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Abstract

This thesis describes a simulation based system for forecasting arrival and departure
times in complex public transit systems. The variables included in the calculations are:
time of day, vehicle schedule adherence, estimated passenger count on stop, interactions
with other vehicles and vehicle position from both historical and contemporary data.
The use of a simulation based algorithm simplifies the implementation of a complex
model with a great number of different dependencies. Additionally, creating a forecast
using historical data while looking at different data features to find similarities gives a
more accurate forecast than just looking at a moving average using data from the current
day.



Sammanfattning

Denna rapport beskriver ett simuleringsbaserat prognossystem för ankomst- och avg̊angstider
i ett komplext kollektivtrafiksnätverk. Prognoser görs med hänsyn till tid p̊a dygnet,
fordonets schemaföljsamhet, prognostiserad passagerarräkning p̊a h̊allplats, interaktion
med andra fordon samt fordonets position. Systemet använder sig av historisk samt
dagsaktuell data för att göra prognoserna. Med en simuleringsbaserad algoritm är det
enkelt att implementera en mer komplex modell med flera olika beroenden. Att använda
historisk data samtidigt som att se till olika egenskaper i data för hitta likheter med de
aktuella förutsättningarna ger mer korrekta prognoser jämfört med en genomsnittsmetod
som enbart använder sig av data fr̊an samma dag.
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1

Introduction

Intelligent transportation systems (ITS) where advanced traveler information systems
(ATIS) play a big role are becoming more and more common. One important part of
ATIS is predicting when public transport vehicles will arrive or depart. Passengers may
look for other, less environmentally-friendly, means of transportation if there are exces-
sive waiting times at stops. Relevant and correct arrival and departure time forecasts
increases passenger experience and may thus increase the use of public transport sys-
tems. There has been a lot of research done on the subject of predicting arrival times
using e.g. regression models, machine learning techniques and simple historical averages.
There has not been as much research done on analyzing what actually causes the arrival
and departure times to change, nor on how the public transportation vehicles affect each
other.

This thesis will therefore look at the possibility to model a public transportation network
by answering the following questions:

• Are simulation based approaches useful when forecasting arrival and departure
times in public transport networks?

• Can the simulation based approach give better results than a commercial system
based on a moving average?

• Will taking inter-vehicle dependencies into account improve the accuracy of the
forecasts?

• Is the schedule poor enough to warrant the effort of implementing a complex fore-
cast system?

This thesis will only take into consideration public transportation systems that resem-
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1.1. LITERATURE STUDY CHAPTER 1. INTRODUCTION

ble the public transportation system in Gothenburg, Sweden and that have access to
historical data and real-time vehicle location reports1 (AVL). This thesis will only focus
on making good forecasts for the entire public transport network in normal situations.
Thus it will not focus on situations such as accidents or construction work.

1.1 Literature study

There is not an extensive literature in this area, but we here summarize the differerent
approaches that we have found.

1.1.1 Historical models

A simple way to estimate how long it takes to travel between two points is to look at
how long it usually takes to travel the distance. If it took two minutes for a bus do drive
between stops A and B yesterday, it seems a good bet that it should take two minutes
today as well. However, if there was construction work being done yesterday but not
today then yesterday’s time will probably be a bit off. The effects of the fluctuations
in travel times can be mitigated if more samples where used and aggregated using e.g.
the mean. A sample taken when there was a temporary obstacle will not affect the
estimation if it is just one of many samples. It is important that the samples used reflect
the situation which is being estimated as much as possible. Samples taken just a few
minutes ago will e.g. likely have the same weather and traffic conditions as the situation
being estimated making them good samples. Unfortunately there is bound to be few
available samples that are that fresh, and as said before, many samples must be used
to avoid the effects of temporary obstacles. Choosing which samples to aggregate can
be hard, but Chen et al. (2011) investigate the periodicy of travel times and show that
travel times...

• ... change greatly during different times of the day

• ... are different on weekdays and weekends

• ... are similar on the same day of week

These findings can be used to try to find the best possible grouping of previously recorded
travel time to apply the aggregate function to.

As mentioned briefly earlier a common aggregation function used in historical models
is the average, or rather the moving average. A moving average differs from a normal

1Real-time may be a bit of an overstatement depending on your definition of the phrase. A vehicle
location report is sent to a server when the vehicle departs from a stop or at least every two minutes.
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1.1. LITERATURE STUDY CHAPTER 1. INTRODUCTION

average only when it comes to handling new numbers. A normal average of three numbers
could look like

1+ 1 + 2 + 3

3
= 2 (1.1)

If a new number is added, the denominator needs to be updated to reflect the increase
in number of numbers

1 + 2 + 3 + 4

4
= 2.5 (1.2)

In a moving average the ”oldest” number is removed from the summation in the nomi-
nator and the denominator is kept constant.

1+ 2 + 3 + 4

3
= 3 (1.3)

1.1.2 Time estimation methods

There are several methods which can be used to do time estimation. Many of these
methods can be used for a lot of other things and are often referred to within the area of
artificial intelligence and machine learning because of there ability to adjust and learn.

Artificial Neural Networks or ANNs The idea behind ANNs is to build a calcu-
lation structure which is similar to a brain, with neurons and nerves. This structure is
simplified so that a neuron is nothing more than a calculation step and a nerve is just
a relation taking the result from one neuron’s calculation as input to another neuron’s
calculation. A nerve can also increase or decrease the output. Just like a nerve in the
brain can be strong or weak. The input to a neuron can also be information from some
external sensor, e.g. traffic density on a road, time during the day or time needed for
last vehicle to drive a distance. The thought is then to train the network to do good
estimates. This means to adjust the nerves and neurons capabilities. One way to use
ANN technique to do forecasts for a public transportation system would be to create
one ANN unit for each sub-time one would like to estimate, e.g. one unit will be in-
dependently used to estimate the driving time for a distance. This unit should have a
lot of different inputs and output a single value, preferable the time needed. This could
then be scaled to estimate the full public transportation system by creating one ANN
unit for each activity which needs to be estimated. In contrast to Shalaby & Farhan
(2004), Jeong & Rilett (2004) argue that ANNs can give good results, given enough
training data. The variables influencing public transport travel times tend to depend on
each other non-linearly, which is something that ANNs tend to be good at discovering
and handling. They too differentiate dwell time from link travel time, but also look at
schedule adherence. They argue that separating link travel and dwell time yields good
results, but the inclusion of schedule adherence did not have much effect.
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Figure 1.1: ANN with 3 neurons, 2 are fixed value and one are the summarize operation.
Also nerves which enhance the result.

Kalman filter , also known as linear quadratic estimation or LQE, is an algorithm that
uses a series of measurements observed over time, containing noise and other inaccuracies,
and produces estimates of unknown variables that tend to be more precise than those
based on a single measurement alone, according to Kalman filters are commonly used
in radio receivers, e.g. mobile phones, TV etc., to reduce signal noise. The technique
has several properties which can be useful for estimating arrival- and departure times
in a public transportation system. An estimation method could be similar to the one
described in the Artificial Neural Network section above. A divide and conquer method,
where each sub part of the system can be estimated independent and all sub parts’
estimates can be merged into one big estimate. The great thing with the Kalman filter
approach is the built in technique for handling the unexpected, or noise. Noise in a
public transportation system could be for example be more dense traffic, varying time
needed to load/unload passengers, etc. An example of a Kalman filter used in public
transportation estimation is Shalaby & Farhan (2004). They use VISSIM to simulate bus
movements and use the simulation to make predictions, focusing mainly on the morning
peak. With the simulated data they show that Kalman filters are good at responding
to changes in conditions such as a temporary increase in the number of passengers or a
lane being closed. They estimate dwell times and link travel times separately and argue
that the algorithm reacts better to anomalies with these times separate than when they
are grouped into one variable. Historical models and artificial neural networks (ANNs)
do not give as good results as the Kalman filters under their circumstances.
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Linear regression models is a means to understand how a value changes in regards
to some other value, e.g. how the travel time between two stops changes with the time
of day. More specifically, linear regression tries to find the line that minimizes some
function on the data. A common approach is the Least Squares which minimizes the
square of the distance of each point to the line. Figure 1.2 shows an example. Linear
regression models is a common prediction model but it has a few drawbacks. E.g. the
linearity of the model makes it difficult to model the non-linearity of some estimation
problems, and the model does not easily adapt to change.

Yu et al. (2009) implement a very interesting enhanced regression model. It’s based on
linear regression which doesn’t respond well to changes. To combat this they created
a more adaptable function with the linear regression model and its error as input with
very good results. However, they only estimate travel times for one hour in the morning
for one line in one direction. These simplifications make their network much more
homogeneous and easier to optimize. They say that a vehicle’s speed is what really
matters, and that this speed is what should be estimated - not travel time. This might
seem reasonable but it in essence boils down to the same thing as the length between
two stops is constant.

