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Göteborg, Sweden 2014



Three-body cluster systems in the no-core shell model
Daniel Sääf
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Three-body cluster systems in the no-core shell model
Daniel Sääf
Department of Fundamental Physics
Chalmers University of Technology

Abstract

In this thesis we present the ab initio no-core shell model (NCSM) and we
use that framework to study 6He and 6Li computed with a realistic nucleon-
nucleon interaction. In particular, we present results for the point-proton
radius and the ground-state energy. Since we are limited to use a finite
harmonic oscillator basis, we need to apply corrections to compute basis-
independent results. A way of doing this is presented and demonstrated
in this thesis. Furthermore, we derive an expression for calculating the
three-body overlap function from microscopic wave functions obtained in
the NCSM. We compute the overlap function,

〈
6He(0+)

∣∣ 4He(0+ + n+ n
〉
, to

study the clusterization of the Borromean two-neutron halo state in 6He. We
demonstrate that the clusterization is driven by the Pauli principle. The
overlap function framework is also applied to 6Li. Finally, we demonstrate
the capabilities of a microscopic model to study the core in a halo system,
by computing the core swelling effect in 6He.

Keywords: no-core shell model, nuclear physics, halo nuclei, clusterization,
core swelling





This thesis is based on work from the following two papers. In the main
text these papers will be referred to as Paper 1 and Paper 2, respectively.

Paper 1:
Microscopic description of translationally invariant core + N + N
overlap functions
Daniel Sääf and Christian Forssén
Phys. Rev. C89 (2014) 011303(R), e-Print: arXiv:1309.5810

In this paper we derived an expression for computing the
overlap function for a core+N+N system starting from micro-
scopic wave functions obtained in the NCSM. In particular,
we studied the two-neutron halo state in 6He, using realistic
nucleon-nucleon interactions, by computing the overlap function〈
6He(0+)

∣∣ 4He(0+ + n+ n)
〉
. By analysing the overlap functions we

demonstrated that the clusterization is driven by the Pauli prin-
ciple. We also computed the spectroscopic functions in a Hyper-
spherical Harmonic basis.

Paper 2:
Pushing the frontier of exact diagonalization for few and many-
nucleon systems
Boris D. Carlsson, Daniel Sääf, H̊akan T. Johansson and Christian
Forssén
Manuscritp in preparation

Here, we presented new developments of the exact diagonalization
method as implemented in the NCSM. These developments allow us
to diagonalize very large model spaces, with dimensions exceeding
1010. This gives us the opportunity to converge many-body systems
computed with a bare chiral nucleon-nucleon interaction, in the
NCSM. In particular, we presented results for 6Li in model spaces
up to Nmax = 22 and 10B in model spaces up to Nmax = 12.
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Chapter 1

Introduction

This licentiate thesis presents the work studying the clusterization in light
nuclei from microscopic wave functions. In particular, three-body structures
will be studied and the example of 6He will be discussed. As an introduction
to this specific aim we will in short terms explain the bigger picture in which
this thesis should be seen.

In the quest of understanding matter, nuclear physics has played and
is playing an important role. The standard model of particle physics today
seems to cover the basic constituents of matter, such as quarks, leptons, force
carriers and the Higgs boson, which recently was experimentally confirmed at
CERN. As far as we know today, these particles are well described by quan-
tum chromodynamics (QCD) and the electro-weak theory. When realizing
this, a question arises: Do we completely understand what matter is and
how it behaves starting only from its basic constituents? The answer to this
question is very clearly no, otherwise the disciplines of nuclear and atomic
physics would be completely useless. There are a couple of reasons why we
are not able to use a reductionist view on matter and reduce matter to its
basic building blocks. One of the reasons is that the normal matter, which
we are surrounded by, is in a relative low-energy regime, which makes the
quarks and the gluons condense and form color-neutral particles, hadrons.
Color is the charge of the strong force that is described by QCD. There are
a wealth of hadrons, the most important in nuclear physics are the nucleons:
protons and neutrons, but also some of the mesons are important, in par-
ticular the lightest ones: pions. Protons and neutrons are bound together
in atomic nuclei. Therefore, to understand the physics of the nucleus the
energies related to quarks and gluons are not relevant, it exists a separation
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Introduction

of scales between the energy required to excite quarks and the energy regime
needed to describe the low energy physics of the nucleus, such as the nuclear
structure. Since the protons and neutrons are color neutral the force is a
residual force, similar to the van der Waals force in chemistry. However, the
force between the nucleons is related to the strong force described by QCD,
but Another problem that makes it difficult to describe nuclei by the use of
QCD is the many-body problem itself. Quantum mechanical problems are
quite easy to solve if they are involving one or two bodies. The case of three
bodies is a special case that may be exactly solvable, but when the number
of degrees of freedom increases the complexity of the problem grows rapidly
and a set of approximations are needed. The challenge of handling these
problems is the task of nuclear physics.

Modern nuclear physics is a rich field covering many time- and energy
scales and a lot of different physic. From the lightest isotopes with a few
nucleons to nuclei consisting of hundreds of them. One topic that opens up
the possibility to study the limits of the nuclear landscape is the study of
nuclei close to the dripline. The dripline is the limit for bound nuclei. Nuclei
close to the dripline are unstable and decay. Therefore, the development of
modern radioactive beam facilities has been crucial to make it possible to
create unstable nuclei and study them even if the decay time is short.

1.1 Halo physics

A particularly interesting type of many-body structure that appears close to
the dripline is halo states. A halo nucleus can be effectively reduced from
its many nucleonic degrees of freedom to a much simpler few-body system
with a core and at least one valence nucleon loosely bound outside the core.
A key feature of a halo state is the resulting large radius. A halo state
can be formed when the barrier confining the nucleons is small. For this to
happen the separation energy needs to be small and therefore the valence
nucleons will be close to the continuum. These nucleons also need to be in a
low angular momentum state, since the effective angular momentum barrier
needs to be small. Even the Coulomb barrier needs to be low, which is the
reason why neutron halo systems are more pronounced.

One characteristic property of a halo system is an enlarged radial ex-
tension [1]. It was through extracting the root-mean-square (rms) matter
radius from interaction cross-section measurements that Tanihata et al. [2]
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1.2. AB-INITIO METHODS

discovered the first nuclear halo state in 11Li.
The ground states of 11Li and 6He are examples of two-neutron halo

nuclei, with two neutrons and a core. A property that makes these three-
body states particularly interesting is that the subsystems are unbound. The
two-body subsystems of 6He are 5He and 2n, which both are unbound. This is
the reason why these systems usually are called Borromean three-body halo
systems [3]. The name Borromean originates from the Borromean rings,
which is a system of three rings connected to each other, in such a way that
if one ring is removed the two other rings are unconnected.

1.2 Ab-initio methods

If the use of radioactive beam facilities has created the possibility to experi-
mentally study exotic structures, recent developments in theoretical nuclear
physics have opened up the possibility to understand why these exotic struc-
tures exist and in detail try to understand the nuclear force. These devel-
opments are usually grouped under the label ab initio methods. Ab initio
is a Latin term meaning ‘from the beginning’. In nuclear physics it is used
to describe a method that starts from the most basic principles governing
the nucleus and computes observables in a systematic way. The aim is to
control all approximations done in the calculation and therefore the ambition
is to present all results with both systematic and statistical uncertainties. In
this way ab initio methods creates the possibility to connect the underlying
theory to observables. It also makes it possible to compute observables that
are not to experimentally feasible to measure, but still can be important. An
example where this kind of data can be important is in the understanding of
the nucleosynthesis.

Another reason for the progress of ab initio methods, is the increase of
computational power. The ab initio approach results in large-scale problems
that need modern highly parallel and efficient computational resources.

Another reason behind the advance of ab initio methods is the devel-
opment of realistic nuclear interactions. This is an ongoing work, where the
chiral effective field theory (EFT) approach seems to be the most suited. The
nuclear structure obtained in this work is obtained with potentials derived
from chiral EFT.

A final important reason is that the theory of many-body methods has
developed, and today there are a number of efficient many-body models that
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can be benchmarked against each other and that can be used with different
purposes.

This introduction sets the stage for this thesis, where we will present our
first-principle studies of the clusterization of 6He, which is the lightest Bor-
romean two-neutron halo nucleus. The outline of this thesis is the following:
In Chap. 2 the no-core shell model (NCSM), which is the ab initio model
used in this work will be described and computed results for the ground state
energy and radius for 6Li and 6He will be presented. In Chap. 3, a formalism
for studying the clusterization in NCSM will be presented and some results
will be shown. In Chap. 4, we will focus on the core and present an ongoing
work studying core swelling. Finally, the thesis ends with a conclusion of this
work and an outlook of the continuation of this research.

4



Chapter 2

No-Core Shell Model

To be able to solve the A-body Schrödinger equation, a many-body method
needs to be used. In this work, with a focus on the light nuclei and in
particular 6He, NCSM has been the method of choice. I will, in this chapter
give a brief description of the model and explain why it is suitable for our
purposes.

The name of NCSM suggests a similarity with the nuclear shell model.
However, the most important difference is that the NCSM treats all parti-
cles as active, hence no-core in the name. The idea is to use the harmonic
oscillator (HO) basis and powerful second-quantization techniques, but with
realistic nucleon-nucleon interactions and with the aim to solve the full A-
body problem without approximations. The interactions used in this work
will be further discussed in Sec. 2.3.

The specific aim is to solve the A-body Schrödinger equation

HAψA = EAψA, (2.1)

which is the equation governing a non-relativistic quantum system. This
goal is achieved by expressing the Hamiltonian in a many-body basis and
diagonalizing the resulting matrix to get the eigenvalues EA and the eigen-
vectors ψA. The dimension of the matrix is huge because it grows with A and
the eigenvalue problem converges slowly. A diagonalization method with the
capability to handle this kind of problems is the Lanzcos method, which is
used in most of the present-day NCSM calculations and in all calculations
presented in this thesis. The Lanzcos algorithm is an iterative method and
doesn’t compute the full spectrum of eigenstate. For further details of the
Lanzcos algorithm see Ref. [4, 5].
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No-Core Shell Model

2.1 Many-body theory and second quantiza-

tion

A fundamental tool that is used in NCSM and is utilized extensively in this
thesis is the second quantization formalism. This framework is based on the
concept of creation and annihilation operators and Fock space. A fermionic
single-particle (sp) state is denoted |α〉, where α is a set of quantum numbers
needed to describe the state. In second quantization it is possible to write
the same state as a fermionic creation operator acting on the vacuum,

a†α |0〉 = |α〉 .

We can also introduce an annihilation operator, aα, which annihilates the
state |α〉. The annihilation operator is the Hermitian conjugate of the cre-
ation operator.

The Fermi-Dirac statistic of fermions are ensured by the anticommutation
rules for the creation and annihiliation operators. The anticommutation rules
for fermions are

{a†α, a†β} = 0 {aα, aβ} = 0 {a†α, aβ} = δα,β. (2.2)

In this framework it is now possible to create antisymmetric many-body
states, named Slater determinant (SD) states, by acting with multiple cre-
ation operators in a given order,

a†αAa
†
αA−1

. . . a†α1
|0〉 = |α1, . . . αA−1αA〉 . (2.3)

The basis employed in NCSM computations needs to treat both protons and
neutrons. This can be achived by using the isospin formalism, which adds
two quantum numbers to describe the state: the isospin t and its projection
mt. For nucleons we have t = 1

2 and mt = 1
2 for proton states (mt = −1

2

for neutron states). Many-body theory and second quantization is a broad
subject, that can be studied in more details in for example [6, 7]

2.2 Many-body basis

The many-body basis consists of A-body SD states, as introduced in Sec.
2.1. The most important feature of the SD states is that they are completely
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2.2. MANY-BODY BASIS

antisymmetric with respect to particle exchange. Every SD state is composed
of a linear combination of A sp states in absolute coordinates. In the NCSM,
these sp states correspond to HO states. The HO sp states are in coordinate
representation defined as:

ψnlj(~r, σ : b) = 〈r, r̂, σ : b| nljm〉

= Rnl(r : b)
[
Yl(r̂)× ξ 1

2

]j
m

(2.4)

where the spin, s = 1
2 , is coupled together with the orbital angular momentum

l to a total spin j, with a z−projection m. σ is the spin coordinate and b is
the HO length and is related to the HO frequency, Ω, via

b =

√
~
mΩ

. (2.5)

The HO frequency is a basis parameter that can be varied together with
the basis truncation (see below). The quantum number n is the principal
quantum number and corresponds to the number of radial nodes of the HO
function. The combination N = 2n+ l is called the major HO shell number.

