive Species environment associates a certain cost with
each state and action, thus the reward is always negative.

With smaller state spaces (see figure 5.1a, 5.1b and 5.2a) we can see that the
realistic MBIE agent outperforms the original MBIE agent and comes close to the
DBN-E3 agent. In the tests where the state space is larger (see figure 5.2b, 5.3b and
5.3a) original MBIE and realistic MBIE are very close to each other in performance
while the DBN-E3 agent outperforms both.

In each of the test runs, the DBN-E3 algorithm exhibits a period of learning
that corresponds to exploration (as described in section 3.3.1) where the agent has
not explored the environment enough and seeks more information. This is apparent
in figure 5.1a.
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(a) 5 reaches and 1 habitats per reach
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Figure 5.2: Test runs with different number of reaches and habitats
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(a) 4 reaches and 3 habitats per reach
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Figure 5.3: Test runs with different number of reaches and habitats
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Chapter 6

Discussion

This chapter is a discussion of the results and the method used in the project.
The algorithms are evaluated with regard to their performance achieved in the
tests. Their strengths and weaknesses are discussed as well as their suitability for
problems with an environment that has a large discrete state space. There is also
a discussion on ethical aspects regarding the work in this thesis.

6.1 Evaluation of the agents

As an initial comment, the fact that we have reasonable results proves that the
techniques used work at least in a limited sense of the word. The tests completed
within a reasonable time frame and did not run into hardware limitations. Fur-
thermore, the results recorded show an increase in reward over time as expected of
a working agent during its learning process.

6.1.1 E3 in factored MDPs

In a comparison of the DBN-E3 agent’s behavior in the different-size environments,
the similarity of the shape of the graphs is striking. At first there is a period of
lower and lower performance. For the smallest environments, this period is very
short, however. Next, there is a period of fairly constant high performance, which
lasts until the end of the experiment. This behavior is clearly visible in figures 5.1.

The similar shapes can be explained as a consequence of the different phases
of the DBN-E3 algorithm and the structure of the studied MDP. In the beginning
of the experiment, the algorithm will spend almost all of its time in the balanced
wandering and exploration phases. The longer the agent has been exploring, and
the more states become known, the further the agent has to explore into hard-
to-reach parts of the MDP to find unexplored states. Now, in the case of the
Invasive Species environment with the parameters chosen as in the experiments
presented, the most easily reachable states are the ones where there is no tamarix
infection. This means that the harder a state is to arrive at, the more infected
reaches it will probably contain, and thus the performance of the DBN-E3 agent
in the exploration phase will fall as the experiment progresses. However, once the
agent knows enough about the environment to enter the exploitation phase, the
DBN-E3 agent spends close to no time at all exploring unknown states, and it
retains high performance.

Possible issues with the one-policy-per-reach optimization In section
4.1.2 an optimization is described that works very well for the particular envi-
ronment and environment settings that the agent was tested for. However, this
optimization makes several assumptions that may cause problems if the settings
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are changed. For instance, one assumption is that the state of a reach is only af-
fected directly by its adjacent parents in river network. If the state of a reach was
made to depend significantly on other reaches two or more levels up in the river
network, the agent would probably not be able to converge on an optimal policy.

Another assumption that could lead to problems with other environment set-
tings is the assumption that the maximal action cost in the environment is im-
possible or very hard to break. The Invasive Species environment has a maximum
cost for actions. However, with the standard settings it is mathematically impos-
sible to break this maximum. Our implementation of DBN-E3 would achieve very
poor performance if this was not the case, since a large penalty is given when the
maximum action cost is breached.

DBN structure Finally, in the Invasive Species environment, the structure of
the DBN underlying the MDP is known at the start of the experiment, so the agent
does not need to infer it from observations. If this was not the case, all the DBN
optimizations would be useless unless some kind of algorithm for inferring the DBN
structure was added to the agent.

6.1.2 MBIE

In comparison to the DBN-E3 performance graphs, the MBIE performance exhibits
a much smoother transition from poor to good performance. This is due to the fact
that MBIE does not have a clear distinction between exploration and exploitation
in phases. Instead, MBIE in effect always gives state-action pairs that are relatively
unexplored a bonus to their expected value in order to promote exploration.

In the graphs for MBIE there are several “dips” in performance as for example
in figure 5.2b. These could be explained as cases when the algorithm by chance
enters previously unexplored states and spends several steps exploring this and
similar/adjacent states.

Realistic MBIE and original MBIE The realistic version of MBIE outper-
forms the original MBIE in every test. This is probably explained by the fact that
the state that is the easiest to arrive at is the one that gives the greatest reward
(see section 6.1.1). Since the realistic version of MBIE considers states known and
thus evaluates them realistically rather than optimistically much sooner than the
original version of MBIE, it spends much less time exploring unknown states, which
are bound to give lower rewards than the more easily explored states.

