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Abstract 
 

 

In this thesis we port a brain cell model into the Maxeler machine and improve performance 
while using the advantage of re-configurability of this machine. Hodgkin-and-Huxley model is 
used in this work to simulate the behavior of certain type of neurons called Inferior Olive [1]. 
Currently general-purpose machines are able to simulate a few tens of brain cells at (brain) 
real-time performance; the goal of this thesis is to improve performance by an order of 
magnitude. That is to simulate hundreds of brain cells in real-time which, for human brain, 
limits the simulation time for each step to 50 µSec. 
 
The Maxeler machine uses a powerful general purpose processor in parallel with one or more 
FPGA cards, together with a powerful compiler and dataflow programming technique.  
 
Simulating the behavior of a network of cells has three main challenges. First of all it is 
computationally intensive due to the accuracy of the model and thus complexity regarding 
hardware implementation (on FPGA). Secondly, there are data dependencies between 
different simulation steps, which require special attention in our dataflow computing model. 
During the thesis work different solutions have been developed to reach the fastest way to 
transfer intermediate results from one simulation step to the next. The last challenge comes 
from the fact that, it is desired for this simulation to support all-to-all communication between 
the simulated network cells. Thus each cell in a network has to have the potential to connect 
with any other cell. 
 
By using a Maxeler machine as the platform, implementing computationally intensive parts of 
the model on FPGA and taking the advantage of fully pipelined execution and the parallelism, 
the performance has been improved by more than x3046, x253 and x4 comparing to MATLAB, 
C code and other FPGA implementations respectively. 
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Chapter1:  Introduction 
 

Neuroscientists try to analyze and understand the behavior of human brain. This is a very 

challenging task, requiring substantial research effort to build accurate brain models. Besides 

developing realistic brain models, another major challenge is supporting the large amount of 

computations needed to simulate a large network of brain cells, using these models. 
 

Besides to neuroscience, in other fields such as robotics and artificial intelligence, it is useful to 

simulate the behavior of biological neurons. Using more efficient neuron models would 

improve the efficiency of such systems. Last but not least, brain neuron models can lead to 

new computer architectures, which can be used in designing more powerful processors (brain 

inspired computing). 
 

Brain cell models have been implemented in hardware both in general-purpose processors and 

FPGAs. General-purpose processors are slow and they are not able to simulate a large number 

of brain cells in real-time. FPGAs have a better potential for this task due to their hardware 

speed and parallelism. Currently, related approaches can simulate a network of 96 brain cells 

successfully in real-time [1]. In this thesis the main goal is to increase the performance of brain 

cell simulations as well as the number of brain cells while keeping latency within the real-time 

boundaries. 
 

This chapter describes the problem addressed in this thesis and the thesis objectives. 

 

 

1.1 problem statement 
 

In this thesis we study and use C implementation of an accurate Inferior Olive brain cell model, 

developed by researchers in Erasmus Medical Center and Erasmus Brain Project, Rotterdam. 

This brain cell mode simulates the behavior of certain type of a human brain cells and will be 

described in section 2.1. 
 

A modeled brain cell should be executed in brain real-time. This timing constraint comes from 

the fact that to evaluate the accuracy of the model, it should respond in real-time to be 

comparable with a real brain cell. This constraint is 50 µSec according to the Erasmus Medical 

Center neuroscientists. This 50 µSec represents one simulation step of a brain cell. The output 

of a cell (updated state) has to be used as its input in the next simulation step. 
 

In the brain, cells are connected with each other and are forming a network. A network of 

identical brain cells needs up to 100% connectivity, but in this thesis and other related works 

(see section 2.2) this connectivity may be reduced for various reasons described in Chapter 3. 
 