The HO basis has certain advantages that makes it useful in many-body
calculations. First of all, the HO basis states are easy to handle both in
momentum and in position space. This makes it possible to compute matrix
elements from interactions expressed both in position and momentum space.

Another advantage is that there are algebraic transformations that sim-
plify the calculations. For example, the Talmi-Moshinsky transformation
makes it possible to transform a system of two HO states described with ab-
solute coordinates to a system described in relative coordinates [8]. This will
be important in the derivation of the overlap functions described in Chap. 3.

Finally, a very prominent advantage with a HO basis is that it is possible
to select a truncation so that an A-body state can be defactorized into one
part dependent only on the center of mass (CM) motion and one part depen-
dent on the intrinsic motion, even if sp coordinates are used. The trick is to
truncate the many-body basis by a maximum total HO energy. The physical
eigenstate, which is translationally invariant, can be selected by shifting all
spurious CM excitations up in the eigenspectrum using a Lawson projection
term [9]. The obtained eigenstates in the SD basis can then be written as

〈~r1 . . . ~rAσ1 . . . σAτ1 . . . τA| AJM〉SD
=
〈
~ξ1 . . . ~ξAσ1 . . . σAτ1 . . . τA

∣∣∣ AJM〉Ψ000(~ξ0),
(2.6)
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No-Core Shell Model

where ξi are relative Jacobi coordinates and the CM motion is in the 0S

ground state. In principle, a complete many-body basis will assure that the
Schrödinger equation is solved exactly. In practice, however, the basis needs
to be truncated. The truncation scheme that we use is consequently based
on the total energy of the many-body state. The total energy of a SD state
is the sum of the energies of the A HO states,

Etot =

A∑
i=1

Ni~Ω =
∑
i

(2ni + li)~Ω = Ntot~Ω.

Instead of labelling a many-body truncation by max(
∑

iNi) ≤ Ntot we
rather introduce the parameter Nmax, which measures the maximal allowed
number of HO excitations above the lowest possible configuration. For s-
shell nuclei Nmax = Ntot, but for p-shell nuclei it will depend on how many
particles are in the N = 1 shell in the lowest configuration. For example, in
6Li Nmax = Ntot − 2. In Fig. 2.1 we illustrate four different configurations of
6Li.

There is a choice in how we can treat the spin of the many-body states.
Either the sp states in a many-body state can be spin-coupled to a total
J , which then is a good quantum number of the basis. This is called the
J-scheme. The other option is that the sp states can be uncoupled with MJ

as a good quantum number. We are using this scheme, which is called the
M-scheme. In this scheme MJ =

∑A
i=1mi. In addition, parity π and MT are

also good quantum numbers. The advantage of the m-scheme is that the
antisymmetrization is trivially achieved by the SD basis and there is no need
to include spin-coupling algebra. The disadvantage is that the many-body
basis becomes much larger compared with the J-scheme. For systems with
more then four nucleons the m-scheme is more efficient and it is therefore
used in most NCSM calculations.

2.3 Realistic nuclear interaction

A specific goal of ab initio nuclear structure calculations is to employ and
test realistic nuclear interactions. Our fundamental understanding of the
nuclear interaction is based on QCD, which is the theory explaining the
strong interaction between quarks and gluons. Nuclear structure is a low-
energy phenomenon on the scale of subatomic physics and since QCD is
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2.3. REALISTIC NUCLEAR INTERACTION

NeutronsProtons

(a)

N=1

N=2

N=3

NeutronsProtons

(b)

NeutronsProtons

N=1

N=2

N=3

NeutronsProtons

(c)

Figure 2.1: Sketch of many-body states in 6Li. Panel a: Nmax = 0 configuration.
Panel b: Nmax = 1 configuration. Panel c: Nmax = 2 configurations. All N~Ω
configurations with N ≤ Nmax span the Nmax~Ω-space.

non-perturbative in this low-energy regime it is very difficult to use it in di-
rect computations. One way of overcoming this issue is to apply the concept
of an effective field theory (EFT). The crucial point in an EFT is to identify
a separation of scales. In the case of low-energy nuclear physics a natural
separation of scales can be observed based on that mπ � mρ, which corre-
sponds to that the appropriate degrees of freedom are nucleons and pions.
To understand nuclear structure in a low-energy limit quarks and gluons are
not needed explicitly, neither are excitations of the nucleons and the mesons
heavier then the pions. Based on this it is now possible to write down all
Feynman diagrams allowed by the symmetries of the underlying theory, QCD.
The Feynman diagrams are ordered in powers of (mπ/mρ), where the leading
order (LO) is the most important one. The EFT needs to be renormalized
and therefore a chiral regulator, ΛEFT is needed.
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No-Core Shell Model

The effect of using an EFT in a low-energy regime is that all short-
range physics from QCD are condensed into contact terms in the Feynman
diagrams. These contact terms can be determined by fitting experimental
nucleon-nucleon scattering data. In this work two different potentials based
on chiral EFT have been used. The first one was developed by Entem and
Machleidt [10] and contains diagrams up to next-to-next-to-next-to leading
order (N3LO). This potential will further on be referred to as Idaho-N3LO
(I-N3LO). The other one, NNLOopt, was developed by Ekström et al. [11]
including diagrams up to NNLO. The low-energy constants in the NNLOopt
potential was determined by using a modern mathematical optimization al-
gorithm, Pounders [12]. Both NNLOopt and I-N3LO use a chiral regu-
lator with ΛEFT = 500 MeV. Results from computations with I-N3LO and
NNLOopt will be presented in Sec. 2.6.

2.3.1 Three-body forces

For a complete description of nuclear forces it is not enough with a nucleon-
nucleon (NN) interaction. A realistic interaction-model therefore needs to
include also irreducible many-body forces. In the chiral EFT power counting
the three-body force diagrams enter at next-to-next-to-leading order (NNLO)
but still seem to play an important role in reproducing the physics of atomic
nuclei. In this work we have only considered two-body forces because it gives
us the opportunity to solve the eigenvalue problem in really large model
spaces. Furthermore, the derivations of overlap functions presented in Chap.
3 are not restricted to any specific type of interaction.

2.3.2 Unitary transformations

Realistic nucleon-nucleon potentials are characterized by a hard core (short-
range repulsion) and a strong tensor force. The result of this is that low-
energy physics is still dependent on higher momentum modes, and that very
large model spaces are required to capture all UV physics. There are different
solutions to this problem, but a particular useful one is to apply a unitary
transformation that uncouples the low- and high-momentum modes from
each other while keeping the observables unchanged. This procedure can
be viewed as lowering the resolution scale of the problem to one that is
more suitable to use. The transformation needs to be unitary to keep the

10



2.4. INFRARED AND ULTRAVIOLET CUTOFF

observables, such as the energy, invariant. The unitary transformation used
in this work is the similarity renormalization group (SRG) [13].

The SRG transformation is implemented as a flow equation and uses
a diagonal flow-generator to suppress the off-diagonal matrix elements in
momentum space. The transformation will therefore evolve the potential to-
wards a band-diagonal form and decouple the high-momentum modes. There
is a flow parameter, ΛSRG, which is defined such that ΛSRG = ∞ means no
transformation and ΛSRG = 0 corresponds to taking the flow to infinity. One
of the properties of SRG is that it induces many-body forces. The calcula-
tions performed in the scope of this work will only take into account two-body
forces. This approximation violates the unitarity of the transformation and
creates a small dependence on the SRG flow parameter. The magnitude of
this dependence can be seen as an indicator of missing induced many-body
forces. This will be seen in the results presented in Sec. 2.6.

2.4 Infrared and ultraviolet cutoff

The truncation of the many-body basis introduces a dependence on the basis
parameters Nmax and ~Ω. In the limit of infinite model space, this dependence
will vanish. But for finite spaces there will be a correction to the obtained
result. One way of correcting for the finite space is to translate the basis
parameters to quantities that correspond more directly to the physics of the
many-body problem. The natural parameters are based on the momentum-
scale limitations of the HO basis. It is possible to define two cutoffs corre-
sponding to the maximal momentum, λUV and a maximal length, L. With
these parameters it is possible to understand the corrections from a physi-
cal point of view and to use this understanding to extrapolate to an infinite
basis.

It has been shown that a truncation of the oscillator basis can be viewed
as solving the Schrödinger equation in a sphere with a Dirichlet boundary
condition at the radius L [14]. This radius, that roughly corresponds to the
radial extent of the HO basis, is effectively an infrared cutoff. The naive
estimate of L is the maximum displacement of a particle in a HO with the
maximum energy included in the basis. This displacement is also known
as the classical turning point. The energy of a HO single-particle state is

11



No-Core Shell Model

E = (N + 3
2)~Ω. The maximum displacement is therefore [14]

L0 =

√
2(N +

3

2
)b,

where b is defined in Eq (2.5).

In two-body systems one can show that the naive estimate is not a very
good approximation for the infrared cutoff. Instead, More et al. [15] sug-
gested, based on empirical studies and an analytical derivation, that the
infrared cutoff should be defined as

L2 =

√
2(N +

3

2
+ 2)b. (2.7)

The analytical derivation is based on a semi-classical approach for the two-
body system, and by computing the smallest eigenvalue of the squared mo-
mentum operator, κmin, in a HO basis and comparing with the lowest eigen-
value of the squared momentum in a spherical box. The extrapolations pre-
sented in Sec. 2.6 will use L = L2. When applying this approach to a
many-body basis it is possible that the IR cutoff is not correctly described
by L2. In this work L2 will be used as an approximation of the IR cutoff also
in many-body systems, and there are results presented in Sec. 2.6 that may
indicate problems with this choice that needs to be studied further.

The maximal momentum that can be captured in a HO basis is

ΛUV =

√
2(N +

3

2
)~/b, (2.8)

as obtained from the highest single-particle state in the basis [14]. This
momentum will be used as an ultraviolet (UV) cutoff. It is important to
note that the interaction based on chiral EFT already has a momentum
cutoff from the chiral regulator. This leads to the possibility that when the
ΛUV is well above ΛEFT , all UV physics included in the interaction should be
captured by the many-body basis and there is no need for an UV correction.
The computed results will then be considered as UV converged. The reason
why it is not enough to have that ΛUV = ΛEFT is that the chiral regulator is
not a sharp cutoff, it just suppresses momenta above ΛEFT exponentially [16].
Therefore, the HO basis needs to have a higher UV cutoff than the chiral
regulator.
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2.5. CORRECTIONS DUE TO THE INFRARED CUTOFF

2.5 Corrections due to the infrared cutoff

When calculations are performed with an UV cutoff high sufficient to capture
all UV physics included in the interaction, i.e. UV converged, it is enough
to focus on the IR truncation and try to understand how the IR correction
influences the observable and how it is possible to extrapolate to an infinite
cutoff. The corrections due to the infrared cutoff have been derived for
both energy and radius [14, 15]. The basic idea behind these derivations
is to analytically compute the difference between solving the single-particle
Schrödinger equation in a box with Dirchlet boundary conditions at L, and
solving the equation without the box. In [14, 16] a leading-order correction
is derived, which for the energy is

E(L) = E∞ +A∞e
(−2k∞L) +O(e(−4k∞L)), (2.9)

where k∞ is related to the single-nucleon separation energy of the nucleus.
However, in practice we will treat all three parameters A∞, k∞ and E∞ as
fitting parameters.

Furthermore, Furnstahl et al. [14] suggest an expression for the correction
of the squared radius as a function of the infrared cutoff

< r2 >≈< r2 >∞ [1− (c0β
3 + c1β)e−β], (2.10)

where β = 2k∞L. In this work c0, c1 and < r2 >∞ are treated as fit parameters,
while k∞ is fixed from the energy fit.

By applying this theory it is possible in principle to extract a result inde-
pendent on the basis used. It is also possible to extract a statistical error due
to the curve fit. This error will be presented together with the extrapolated
result. However, it is important to note that there might be systematical
errors larger than the statistical ones that still needs to be studied.