Impact of planning-frequency A factor to be considered when viewing the
results is the impact of the frequency of planning. For example when looking at
large state spaces in MBIE (both versions) planning is only performed when the
sample size has increased by 50%. This is quite infrequent when viewing our tests
of 100 episodes of 100 samples per episode, resulting in many episodes using the
same policy and making it harder to deduce improvement over time as they come
in discrete intervals rather than continuously. This issue does not arise in DBN-E3

which does planning continuously when required.

6.1.3 DBN-E3 vs MBIE

An expectation on both agents is that they should converge to a near optimal be-
havior as time goes to infinity. However, it is clear from the results presented in
chapter 5 that neither version of the MBIE agent reaches the same level of perfor-
mance as the DBN-E3 agent in the tests we performed. In the smaller problem
as seen for example in figure 5.1b, the difference is not large between the DBN-E3

agent and the realistic MBIE. Nevertheless, it is still clear that DBN-E3 is far
superior in finding an optimal policy.
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Strehl and Littman (2004) tested the performance of the MBIE algorithm along
with the E3 algorithm in two non-factored environments, RiverSwim and SixArms.
Strehl and Littman (2004) concludes that the MBIE outperforms E3 in both of the
environments. This thesis utilizes a factored environment for tests and thus the
DBN-E3 algorithm outperforms the non-factored MBIE algorithm. Due to the
significant performance increase in relation to the non-factored version of the E3

algorithm the DBN-E3 outperforms the MBIE algorithm.
As discussed in section 6.4.4 we did not make any factored additions to the

MBIE algorithm and it is uncertain whether the DBN-E3 algorithm would retain
its superior performance if this had been done.

Unfair comparisons The comparison between our implementations of MBIE
and DBN-E3 are not very fair. The DBN-E3 implementation has been heavily
optimized to work with factored MDPs and the Invasive Species environment in
particular, whereas the MBIE implementation is much more generalized. The
discussion regarding the generality of the agents is further continued in section
6.2.1. To make a more nuanced comparison between MBIE and DBN-E3 one
could use smaller non-factored environments as well as the larger factored Invasive
Species environment.

Large state spaces When the number of states is increased it is clear that
the algorithms still work. In a comparison between the 4 reaches, 3 habitats-per-
reach case seen in figure 5.3a, and the 5 reaches, 3 habitats-per-reach case seen
in figure 5.2b, this can be seen. The algorithms still improve over time although
taking longer time to converge, which is expected as the state space increases in
size.

A notable difference between the original and realistic versions of MBIE is that
the realistic version has a similar level of performance as the original MBIE in large
state spaces whereas in small state spaces the realistic MBIE is clearly better than
the original. Compare figure 5.1b with figure 5.2b to see this difference. In small
state spaces the realistic version will know the real value of more states than the
original version, while in large state spaces both versions will prioritize unknown
states.

The DBN-E3 algorithm successfully deals with large state spaces. DBN-E3

utilizes a factored approach in representing transition probabilities, which allows
the algorithm to learn about the environment quicker whereas a non-factored ap-
proach would struggle to learn the transition probabilities. This can be seen in
the result where the DBN-E3 algorithm quickly knows enough to start exploiting
even in cases such as figure 5.2b. Furthermore, using a factored approach to policy
calculation allows quick policy calculations, making the algorithm fast to run in
large state spaces.

6.2 Potential factors impacting the results

There are several factors that possibly reduce the reliability of the results. For
instance, all evaluations used only one environment, the implementation of the
algorithms could contain errors and the correct results for all test runs are not
always known.

6.2.1 Impact of using one environment

The results presented in this report are only collected from one environment. Con-
sidering this, it is challenging to evaluate and verify the generality of the imple-
mentations. The DBN-E3 implementation is specifically optimized for the Invasive
Species environment, which reduces the credibility regarding the generality of the
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techniques discussed in this thesis, due to the fact that it is not possible within
the scope of this thesis to evaluate the performance of the DBN-E3 without the
optimizations applied.

The generality of our MBIE implementation is more probable due to the fact
it was simultaneously tested alongside Invasive Species in a simpler environment:
GridWorld (section 4.1.3), thereby forcing a degree of generality during construc-
tion of the agent.

6.2.2 Implementation of algorithms

One of the biggest challenges when constructing and evaluating algorithms is to
validate the actual implementation of the algorithm. When results seem erroneous
it is hard to immediately realize whether it is the code that contains bugs or the
math was incorrectly interpreted. The lack of similar work containing results also
makes it hard to estimate of how well our algorithms perform in comparison to
similar implementations.

In order to increase the credibility of the implementations of this thesis, one
method is to perform unit testing of the implementation. By creating implementa-
tions which enable unit testing it becomes easier to test the individual pieces of the
algorithms and thereby verify correct behavior. Comparing the process of using
automated tests with manually validating the results of the complete algorithms
behavior as described in section 4.1, the advantages of the former are obvious.