Figure 1.2: Linear regression finds the line which best ”fits” the data.

5



1.1. LITERATURE STUDY CHAPTER 1. INTRODUCTION

1.1.3 Other reports on subject without going into too much details on
time estimation method

Chen et al. (2011) show that it can be better to include many stops and links in one
estimation than to calculate each on its own and then sum the estimates up. That is;
given a path of four stops;

A→ B → C → D

it could be better to estimate the travel time of the whole path

Estimated travel time = TT (A,D) (1.4)

than to sum each segment up as

Estimated travel time = TT (A,B) + TT (B,C) + TT (C,D) (1.5)

where TT(X,Y) is a function aggregating previously recording travel times from stop X
to stop Y.

Their results may not be as accurate as those based on more refined models such as
ANNs, but their findings are still very useful.

Yu et al. (2009)

Jeong & Rilett (2004)

1.1.4 Earlier written text - Should be moved to appropriate place

As mentioned earlier, there has been quite a lot of research using a variety of methods
done in this field. However; none of the read reports have tried their algorithms on
complex public transportation networks, i.e. networks with many vehicles interacting
with each other. Nor have any reports tried to reason about what actually causes the
changes in travel times, instead they are based on models where events that alter the
travel times disappear into the numbers.

Chen et al. (2011) use an historical model, i.e. a model where a simple function such as
the average is applied to previously recorded travel times. They investigate the periodicy
of travel times and show that travel times...

• ... change greatly during different times of the day

• ... are different on weekdays and weekends

• ... are similar on the same day of week

6
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These finding are then used to try to find the best possible grouping of previously
recorded travel time to apply their aggregate functions to. They also show that it can
be better to include many stops and links in one estimation than to calculate each on
its own and then sum the estimates up. That is; given a path of four stops;

A→ B → C → D

it could be better to estimate the travel time of the whole path

Estimated travel time = TT (A,D) (1.6)

than to sum each segment up as

Estimated travel time = TT (A,B) + TT (B,C) + TT (C,D) (1.7)

where TT(X,Y) is a function aggregating previously recording travel times from stop X
to stop Y.

Their results may not be as accurate as those based on more refined models such as
ANNs, but their findings are still very useful.

Regarding regression models, Yu et al. (2009) implement a very interesting enhanced
version of this model. It’s based on a linear regression model which doesn’t respond
well to changes. To combat this they created a more adaptable function with the lin-
ear regression model and its error as input with very good results. However, they only
estimate travel times for one hour in the morning for one line in one direction. These sim-
plifications make their network much more homogeneous and easier to optimize. They
say that a vehicle’s speed is what really matters, and that this speed is what should be
estimated - not travel time. This might seem reasonable but it in essence boils down to
the same thing as the length between two stops is constant.

7



2

Main system components and
development process

This project is about creating a good method that can be implemented in software which
can do forecasts on arrival and departure times in public transportation systems. To be
able to evaluate if the method is good, a method for benchmarking the produced forecasts
will also be implemented. To allow for the possibility of comparing different versions of
the implemented forecast system as well as comparing it to already implemented forecast
methods, the forecasting and the benchmarking system must be independent of each
other.

Figure 2.1: Systems

One of the preconditions of this work is the availability of data that describe the traffic
in the transportation system, both planned and actual, and the produced forecasts from
the industrial forecast system that is currently in use. This information will be retrieved
from an existing database. Phase one will produce the benchmarking system and also

8
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Figure 2.2: Work process for creating software

give a good basis for creating the forecast system in phase two because of the database
and domain experience gained.

2.1 Benchmarking system

The benchmarking system is built by three components, (1) a model describing how
to evaluate the quality of a single forecast, (2) an algorithm that will use this model
to assess the quality of all forecasts generated and (3) aggregation algorithms for some
measurements of quality, e.g. the Mean Absolute Error. These three components can
be created separately and should be able to be modified during the project to gain a
better measurement of quality or performance. In Figure 2.3 The benchmark method is

Figure 2.3: There are two separate work processes for the benchmarking system.

both the model for calculating the quality of a single forecast, and the model for how to
aggregate all measurements of quality. This separated design will allow the system to
be easily redesigned.

2.2 Forecasting system

The process of creating a forecasting system will be iterative, beginning with a pre-study
of the data that describes the public transport system - studying the timetables, maps
and historical driving times etc. The next step is to create a public transportation model
and a method to simulate traffic in it. The iterative process begin by creating a very

9
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Figure 2.4: There are two phases when creating the forecasting system.

simple constant model, and an algorithm that can simulate the traffic using this model.
Then more advanced models and algorithms will follow. The process of creating new
algorithms will be driven by the model’s new behaviors. The process of creating models
will be driven by the quality of the forecast system and the conclusions drawn from
analyzes of data that describe the public transport system. This process will continue
until no further improvements can be done, or more likely that the project has reached
its deadline.

10
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Problem description

A public transportation system can be seen as a graph where the nodes are stops and the
edges are physical connections between stops. Vehicles such as buses, trams and boats
travel in this system on paths based on which line the vehicle is currently operating as.
Figure 3.1 shows an example of a very simple public transportation system with five
stops and three lines.

Figure 3.1: A simple public transportation system with five stops (A, B, C, D, E) and
three lines (Cyan, Magenta and Blue).

The lines’ paths through the system may differ on different days or even on different times
of the day. To encapsulate this we introduce the concepts of journeys and departures
and say that a vehicle’s path through the system is determined by its journey. A journey
is a list of Departures which in turn are triples of a line, a stop and the time when the
vehicle is to leave (or depart from) the stop. A departure could be e.g.

”Tram number 6, scheduled to depart from Brunnsparken Site A at 14:05 on November

11



3.1. STOPS CHAPTER 3. PROBLEM DESCRIPTION

11th 2012”

Also; associated with each departure is a list of forecasts, or estimates of when a vehicle
will actually depart from the stop. E.g.

”Tram number 6, scheduled to depart from Brunnsparken Site A at 14:05 on November
11th 2012 will probably depart at 14:06, 14:07 or 14:10 ”

A journey can have any number of departures; the only limitation is if it feasible for
the driver to use it as driving plan. The times of the departures in the journey must be
ordered ascending and the stops must be of types that the vehicle can use, e.g. there is
rarely a vehicle which can use both a street stop and ferry stations. In Figure 3.2 there
is an example of two journeys. One physical vehicle has several journeys during a day.

Figure 3.2: Two different journeys with departures.

The only limitation in having several journeys is similar to the limitation of departures
in a single journey; feasible times and types of stops, hence in this report will vehicles
only be considered to have one aggregated journey.

3.1 Stops

Stops are places where the vehicle will stop for letting passengers get on and off. A stop
is a predefined and announced location; often with a sign or some other kind of marking
so the passengers can easily find them. Figure 3.3 is a typical bus stop in Gothenburg.
Stops can and are often used several times during a day and can even be used by vehicles
that drive different lines. The time needed for loading and unloading passengers is called
loading time. If a vehicle would stop on any other place than where the timetable states
that the vehicle will stop, the time standing still will not be a part of the loading time,
e.g. stopping for a traffic light or for pedestrian crossing.

12
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Figure 3.3: A typical bus stop.

3.1.1 Queues into stops

On many stops, there can be only one vehicle at any given time. This is of practical
reasons, e.g that the road is single laned, or that there is only enough room for one
ferry to load passengers at a time. This means that when several vehicles arrive at the
same stop at the same time there will be a queue to get into the stop. This also means
that any two vehicles must leave the stop in the same order as they arrived. On some
stops is it possible for the vehicle to skip stopping at the stop or do partly simultaneous
boarding. This depends strictly on the possibility for the driver to do this in a safe way.
It is quite rare that a vehicle skips a stop. This happens mostly when there are two
vehicles that are on the same line and the first one is late and the second one catches up
with the first one.

3.1.2 Timing points

Certain stops are so called timing points. These stop are like normal stops, except that
their schedules includes a waiting time. This means that a late vehicle can make up time
on these stops by skipping parts of this scheduled waiting time. There is however one

13
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caveat; imagine a vehicle waiting at a timing point when a late vehicle approaches the
stop. The waiting vehicle does not want to force the late vehicle to wait for it, making
it even tardier, and drives away before its scheduled departure time. Table 3.1 shows a
concrete example.

Table 3.1: Vehicle A is waiting at a timing point. Vehicle B is late and arrives before A is
scheduled to depart. Vehicle A will then depart at 13:57 instead of 14:00.

Actual arrival time Scheduled departure time Actual departure time

Vehicle A 13:50 14:00 13:57

Vehicle B 13:57 13:52 13:57 + dwell time

3.2 Links

A link is the physical path between two stops. If e.g. the vehicle is a bus, the link can
be a combination of different streets in a particular order. If the vehicle is a tram the
link can be a section of rail. The time it takes to travel a link is known as the link travel
time. Links may alsp have a maximum capacity, there are many cases where public
transportation vehicles are unable to overtake each other. Trams rarely have separate
rails and buses often have special single file lanes. This means that a vehicle can’t leave
a link before the vehicle in front of it does.