2.6 Results

In this work we have focused on applying our formalism to light nuclei with
A = 6. The main focus in this thesis is 6He, but also some results for 6Li will
be presented. The observables we have have mostly studied are the energy
and the radius of the ground state.
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2.6.1 Binding energy of 6He and 6Li

In Fig. 2.2 the results for the ground state of 6He is presented as a func-
tion of the HO frequency. What is noticeable is that when the size of the
model space increases the results become less dependent on the HO frequency,
which is what is expected according to the theory presented in Sec. 2, since
in the infinite model space the results shall be basis independent. Another
characteristic property is how the results are following the variational prin-
ciple, since the ground state energy converges from above. This is also a
characteristic and useful property of NCSM.

The same data as showed in Fig. 2.2 can be represented as functions of
the UV and IR cutoffs. From this representation we can attempt of extract
a model-independent, extrapolated results. This is done by transforming the
parameters, Nmax and ~Ω, to the UV cutoff, ΛUV , and the IR cutoff, L2,
defined in Sec. 2.4 and applying the correction formula (2.9). In this extrap-
olation all data points with ΛUV > 700 MeV are included. The reason is to
assure that UV convergence is reached, which is visible in the extrapolation
pattern. The chiral regulator of the I-N3LO interaction is ΛEFT = 500 MeV
and the SRG transformation pushes down the high-momentum physics even
lower, which makes ΛUV > 700 MeV a reasonable cutoff to assure UV con-
vergence. In the right-most part of the figure the extrapolated results are
shown, including statistical error bars from the curve fit. Three extrapola-
tions are performed, each one includes data points up to a certain Nmax. The
first one includes points up to Nmax = 12, the second up to Nmax = 14 and the
final one includes all data points (Nmax ≤ 16). This sequence is created to
test the stability of this procedure and it shows that the extrapolation seems
to be quite robust in this sense, which opens up the possibility to use this
extrapolation scheme in cases where it is difficult to compute IR converged
results. In the case presented here, even a set of Nmax = 12 calculations would
have given a good hint of the final result. One of the reasons for this can
be observed in Fig. 2.4 where all data points included in the extrapolation
done in Fig. 2.3 are marked with a red diamond. What can be seen here is
that data points computed in small model spaces, but with a high frequency
resulting in a high UV and low IR cutoffs, are included in the fit and aligns
quite good in the slope.

Some of the results published in Paper 1 are presented in Table 2.1. The
table shows the computed ground state energy for 6He and the two neutron
separation energy which is one of the characteristic properties for the halo-
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Figure 2.2: Ground state energy of 6He computed with the SRG-evolved I-N3LO
interaction (ΛSRG = 2.0 fm−1).
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Figure 2.3: Ground state energy of 6He with I-N3LO and ΛSRG = 2.0 fm−1.
The extrapolation includes all data points with λUV > 700 MeV. The error bars
presented in the right part of the figure only correspond to the statistical error from
the fit.
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Figure 2.4: Same data as used in Fig. 2.2. However, the data points that are
actually used in the fit presented in Fig. 2.3 are marked with a diamond.

structure of 6He. The dependence on ΛSRG is noticeable both for the ground
state energy and the separation energy and is due to the violation of the
unitarity when only including induced two-body forces.

To show the UV convergence more clearly, in Fig. 2.5 data points with
fixed ΛUV have been used for the extrapolation and what can be seen is that
the ΛUV -dependence decreases when ΛUV increases. Above ΛUV = 800 MeV
the results seem to be UV converged. Note that these results are obtained
with the NNLOopt interaction, therefore it is not comparable with the ΛUV
cutoff used in Fig. 2.3.

Recent code developments [20], together with access to dedicated com-
puter resources have increased our capabilities to obtain results in large model
spaces. The code developments are presented in Paper 2, together with nu-
merical results. The largest model space that we have performed calculations
for is 6Li, at Nmax = 22, which includes 2.5× 1010 many-body states. In Fig.
2.6 the results and the extrapolation is displayed and note that we can basi-
cally reach numerical convergence for a bare realistic interaction in an A = 6

system. However, it is also clear that there is a problem with the extrapo-
lation. The extrapolated result is above the lowest lying data points, which
cannot be correct since the results must obey the variational principle. This
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Table 2.1: Extrapolated results for the ground state energy, two-neutron separa-
tion energy and point-proton radius in 6He. Computed with SRG-evolved I-N3LO.
The extrapolation includes data points with Nmax ≤ 16. The results by Bacca et
al. results are obtained using the Hyperspherical Harmonics Method with I-N3LO
interaction evolved with Vlow−k.

Exp. [17] This work Bacca et al. [18, 19]
ΛSRG = 1.8 ΛSRG = 2.0 ΛSRG = 2.2 Λ = 2.0 fm−1

Egs [MeV] 29.269 29.67(3) 29.20(11) 28.61(22) 29.47(3)
S2n [MeV] 0.975 1.22(2) 0.95(10) 0.68(22) 0.82(4)
rpt−p [fm] 1.938(23) 1.820(4) 1.820(4) 1.815(8) 1.804(9)

Table 2.2: Extrapolated results for the 6Li ground state computed with NNLOopt
and model spaces with Nmax ≤ 22 and ΛUV > 880 MeV.

Exp.[21] This work
NNLOopt

Egs [MeV] 31.99 30.30(10)

disagreement may be due to a wrong choice of the infrared cutoff. The results
for Nmax = 22 with the NNLOopt interaction is presented in Table 2.2.

2.6.2 Radius of 6He and 6Li

To study the size of atomic nuclei we are limited to compute the point-proton
or the point-neutron radii since the NCSM treats the nucleons as point-
particles. To be able to compare the computed results with experimental
data the charge-radius needs to be extracted from the point-proton radius.
The relation between the point-proton radius, rpt−p and the charge radius,
rch can be written [22]

r2pt−p = r2ch −R2
p − (N/Z)R2

N − 3/(4M2
p )− r2SO, (2.11)

where Rp and Rn is the radius of the proton and neutron, respectively. The
term 3/(4M2

p ) is the first-order relativistic correction term and r2SO is the spin-
orbit correction. In the following section only the point-proton radius will
be presented and the experimental data will be translated to this measure.

In Fig. 2.7 the point-proton radius for 6He is presented as a function of
HO frequency. When analysing a similar figure for the energy of the ground
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Figure 2.5: Ground state energy for 6Li computed with the NNLOopt interaction
for series of fixed ΛUV . Figure shows the dependence on the UV cutoff. Model
spaces with Nmax ∈ [6, 16] are included in the fit.
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Figure 2.6: Ground state energy for 6Li computed with the NNLOopt interaction.
The data points included in the fit are well UV converge and the figure shows the
IR convergence. In the right part of the figure the extrapolated result with the
statistical error from the curve fit is presented.
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state of 6He (Fig. 2.2) the variational principle was used as a guideline to
extract an energy. In this case there is no obvious way to extract a value for
the point-proton radius.

However, we can also for this case introduce the UV and IR cutoffs. The
results are displayed in Fig. 2.8, where Eq. (2.10) is used to correct for
the finite basis. What is observed in Fig. 2.8 is that the data points align
quite well with the extrapolation and we are able to extract a result with
a statistical error corresponding to the curve fit. The statistical errors are
displayed as error bars in the right-part of the figure. By comparing the
three extrapolations performed for different Nmax the results may indicate
that there are systematical errors larger than the statistical ones. This may
be due to that L2 does not correspond to the correct IR cutoff. Extrapolated
radii results for 6He are presented in Table 2.1.
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Figure 2.7: Point-proton radius of 6He computed with the SRG-evolved I-N3LO
interaction (ΛSRG = 2.0 fm−1). Resutls by Bacca et at. [18, 19] are obtained with
the Hyperspherical Harmonic Method.
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Figure 2.8: Point-proton radius of 6He computed with a SRG-evolved I-N3LO
interaction (ΛSRG = 2.0 fm−1).
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Chapter 3

Three-body cluster system

The ability to compute translationally invariant wave functions in NCSM
opens up the possibility to study in detail the structure of the nucleus. When
approaching the nuclear dripline a landscape of cluster structures emerges
that is interesting to study from an ab initio perspective. A particular type
of cluster structure that has been studied in the past is the Borromean three-
body core+n+n found in, for example, halo states of 6He and 11Li. In Sec.
1.1 a general introduction to 6He and the characteristic properties of a Bor-
romean halo was presented. A part of this work has been to study the
clusterization of 6He from a microscopic perspective by calculating trans-
lationally invariant cluster form factors for the Core+N+N channel. This
allows us to study 6He as a three-body system consisting of a 4He-core and
two neutrons.

In the following chapter the theory behind Paper 1 will be explained in
further detail and additional results will be presented.

3.1 Overlap function

To introduce overlap functions in general terms, we can start with the defi-
nition of the two-body overlap function. It is defined to be the integral over
three wave functions, ψJAMA

A , ψJBMB
B and ψJCMC

C , where A,B and C are the
numbers of nucleons in each nuclei. The nucleus A consists of the nucleons
from B and C, A = B + C. The Ji and Mi are the spin and the projection
quantum number, respectively. The integral is over the internal coordinates
of the wave functions B and C, which results in that the overlap function is
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a function of the relative coordinate r, between the wave functions B and C.
The general definition of the two-body overlap function is

uJAMA
JBMB ,JCMC

(~r) =

∫
d~xd~y ψJAMA

A (~r, ~x, ~y)ψJBMB∗
B (~x)ψJCMC∗

C (~y)

Another important quantity to introduce is the spectroscopic factor, which is
the norm of the squared overlap function. An important thing to note is that
the overlap function as well as spectroscopic factor are non-observables. A
non-observable is a property that is model dependent. The non-observables
that we are going to consider takes the form of a matrix element of an oper-
ator, O. We are free to apply a unitary transformations U to the operator,
O and states |ψm〉.

Omn = 〈ψm|O |ψn〉 = (〈ψm|U †)UOU †(U |ψn〉) =
〈
ψ̃m

∣∣∣ Õ ∣∣∣ψ̃n〉
This results in that the matrix elements are invariant, although the operator
itself, between the transformed states, is in general changed,

Õmn =
〈
ψ̃m

∣∣∣O ∣∣∣ψ̃n〉 6= Omn.

In the low-energy limit we are working in, an example of a unitary trans-
formation that can be applied is a transformation that modifies short-range
unresolved physics, which will not modify observables such as the energy.
Therefore, we do not have a set of preferred states and our non-observables
will be dependent of how we choose our Hamiltonian. The interpretation of
non-observables are discussed in further details in Ref. [23].

Another important quantity is the spectroscopic factor, which is the norm
of the squared overlap function. The spectroscopic factor is also a non-
observable.

The two-body overlap function has already been studied in the NCSM [24],
and expressions for translational invariant form factors were derived. In or-
der to introduce the formalism we will start with the simplest case found in
Ref. [24], which is the Core+N overlap function that is obtained from the
overlap integral

uAλJT(A−1)I1T1,I2T2(η) = 〈AλJT |AA−1,1ΦAλJT
(A−1)λ1I1T1,I2T2 ; δη〉. (3.1)

The bra in this expression corresponds to an A-nucleon state with total spin
(isospin) J (T) and an additional quantum number λ needed to characterize
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3.1. OVERLAP FUNCTION

the eigenstate. The ket corresponds to a two-body cluster state consisting of
an (A − 1)-nucleon state with quantum numbers I1T1, and a single-nucleon
state with I2T2 as quantum numbers. We will keep this general notation
although it is clear that I2 = T2 = 1

2 in this case. The large cluster will be
described in a SD basis and while the small one, which in this case consists
of a single nucleon, will be expressed in relative coordinates. The distance
between the two clusters is described by the normalized Jacobi coordinate,

~η =

√
(A− a)a

A

[
1

A− a

A−a∑
i=1

~ri −
1

a
(~rA−a+1 + ~rA)

]
,

shown in Fig.3.1 (a). This definition is for the general case where the small
cluster consist of a nucleons, in this case a = 1. The distance between the
clusters is represented in a complete basis of the continuous coordinate η,
where every basis function corresponds to a frozen relative distance. This
is reflected in the Dirac δ function. Furthermore, AA−1,1 is a cluster an-
tisymmetrizer that ensures antisymmetrization with respect to exchange of
nucleons between the clusters.

To generalize the overlap function to three-body systems, we will con-
sider a large cluster with A− a nucleons and two small clusters with a2 and
a3 nucleons, respectively. This implies that a = a2 + a3. In this case, an-
other Jacobi coordinate needs to be introduced, corresponding to the vector
between the two small clusters,

~ν =

√
1

2

[
1

a2

A∑
i=A−a+1

~ri −
1

a3

A∑
i=A−a3+1

~ri

]
.