Currently, general-purpose machines are able to simulate a few tens of brain cells at real-time 

performance. The aim of this thesis is to simulate a network of modeled brain cells, with as 

many cells as possible with 100% connectivity, while remaining in the brain real-time 

constraint. We pursue our goal using reconfigurable hardware. In this approach Maxeler 

MAX3424A machine has been chosen which is a high performance computer system 

composed of a high-end general-purpose processor and an FPGA board with Virtex-6 

XC6VSX475T FPGA [2]. This machine will be described in section 2.3.  
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1.2 Thesis objectives 
 

The overall goal of this thesis work is to improve the performance of a specific brain cell 

network model using reconfigurable acceleration. We aim at increasing the number of 

simulated cells from a few tens (that current solutions support) to a few hundreds. In other 

words, the purpose of this thesis work is to improve the performance of Inferior Olive brain 

cell modeling compared to previous general-purpose processors or FPGA implementations. To 

reach this goal we chose hardware reconfigurable acceleration, which can be easily 

reprogrammed to change the models as well as it can improve performance. Using a dedicated 

compiler simplifies the task. This compiler allows the user to program the machine with a 

restricted JAVA instead of complex VHDL programming. 
 

Maxeler MAX3424A system enables one to have hardware acceleration with the benefit of its 

FPGA card. Therefore the whole C code or at least parts of it (i.e. computationally intensive 

parts) has to be ported to this system using Maxeler compiler (known as MaxCompiler). The 

compiler will be described in section 1.3. In order to use the MaxCompiler one has to follow a 

dataflow model to be able to use FPGA card and have hardware acceleration. 
 

To improve performance, some modifications on both software and hardware parts are 

needed. The description of our modifications performed in this thesis work can be found in 

sections 3.3 and 5.3. 
 

To show the performance benefits of our solution, there will be comparison with related 

works. 
 

The final task of this thesis is to provide simulation flexibility of brain network model, which 

enables one to easily change the simulation parameters, such as number of simulation steps 

and input parameters of the cell, while preserving the benefits of reconfigurable acceleration 

in a Maxeler machine. There will be a more detailed description on flexibility or re-

configurability task in Chapter 3. 

 

 

1.4 Thesis outline 
 

This thesis is organized as follows. The next chapter explains the Inferior Olive neuron cell and 

how cells are connected in a network. It also describes the Maxeler reconfigurable machine 

and dataflow programming. Chapter 3 shows different solutions experienced through this 

thesis and their advantages and disadvantages. The last design in Chapter 3 has the best 

results and is evaluated in Chapter 4. Chapter 4 also compares this approach with previous 

related works in brain modeling. Chapter 5 draws conclusion and discusses directions of future 

work.  
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Chapter 2: Background 

 

In this chapter a brain model for the Inferior Olive is described in detail for the reader to be 

familiar with how a brain cell operates and acts in a network of cells [4]. Then, related work is 

discussed briefly. Also a more detailed description of the Maxeler machine is presented at the 

end of the chapter. 

 

 

2.1 The Inferior Olive 

 

The chosen brain cell model of this thesis work simulates the behavior of the Inferior Olive (IO) 

cells. We provide some background information about the IO cells, their structure and 

interconnect, as well as information about the IO model used. 

 

2.1.1 The IO Neuron Cell 

 

An IO brain cell or an IO neuron, illustrated in Figure 2.1, is comprised of three parts, what 

neuroscientists call compartments namely, the Dendrite, the Soma and the Axon 

compartment. 
 

Dendrite acts as the input of neuron. It provides connections with other cells in a network of 

cells through electromagnetic and chemical stimulations, generates its own output as a level of 

voltage and delivers it to the Soma which is the main body of an IO cell. As can be seen it has a 

tree-like structure to be able to absorb more signals and coming influences from other cells, 

Dendrites are covered by Synapses [3].   
 

Soma gathers the signals, which come from Dendrites, and passes them to the output part of 

the cell. It contains the nucleus, which holds the DNA and chromosomes. Soma provides the 

needed energy for the cell but does not have an active role in transfer of the signals.  
 

Axon is the output of the cell; if the signals coming from the Soma exceed the threshold limit 

of the Axon's terminal it generates a signal, which will be passed to another neuron or a 

muscle cell. 

 

 

 
 

Figure 2.1: Basic illustration of a biological neuron [4]. 
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2.1.2 Inferior Olive Brain Model 

 

In this section, we introduce the brain model used. It has been written in C code and utilizes 

dynamic memory allocation to send and receive variables to and from the computational 

parts. The model simulates a network of cells for multiple (e.g. hundred thousands) simulation 

steps. 