Table 3.2: Two vehicles on a single lane link. A slow driving vehicle enters the link as
number one. A super-fast vehicle enters the link as number two.

Start driving
time

Ordinary driving
time on link

Time when
leaving the link

Slow driving Vehicle 13:00 00:30 13:30

Super-fast vehicle 13:01 00:15 13:30 + short delay

Table 3.2 is an example of this. Even if the super fast vehicle could pass the link by 13:16
it will have to wait until 13:30 before leaving the link because there is no possibility to
overtake the slow driving vehicle.

3.3 Timetable

The timetable is a predefined plan on which stops vehicles should stop at and at which
times. The timetable can be printed and used by passengers or drivers of the vehicle.
Table 3.3 is an example of a timetable used by the driver of a specific vehicle or the

14
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passengers that intend to travel with it. Table 3.4 is an example of a timetable that
could be posted on a stop to inform the passengers on when the different vehicles will
arrive and depart from the stop. Note that the difference between arriving time and
departure time is not necessarily the loading time.

Table 3.3: A example of a timetable for a vehicle

Order Stop Arrive at Departure from

1 A 12:00 12:01

2 B 12:20 12:22

3 C 12:34 12:34

Table 3.4: A example of a timetable for a stop

Order Vehicle Arrive at Departure from

1 A 12:00 12:01

2 B 12:20 12:22

3 C 12:34 12:34

15



4

Time estimation model

The model of the transportation system will be divided into two parts in this report.
The reason for this is to simplify the creation of its properties as well as arguing for
them. The first part is the physical representation. This part describes all stops, links,
vehicles and their paths in the network, similar to a snapshot of a city from a satellite
perspective. The picture will only say what is connected to what. The second part is
the time representation. This part describes how much time is needed for a vehicle to
pass a physical position, e.g. a stop or a link. If the first part was satellite photo then
would the second part be a time needed table of how much time is required for a vehicle
to pass them. Please note that both parts can contain more variables then a satellite
photo or a simple time needed table.

Figure 4.1: The model can be divided into two independent parts. Each part only describe
one dimension of a public transportation system. One for how to travel between places and
one for how much time is needed for each position.

Physical representation of a basic model of the transportation system The
physical representation in the model will describe the physical elements of the real world
which have been considered in the model, e.g. streets, stops and their connections. The
physical representation can be seen as a graph where the nodes are the places where a
vehicle transition from be on one physical place to another, e.g. going from driving on a
street to stop at a stop. The edges will be the physical places. The full graph can then

16



CHAPTER 4. TIME ESTIMATION MODEL

look like Figure 4.2. Constraints can be added to each edge. Constraints such as how
many vehicle which can be on the edge at the same time, a bus stop can only be used
by a fixed number of buses at the same time, or entry and exit order, in a section of rail
is it not possible for one tram to overtake another one etc.

Figure 4.2: The edges are physical elements of the real world while nodes are transitions
points. Several constraints can be placed on each edge.

The physical representation can also be refined to have even more details and constraints
on it. An edge which represents a long street with several crossings can be divided into
several edges and nodes where each edge represents a section of the street or a crossing.
Some section of street might be single lane while other parts are not. Timing on traffics
light is described through the time representation which you can read more about in
next section.

Time representation of a basic model of the transportation system Each
position in the physical representation can have a time connected to it, if there is no time
then it should be equal to the time 00:00:00. The times can be estimated in any way and
depend on anything. This will allow times to be constant, deterministically calculated,
stochastically calculated or depend on other times in the network. A stoplight for leaving
a stop that depending on the driver signaling will always need a constant time before it
changes to green. The travel time on a link can be estimated by the average of historical
times. The waiting time at a stoplight depends on the when it last was green, which
could be unknown and can thus be anything between 0 seconds and 1 min 15 seconds.
Hence a good approach might be to randomly pick a time between 0 seconds and 75
seconds as travel time for this position. If the position has a capacity constraint then
the time will include the waiting time which depends on some other vehicle.

Historical recorded pass times will be used as a basis for link travel times and dwell
times. These times are calculated based on time stamped location reports that vehicles
send whenever they start loading passengers at a stop (known as Arrival reports) and
whenever they leave a stop (known as Departure reports). These reports are known as
Automatic Vehicle Location Reports, or AVL reports.

Link travel times are the times between a departure report and the consecutive arrival
report,

17
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Dwell times are the times between an arrival report and the consecutive departure
report.

Aggregated view of physical- and time representation of a basic model of the
transportation system The model can be used for simulations when the two parts,
the time- and physical representations, are connected. The connection is made from the
edges in the physical representation to the time needed to pass the edge in the time
representation. Thanks to this is it easy to estimate the time needed to travel a path,
i.e. a set of edges. The travel time for an edge can of course depend on which time
during the day and which day it is. So when estimating the time needed one must start
by estimating when the vehicle will start driving (or load passengers) on each edge. This
is simply done by selecting the start time for the first edge and then iterating each edge
in the correct order according to the path and summing up the time. After adding the
last time one will also know the total time needed to drive the path. Figure 4.3 shows
how this can be done.

Figure 4.3: The total travel time for driving from Position 1 to Position N.

Note that there is no problem if the physical representation contains a position which is
not present in the time representation, because the time for that position will only be
estimated as 00:00:00. Likewise if the time representation can describe more positions
than the physical representation contains. This can happen because the aggregation
model only uses the positions described by the physical representation. This is one of
the benefits of dividing the model into two separate independent parts.

4.1 Constant time model

A constant model for describing a public transportation system can only work if the
network can be forecasted by another system or if the system has the possibility to
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follow a predefined plan. This plan would be the time table. In both cases, there
are no actual benefits to the forecast system. The benefit of a constant model in this
project is only the possibility to focus on building the physical representation. The time
representation will return same time for every position.

Physical representation of a basic model of the transportation system The
goal of this model is too have a good and accurate physical representation of the public
transportation network. The representation must contain all stops, links and pseudo
locations. Constraints on positions will be excluded in order to simplify the model. The
pseudo locations will be bus garages, tram depots or the berths ferries are moored to
when they are not in traffic.

Time representation of a basic model of the transportation system This model
will not consider which day of week, time of day or which month it is when it estimates
the time needed to pass a position. It will always give the same time for the same posi-
tion.
Note that with a very small change, this model can be an actual time table model. In-
stead of just always returning the same time for a position no matter what the conditions
are, it can be refined to give different times depending on date and time on day according
to the time table. The refinement would simply be to implement the time table matrix,
which describes how much time is needed to pass a position for a given day and a given
time on that day. Please note that a time table is often created weeks or even months in
advance and can only consider a subset of all the conditions that occur during each day.

4.2 Average time model

This model is an extension to the model in section 4.1. The main differences between the
models are the time representation. This model is also an attempt to mimic the forecast
system used in Gothenburg today. The model in the forecast system used today will be
referred to as the industry model. The industry model is an average model which also
has some filtering and optimization features.

Physical representation of a basic model of the transportation system Phys-
ical representation will be same as in the model in section 4.1 with the exception that
some constraints been added. The added constraint is that a vehicle should never leave
the first stop in a journey before its departure time for this stop according to the time
table. This constraint holds for all journeys. Note that if the vehicle is late to the first
journey, this constraint will not have any affect.
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Time representation of a basic model of the transportation system The time
for a position depends only on the last N known recorded times for that position. The
time will be the average of the sum of all times, see Equation 4.1.

Average time(x) =
1

N

N∑
i=0

recorded timei (4.1)

This means that the model will give the same travel time for a link forecasted 10 minutes
in advance as it would four hours in advance. The reason for this is that the amount of
recorded information has not changed.

4.3 Proposed time model

The extended model is the main model proposed by this thesis. This model is built
with the intention to encapsulate more aspects of the real world. Aspects that both
have impact on constraints in the physical representation and the time needed to pass
a position. The aim is to model the aspects that have the most significant effect on
the quality of the forecasts. These aspects are decided through analysis of recorded
times and forecast quality, both measure the quality of the timetable and the industry
produced forecast.

4.3.1 Physical representation of a basic model of the transportation
system

The physical model has been extended with several behaviors that can be seen in the
traffic. The behaviors can be connected to different activities that the vehicle performs
during its drive, e.g. driving between stops or the actual boarding of passengers. In
this project, every sub task that the vehicle does while boarding passengers will be part
of the stop activity. These sub tasks can be e.g. waiting to access the stop because of
queues, or adjusting to the timetable before leaving the stop. This splitting is necessary
because of how we use the recorded times.