This system is shown in the lower panel in Fig. 3.1. The third cluster with
a3 nucleons requires also additional quantum numbers I3T3 and it is now
possible to define a three-body cluster overlap function:

uAλJT(A−a)I1T1,a2I2T2,a3I3T3(η, ν)

= 〈AλJT |AA−a,a2,a3ΦAJT
(A−a)I1T1,a2I2T2,a3I3T3 ; δηδν〉.

(3.2)

Acting with the three-cluster antisymmetrizer on the A-body state to the
left, will simply give a combinatorial factor since the A-body state is fully
antisymmetric. In Appendix A.1 it is shown that the combinatorial factor is√

A!
(A−a2−a3)!a2!a3! . The Dirac δ-functions can be expanded in terms of radial
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~η

~η

a)

b)

Figure 3.1: The Jacobi coordinates used in the definition of the overlap functions.
a) is the two-body cluster system and b) is the three-body cluster system.

HO functions and in that way the relative motion can be expressed in a HO
basis. We arrive at the expansion in HO functions

uAλJTa1I1T1,a2I2T2,a3I3T3(η, ν) =

√
A!

(A− a)!a2!a3!∑
nηlη
nν lν

Rnηlη(η)Rnν lν(ν)〈AλJT |ΦAJT
a1I1T1,a2I2T2,a3I3T3 ;nηlη, nν lν〉.

(3.3)

3.2 Core-N-N overlap functions

The aim of this section is to derive an expression for the Core+N+N over-
lap function with matrix elements between many-body states in an SD basis,
which can be computed from wave functions obtained in the NCSM. The out-
line for this derivation is that we will start by introducing three-body cluster
wave functions will be introduced in both relative and absolute coordinates.
After that the overlap function in relative coordinates will be related to an
overlap function in a SD basis. The overlap function will then be expanded
and some spin-couplings will be performed. Finally, we can simplify the ex-
panded overlap function and write down the expression for the Core-N-N
overlap function.
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3.2. CORE-N-N OVERLAP FUNCTIONS

3.2.1 Three-body cluster wave function

The first step is to define the three-body cluster wave function in relative
Jacobi coordinates. In the end, the derivation will focus on the Core+N+N
channel, where the two smaller clusters consist of only one nucleon each,
but as a start we will consider the general case. To treat the entire system
microscopically, another set of relative coordinates needs to be introduced to
describe the relative distance between the nucleons in each cluster. These
coordinates are sets of normalized Jacobi coordinates. In cluster 1 they are
defined as

~ξ1 =

√
1

2
(~r1 − ~r2)

~ξ2 =

√
2

3

[
1

2
(~r1 + ~r2)− ~r3

]
...

~ξA−a−1 =

√
A− a− 1

A− a

×
[

1

A− a− 1
(~r1 + ~r2 + . . .+ ~rA−a−1)− ~rA−a

]

where ~ri is the absolute coordinate of particle i. The intrinsic coordinates
in clusters 2 and 3 are defined in the same way, but denoted ~µi and ~ρi,
respectively. All relative coordinates are shown in Fig. 3.2 for a general
example. In the rest of the derivation ξ will be used to denote all ~ξi vectors
and µ and ρ will denote the intrinsic coordinates of clusters 2 and 3. A
coordinate corresponding to the center of mass of the A-body system is also
needed

~ξ0 =

√
1

A
(~r1 + ~r2 + . . .+ ~rA).

The cluster wave function can now be defined in relative coordinates for
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Figure 3.2: Sketch of the coordinate systems in a three-body cluster system

a fixed set of relative distances defined by η′ and ν ′

〈
ξη′~ηµν ′~νρστ

∣∣∣ ΦAJMTMT
αMα

; δηδν

〉
=
∑

(lηmηlνmν |LML)

× (I2M2I3M3|I23M23)(I1M1I23M23|SMS)(LMLSMS |JM)

× (T2MT2T3MT3 |T23MT23)(T1MT1T23MT23 |TMT )
δ(η − η′)
ηη′

δ(ν − ν ′)
νν ′

× Ylηmη(η̂)Ylνmν (ν̂) 〈ξ, σ1 . . . σA−a, τ1 . . . τA−a| a1λ1I1M1T1MT1〉
× 〈µ, σA−a+1 . . . σA−a3τA−a+1 . . . τA−a3 | a2λ2I2M2T2MT2〉
× 〈ρ, σA−a3+1 . . . σAτA−a3+1 . . . τA| a3λ3I3M3T3MT3〉 ,

(3.4)

where each cluster has a total angular momentum Ii, a total isospin Ti and
an additional quantum number λi needed to distinguish the eigenstate. The
three clusters together form an A-body system with total angular momentum
J and a total isospin T, with the projection M and MT , respectively. σ =

[σ1, . . . σA] are the spin-coordinates and τ = [τ1, . . . τA] the isospin coordinates.
The quantum numbers for the three-cluster state are combined into one index
α = [a1λ1I1T1, a2λ2I2T2, a3λ3I3T3 : LS] and Mα is the corresponding set of
projection quantum numbers.

In the same manner, it is possible to define a three-body cluster wave
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function where the relative motion state is defined by radial HO basis states

〈
ξη′~ηµν ′~νρστ

∣∣∣ ΦAJMTMT
αMα

;nηlη, nν lν

〉
=
∑

(lηmηlνmν |LML)

× (I2M2I3M3|I23M23)(I1M1I23M23|SMS)(LMLSMS |JM)

× (T2MT2T3MT3 |T23MT23)(T1MT1T23MT23 |TMT )Rnη ,lη(η)Rnν ,lν (ν)

× Ylηmη(η̂)Ylνmν (ν̂) 〈ξ, σ1 . . . σA−a, τ1 . . . τA−a| a1λ1I1M1T1MT1〉
× 〈µ, σA−a+1 . . . σA−a3τA−a+1 . . . τA−a3 | a2λ2I2M2T2MT2〉
× 〈ρ, σA−a3+1 . . . σAτA−a3+1 . . . τA| a3λ3I3M3T3MT3〉 .

(3.5)

Finally, the last three-body cluster wavefunction that needs to be intro-
duced is the one where the large cluster is expressed in sp coordinates. The
coordinate corresponding to the distance η also needs to be in absolute co-
ordinates, since sp coordinates introduce a dependence on the CM of the
large cluster. Therefore, the coordinate ~RaCM will be used corresponding to
the position of the combined CM of cluster 2 and 3. The three-body cluster
overlap wave function with mixed coordinates is

〈
~r1 . . . ~rA−a ~R

a
CMµ~νρστ

∣∣∣ ΦAJMTMT
αMα

;nηlη, nν lν

〉
SD

=
∑

(lηmηlνmν |LML) (I2M2I3M3|I23M23)(I1M1I23M23|SMS)

× (LMLSMS |JM)(T2MT2T3MT3 |T23MT23)(T1MT1T23MT23 |TMT )

×Rnη ,lη(RaCM )Rnν ,lν (ν)Ylηmη(R̂aCM )Ylνmν (ν̂)

× 〈~r1 . . . ~rA−a, σ1 . . . σA−a, τ1 . . . τA−a| a1λ1I1M1T1MT1〉SD
× 〈µ, σA−a+1 . . . σA−a3τA−a+1 . . . τA−a3 | a2λ2I2M2T2MT2〉
× 〈ρ, σA−a3+1 . . . σAτA−a3+1 . . . τA| a3λ3I3M3T3MT3〉 .

(3.6)

In order to use the NCSM eigenstates the overlap function needs to be
calculated from states expressed in a SD basis. To relate the overlap function
in relative coordinates to a overlap function in absolute coordinates, it is
possible to use Eq (2.6) on the composite state and on the large cluster
state, both in a SD basis. This factors out the CM motion. It is then
possible to apply the Talmi-Moshinsky transformation[25] to finally get a
relation between the overlap function in relative coordinates to an overlap
function in sp coordinates. This derivation is presented in detail in Appendix
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A.2. The final result is〈
AλJT

∣∣ AA−a,a2,a3ΦAJT
α ;nηlη, nν lν

〉
=

SD

〈
AλJT

∣∣ Aa1,a2,a3ΦAJT
α ;nηlη, nν lν

〉
SD

〈nηlη00lη| 00nηlηlη〉 a
A−a

,
(3.7)

where the denominator is a general HO bracket from the Talmi-Moshinksy
transformation. The value of the bracket is [24]

〈nηlη00lη| 00nηlηlη〉 a
A−a

= (−1)lη
(
A− a
A

)(2nη+lη)/2

.

3.2.2 Core+N+N overlap function

Until now, the derivation has been for a general three-body cluster state. In
the following we will assume that the two smaller clusters (2 and 3), only
consist of one nucleon each. To simplify the notation the spin and isospin
labels I2 and I3 (T2 and T3) will be kept, although they corresponds to spin
(isospin) 1

2 .
Since Eq. (3.7) relates the overlap function with wave functions in sp

coordinates and the overlap function used in Eq. (3.3), the derivation can
continue from the overlap function in sp coordinates,〈

AλJMTMT

∣∣∣ ΦAJMTMT
α,Mα

;nηlη, nν lν

〉
SD SD

=

∫
d~x

〈
AλJMTMT

∣∣∣ ~r1 . . . ~rA−a ~RaC.Mνσ1 . . . σAτ1 . . . τA〉
SD

×
〈
~r1 . . . ~rA−a ~R

a
C.Mνσ1 . . . σAτ1 . . . τA

∣∣∣ ΦAJMTMT
α,mα ;nηlη, nν lν

〉
SD

(3.8)

The last bracket corresponds to the cluster wave function defined in Eq. 3.6.
The Talmi-Moshinsky transformation, can be used to transform two HO

states in relative coordinates to two HO states in sp coordinates,∑
mηmν

(lηmηlνmν |LML)
〈
~RaCM

∣∣∣ nηlηmη

〉
〈~ν| nν lνmν〉

=
∑

nalama
nblbmb

〈nalanblbL| nηlηnν lνL〉1 (lamalbmb|LML)

× 〈~rA| nalama〉 〈~rA−1| nblbmb〉

(3.9)
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3.2. CORE-N-N OVERLAP FUNCTIONS

where subscripts a and b correspond to two sp states. The summation over
sp quantum numbers is constrained by energy conservation. By applying this
transformation to the cluster wave function in Eq. (3.8) and re-couple the
spins from LS-coupling to jajb-coupling Eq (3.8) can be written as〈

AλJMTMT

∣∣∣ ΦAJMTMT
α,Mα

;nηlη, nν lν

〉
SD SD

=

∫
d~x 〈AλJMTMT | ~r1 . . . ~rA−2~rA−1~rAνσ1 . . . σAτ1 . . . τA〉

×
∑

(−1)I2+I3−S+L+I23+I1+J ŜĴab

{
L I23 Jab
I1 J S

}
la lb L

I3 I2 I23
ja jb Jab


× (−1)I2+I3−I23+T2+T3−T23L̂Ĵabĵaĵb(jamjajbmjb |JabMab)

× (JabMabI1M1|JM)(T3MT3T2MT2 |T23MT23)(T1MT1T23MT23 |TMT )

× 〈~r1 . . . ~rA−2, σ1 . . . σA−2, τ1 . . . τA−2| (A− 2)λ1I1M1T1MT1〉
× 〈nalanblbL| nηlηnν lνL〉1 (lbmbI2M2|jbmjb) 〈~rA−1| nblbmb〉
× 〈σA−1τA−1| λ2I2M2T2MT2〉 (lamaI3M3|jamja)

× 〈~rA| nalama〉 〈σAτA| λ3I3M3T3MT3〉

(3.10)

The coordinates of the composite wave function in Eq. (3.10) can be written
as a set of field creation operators acting on a vacuum state

|~r1 . . . ~rAσ1 . . . σAτ1 . . . τA〉

=
∑

n′1l
′
1j
′
1t
′
1

...
n′Al
′
Aj
′
At
′
A

1√
A!

〈
n′1l
′
1j
′
1t
′
1

∣∣ ~r1σ1τ1〉 . . . 〈n′Al′Aj′At′A∣∣ ~rAσAτA〉 a†n′1l′1j′1t′1 . . . a†n′Al′Aj′At′A |0 >

=
∑

n′A−1l
′
A−1j

′
A−1t

′
A−1

n′Al
′
Aj
′
At
′
A

√
(A− 2)!