6.2.3 Testing methodology

Evaluating agents is hard due to the process of choosing appropriate parameters
for both the algorithm and the environment. For example it is uncertain how
much the parameters for the algorithms affect the outcome of the experiment and
trying out all possible combination is not feasible within the scope of this thesis.
However, a possible solution for this problem is to derive the optimal parameters
using mathematical proofs.

The same problem appears when choosing the parameters for the Invasive
Species environment. The obvious question is whether a different choice of pa-
rameter values would cause the DBN-E3 algorithm to perform in the same way or
if the optimizations discussed in section 6.1.1 would not work in another setting.
Nevertheless, with the MBIE algorithm there is a greater probability that the re-
sults will be comparable to the results described here. This is the case, as it has
been tailored to the particular experiments that were performed to a lower extent
than DBN-E3 has.

The last potential issue of the evaluation is rather complex. Is the solution that
the agents find really an optimal solution for the problem environment? When the
number of habitats and reaches increases it becomes impossible to check manually
if the policy computed by the algorithm is correct. This may be a common problem
when evaluating reinforcement learning algorithms; as Dietterich, Taleghan, and
Crowley (2013) mention in their report, they too are uncertain regarding the fact
that their implementation achieves an optimal solution.

6.3 Using models for simulating real world prob-
lems

This section focuses on the further impact of reinforcement learning using models
of the real world and simulations. The environment Invasive Species is a simulation
of the problem with invasive species. This domain focuses on the problem where a
spreading process needs to be controlled in a river network with native and invading
plant species (Taleghanand, Crowley, and Dietterich 2014).
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It is commonly known how fragile ecosystems are to changes. Ecosystems are
often complex and it is common that changes that help the system in the short term
can damage it in the long run. By using simulations with self-learning algorithms
it is possible to test more methods than time and money would allow in the real
world to find good long-term policies. This presents a practical use of reinforcement
learning. However, as simulations are only rough models of the real world the
results from the simulation will also at best only be roughly correct.

6.4 Further work

In this section we discuss possible further work and extensions to our thesis.

6.4.1 Testing algorithms with more environments

As mentioned in section 6.2.1 only one environment has been used for testing. Due
to the close ties to the Invasive Species environment during development there is
a risk that the algorithms as implemented will not perform well in other environ-
ments. By using several environments in testing one can study the generality of
the algorithms and maybe improve them. One possible environment to extend the
study with is the Tetris domain representing the game of Tetris from the 2008
edition of the Reinforcement Learning Competition (Whiteson, Tanner, and White
2010).

6.4.2 Planning algorithm for DBN-E3 in factored MDPs

DBN-E3 utilizes a dynamic bayesian network in order to factor the representation
of the environment. In section 3.3.2 a slightly modified version of value iteration
is used for planning due to its simplicity and the scope of the project. Below are
other possible planning algorithms for factored MDPs that are more sophisticated
and specifically derived for use in factored MDPs.

Approximate value determination One example of a planning algorithm for
factored MDPs is Approximate value determination. This utilizes a value determi-
nation algorithm to optimally approximate a value function for factored representa-
tions using dynamic bayesian networks. The algorithm uses linear programming in
order to achieve as good an approximation as possible, over the factors associated
with small subsets of problem features. However, as the authors of the algorithm
mention, their algorithm does not take advantage of factored conditional probabil-
ity tables. This leaves room for further improvements using dynamic programming
steps (Koller and Parr 1999).

Approximate value functions This method represents the approximation of
the value functions as a linear combination of basis functions. Each basis involves
a small subset of the environment variables. A strength is that the algorithm
comes in both a linear and dynamic programming version. However, it could be
more complex than approximate value determination to implement. Guestrin et al.
(2003) presents results for problems with 1040 states, which may very well result
in a bigger improvement than the previous option discussed.

6.4.3 Improvements to MBIE

Dietterich, Taleghan, and Crowley (2013) suggests several improvements to a con-
fidence interval based algorithm called DDV. In MBIE we implement some of these
improvements, such as the Good-Turing optimization (see section 3.2.4), but Diet-
terich, Taleghan, and Crowley (2013) suggests several more, their DDV algorithm
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promises to “terminate[. . . ] with a policy that is approximately optimal with high
probability after only polynomially many calls to the simulator.”

6.4.4 Extend MBIE to utilize a factored representation

In the discussion of this thesis, the issue of unfairness when comparing the two
agents has been highlighted. Due to lack of foresight we chose to not implement a
factored version of MBIE. We could not simply add the factored representation to
the MBIE algorithm due to diverging source trees when we realized our mistake.
Therefore as an extension to this thesis the implemented MBIE algorithm could
be extended to make use of a dynamic bayesian network as the underlying model.
This would have paved way for more interesting test results.
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