Overtake limitations

Many of the roads that buses use are single lane. It is very rare that trams have the
possibility to overtake each other. Because of this, the model has been constrained for
all physical locations which are streets or sections of rail to not allow vehicles to overtake
each other. This is simply done by applying a first-in first-out approach for each physical
position, street or section of rail. No constraint has been added for how many vehicles
can be on the same street or section of rail even if there is such constraints in the real
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world. The added constraint will also make all streets and sections of rail have similar
features as an ordinary queue with the exception that each vehicle still need to pass it
before it can leave. Please see Table 3.2 for an example of this.

Queues into stops

In the job description for the drivers in the studied public transportation network is it
stated that the driver should stop at the most forward position at the stop to load and
unload passengers. This does not stop the driver from unloading passengers at a position
that is a bit further back on the stop but she should always drive to the front and make
another stop. Also, there are a lot of stops that only have the length of supporting one
vehicle at the time. This often creates queues into the stops during peak hours. The
model has been constrained to only support one vehicle at a time. This means that a
vehicle cannot overtake another vehicle at the stop because the second vehicle is not
allowed to enter the stop before the first one has left. This also creates a queue into the
stop. This property is part of the model, even though it isn’t always true in the real
world. Most of these exception stops can be ignored due to the fact that there are rarely
two vehicles at the same time at these stops, but there is room for improvement here,
see section 7.5 for more details.

The time a vehicle spends in the queue into the stop is estimated by looking at when
the previous vehicle arrived at the stop. The queue time is the difference between this
previous vehicle’s departure time and the current vehicle’s arrival time and can never be
negative. See table Table 4.1, Table 4.2 and Table 4.3 for an example.

4.3.2 Time representation

The time representation gets a lot more complex with the physical constraints Queues
into stops and Overtake. These constraints depend on other vehicles and thus on the

Table 4.1: This tables shows how vehicle B waits on vehicle A.

Vehicle Arrival time Departure time Queue time

A 12:00 12:02

B 12:01 1

Table 4.2: If there is no vehicle on the stop there will be no queue time into the stop.

Vehicle Arrival time Departure time Queue time

C 13:00 13:02

D 13:02 0
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Table 4.3: This shows how the queue time can build up when more vehicles arrive at stop
than departs.

Vehicle Arrival time Departure time Queue time

E 14:00 14:04

F 14:02 14:06 2

G 14:03 14:08 3

other vehicles’ forecasts. This introduces a new level of time calculations, looking at
other vehicles expected behavior. One difficulty with this is the complex dependencies
that occur between vehicles.

Scheduled waiting time

Scheduled waiting time arises when a vehicle is at a timing point. If the stop is not
a timing point stop or the vehicle is behind schedule the scheduled waiting time will
be zero. Otherwise, the schedule waiting time is estimated by picking the smaller of
two times. The first time is the difference between the time when the vehicle is done
loading passengers and its departure time according to timetable. The second time is
the difference between the time when the vehicle is done loading passengers and the
arrival time of the vehicle just behind it. Thus, scheduled waiting times depend on other
forecasts and on the time table. See Table 3.1 for example.

Loading time

The loading time in the real world depends on the number of passengers, their speed
and the driver’s patience. None of these parameters are available or easy to measure as
the network is too big. Instead, the model uses other parameters to estimate the time
needed to load passengers. The estimate is calculated by selecting a set of historical
times that are as similar as possible to the situation to be forecast, and do an average
of them.

Stop and Line The number of passengers greatly varies from stop to stop; just think
about the inner city, the country side and the big connections points. Some stops are
used by many different lines, lines which vary in popularity. This aspect is used, along
with other aspects, to describe the number of passengers getting on and of the vehicle.

Route frequency The number of passengers getting on and off a vehicle at a stop
greatly affects its dwell time. We don’t have access to passenger counters, so we cannot
know these numbers exactly. But we know that the number of passengers getting on

22



4.3. PROPOSED TIME MODEL CHAPTER 4. TIME ESTIMATION MODEL

a vehicle partly depends on how long ago a vehicle travelling a similar route picked up
passengers at the stop. To clarify, passengers don’t care which vehicle they get on as
long as it’s stopping where (s)he wants to get off - passengers get on the first suitable
vehicle to arrive at the stop. This leads to two scenarios that may change the dwell time:

1. If there are fewer vehicles with similar routes passing the stop than planned, there
will be a buildup of passengers leading to a longer loading time.

2. If there are more vehicles with similar routes passing the stop than planned, then
the passengers will spread out over the vehicles - resulting in shorter loading times.

Schedule adherence The driver of the vehicle will try to follow the time table, thus
if a vehicle arrives late to a stop, the driver may try to decrease the dwell time by e.g.
not waiting for passengers running towards the vehicle. If the vehicle arrives at a stop
too early, the driver may do the opposite to try to increase the dwell time.

Time of day The time of day has a great impact on the number of passengers on
a stop, e.g. people commute to and from work and school on mornings and evenings.
But the speed of the passengers also varies depending on the time of day. Just think
about the night traffic on Friday and Saturday and compare it with the morning traffic
on weekdays. By using reference days to capture cyclic behavior the model takes time of
day as an aspect. For this assumption to hold, the reference days must be truly similar
to the day the forecast is made.

Black box There are many aspects that we have not explicitly taken into consideration,
e.g. temporary construction work and the weather. The effects of these aspects are
assumed to be present in previously recorded times, it is just a matter of finding in
which ones. We assume that these black box aspects affect the location on which they
occur in a similar way every time they occur. Chen et al. (2011) show that aspects are
likely to have similar effects on the same time of day and type of day. These assumptions
are used when selecting which previously recorded times the estimated loading time is
to be similar to.

Method for estimating the loading time The goal is to capture all the previously
described aspect which can have an impact on the volatility in the loading time. The idea
is to use historical samples which are as similar as possible to these aspects and then do
an average. It is expected is that these historical samples have a low standard deviation
and thus the estimate will be accurate. This also means that an estimate will never be
lower than the lowest historical time used nor longer than the longest historical time
used. The method for selecting the historical samples are rule based and samples can
be categorized by samples from same day, similarity on time of day or other similarities.
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The first set of samples is the last known loading time needed for vehicles of same stop
of same line. The second set, similarity on time of day, are samples picked from the
reference days. 10 sampled loading times from same stop and vehicle of same line which
started loading immediately before or same time as the time to do forecast for. 10 sample
loading time from same stop and vehicle of same line which started loading immediately
after the time to do forecast for. The last set, other similarities, are also picked from
the reference days, but these samples differ more in time on day but are picked by their
similarity on the other aspects. This is done by adding up the weighted difference for
each aspect and then picks the samples with lowest difference. The last set is made from
3 samples from each reference day. Note that this is a subject for improvements and an
area for future work.

Figure 4.4: Illustrates which historical samples are used when estimating the loading time.
Historical samples in the white boxes are used and the most like current conditions from
each blue box is also used for the average.

Driving time

Naturally, links differ widely from one another. They, for example, have different lengths,
red lights, junctions and speed limits. However, there is only one of all these link
properties for which we have data; link length. So, the model uses previously recorded
link travel times to estimate the combined effects of all circumstances on the link. It
is however, possible to take the vehicle’s schedule adherence into account. Thus, the
driving time encapsulates two aspects;

Schedule adherence Drivers try to adjust their speed so as to be on schedule. A late
vehicle will increase its speed slightly while the opposite is true if the vehicle is running
ahead of schedule.
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Black box As with the black box aspect in the loading time calculation, link travel
times previously recorded on the same location at similar times as the link travel time
to be estimated is used as an assumed catch-all for aspects which we have not explicitly
considered.

Driving time calculation Driving times are estimated to be similar to previously
recorded link travel times recorded on days similar to the DTF around the same time as
the TTF, and times recorded on the DTF. The calculation is an inverse distance weight-
ing function where the distance is the difference in schedule adherence, see Equation 4.2;
if the vehicle whose driving time is being forecasted is three minutes late, previously
recorded link travel times recorded when vehicles was around three minutes late will
have a greater impact on the resulting driving time than those where the vehicles were
not.

Given a set of previously recorded link travel times (x, y)1, (x, y)2, ..., (x, y)n where x is
how many seconds off schedule the vehicle was and y is the link travel time, then

Driving time(x) =

∑N
i=0wi(x, xi) ∗ yi

t
(4.2)

where

w(x, xi) =
1

distance(x, xi) ∗ p
(4.3)

distance(x, xi) = |x− xi| (4.4)

t =
N∑
i=0

w(xi) (4.5)

The p in Equation 4.3 is a scaling parameter which is usually set to a value around the
number of dimensions in the distance, one in this case.