A!

〈
n′A−1l

′
A−1j

′
A−1t

′
A−1

∣∣ ~rA−1σA−1τA−1〉

×
〈
n′Al
′
Aj
′
At
′
A

∣∣ ~rAσAτA〉 a†n′A−1l
′
A−1j

′
A−1t

′
A−1

a†
n′Al
′
Aj
′
At
′
A
|~r1 . . . ~rA−2σ1 . . . σA−2τ1 . . . τA−2〉

(3.11)

where 〈~rστ | nljt〉 is a HO wave function with coordinates ~r, σ and τ . The
next step is to insert Eq. (3.11) expression in Eq. (3.10) and identify that
the sp states are coupled together to a total spin ja and jb, respectively. The
quantum numbers that are summed over in Eq. (3.11) can be determined
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due to the fact that sp states are orthogonal. By applying these operations
we can now write an expression for the overlap function in a SD basis,〈

AλJMTMT

∣∣ ΦAJMTMT
α,mα ;nηlη, nν lν

〉
SD SD

=
∑

(−1)I2+I3−S+L+I23+I1+J ŜĴab

{
L I23 Jab
I1 J S

}
la lb L

I3 I2 I23
ja jb Jab


× (−1)I2+I3−I23+T2+T3−T23L̂Ĵabĵaĵb 〈nalanblbL| nηlηnν lνL〉1
× (JabMabI1M1|JM)(T1MT1TabMTab |TMT )

×
〈
AλJMTMT

∣∣∣∣ [a†nalajataa†nblbjbtb]JabMab,TabMTab

∣∣∣∣(A− 2)λ1I1M1T1MT1

〉
.

(3.12)

Inserting this expression in Eq. (3.7), and applying the Wigner-Eckart the-
orem, it is finally possible to write down the reduced expression for the
three-body cluster overlap function defined in Eq. (3.3)

uAλJTα (η, ν) =
∑
nηlη
nν lν

...

Rnηlη(η)Rnν lν (ν)

〈nηlη00lη| 00nηlηlη〉 2
A−2

(−1)3I1+I23+Jab−T23−S+L

× 〈nalanblbL| nηlηnν lνL〉1
L̂ŜĴ2

abĵaĵb

Ĵ T̂

{
L I23 Jab
I1 J S

}
la lb L

I3 I2 I23
ja jb Jab


×

〈
AλJT

∣∣∣∣∣∣∣∣∣∣∣∣[a†nalajataa†nblbjbtb]JabTab
∣∣∣∣∣∣∣∣∣∣∣∣(A− 2)α1I1T1

〉
SD SD

,

(3.13)

where the last matrix element is a reduced non-diagonal transition density
computed from microscopic wave functions obtained in the NCSM. This ma-
trix element can be computed with the existing transition density code, tr-
dens[26].

3.3 Clusterization of 6He

We are now in a position were we can analyse the clusterization of 6He by
computing the overlap function between 6He and an antisymmetric three-
cluster state consisting of 4He and two neutrons. This gives us the possibility
to study the cluster structure inherent in the microscopically calculated wave
functions. In this section the main results presented in Paper 1, will be shown
and discussed.
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3.3.1 Overlap functions

There are two different spin-channels for the overlap 〈6He(0+)|4He(0+)+n+n〉,
namely S = L = 0 and S = L = 1. Recall that S is obtained by coupling
together I1, I2 and I3, and L by coupling lη and lν . The overlap functions for
these two different channels are shown in Fig. 3.1. The most obvious thing
to note is that the S = L = 0 channel is clearly dominating. This channel
also possesses the characteristic shape of the two-neutron Borromean halo
with a di-neutron and a cigar configuration. The di-neutron configuration
corresponds to that the two neutrons are close together but far away from
the core, while in the cigar configuration the neutrons are far from each
other but their CM is close to the core. This is in agreement with earlier
phenomenological cluster model calculations [3] and microscopic calculations
done with a schematic interaction [27].

Very importantly, with this toolbox that we have developed it is now
possible to study the origin of the observed clusterization. In Fig. 3.4 the
overlap functions obtained in different Nmax truncated model spaces are dis-
played. The panel in the top-left corner corresponds to a really tiny model
space, Nmax = 2, but already here the clusterization is clearly visible. Com-
pared to the panel in the bottom-left corner with a very large model space,
Nmax = 14, there are no distinct differences in the structure. The only vis-
ible difference is that the overlap function in the larger model space has a
larger radial extension. The conclusion drawn from these results is that the
clusterization is driven by the Pauli principle, since in the tiny model space
the only property of the wave function that is guaranteed to be captured
is the antisymmetrization of the nucleons due to the SD basis. Note that
the Nmax = 2 model space is much too small to capture the physics of the
interaction.

3.3.2 Spectroscopic factors

An integrated measure of the amount of clusterization is the spectroscopic
factor, which is the norm of the squared overlap function. It is worth re-
minding the reader that spectroscopic factors are non-observable quantities
that change, e.g. under unitary transformations of the Hamiltonian. How-
ever, they are still important in phenomenological reaction theory as input
for taking into account the structure of the atomic nuclei [29].
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Figure 3.3: Contour plot of the overlap function of 6He. The left (right) panel
corresponds to the S = L = 0 (S = L = 1) channel. This calculation is performed
in a NCSM model space with ~Ω = 20 MeV and Nmax = 14 . The interaction is
I-N3LO with ΛSRG = 2.0 fm−1.
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Figure 3.4: The overlap function for the S = L = 0 channel. The wave functions
are computed for increasing model spaces with ~Ω = 16 MeV and I-N3LO with
ΛSRG = 2.0 fm−1. The wave functions obtained from a Hamiltonian including
NN+3NF interactions are provided by R. Roth [28].
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3.3. CLUSTERIZATION OF 6HE

Projection on a hyperspherical harmonics basis

In order to study the spectroscopic factors we have chosen to project the
overlap functions onto a hyperspherical harmonics (HH) basis. This is done
by first transforming to hypercoordinates (ρ, θ, η̂, ν̂) where η = ρ cos(θ) and ν =

ρ sin(θ). The overlap function in Eq. (3.13) can be written in hyperspherical
coordinates,

uAλJTα (θ, ρ) =
1

ρ5/2

∑
K,lη ,lν

χAλJTα,Klηlν (ρ)ψ
lηlν
K (θ) (3.14)

where

χAλJTα,Klηlν = ρ5/2
∫ π/2

0
dθ′ sin2 θ′ cos2 θ′ψ

lηlν
K (θ)

×
∑
nη ,nν

CAλJTα,nηlη ,nν lνRnηlη(θ′, ρ)Rnν lν (θ′, ρ).
(3.15)

The ψlηlνK (θ) are the hyperangular basis functions [30] and K is the hyperan-
gular momentum, which can be written as K = lη+lν+2n where n = 0, 1, 2 . . ..
The factor CAλJTα,nηlη ,nν lν

contains all factors in Eq. (3.13) except the radial HO
functions. The projection onto HH basis is presented in further details in
App. A.3.

Results

In Table 3.1 the weights for the five most important terms in the HH ex-
pansion are presented, together with the total spectroscopic factor. The
first observation from this data is that the dominant term is the K = 2 and
lη = lν = 0 one, in agreement with earlier calculations [27, 3]. This term is
responsible for the characteristic two-peak structure shown in Fig. 3.3. One
detail that is important to note is that our total spectroscopic factors are
larger then one. This is in agreement with the spectroscopic factors com-
puted in a microscopic model presented in [27]. According to Timofeyuk [31]
the fact that the spectroscopic factor is larger then unity is due to the move-
ment of the CM of the cluster wavefunction and in Ref. [31] an upper limit of
the spectroscopic factor for this system was derived to be 25

16 ≈ 1.56, which is
consistent with our results. In the cluster calculation [3], the wave functions
are normalized with respect to the CM motion, therefore the spectroscopic
factors sum up to unity.
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Table 3.1: Relative weights (in %) of the HH expansion terms for the three-body
channel form factor

〈
6He(0+)|4He(0+) + n+ n

〉
calculated from NCSM wave func-

tions. We compare results obtained with Hamiltonians including two-body forces
only, and with two- plus three-body forces. The last row shows the total spectro-
scopic factor. We have used: I-N3LO, ΛSRG = 2.0 fm−1, ~Ω = 20 MeV and
Nmax = 14. The 3NF wave function is computed with ~Ω = 16 MeV and is
provided by R. Roth [28].

Three-body channel This work Ref. [3] Ref. [27]
K lη = lν L = S NN NN+3NF (cluster) (microscopic)
0 0 0 4.3 4.1 4.2 4.0
2 0 0 91.9 91.3 82.1 79.9
2 1 1 2.2 3.0 11.2 13.3
6 2 0 1.1 1.0 1.7 1.9
6 3 1 0.1 0.1 0.8 0.8
Spectroscopic factor: 1.3340 1.3284 0.9851 1.3957

In Table 3.2 the spectroscopic factors and the relative weights are dis-
played for different ΛSRG-parameters and HO frequencies. There is clearly a
dependence on both ΛSRG and ~Ω. However, it is rather small; less then few
percent. The overlap function is also computed from wave functions obtained
with a Hamiltonian including three-body forces [28]. The overlap function
is shown in Fig. 3.4 (lower-right panel) and the spectroscopic function is
listed in Tab. 3.1. The result indicates no distinct difference compared to
the results including only two-body forces.

The dependence on ~Ω can also be studied by plotting the hyperradial
overlap function. In the lower panel of Fig. 3.5, the hyperradial function
is plotted for a range of HO frequencies and what we can observe is that
different HO frequencies result mainly in changes in the outer part of the
overlap function. This is what we expect since the outer region of the overlap
function is the most difficult part to converge in a HO basis and will be
sensitive to the HO length. The problem with converging the outer part of
the overlap function is even more clearly seen in the upper panel of Fig. 3.5,
where the hyperradial functions are plotted for Nmax = 14 and Nmax = 12.
In this panel it is clearly visible that the outer part of the overlap function
is not yet converged. The tail is building up slowly between Nmax = 12 and
Nmax = 14. Since we are limited to model spaces up to Nmax = 14 we will not
be able to reproduce the asymptotic behaviour expected for a loosely bound

34



3.4. CLUSTERIZATION OF 6LI

Table 3.2: Relative weights (in %) of the HH expansion terms for the three-
body channel form factor

〈
6He(0+)|4He(0+) + n+ n

〉
calculated from NCSM wave

functions. The last row shows the total spectroscopic factor. I-N3LO with Nmax =
14.

Three-body channel This work (ΛSRG [fm−1],~Ω [MeV])
K lη = lν L = S (1.8, 20) (2.0, 16) (2.0, 20) (2.0, 22) (2.2, 20)

0 0 0 4.2 4.4 4.3 4.2 4.3
2 0 0 92.0 91.7 91.9 92.1 92.0
2 1 1 2.1 2.1 2.2 2.2 2.2
6 2 0 1.1 1.2 1.1 1.0 1.0
6 3 1 0.1 0.1 0.1 0.1 0.1
Spectroscopic factor: 1.3441 1.3263 1.3340 1.3391 1.3278

three-body system. The expected form is

χ(ρ) ∼ exp(−κρ),

where κ2~2/2m = S and S is the separation energy [3]. For a proper treat-
ment of the outer part of the overlap function also the continuum needs to be
taken into account. There are ongoing projects to include the continuum, for
example with the NCSM/resonating group metod (NCSM/RGM)[32]. How-
ever, we stress that the norms and the relative weights are mostly determined
by the interior part of the overlap function.

We are also in the position that we can compute overlap functions be-
tween excited states. In Table 3.3 the relative weights and the spectroscopic
factors for the overlap function

〈
6He(0+)|4He(2+) + n+ n

〉
are presented. The

4He(2+) is at rather high excitation energy and has rather slow convergence
in NCSM. The state is situated below the 2p+ 2n threshold. The total spec-
troscopic factor is 0.29, which is not negligible.

3.4 Clusterization of 6Li

Our method can also be used to study other clustered systems. One system
that already has been studied in the two-body cluster overlap framework is
6Li(1+) [24]. In that framework it was considered as a system consisting of
4He and a deuteron, and the overlap

〈
6Li(1+)|4He(0+) + 2H

〉
was computed.