Example Predicting the driving time between stops A and B on 2012-11-12 13:00.
All previously recorded link travel times recorded on the link AB around 13:00 on the
specified reference days and earlier on 2012-11-12 are plotted in a graph where the Y-
axis is the recorded link travel time and the X-axis is how many seconds off schedule the
vehicle was, as can be seen in Figure 4.5

From the data represented in Figure 4.5 we calculate the IDW-function and arrive at
Figure 4.6. The driving time is then estimated by simply applying the IDW-function on
the current forecast’s schedule adherence.
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Figure 4.5: A scatter plot of previously recorded link travel times. The link travel time
is plotted against the Y-axis, the number of seconds late or early the vehicle was when the
Y-value was recorded is plotted against the X-axis. A negative X-value means that the
vehicle arrived ahead of schedule, a positive means it arrived late.

Figure 4.6: A plot of the IDW-function from example data. The simple linear regression
is shown as a reference indicating that the IDW-function is more adaptable than regression.
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4.3.3 Aggregated view of physical- and time representation

This model introduces a new level of complexity for time estimation. The estimate must
consider and comply with other forecasts. This is done without adding any other infor-
mation about the real world, e.g. traffic lights, intersections or speed bumps. Instead,
new constraints are added to the already modeled elements and how the vehicles should
interact with these new constraints. Constraints added to the physical representation is
not in the form of possible or impossible to pass the object, but it will be possible but
only when Vehicle X has left the stop.
This model more clearly separates between Dwell time and Link travel time. The rea-
son for the separation is mainly because the difference in aspects used in the picking
historical samples for in the time estimation method.

Dwell time

The dwell time calculation is split to three different steps. Each step resembles the actual
actions that a vehicle performs when stopping at a stop. This split allows for a model
that resembles the reality in a more accurate way and complex dwell time estimation.
The different actions in order that a vehicle will perform at a stop are: 1. stand in queue
into stop, 2. load passengers and 3. wait for the schedule , as visualized in Figure 4.7.
Each action takes time, and the manner in which this time is estimated differ between
types of action. The total estimated dwell time on a stop is a summation of all estimated
times for each action.

Figure 4.7: Dwell time is estimated by summing up the queue time, loading time and the
scheduled waiting time. All these times are estimated separately.
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Link travel time

The link travel time is based on three aspects; driving time (based on previously recorded
link travel times and schedule adherence) and overtake limitations. Links are harder to
model using the graph analogy than stops as e.g. queues can happen anywhere along
the link. Therefore, we do not model the links as we do the stops. The link travel time
is instead a function of its aspects, much like the Loading time of the stops.
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Using a simulation based model
in a forecast system

A real world application for giving traffic information to commuters should use live
information and continuously update the displayed information. This means that the
forecast system must continuously recalculate its forecasts to be up to date. This gives
the forecast system two main responsibilities:

The forecast system which will handle the continuous inflow of vehicle reports and
re-create the forecasts at specific intervals.

The forecast model to simulate all the traffic of the network and produce the time
estimates of all forecasts.
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Figure 5.1: Process for creating forecast by the system

5.1 Algorithm for running the Forecast system

The forecast system needs to update its forecasts when it receives new information which
differs from the previously made forecasts. This is to keep up with the unexpected. But,
from a performance perspective it is interesting to limit the number of times the system
creates forecasts for all future departures for all vehicles. It’s also interesting how this
can be limited; only forecast a subset of all departures and all vehicles. But this is not a
part of this project. The opposite is to redo all forecasts every time new information is
available. The quality of a newer forecast should never be lower than the quality of the
older forecast. The reason for this is that the model knows more about the reality and
can use this information when it estimates the future.

The model proposed by this project will recreate all forecasts for departures which are
about to happen. No need to do any forecasts for events which has already happened.
The model will repeatedly do this recreation with a fixed frequency.

The forecast system algorithm will,

1. collect vehicle reports in fixed time interval,

2. do forecasts for the complete system (only for future departures).

3. return to step 1.
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5.2 Algorithm for the forecast model

The forecast model is simply a traffic model and a simulation algorithm which uses the
traffic model to estimate how the traffic situation will be in the future given a specified
state. The state should be what we know of the current situation in the real world; here
we use all vehicle reports, all assumptions about the future and the time table which is
also the information for the vehicles’ paths.

One of the main arguments for simulating the traffic instead of using other non-
interacting time estimation methods is the possibility to estimate times based on actual
interactions. The problem of forecasting public transportation lies in the outer inter-
ference, e.g. traffic situation and passengers, but also inner interference. By doing a
simulation the inner interference can be modelled, something that could not easily be
done by other methods. In Table 5.1 you can see examples of how vehicles can inter-
act. The value of using a simulation method compared to the non-interacting methods
increase when the application is to forecast something which has low outer interference,
as a layman guess would that might be airplanes to busy airports or train traffic which
is not affected by passengers but only other trains in a limited infrastructure etc.

Table 5.1: Example of two vehicles’ interaction at a stop.

Vehicle Time Performed action Time of next action Comment

C 13:00 Load passengers 13:02

D 13:01 Arrive at stop 13:01

D 13:01 Stand in queue Unknown Depends on C

C 13:02 Schedule waiting 13:02 Leaves because D stands
in queue

C 13:02 Leave stop - D’s Load passengers now
has a time; 13:02

D 13:02 Load passengers -

5.2.1 Simulation model

The model used for the simulation is built from a few basic entities and relations which
can describe a complete public transportation network. The entities are described in
subsection 5.2.1 and Figure 5.2 describes the relations between the entities.

Vehicle The vehicle entity describes the moving vehicles of the model. This can be a
bus, tram, boat etc. Every vehicle is always at some position and performing some
action.
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Position This is a stop or a driving distance (section of street, rail or water). Positions
can have several vehicles which performs actions on it.

Action Every vehicle performs an action when it is on a position. This action can be
drive, load/unload passengers, stand in queue, waiting for timetable etc. After a
vehicle has finished an action the vehicle can either start with a new action on the
same position or on a new position. A bus can, when it stops loading passengers
at a stop, e.g start driving on the street towards next stop or wait for its scheduled
departure time.

Aspect Used to estimate the time needed to perform a particular action. E.g. the driv-
ing time estimated by looking at historical data samples from vehicles travelling the
same route. An aspect can be independent or dependent. The independent aspects
do not use the simulated model for doing the time estimation. Estimating driving
time, for example, only uses historical times. Dependent aspect uses information
from the simulated model for doing time estimation, for example estimating the
queue time for accessing a stop by looking on when the previously arrived vehicle
will leave the stop.

Figure 5.2: Model of the simulated world.
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Limiting the dynamics by predefining vehicles’ paths The setup used in this
project is that only the vehicles’ paths are predefined while the actions performed at
each position are not. This means that the actions can be decided by the simulation
model during the simulation, hence not limiting the simulation to a static predefined
plan. The paths could have been determined during simulation but this is not the case
in this report. The reason for this is that it is very hard to first estimate when and
where there will be a deviation from the defined path and what the new path would be.
The time needed for this deviation would also be very hard to estimate, especially for
the first vehicle, since there is likely no data for the path. The forecast system in place
today solves this by simply not producing forecasts for vehicles which makes deviations
and are off track. Table 5.4 and Table 5.1 show how the simulator works with actions.
The simulator is only aware of the next action for each vehicle even though it is aware
of the complete path for each vehicle.

5.2.2 A simulation run

It is the result of a simulation run which will be used as forecast. The result is not only
the state of the model when the simulation run ends but also everything that happened
from the start to the very end. The length of a run is simply defined by how far in the
future the forecast system wishes to create forecast for, e.g. 30 minutes, one hour or one
day.

It is the vehicles movements and actions that will be simulated in the public trans-
portation network. Some of the time stamps for actions will be used as forecast times.
Every vehicle will move from position to position according to the path defined in the
simulation model according to the time table for as long as the simulation runs. At each
position the vehicle performs a set of actions defined by the position, e.g. at a stop the
vehicle will stand in queue to enter the stop, load passengers and wait the scheduled
waiting time. The time needed for these actions are defined in the aspect entity. The
time estimation method can be found in chapter 4.

The simulation run is divided into two stages.

Stage 1 Initialize the logical representation of the public transportation network.

Stage 2 Simulate the vehicles’ movement by using the aspect entities to estimate how
long it takes a vehicle to perform the current action, and then move on to the next
action or the next position.

Stage 1 The Initialize step will create a logical representation of the public transporta-
tion network which contains as much information as possible about what has happened
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in the network and what can safely be presumed. Information about what has happened
is collected from AVL reports and information that can be safely presumed is the vehi-
cles’ paths. This also means that each vehicle will get a position in the network. The
position will be their ”last known location” based on their last AVL report. If a vehicle
has not started driving yet, its position will be the same as the first stop according to
its time table and it will depart from this stop according to said time table.

Stage 2 simulates how the vehicles move in the model by: (1) performing the
action, e.g. load passengers from the stop the vehicle just arrived at, (2) add the next
action with a starting time. (3) repeating these steps until nothing more should happen
. Stage 2 ends when e.g. the simulated time has reached a specified end time of the
simulation.

Following is an example run of the simulation involving two vehicles, Cyan and Magenta,
on a network with three stops; A, B and C. The vehicles operate according to Table 5.2.

Table 5.2: The schedule used in this example.

Vehicle Path To depart from first stop at

Cyan A → C T = 1

Magenta A → B → C T = 2

Table 5.3: A run of the simulation. The actions are handled in increasing time order. An
action affects the start time of other actions

Action Effect

T = 1 Cyan departs from A Add next action Arrive at C start time T = 3

T = 2 Magenta departs from A Add next action Arrive at B start time T = 4

T = 3 Cyan arrives at C

T = 4 Magenta arrives at B Add next action Depart from B start time T = 5

T = 5 Magenta departs from B Add next action Arrive at C start time T = 6

T = 6 Magenta arrives at C
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(a) T = 0. Both vehicles
are at their first stop.
Cyan is about to depart.

(b) T = 1. Simula-
tion has begun by mov-
ing Cyan. It will arrive
at C at T = 3

(c) T = 4. Simula-
tion continues by mov-
ing Magenta which will
depart from B at = 5

(d) T = 6. Simulation
has moved both vehicles
to their end stops. The
simulation is finished.

Figure 5.3: A simulation run with both vehicles starting at their first stop.

Table 5.4: Example of one vehicle arriving at a stop and the different actions it perform
before leaving the stop.

Vehicle Time Performed action Time of next action Comment

A 12:00 Arrive 12:00

A 12:00 Stand in queue 12:00 No other vehicle at stop

A 12:00 Load passengers 12:02

A 12:02 Scheduled waiting 12:03
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Results

In the process of creating a good forecast system it is important to benchmark ones
results, but there are no standards on how to do this. Most other reports on the subject
usually forecast and benchmark on arrival times instead of departure times as this thesis
does, and they do this for multiple links and stops. This makes it very hard to compare
the different models. This thesis’ benchmarking has only been performed on a small
period of time. The time period contains all of the days of the week. Benchmarking has
been done on all the departures for the days in the time period. We selected a small
time period for practical reasons, namely that the large data quantity took a long time
to process. We are satisfied with the size of the time period because the traffic is cyclic
and the results are as expected between the different days. Further, the forecast system
is built to forecast the complete public transport network. This is one of the purposes
of this thesis; hence it is reasonable to benchmark the complete network and not just
selected clicks.

6.1 Assessing simulation accuracy

In order to assess the accuracy of the forecast system we needed a way to benchmark the
generated forecasts. What being ”accurate” means is quite naturally specified as: The
closer to the actual arrival time a prediction is the more accurate it is. We define the
operation of calculating how close to reality a forecast is as

∆t(Actual departure time, Forecasted departure time) =

Actual departure time - Forecasted departure time (6.1)
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Example The forecast system says that a vehicle will depart from a stop at 14:00, but
it actually departed at 13:55, then

∆t(13:55,14:00) = 13:55− 14:00 = -5 minutes (6.2)

If a forecast says that a vehicle will leave a stop after the vehicle actually left, then
anyone trusting the forecast system will miss the vehicle. This is bad, and thus the
delta value is negative. A forecast with a positive delta value will make a passenger wait
longer than necessary, but at least she won’t miss the vehicle.

Table 6.1: Sign of the delta function.

Actual departure time Forecasted departure time ∆t Sign

13:55 14:00 -5 Negative

14:05 14:00 5 Positive

To be able to grasp the performance of the proposed forecast system, the errors for all
forecasts generated by the system are aggregated and shown as a mean absolute error
(MAE). The lower the MAE, the better the forecasts. See Equation 6.3 for the complete
definition.

Let F be the set of forecasts to benchmark, n be the number of these forecasts (|F |),
∆tf be the forecast error as defined in Equation 6.1 for forecast f , then

MAE =
1

n
∗
∑
f∈F
|∆tf | (6.3)

is the average accumulated absolute forecast error.

When evaluating the accuracy of a forecast we will, for fairness, consider how long before
the actual departure time the forecast was made. We will denote this ”generation time
before actual departure” as the forecast’s TBD value. If tram number 6 departs from
Brunnsparken Site A at 14:16 on November 11th 2012, then a forecast made on the same
day at 14:06 will have a TBD-value of 10 minutes, regardless of when it was scheduled
to depart.

6.2 Benchmark process

The forecast system handles data from real-world sensors which aren’t perfect and can
thus measure erroneously. These errors in measurement can lead to forecasts that aren’t
indicative of the forecast system as a whole. We have implemented and used Peirce’s
Criterion according to Ross (2003) to identify these so called outliers.
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To be able to compare the quality of the forecasts from the proposed forecast system,
the quality of other forecast systems will also be listed in this chapter;

• Proposed model - The model that has been produced by this project

• Time table model - All forecasts come from the time table, no dynamics or adapt-
ability is present in this model.

• Proposed model without vehicle dependencies - This model has similar logic to the
proposed model but with some of the physical constraints removed, namely queues
into stops and overtake at links.

• Proposed model without reference days - This model has limited access to older
data, e.g. recorded times from the before. This model has the vehicle dependencies.

• Industry model - This model is the one currently in use to produce forecasts for
the public transportation system in Gothenburg.

The conditions have been equal for every model; all forecast systems have had access to
the same recorded information and the same contemporary information. Forecasts have
been created for the entire network. If no real data for a departure’s arrival or departure
time exist, the departure will be excluded from the benchmarking. This happens when
a vehicle has been taken out of service or due to technical issues. The same benchmark
model has been used to measure the quality for all models.

To, again, ensure fairness, all models have had access to exactly the same data and is
thus run on the same time period. This has been accomplished by a system that pushes
vehicle reports to the forecast system at a predefined pace, see Figure 6.1 for a graphical
representation of this system.
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Figure 6.1: The process of benchmarking a model.

6.3 Benchmarked models

Each model has its own properties. These properties can be seen by looking at its inner
model and its representation. It is expected that models with differing inner models
produce forecast of different quality. It is also expected that a model can be very good
at forecasting a small segment of the complete network while it unsuitable to use for
the rest of the network. Below is a list of different models with a short description, key
properties and results.

6.3.1 Time table model

This model represent a forecast system that produces forecast which is strictly same as
the time table. When performing the benchmark for this model is there no actual need
to run the simulation of vehicle reports because these reports won’t affect the results.
Likewise, this model will only create one forecast for each departure, compared to the
other models that creates new forecasts when they have new relevant information.
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6.3.2 Industry model

The model works with a moving average on stops for dwell time and on links for travel
time. When a vehicle sends new information about its location and activity, the model
will update the corresponding internal information. The model will update the forecast
for vehicles affected by this new information. This model does not take interactions
between vehicles into consideration.

Example A bus leaves a stop after standing still for 30 seconds. The bus that sent
the message will re-estimate its future forecasts with its new departure time, as will all
other buses on routes that pass by this stop.

6.3.3 Proposed model

This is the model proposed in section 4.3. Just as the Industry model, this model might
create new forecasts when receiving new vehicle reports. This feature comes with the
problem that these models creates a lot of forecasts for the same departure. This is
quite natural, but it creates an extra dimension to the quality measure of a forecast.
This dimension is not a problem for models like Time table model. Because it only
creates one single forecast for each departure. The time table does not change or get
updated during the same traffic day.

6.3.4 Proposed model without vehicle dependencies

This model is simply the Proposed model with a slight modification. The difference be-
tween the models is mainly in the physical representation. This model has no constraints
for stops nor for links. This means that any number of vehicles can, according to this
model, use a stop at the same time. Likewise can vehicles overtake each other. This
also applies to trams that only has single rail per direction. The purpose of this model
is only to be used as a reference on how big impact these constraints have. In all other
ways are these two models identical.

6.3.5 Proposed model with full vehicle dependencies, but without ref-
erence days

This model is like the Proposed model without vehicle dependencies, only a version of
the Proposed model. The purpose of this model is the same as Proposed model without
vehicle dependencies. This model differs from the Proposed model only in the time
representation. When estimating loading time and link travel time this model cannot
use any recorded times except the ones the system receives in the form of a vehicle report.
This can be illustrated by Figure 6.1 when the connection between Forecast system and
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database Recorded pass times has been broken. In all other ways are these two models
identical.

6.4 Graphs

The performance of each modeled is measured in three different ways,

MAE

MAE at different TBDs

Variance

The main difference between these measurements is that MAE and MAE at different
TBDs measure absolute error while Variance measure how volatile the quality of fore-
casts is. Both of these should be as close as possible to 0. But if Variance is 0 but not
the other then there is a constant error in all forecast.