In our three-body framework it will be studied as 4He and two independent
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Table 3.3: Relative weights (in %) of the HH expansion terms for the three-body
overlap function

〈
6He(0+)|4He(2+) + n+ n

〉
. I-N3LO with Nmax = 14, ~Ω = 20

MeV and ΛSRG = 2.0 fm−1. The last row is the total spectroscopic factor.

Three-body channel This work
K lν lη L = S

2 0 2 2 54.7
2 2 0 2 36.8
4 2 0 2 3.3
4 0 2 2 3.1
6 4 2 2 0.6
Spectroscopic factor: 0.2904

Table 3.4: Relative weights (in %) of the HH expansion terms of the three-body
overlap function

〈
6Li(1+)|4He(0+) + n+ p

〉
. Nmax = 14,~Ω = 20 MeV and

ΛSRG = 2.0 fm−1. The last row is the total spectroscopic factor.

Three-body channel This work
K lν lη S L

2 0 0 1 0 87.8
0 0 0 1 0 4.9
2 1 1 0 1 4.2
4 0 0 1 0 1.5
4 2 0 1 2 1.3
Spectroscopic factor: 1.4015

nucleons, one proton and one neutron. The overlap functions of the four
possible SL channels are displayed in Fig. 3.6. The S = 1 L = 0 channel is
the clearly dominating one. The relative weights and the total spectroscopic
factor are listed in Table 3.4. What is worth noting is that the dominating
channel, S = 1, L = 0 (with lν = 0) corresponds to the S-wave part of the
deuteron. Also the D-wave component appears in the last row, which is
characterized by lν = 2.
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Figure 3.5: Hyperradial function of the most important terms in the HH expansion.
I-N3LO with ΛSRG = 2.0 fm−1. (a) Nmax dependence for a fixed frequency ~Ω = 20
MeV. Thick lines correspond to Nmax = 14 results, while dotted ones are Nmax =
12. (b) A fixed model space (Nmax = 14) and a range of HO frequencies, ~Ω ∈
[16, 22] that corresponds to the shaded bands.
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Figure 3.6: The four possible channels in the three-body overlap〈
6Li(1+)|4He(0+) + n+ p

〉
. Computed in a Nmax = 14 model space with

~Ω = 20 MeV and with I-N3LO interaction evolved to ΛSRG = 2.0 fm−1.
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Chapter 4

Core swelling in 6He

In a cluster model of a halo system the core is treated as an inert particle.
However, one could imagine that the core inside the halo is different from
the corresponding free particle. It could get affected by the medium. In
particular, the radius of the core is a property which may be affected since
the nucleons in the core will feel an attractive force from the valence nucleons.
This effect is called core and is treated in different ways in different cluster
models. One example is the work of Zhukov et al. [3], where the Vn−α
interaction was modified to obtain the correct binding energy by increasing
the phenomenological parameter associated with the 4He radius. Another
example is in Ref. [33] where Papadimitriou et al. solved the three-body
problem taking into account the continuum, but calculated the charge radius
of 6He using a manually enlarged core radius. In contrast to cluster models
a microscopic model treats all the nucleons on the same footing and no
simplifications need to be done regarding the core. Therefore, it is in principle
possible to study the core swelling in a microscopic model. The challenge is to
extract the relevant information from the multi-dimensional wave function.
One important thing to note is that the main difference in charge radius
between the halo nucleus and the core nucleus is due to that the CM of the
two systems are different.

4.1 Proton-proton distance

In the NCSM we have the ability to compute translationally invariant wave
functions and should be able to study the core. One way of quantifying the
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amount of core swelling in a neutron halo system is to compute the average
distance between the protons, rpp, in the core and compare that with the
same distance computed for the core nucleus without the valence neutrons.
In 6He this corresponds to a comparison of the distance between the two
protons and the distance corresponding distance in 4He. The r̂2pp operator is
a two-body operator only acting on two-body proton states. It is possible to
write a two-body operator in the second quantization formalism and expand
the operator in single-particle states [6]. Schematically, what we need to
compute is 〈

AλJT
∣∣ r̂2pp ∣∣AλJT〉 =

∑
a,b,c,d

CAλJTab,cd

×
〈
ab
∣∣ r̂2pp ∣∣cd〉 〈AλJT ∣∣∣ [[a†aa†b] [acad]] ∣∣∣AλJT〉 , (4.1)

where a, b, c and d are sp proton states. To simplify the notation all nor-
malization and spin-coupling coefficients are compactified into CAλJTab,cd . In
practice, to compute the two-body matrix elements,

〈
ab
∣∣ r2pp ∣∣cd〉, we can use

the fact that the potential term in a relative HO Hamiltonian is proportional
to the relative distance between two nucleons. By subtracting the relative
kinetic energy from the HO Hamiltonian it is simple to obtain these two-
body matrix elements in a HO basis. The transition density matrix element〈
AλJT

∣∣∣ [[a†aa†b] [acad]] ∣∣∣AλJT〉 can be computed from wave functions ob-

tained in the NCSM, with the existing transition density code, trdens[26].
Results for 6He and 4He are shown in Fig. 4.1 where the rpp is presented
as a function of Nmax for a number of HO frequencies. The pp distances
6He and 4He are marked with triangles and circles, respectively. To obtaine
these is a computationally challenging task. It requieres to find all allowed
combinations of two-body states that can be annihilated and created in a
huge many-body basis. For the moment, the existing code is limiting which
calculations we are able to do. Therefore, the results, in particular for 6He,
are not fully converged. However, the core swelling is clearly visible. The
ratio between the rpp distances in 6He and in 4He are also presented in Fig.
4.1. The core swelling seems to converge to something in the range of 5−6%.

Pieper et al. [34], computed the core swelling with a Quantum Monte
Carlo method, and the AV18 interaction, by comparing the proton-proton
distribution in the core. They observed a core swelling effect of approximately
4%, which is comparable to our results. One effect that may contribute to
the core swelling is the isospin charge-exchange part of the interaction, which
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can transfer charge from the core to the valence nucleons [34]. This effect
will also cause an enlarged rpp distance and how important its importance
needs to be investigated further.

4.2 Two- and n-body transition densities

To overcome the limitations in the existing code, trdens a code development
project has been initialised. The current aim is to improve the computational
algorithm for obtaining one- and two-body transition densities, which can be
used to calculate expectation values for one- and two-body operators, as well
as off-diagonal transition matrix elements from e.g. two-body currents. The
derivations behind the computation of coupled one- and two-body transition
densities are presented in App. B. In the long-run the aim is to be able to
compute also three- and four-body transition densities. The main features
of our new code, preliminary named anicr, are: (i) anicr an improved al-
gorithm to optimize the search for possible combinations of two-body states
and minimize the number of times Clebsch-Gordan coefficients are computed,
and (ii) the use of hash tables in a more efficient way. In Fig. 4.2 a prelim-
inary benchmark comparison is presented for the trdens and anicr. The
figure shows the timing of computing coupled two-body transition densities
for a number of different nuclei in various model spaces. The computations
are done in serial on a 2 GHz Sandy Bridge processor. The matrix elements
have the form a†aa

†
bacad. What is clearly visible is that anicr is already faster

and more efficient. In 4He, the largest model space that is possible to com-
pare is Nmax = 12, where anicr is 14.9 times faster then trdens. The ratio
in case of 6He is of the same order of magnitude.
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[35].
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Chapter 5

Discussion and outlook

In this thesis we have presented nuclear-structure results obtained with the
ab initio NCSM. We have presented observables for light nuclei such as the
ground state energy and the point-proton radius of 6He and 6Li. Recent code
developments allow us to do computations in very large model spaces (for
6Li up to Nmax = 22). We are therefore able to obtain well converged results
for A=6 systems with realistic bare interactions.

We also demonstrated a way of correcting our computed results for the
finite HO basis we are employing, and showed how this can be used to extrap-
olate to basis-independent results. However, the choice of the infrared cutoff
parameter, L, needs to be understood as shortcomings are visible in both the
extrapolation of the ground state energy and the radius. The infrared cut-
off in the NCSM many-body model space therefore needs to be investigated
further. Our large model space calculations are a useful tool in this investiga-
tion, since we now can compute converged many-body systems. The outlook
is to study the extrapolation further and also extend what observables these
corrections can be applicable to.

Furtermore, a framework for studying three-body cluster systems in the
NCSM was presented. This toolbox was exemplified by showing how it can
be used for studying the clusterization in 6He. There are other systems that
would be interesting to study in a similar way. One example is the two-
neutron halo state in 11Li. Our formalism requires that we can compute
a†a†-matrix elements. This is limited by the inability of the available transi-
tion density code, trdens, to compute diagonal and non-diagonal transition
density matrix elements in large model spaces.

Finally, we discussed the core swelling effect in a halo system and pre-
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sented results for 6He where we clearly can observe that the core is enlarged.
Again, to be able to compute a converged result we need to extend our
capabilities to compute the transition densities in large model spaces. To
overcome this problem we have initiated a code development project, under
the preliminary name, anicr. This code will be able to compute one- and
two-body transition matrix elements in a more efficient way than existing
codes. Preliminary performance data were presented and the outlook seems
promising. The code will hopefully open up new possibilities of computing
many-body operators in larger model spaces. One opportunity that arises
when having access to two-body transition densities is to compute matrix
elements for two-body currents in large model spaces. However, the aim is
to also include three- and eventually four-body densities. Such densities are
needed e.g. in the kernels of NCSM/RGM calculations[36, 32]. Furthermore,
one could envision the ability to study effects of nuclear four-body forces in
a perturbative approach.
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Appendix A

Three-body cluster overlap
function

A.1 Cluster Antisymmetrizer

The cluster antisymmetrizer Aa1,a2,a3 acting on a three-body cluster system
ensures antisymmetrization with respect to the exchange of particles between
three clusters. When the antisymmetrizer acts on a cluster state the result
is a sum of states consisting of all possible permutations of particles between
clusters. For every exchange of two particles from two different clusters the
sign changes. The sum needs to be normalized with the total number of
cluster permutations. The three-cluster antisymmtrizer is defined as

Aa1,a2,a3 =
1√
N3

∑
permutations

(−1)π
∏
ij

P̂ij , (A.1)

where i, j are particles belonging to different clusters, P̂ij is the exchange
operator that exchanges particle i and j. a1, a2 and a3 are the number of
nucleons in cluster 1, 2 and 3, respectively. π is the number of exchanges
and N3 is the total number of possible permutations. The total number of
particle exchanges between three clusters is

N3 =

(
A

a1

)(
A− a1
a2

)
=

A!

(A− a1)!a1!
(A− a1)!
a2!a3!

=
A!

a1!a2!a3!
. (A.2)

In the derivation presented in Chap. 3 we are acting with the cluster an-
tisymmetrizer on a SD state, which is already antisymmetric with respect
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to all particle exchanges. Therefore, every particle exchange will result in a
state equal to the SD state and we will in the end have N3 SD states. This
can be written as

Aa1,a2,a3 |Ψ(1, . . . , A)〉SD =
1√
N3

(|Ψ(1, . . . , A)〉SD + . . .+ |Ψ(1, . . . , A)〉SD)

=
1√
N3

N3 |Ψ(1, . . . , A)〉SD .

(A.3)

This gives us that when applying the three-body cluster antisymmetrizer to
an antisymmetric SD state, the result is a combinatorial factor,

√
N3 =

√
A!

(A− (a2 + a3))!a2!a3!
. (A.4)
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A.2. COORDINATE TRANSFORMATION OF OVERLAP FUNCTIONS

A.2 Overlap functions: from relative to single-

particle coordinates

The derivation of the cluster overlap functions uses the possibility to trans-
form the overlap function from an expression in relative coordinates to an
expression in single-particle coordinates. This transformation is essential for
the use of wave functions in a SD basis as computed in the NCSM. In this
appendix, the relation between a three-body cluster overlap function in Ja-
cobi coordinates and the same overlap function in single-particle coordinates
will be derived.

As a starting point of the derivation the three-body cluster wave function
needs to be defined. This has been done in Sec. 3.2. The three-body cluster
wave function that is used in this derivation is expressed in mixed coordinates,
similar to Eq. (3.6). The large cluster, Cluster 1, and the center of mass of
the two smaller clusters are expressed in absolute coordinates. The intrinsic
motion of cluster 2 and 3 together with their relative motion, ν, are expressed
in Jacobi coordinates. The three-body cluster wave function is defined in Eq.
(3.6) and is〈

~r1 . . . ~rA−a ~R
a
CMµ~νρστ

∣∣∣ ΦAJMTMT
αMα

;nηlη, nν lν

〉
SD

=
∑

(lηmηlνmν |LML)(I2M2I3M3|I23M23)(I1M1I23M23|SMS)

× (LMLSMS |JM)(T2MT2T3MT3 |T23MT23)(T1MT1T23MT23 |TMT )

×Rnν ,lν (ν)Ylνmν (ν̂)
〈
~RaCM

∣∣∣ nηlηmη

〉
× 〈~r1 . . . ~rA−a, σ1 . . . σA−a, τ1 . . . τA−a| (A− a)λ1I1M1T1MT1〉
× 〈µ, σA−a+1 . . . σA−a3τA−a+1 . . . τA−a3 | λ2I2M2T2MT2〉
× 〈ρ, σA−a3+1 . . . σAτA−a3+1 . . . τA| λ3I3M3T3MT3〉 ,

(A.5)

where Rnη ,lη(RaCM )Ylηmη(R̂aCM ) forms a HO state.
An A-body wavefunction in a SD basis consisting of HO states can be

defactorized into a part consisting of the CM motion and a part corresponding
to the intrinsic motion of the wavefunction,

〈~r1 . . . ~rAσ1 . . . σAτ1 . . . τA| AλJMTMT 〉S.D.
=
〈
~ξ1 . . . ~ξA−1σ1 . . . σAτ1 . . . τA

∣∣∣ AλJMTMT

〉
× 〈RCM | 000〉

(A.6)

where the CM is in 0S state [37].
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Three-body cluster overlap function

By applying this relation to cluster 1 in equation A.5, it is possible to
identify two HO states in absolute coordinates, where one is related to the
CM motion of cluster 1 and the other one related to the CM motion of cluster
2 and cluster 3.

〈
~r1 . . . ~rA−a ~R

a
CMµ~νρστ

∣∣∣ ΦAJMTMT
αMα

;nηlη, nν lν

〉
S.D

=
∑

(lηmηlνmν |LML)(I2M2I3M3|I23M23)(I1M1I23M23|SMS)

× (LMLSMS |JM)(T2MT2T3MT3 |T23MT23)(T1MT1T23MT23 |TMT )

×Rnν ,lν (ν)Ylνmν (ν̂)
〈
~RaCM

∣∣∣ nηlηmη

〉〈
~RA−aCM

∣∣∣ 000
〉

×
〈
~ξ1 . . . ~ξA−a, σ1 . . . σA−a, τ1 . . . τA−a

∣∣∣ (A− a)λ1I1M1T1MT1

〉
× 〈µ, σA−a+1 . . . σA−a3τA−a+1 . . . τA−a3 | λ2I2M2T2MT2〉
× 〈ρ, σA−a3+1 . . . σAτA−a3+1 . . . τA| λ3I3M3T3MT3〉 ,

(A.7)

Two HO states with absolute coordinates can be described by two HO states
in relative coordinates, where one coordinate describes the CM motion and
one coordinate the relative motion between the two HO states. This transfor-
mation is called the Talmi-Moshinsky transformation[38] and can be written
as

∑
m1m2

(l1m1m2l2|Qq) 〈r1| n1l1m1〉 〈r2| n2l2m2〉 (A.8)

=
∑
nlm
NLM

〈nlNLQ| n1l1n2l2Q〉D (lmLM |Qq) 〈~r| nlm〉
〈
~RCM

∣∣∣ NLM〉 , (A.9)

where subscript 1 and 2 corresponds to two states in absolute coordinates. ~R

is the CM coordinate and ~r is the relative coordinate between the two states.
〈nlNLQ| n1l1n2l2Q〉D is a general HO bracket and D is the mass ratio of the
two particles.

In Eq. (A.7) two HO states in absolute coordinates can be identified,〈
~RA−aCM

∣∣∣ 000
〉〈

~RaCM

∣∣∣ nηlηmη

〉
and by applying the Talmi-Moshinksy transfor-

mation, the two states described by a CM coordinate for the A-body system
~ξ0 and a relative coordinate ~η between the combined CM of cluster 1 and the
CM of cluster 2 and 3. Therefore, is it now possible to write the three-body

50
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cluster wave function as〈
~r1 . . . ~rA−a~ηµ~νρστ

∣∣∣ ΦAJMTMT
αMα

;nηlη, nν lν

〉
S.D

=
∑

(lηmηlνmν |LML)(I2M2I3M3|I23M23)(I1M1I23M23|SMS)

× (LMLSMS |JM)(T2MT2T3MT3 |T23MT23)(T1MT1T23MT23 |TMT )

×Rnν ,lν (ν)Ylνmν (ν̂)
〈
~ξ1 . . . ~ξA−a, σ1 . . . σA−a, τ1 . . . τA−a

∣∣∣ (A− a)λ1I1M1T1MT1

〉
× 〈µ, σA−a+1 . . . σA−a3τA−a+1 . . . τA−a3 | λ2I2M2T2MT2〉
× 〈ρ, σA−a3+1 . . . σAτA−a3+1 . . . τA| λ3I3M3T3MT3〉
×

∑
n′l′m′
N ′L′M ′

〈
n′l′N ′L′lη

∣∣ 00nηlηlη
〉

a
A−a

(l′m′L′M ′|lηmη)
〈
~η
∣∣ n′l′m′〉 〈~ξ0∣∣∣ N ′L′M ′〉 ,

(A.10)

The relation between an overlap function in absolute coordinates and in
relative coordinates can now be derived. By applying Eq. (A.6) to the A-
body state and the steps performed in Eq. (A.5-A.10) to the cluster state,
the overlap function expressed in a SD basis is

SD

〈
AλJMTMT

∣∣∣ ΦAJMTMT
α,Mα

;nηlη, nν lν

〉
SD

=

∫
d~x
〈
AλJMTMT

∣∣∣ ~ξ1 . . . ~ξA−1σ1 . . . σAτ1 . . . τA〉〈000
∣∣∣ ~ξ0〉

×
∑

(lηmηlνmν |LML)(I2M2I3M3|I23M23)(I1M1I23M23|SMS)

× (LMLSMS |JM)(T2MT2T3MT3 |T23MT23)

× (T1MT1T23MT23 |TMT )Rnν ,lν (ν)Ylνmν (ν̂)

×
〈
~ξ1 . . . ~ξA−a, σ1 . . . σA−a, τ1 . . . τA−a

∣∣∣ (A− a)λ1I1M1T1MT1

〉
× 〈µ, σA−a+1 . . . σA−a3τA−a+1 . . . τA−a3 | λ2I2M2T2MT2〉
× 〈ρ, σA−a3+1 . . . σAτA−a3+1 . . . τA| λ3I3M3T3MT3〉
×

∑
n′l′m′
N ′L′M ′

〈
n′l′N ′L′lη

∣∣ 00nηlηlη
〉

a
A−a

(l′m′L′M ′|lηmη)
〈
~η
∣∣ n′l′m′〉 〈~ξ0∣∣∣ N ′L′M ′〉 .

(A.11)

Now the summation in the last row can be simplified. First of all an inte-
gration over the ξ0 coordinate can be performed and since the HO functions
are orthonormal only N ′ = L′ = M ′ = 0 will contribute. Energy conserva-
tion must also be considered in the Talmi-Moshinsky transformation and if
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N ′ = L′ = 0 the only option is that n′ = nη, l′ = lη and m′ = mη. The cluster
wave function defined in Eq. 3.4 can be identified and finally Eq. (A.12) can
be written as an overlap in relative coordinates,

SD

〈
AλJMTMT

∣∣∣ ΦAJMTMT
α,Mα

;nηlη, nν lν

〉
SD

=
〈
AλJMTMT

∣∣∣ ΦAJMTMT
α,Mα

;nηlη, nν lν

〉
〈nηlη00lη| 00nηlηlη〉 a

A−a
.

(A.12)

An algebraic expression for the general HO bracket can in this case be derived
and it can be shown [24] to be

〈nl00l| 00nll〉 a
A−a

= (−1)l
(
A− a
A

) 2n+l
2

. (A.13)
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A.3 Overlap functions in a Hyperspherical Har-

monics basis

The aim of this derivation is to make it possible to transform the expression
for the overlap function in a radial HO basis, to a Hyperspherical Harmonic
(HH) basis. This is the derivation used to compute the spectroscopic factors
expanded in HH presented in Sec. 3.3.2.

Definitions

The coordinates used are defined in the same way as in Chap. 3, which is
a relative Jacobi coordinate system in T-configuration. The hyperspherical
coordinates, the hyperradius, ρ, and hyperangle θ are defined by

η = ρ cos(θ)

ν = ρ sin(θ),
(A.14)

where θ ∈ [0, π/2]. The volume element in this three-body problem is

d3ηd3ν = η2dηdΩην
2dνdΩν = ρ5 sin2 θ cos2 θdρdθdΩηdΩν .

The hyperspherical harmonics is defined as

Γ
lηlν
KLML

(Ω5) = Ψ
lηlν
K (θ)[Ylη(η̂)Ylν (ν̂)]LML , (A.15)

where Yl,m(x̂) is the spherical harmonic, Ω5 = {θ, η̂, ν̂} are the five hyper-
spherical polar angles and K is the hypermomentum. Ψ is the hyperangular
function defined as

Ψ
lη ,lν
K (θ) ≡ N lν ,lη

K [sin(θ)]lν [cos(θ)]lηP
lν+

1
2 ,lη+

1
2

n (cos 2θ), (A.16)

where N lx,ly
K is a normalization factor and Pα,βn (x) is the Jacobi polynomial.

The hypermomentum is defined to be

K ≡ lη + lν + 2n where n = 0, 1, 2 . . . .

The normalisation factor is

N
lη ,lν
K ≡

√
2(n!)(K + 2)(n+ lν + lη + 1)!

Γn+ lν + 3
2Γn+ lη + 3

2

.
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In the case that the argument to the Jacobi Polynomial is real, which is true
in this case, the Jacobi Polynomial can be expressed as

Pα,βn (x) ≡
∑
s

(
n+ α

s

)(
n+ β

n− s

)(
x− 1

2

)n−s(x+ 1

2

)s
, (A.17)

for x ∈ [−1, 1].
The hyperangular function is a complete basis with the following normal-

ization, ∫ π/2

0
dθ sin2(θ) cos2(θ)Ψ

lη ,lν
K (θ)Ψ

lη ,lν
K′ (θ) = δK,K′

To be consistent in notation we need to introduce a bra-ket notation and in
that case we will define the hyperangular function as

〈θ| lη, lν ,K〉 ≡ ψlη ,lνK (θ).

Transformation to HH basis

The overlap function we are going to transform to a HH basis is defined in
Eq. (3.13) and can be written as

uAλJMαMα
(~η, ~ν vecχ) =

∑
lηlν

Nmax∑
nηnν

CAλJMα,Mα;nηlηnν lνRnηlη(η)Rnν lν (ν)ΦJM
lηlνLS(η̂, ν̂, ~χ),

(A.18)

where the factors in Eq. (3.13) are compactified into CAλJMαMα;nηlηnν lν
, while ~χ

is the spin coordinate, and

ΦJM
lηlνLS(η̂, ν̂, ~χ) =

[
[Ylη(η̂)Ylν (ν̂)]LΦS

]JM
.

To also be able to express the overlap function in a bra-ket notation we will
define

〈η, ν| AλJM ;αMα; (lηlν);Nmax〉 ≡
Nmax∑
nηnν

CJMLS
nηlηnν lνRnηlη(η)Rnν lν (ν).