6.4.1 MAE

As can be seen in Figure 6.2, the model proposed by this thesis outperforms the com-
mercial moving average on all days measured. It also shows that most of the accuracy
comes from the reference days, as without them the model performs very poorly. The
vehicle dependencies did not have as great effect, but it does increase the accuracy.
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Figure 6.2: The MAE of the benchmarked models at TBD = 10 minutes.

6.4.2 MAE at different TBDs

The proposed model also performs well at forecasts generated more than 10 minutes
before actual departure. However, it is less accurate than the commercial moving average
at TDB ≤ 3. The commercial moving average produces forecasts less accurate than the
schedule at TBD ≥ 40. This is illustrated in Figure 6.3.
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Figure 6.3: The MAE of forecasts generated at different times before actual departure.

6.4.3 Variance

Figure 6.4 and Figure 6.5 show the proposed model’s and the commercial moving av-
erage’s variance with outliers included and excluded. The commercial moving average
deliberately moves their average away from zero in the positive direction, while the pro-
posed algorithm strives towards a zero mean. This means that the commercial moving
average will inherently get a lower variance. With the outliers removed, the variance
plummets while the number of samples doesn’t - and the proposed model has the lower
variance, showing that the proposed model produces even results.
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Figure 6.4: The variance including outliers. All forecasts are generated 10 minutes before
actual departure.

Figure 6.5: The variance excluding outliers. All forecasts are generated 10 minutes before
actual departure.
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Figure 6.6: The number of samples removed by outlier elimination.
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7

Conclusions and discussion

The purpose of a forecast system is to fill the gap between the time table and reality;
if the buses always arrive on schedule then there is no need for a forecast system. The
purpose of the time table is to describe the traffic in a general way; capacity, frequency,
paths and time, but it does not consider every possible scenario and each vehicle’s special
conditions for each day. Thus there is a need for a forecast system to be able to supply
the passengers with accurate information in advance when the vehicle will depart and
when it will arrive.

The driver’s job assignment is to drive safely and on time according to the time table.
Because of the driver’s job assignment the forecast will depend on the time table. The
difficulty with creating a forecast system is which aspects affect the time that the vehicle
uses to perform an action and how the different aspects interact with each other.

The simulation based rational model is a viable option which allows modelling of com-
plex inter-vehicle dependencies and driver and passenger behavioral patterns. These
dependencies and behaviors greatly affect travel times and are often too complex to be
accurately accounted for in a purely statistical model.

7.1 Metrics

This thesis presents the results in MAE values. This is because MAE is one of the
methods used by other theses on the subject and because it gives a good representation
of the average quality without reacting too much to extreme cases but still use them for
calculation. There is a problem with using a strict average for measuring quality; “two
opposite errors cancels out each other”. This situation is bound to happen when the
quality of a forecast goes towards zero. To make sure that this will not happen the error
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will always be positive when considered for MAE calculation.

MAE shows in the average error a good way, but it does not say much about the expected
interval that the error will be in - especially when all errors are positive. We use variance
to represent this. Here, the extreme cases will dominate the value. If the variance is
zero then the quality is perfect, but with a constant error. In contrast to MAE, using
absolute values of errors can only be 0 if the quality is perfect.

It is possible to include all forecasts quality measure of the system, but it is impractical.
There are simply too many forecasts. This thesis has only one forecast for each departure
been taken into account when measuring the quality. How would one compare to different
forecast for the same departure? One can use relative measurements depending on how
much in advance the forecast was made. Then the big question will be if this scaling
function really should be linear and at what slope. Instead we pick the youngest forecast
that is at least a fixed time old for each departure. The youngest can be a lot older
than the fixed time. This happens when the system has not generated a new forecast for
the given departure in a long while. The reason why the system does not generate new
forecasts is because it has not got any new relevant information that would contribute to
another forecast, hence the older forecast should be considered to have the same quality
as a forecast that is exactly as old as the fixed time. The fixed time used is 10 minutes.
The fixed time was chosen in a dialogue with Consat. One of the main arguments for
this is that passengers often look for and need accurate forecasts 10 minutes before they
would like to depart. We did not look closer at the possibility of choosing a benchmark
that took passenger benefit into consideration since what defines passenger benefit is a
thesis all in its own.

7.2 Results

The small effect of the vehicle dependencies might be because of the relatively few
departures in urban areas, where the queues have great effect, to the many departures
in rural areas where traffic is rarely a problem. Or, it could be because many stops
where vehicles interact with each other demands a more advanced model than the one
introduced in this thesis. In this thesis all stops have been modelled to only allow one
vehicle standing still at it at any time. This is correct for many stops, but not for all.
There is also a problem in how to interpret the historical data; e.g. if a stop in reality
has capacity 2 and it has two vehicles on it loading passengers. After a while the first
vehicle will leave the stop, but the second one will only drive to the forward position on
the stop to re-open the doors and load passengers again. Only after this second loading
is complete will the vehicle leave the stop. If this happens over time the average vehicle’s
stop time will be double, disregarding loadings of passengers that are done in parallel.
Our model has problem with handling these situation for these stops.

The fact that the commercial moving average produces more accurate forecasts than the
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proposed model at TBD ≤ 3 could be because;

• The method used in this master thesis uses information from both the day to do
forecasts on and a number of reference days. If these reference days are not similar
to the day to do forecast on there will be irrelevant data used when calculating
loading time and link travel time which may lead to poor forecast accuracy.

• Since the implemented method places focus on vehicle interactions, it becomes
more vulnerable to something called ”ghost buses”, buses that are scheduled for
traffic but never leaves its starting stop. The simulator thinks that these buses are
driving around and standing in queues which causes the overtake limitation, queue
time and scheduled waiting time to be erroneously estimated.

• The proposed model is more sensitive to imperfections in the data than the mov-
ing average. If an AVL report is a few seconds off many minutes before actual
departure, the error won’t affect the forecast as much as it is just one report of
many used in the calculation - and the errors may cancel out each other. The lower
number of reports influencing the forecast at lower TBDs gives each error more
room to affect the forecast.

The moving average does not look at any of these aspects, thus when the aspects’ or the
reference days’ data are invalid - the moving average method will be better to use.

The graphs in Results - Graphs clearly show that the scheduled departure time is not a
good forecast and thus a complex forecasting system is indeed warranted.

7.3 Simulation based forecast model

The proposed forecast model and its algorithm for this thesis is quite different compared
to the once we have seen in similar reports. This model is more extensive than the
others. The model proposed have great potential for improvements, both when it comes
to the actual estimation of time but also the possibility the model the actual problem
with great resolution to details. It is even so good that this models allows the model
to have big difference between the level of details used to describe the problem, e.g. a
section of road can every traffic light, every pedestrian crossing and speed bumps be
modeled while another section is only modeled to have a constant time.

7.3.1 Simulation based model

The forecast model used in this thesis is simulation based. Thanks to this, have it been
simple to model most of the behaviors in traffic, e.g. vehicles, passengers, infrastructure
etc. The model allows for complex dependencies and good debugging. The choice of
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having a simulation based model was made when we needed to describe a behavior that
both rely on actions that had happen and on actions that was about to happen. The
simulation based model allowed vehicles to have uncertain times when to end an ongoing
action and thereby can dependencies which looks both back and forth in time exist,
example the schedule waiting time from stops. This model allows the model designer to
make big mistakes, e.g. dead locks, but more importantly it allows the model designer
to model everything as she want it to be. If the problem is modeled in a correct way
then will there be no deadlocks if it is not it the real world as well. This also adds
another application. The application of testing a public transportation infrastructure
before running it in real world, e.g. changes to the time table or re-constructing the road
infrastructure.

When creating the entities in the model have we tried to think of single responsibility
principle and separation of concern. This has allowed us to model the problem quite
nicely where with have separation between concrete objects, what objects can do and
how long time is needed to do it for the concrete object. It has also made it quite
easy to create constraints to the model, e.g. capacity constraint on stops and overtake
constraint on streets. This requires a lot of work for implementing the model and if the
features of this model are not used will the overhead be big compared to what you get
from a none-simulation based forecast model. But, you will get a model which allows
for continuously improvement.

7.4 Time estimation model

It is not enough to create a great method for modeling the problem to succeed to create
forecast of great quality, meaning the simulation base approach with the possibility of
dividing the model to a set of different entities. To create good forecast one must create
a good method for estimating the actual times it takes to perform the different actions.
Even if this thesis has succeeded in outperforming the commercial forecast system one
must say that there is still room for improvements. A simple grouping of time estimating
methods can be does methods that try to model pure constraints and does which are
not. The group which is based on constraints are dependent of other simulated vehicle
and thereby the other simulated vehicles’ forecasts.