The aim is to express the overlap function in a HH basis, in this form:

uAλJMαMα
(ρ, θ, η̂, ν̂, ~χ) =

1

ρ5/2

∑
K

∑
lηlν

χAλJMαMαKlηlν

[
ΓLKlηlν (Ω5)Φ

S
]JM

, (A.19)
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where
ΓLML
Klηlν

(Ω5) = Ψ
lηlν
K

[
Ylη(η̂)Ylν (ν̂)

]LML

We can now start from Eq. (A.18) but using HH coordinates instead,

uAλJMαMα
(ρ, θ, η̂, ν̂, ~σ) =

∑
lηlν

〈ρ, θ| AλJM ;αMα; (lηlν);Nmax〉ΦJM
lηlνLS(η̂, ν̂, ~σ)

=
∑
K

∑
lηlν

〈ρ, θ| Klηlν〉 〈Klηlν | AλJM ;αMα; (lηlν);Nmax〉ΦJM
lηlνLS(η̂, ν̂, ~σ),

(A.20)

where the last step was to insert a complete set of hyperangular basis func-
tions and 〈ρ, θ| Klηlν〉 = ΨKlηlν (θ) 〈ρ|. We can integrate over the hyperangle
by inserting

∫
dθ′ sin2 θ′ cos2 θ′ |θ′〉 〈θ′| in Eq. (A.20), which gives us

uAλJMαMα
(ρ, θ, η̂, ν̂, ~σ) =

∑
lηlν

∑
K

[
ΓLKlηlνΦS

]JM ∫
dθ′ sin2 θ′ cos2 θ′

×
〈
Klηlν

∣∣ θ′〉 〈ρ, θ′∣∣ AλJM ;αMα; (lηlν);Nmax

〉
=
∑
lηlν

∑
K

[
ΓLKlηlνΦS

]JM ∫
dθ′ sin2 θ′ cos2 θ′

×ΨK
lηlν (θ′)∗

Nmax∑
nηnν

CAλJMαMα;nηlηnν lνRnηlη(ρ, θ′)Rnν lν (ρ, θ′)

(A.21)

By comparing Eq. (A.19) and (A.21) we can now identify χLS;JMKlηlν
(ρ), which

is the unknown function in the HH expansion. The hyperradial function in
the HH expansion of the overlap function is

χAλJMαMα,Klηlν (ρ) = ρ5/2
∫
dθ′ sin2 θ′ cos2 θ′ΨK

lηlν (θ′)

Nmax∑
nηnν

CAλJMαMα;nηlηnν lνRnηlη(η)Rnν lν (ν)

(A.22)

We are now in the position when we can compute the spectroscopic factor
expanded in K. We can also compute the hyperradial function and study
the radial behaviour for every HH component. This is used in the analysis
presented in Chap. 3.
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Appendix B

Transition Densities in a
many-body basis

In this chapter the derivation of the transition densities calculated with
ANICR is presented for the one-, and two-body case.

B.1 One-body transition densities

The aim is to calculate the reduced one-body transition in a form containing

matrix elements in the form
〈
AfJfMfTfMT,f

∣∣∣ a†kal ∣∣∣AiJiMiTiMT,i

〉
, where A

is the number of nucleons, J (T) is the total spin (isospin), the quantum
numbers M (MT ) is the projection of the spin (isospin) and the initial (final)
state is denoted by a subsript i (f). The creation and annihilation operator
creates and annihilates sp states k and l, respectively. Matrix elements in
this form are possible to obtain from wave functions in a SD basis computed
in NCSM.

The Wigner-Eckart theorem gives〈
AλfJfMf

∣∣∣ [a†αãβ]J,M

∣∣∣AλiJiMi

〉
= Ĵ−1f (JiMi, JM |JfMf )(AλfJf ||[a†aãb]J ||AλiJi)

(B.1)

where ã is an annihilation operator that behaves like a spherical tensor.The
relation to the ordinary annihilation operator is: ãα = (−1)ja+mαa−α [6].
We are denoting single particle orbits (shells) with Roman letters and when
also including the projection quantum numbers of the spin it is denoted
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Transition Densities in a many-body basis

with Greek letters. So for example a possible set of single particle quantum
numbers is a = na, la, ja and α = a,mα. The last factor in Eq. B.1 is the
reduced transition density that we finally want to compute.

We will start by projecting the left-hand side of Eq. (B.1) to an uncoupled
basis,〈

AλfJfMf

∣∣∣ [a†αãβ]J,M

∣∣∣AλiJiMi

〉
=

∑
mα,mβ

(jamα, jbmα|JM)
〈
AλfJfMf

∣∣∣ a†αãβ ∣∣∣AλiJiMi

〉
=

∑
mα,mβ

(jamα, jbmα|JM)(−1)jb+mβ
〈
AλfJfMf

∣∣∣ a†αa−β ∣∣∣AλiJiMi

〉
=

∑
mα,−mβ

(jamα, jb −mα|JM)(−1)jb−mβ
〈
AλfJfMf

∣∣∣ a†αaβ ∣∣∣AλiJiMi

〉
.

(B.2)

We can now use the following relation[6],

(j1m1, j2m2|j3m3) = (−1)j1−m1
ĵ3

ĵ2
(j3m3j1 −m1|j2m2) (B.3)

and apply it to Eq. (B.2).〈
AλfJfMf

∣∣∣ [a†αãβ]J,M

∣∣∣AλiJiMi

〉
=

∑
mα,mβ

(−1)jb−mβ (−1)−jb+mβ
Ĵ

ĵa
(jbmβ, JM |jamβ)

〈
AλfJfMf

∣∣∣ a†αaβ ∣∣∣AλiJiMi

〉
=

∑
mα,mβ

Ĵ

ĵa
(jbmβ, JM |jamβ)

〈
AλfJfMf

∣∣∣ a†αaβ ∣∣∣AλiJiMi

〉

(B.4)

We are now in the position that we can insert Eq. (B.4) in Eq. (B.1) and
write down the reduced transition density in an uncoupled basis,

(AλfJf ||[a†aãb]J ||AλiJi)

=
Ĵ Ĵf

(JiMiJM |JfMf )ĵa

∑
mα,mβ

(jbmβ, JM |jamα)
〈
AλfJfMf

∣∣∣ a†αaβ ∣∣∣AλiJiMi

〉
(B.5)
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By using the the relation between 3j symbols and Clebsch-Gordan coeffi-

cients, (j1m1, j2m2|j3m3) = (−1)j1−j2+m3 ĵ3

(
j1 j2 j3
m1 m2 m3

)
we can express Eq.

B.5 in terms of 3j symbols,

(AλfJf ||[a†aãb]J ||AλiJi)

=
Ĵ Ĵf

(−1)Ji−J+Mf Ĵf

(
Ji J Jf
Mi M −Mf

)
ĵa

∑
mα,mβ

(−1)jb−J+mα ĵa

(
jb J ja
mb M −mα

)

×
〈
AλfJfMf

∣∣∣ a†αaβ ∣∣∣AλiJiMi

〉
=

Ĵ(−1)−Ji−Mf(
Ji J Jf
Mi M −Mf

) ∑
mα,mβ

(−1)jb+mα
(
jb J ja
mb M −mα

)〈
AλfJfMf

∣∣∣ a†αaβ ∣∣∣AλiJiMi

〉
.

(B.6)

These uncoupled matrix elements states are possible to compute from many-
body states in a SD basis.

B.2 Two-body transition densities

The derivation of the two-body transition density will be done in a similar
way to the one-body derivation. The main difference is that we need to do
the uncoupling in two steps. First we need to project the expression to a
uncoupled two-body basis and then uncouple the two-body states to single-
body states, which we are able to compute. We need to take into account the
normalization of the two-body state that needs to be normalized due to the

Pauli principle, which is done with the normalization factor Nab =

√
1−δab(−1)J
1+δab

where δab = 1 if the two particles in the two-body state are of the same kind
and in the same orbit.

We can in the same way as in eq. B.1 relate the transition density with
a coupled matrix element by using the Wigner-Eckart theorem.〈

AλfJfMF

∣∣∣∣ [[a†aa†b]J12 [ãcãd]J34

]
J,M

∣∣∣∣AλiJiMi

〉
= J−1f (JiMi, JM |JfMd)(AλfJf ||

[
[a†aa

†
b]J12 [ãcãd]J34

]
J
||AλiJi)

(B.7)
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We can now focus on the matrix element in Eq. B.7 and try to uncouple
it to get an expression with uncoupled sp states, which we can compute.〈
AλfJfMF

∣∣∣∣ [[a†aa†b]J12 [ãcãd]J34

]
J,M

∣∣∣∣AλiJiMi

〉
=

∑
m12,m34

(j12m12j34m34|JM)
〈
AλfJfMf

∣∣∣ [a†aa†b]J12 [ãcãd]J34

∣∣∣AλiJiMi
〉

=
∑

mα,mβ

∑
m12=mα+mβ
m34=mδ+mγ

Nab(J12)
−1Ncd(J34)

−1(jamα, jbmβ|J12M12)(jcmγjdmδ|J34M34)

× (J12M12J34M34|JM)
〈
AλfJfMf

∣∣∣ a†αa†β ãγ ãδ ∣∣∣AλiJiMi
〉

=
∑

mα,mβ

Nab(J12)
−1Ncd(J34)

−1(jamα, jbmβ|J12M12)(jcmγjdmδ|J34M34)

× (J12M12J34M34|JM)(−1)jc+mγ (−1)jd+mδ
〈
AλfJfMf

∣∣∣ a†αa†βa−γa−δ ∣∣∣AλiJiMi
〉

=
∑

mα,mβ

(−1)jc+jd−mγ−mδNab(J12)
−1Ncd(J34)

−1(jamα, jbmβ|J12M12)

× (jcm−γjdm−δ|J34M34)(J12M12J34M34|JM)
〈
AλfJfMf

∣∣∣ a†αa†βaγaδ ∣∣∣AλiJiMi
〉

=

=
∑

mα,mβ

(−1)jc+jd+M34Nab(J12)
−1Ncd(J34)

−1(jamα, jbmβ|J12M12)(−1)j34−jc−jd

× (jcmγjdmδ|J34−M34)(J12M12J34M34|JM)
〈
AλfJfMf

∣∣∣ a†αa†βaγaδ ∣∣∣AλiJiMi
〉

=
∑

mα,mβ

(−1)J34−M34Nab(J12)
−1Ncd(J34)

−1(jamα, jbmβ|J12M12)

× (jcmγjdmδ|J34M34)(J12M12J34 −M34|JM)
〈
AλfJfMf

∣∣∣ a†αa†βaγaδ ∣∣∣AλiJiMi
〉

=
∑

mα,mβ

(−1)J34−M34Nab(J12)
−1Ncd(J34)

−1(jamα, jbmβ|J12M12)(jcmγjdmδ|J34M34)

× (−1)M34−J34 Ĵ

Ĵ12
(J34M34JM |J12M12)

〈
AλfJfMf

∣∣∣ a†αa†βaγaδ ∣∣∣AλiJiMi
〉

=
∑

mα,mβ

Nab(J12)
−1Ncd(J34)

−1 Ĵ

Ĵ12
(jamα, jbmβ|J12M12)(jcmγjdmδ|J34M34)

× (J34M34JM |J12M12)
〈
AλfJfMf

∣∣∣ a†αa†βaγaδ ∣∣∣AλiJiMi
〉

In the penultimate step we used Eq.(B.3). We can now write down the
expression for the two-body transition density in a form that we are able to
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compute.

(AλfJf ||
[
[a†aa

†
b][ãcãd]

]
J
||AλiJi)

=
Ĵf Ĵ

(JiMiJM |JfMf)

∑
mα,mβ ,J12
mδ,mγ ,J34

Nab(J12)
−1Ncd(J34)

−1 1

Ĵ12
(jamα, jbmβ|J12M12)

× (jcmγjdmδ|J34M34)(J34M34JM |J12M12)
〈
AλfJfMf

∣∣∣ a†αa†βaγaδ ∣∣∣AλiJiMi
〉

=

=
Ĵf Ĵ

(−1)Ji−J+Mf Ĵf

(
Ji J Jf
Mi M −Mf

) ∑
mα,mβ ,J12
mδ,mγ ,J34

Nab(J12)
−1Ncd(J34)

−1 1

Ĵ12

× (−1)ja−jb+M12 Ĵ12

(
ja jb J12
mα mβ −M12

)
(−1)jc−jd+M34 Ĵ34

(
jc jd J34
mα mβ −M34

)
× (−1)J34−J+M12 Ĵ12

(
J34 J J12
M34 M −M12

)〈
AλfJfMf

∣∣∣ a†αa†βaγaδ ∣∣∣AλiJiMi
〉

=
Ĵ

(−1)Ji+Mf

(
Ji J Jf
Mi M −Mf

) ∑
mα,mβ ,J12
mδ,mγ ,J34

Nab(J12)
−1Ncd(J34)

−1Ĵ12Ĵ34

× (−1)ja−jb+jc−jd+2M12+J34+M34

(
ja jb J12
mα mβ −M12

)(
jc jd J34
mα mβ −M34

)
×
(
J34 J J12
M34 M −M12

)〈
AλfJfMf

∣∣∣ a†αa†βaγaδ ∣∣∣AλiJiMi
〉
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