Not based on constraints

1. Driving time - Time needed to drive between to stops

2. Loading time - Time needed to load passengers

3. Waiting for time table* - Time to when time table state that vehicle will departure
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Based on constraints

1. Queue to stop - Time needed for queue to be first in queue and stop is free

2. Overtake limitation - Time needed for vehicle in front to leave the travel distance
(street, rail etc.)

3. Waiting for time table* - Time to when next coming vehicle wish to arrive at stop

* Please note that this is part of both because it is estimated by two aspects and then the
time lowest time is picked.

There are a lot of things that could have been done differently when it comes to time
estimation and actions. Some things would probably increase the quality of the forecasts,
but most things would have increased the complexity of the model. This model is made
to describe a set of different actions/behaviors from the real world. The model is made
to be simple and clean but still model the real world and showing that this model
could quite simple changed to model any actions from the real world with appropriate
estimation method without changing the core infrastructure.

7.4.1 Not based on constraints

The time estimate produced in the context of not based on constraints will not rely
on any other action in the model. This is a part of the separation of concern in the
model. The exception to this is when to estimate how long time a vehicle will wait for
its scheduled departure time. If looking at Figure 5.2 one can see that the case is that
some action rely on several aspects and as in this case there are two aspects and the rule
is to use the lower time as the time estimate.

Link travel time This time estimate is done by doing an average on using historical
times for vehicle which traveled the same link under similar conditions. Two big questions
are ”are the right conditions used?” and ”Do we use relevant historical data?”. The intent
is of course to answer ”yes” to both questions. The method used to do the estimate
has been to rather limit the quantity of historical data. In this way one might say that
conditions which are periodic at a similar way as the filtering are considered. For instance
by only using data from same type of week day and around same time on the day, hence
it should have similar traffic condition. By using data from same day and only few days
before will the weather conditions be similar. An improvement to the model could be
by separate all of these constraint and minimize the filtering when picking historical
data. Other conditions used are if the vehicle is on time according to time table. This
condition is quite hard to say anything about because there can be several reasons why
a vehicle is late, example it got stuck behind a slow moving vehicle or because it has
a lot of passengers onboard. In one case should it be possible for the driver to catch
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up a little bit of time while on the other case should it be the opposite. So preferable
should this condition be divided up to just those two. The intent is that if this is a cyclic
behavior then will it be correctly forecast else is it either too complex for this model or
an exception.

Loading time The time estimate is done by doing an average on historical times for
vehicles of same line on the same stop for similar conditions. This is similar as link travel
time and much about the reasoning is same here. The differences are which conditions
that are used for the average. The conditions are how the vehicle follows its time table
and how long time has elapsed since last vehicle of same line was at the stop. The case
here is similar as in link travel time, it would be nice to model the passenger individual
speed and amount of passengers but this is not possible. Instead are we using the hope
of cyclic behavior and trying to make a clean model.

Waiting for time table This time estimate is very simple to do because it is just
to calculate the difference between when the vehicle is done loading and the schedule
departure time. One problem can be that not all drivers follow this instruction, even
not the instruction about leaving when another vehicle approaches. One way to model
this could be to look for patterns for specific stops or even go one step further and try
to model specific driver behavior. The latter option is definitely out of scope for this
thesis. Most cases are that vehicle not that early to the stops except the first stop of a
journey and when they are early they are quite good at departure from it according to
schedule.

7.4.2 Based on constraints

These constraint based estimate rely on two things. (1) They rely on the quality of other
forecasts. A constrained based forecast will use other forecast as reference for estimating
the time needed to perform its action. If the constraint is that it has to stand in queue
then will the time estimate use information from the forecast of vehicle blocking it. (2)
The t is modeled correct. In this thesis all constraints are constant over time, e.g. no
street will get extra lanes because of peak hours. Also has it been simplified that all
position of same type have same constraints, e.g. all travel distance are on single lane.

Queue to stop There are some stops which it is impossible for two vehicles to load
and unload passengers at the same time. But is not the case for all stops, in fact many
of the busses’ stops can have more than one vehicle loading/unloading at the same time
but there is some more extra actions the vehicle performs. So instead of creating a bigger
model, which was needed to be custom fit to each stop, was this simplified by saying the
capacity is only 1. Also to implement this change require a lot of transformation of the
historical data. Here is room for improvements.
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Overtake limitation This is similar as for Queue to stop, we simplified it by using
the same constraint for all links between stops. In reality are there many links which
have a more than 1 lane. The reasoning by saying that all should be 1 was of course
to simplify but also the fact that the places which have high frequency of vehicles often
have a separate lane. The rest of the places are it less likely that one vehicle will catch
up with the vehicle in front of it, but it can happen and this is a place for making the
model more accurate to real world.

Waiting for time table This is part of a verbal agreement among the drivers. If every
driver honor it or not is not possible to say. The interesting thing about estimating this
time is that it depends on two separate concerns. As constrained estimate will it only
depend on the next arriving vehicle.

7.5 Future work

The results from our model is promising, but can be improved. Following are a few areas
in which we would recommend more research:

Specialized time estimation models The implemented time estimation model sup-
ports the use of different time estimation models on each segment in the journey graph.
This means that we can have completely different pass time estimation models in dif-
ferent geographical areas and on different times of the day; Time estimation models
may be specialized for rural or urban areas, or they may be more effective during low
traffic hours, while another may be more effective during high traffic hours. The vehicle
type, e.g. bus, tram or boat, may also require different models. We have used only one
model for links and one for stops, having tried to make these general enough to generate
accurate forecasts for all different circumstances.

Other aspects There are many more aspects to include, e.g. weather, accidents,
concerts, sport events, the color of red lights, etc.

Similarity calculation The ”similar circumstance” approach is also to a pure histori-
cal model. This hints at the possibility to use more refined algorithms such as a Kalman
filter to find these ”similar” times.

Model capacity constraints In our proposed model we sets all stops to have a
capacity of 1 vehicle loading/unloading passengers at a time and that no links allows for
overtake. This is not true in the real world. A more correct model would use the correct
capacity for all stops and links.
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Table 7.1: Suggested simulation settings for a distributed network.

Node Frequency Simulation length

A 45 sec 60 min

B 10 sec 12 min

C 120 sec 120 min

7.5.1 Performance

This is not a question for this thesis. But our simulation based algorithm is slower than
the commercial moving average algorithm. But with improvements to implementation
and cleaver choices on when to run simulation and for how long would be sufficient for
running the system in production for the network, see Table 7.1 for example. Also could
the simulation be distributed on several nodes to create new forecast more often. Node
A in Table 7.1 is the setting mostly used for our results. This setting was able to run
and create forecast faster than real time.

53



Bibliography

Chen, G., Yang, X., Zhang, D. & Teng, J. (2011), ‘Historical travel time based bus-
arrival-time prediction model’, ICCTP Towards Sustainable Transportation Sys-
tems, 1493 – 1504.
URL: http://books.google.se/books?id=WL8ZPiwXFdoC

Jeong, R. & Rilett, L. R. (2004), Bus arrival time prediction using artificial neural
network model, Technical report, Washingtong D.C.,.

Ross, S. M. (2003), ‘Peirce’s criterion for the elimination of suspect experimental data’,
Journal of Engineering Technology, Fall.
URL: http://classes.engineering.wustl.edu/2009/fall/che473/handouts/OutlierRejection.pdf

Shalaby, A. & Farhan, A. (2004), ‘Prediction model of bus arrival and departure times
using avl and apc data’, Journal of Public Transportation 7.

Yu, B., Lu, J., Yu, B. & Yang, Z. (2009), ‘An adaptive bus arrival time prediction
model’, Proceedings of the Eastern Asia Society for Transportation Studies .
URL: http://www.easts.info/publications/journal proceedings/journal2010/100064.pdf

54



A

Examples

Graphical example of complex dependencies

Following is an example showing how the color of one red light can have nontrivial
consequences. The example is from cyan’s point of view.

A.1



APPENDIX A. EXAMPLES

Cyan approaches a red light.

The light is green The light is red

Cyan passes the green light, Magenta
is forced to wait.

Cyan passes the green light, Magenta
is forced to wait.

Cyan is ahead of Magenta. Cyan passes the green light, Magenta
is forced to wait.

Cyan arrives at B before Magenta who
is forced to wait.

Cyan passes the green light, Magenta
is forced to wait.

Cyan arrives at C before Blue who is
forced to wait. Cyan’s total travel time

to C is 8 seconds.

Cyan passes the green light, Magenta
is forced to wait.

A.2



APPENDIX A. EXAMPLES

Moving average

A moving average differs from a normal average only when it comes to handling new
numbers. A normal average of three numbers could look like

1+ 1 + 2 + 3

3
= 2 (A.1)

If a new number is added, the denominator needs to be updated to reflect the increase
in number of numbers

1 + 2 + 3 + 4

4
= 2.5 (A.2)

In a moving average the ”oldest” number is removed from the summation in the nomi-
nator and the denominator is kept constant.

1+ 2 + 3 + 4

3
= 3 (A.3)
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