 

 

 One cell computation 

 

Figure 2.2 shows the structure of the IO model used, its internal connections, compartments 

and its inputs and outputs. There are three blocks, which have been named as CompDend, 

CompSoma and CompAxon. These blocks represent different mathematical equations which 

compute the new state of the cell. Each cell is represented by 20 parameters, which are 

categorized in the three compartments. Each compartment computes some of these 

parameters. Parameters represent potassium, calcium and sodium levels that affect the 

behavior of a brain cell.  
 

In reality a brain cell is connected to adjacent cells through its inputs and outputs, and at the 

same time it receives external signals from outside world and generates an output, which is 

used to study the behavior of the cell. 
 

A brain cell receives the effect of the level of the potassium, calcium and sodium as a level of 

electric signals, uses them to generate new levels of the elements, which represent the next 

state of the cell. 

 

 
Figure 2.2: IO Model by Jornt de Gruijl (NIN, Amsterdam), based on the two-compartment 

model (dendrite-soma) [5]. 

 

The connection between adjacent cells is done though their Dendrite voltages. Figure 2.2 

shows the block diagram of the IO brain model. It illustrates that each cell receives Dendrite 

voltage from all other cells in the network, and generates one dendrite voltage, which is an 

input to its neighbors. 
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Inhibitory INPUT Current (iApp) is an external signal. It represents the effect of the outside 

world to the brain cell like when you touch something hot or a coarse substance etc. Axonal 

voltage is the output of a cell which represents the behavior of the neuron, neuroscientists 

observe this signal to study the behavior of the model to see if it is an acceptable model of the 

real brain cell or not. 
 

To study the behavior of a brain cell we need to simulate it for a time interval of at least a few 

seconds. In reality each cell changes its state and generates new parameters in less than 50 

µSec. Each state is fed by some of the parameters from the previous state; shown in Figure 2.2 

by the curved lines connected to each block. 

 

 
Figure 2.3: Three functions have sub-functions and mathematical functions. 

 

To compute new parameters for a cell, the model requires computing complex formulas that 

use multiple complex arithmetic operations such as exponents, multiplications and divisions. 

The large number of arithmetic operations and the type of variables (floating point) make the 

model computationally intensive. Figure 2.3 shows which arithmetic function such as, power 

(pow), exponent (exp) and minimum (min), is used by which brain cell model function. Basic 

arithmetic functions are not included in Figure 2.3. 

 

 

 Level of Parallelism 

 

From Figure 2.4, one can see how functions and sub-functions can be executed in parallel. 

DendCurrVolt, SomaCurrVolt and AxonCurrVolt also need values, which are computed by other 
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functions in their sections, i.e. CompDend, CompSoma and CompAxon (those inputs are not 

included in Figure 2.4), but at a simulation step each section is completely independent from 

others therefore they can be executed in parallel with each other.  

 

 
Figure 2.4: How functions and sub functions and data structures are related to each other. 

 

Inputs V_dend, V_soma and V_axon that feed sub functions, are results of the previous 

simulation step and therefore do not create dependencies within a simulation step. 

Consequently, each function and its sub functions can be executed in parallel to other 

functions, it depends on the available hardware resources whether a designer decides to 

execute them in parallel or not. 

 

 

 A Network of Cells 

 

In the case of full connectivity all cells in a network are connected to every other, therefore 

each cell is affected by all other cells. The influence that each cell receives from all other cells 

in a network is denoted as IC value. The IC value is computed by IcNeighbors function, which 

receives the Dendrite voltage of all other cells. IC value has to be computed separately for each 

cell. In the original IO model, each cell is connected to only eight adjacent cells. 
 

Each cell receives iApp which is an externally evoked input current in addition to 19 other 

feedback parameters. For the execution of a network containing N number of IO cells, the 

initial state is provided to cells externally before starting execution. Then subsequently their 

state is reevaluated using (besides external inputs) as input their current state and are saved in 

a memory location which is called newCellState.  
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 Simulation Step 

 

To observe and study the behavior of a network of brain cells, it needs to be executed in a 

specific time interval. One simulation step is the time in which all new parameters for all cells 

in a network are computed. 
 

In reality a network of brain cells changes its state (generates all new parameters) every 50 

µSec. This means that the simulations have to compute each cell or a network of cells in 50 

µSec to be within real-time.  As an example, if it is required to simulate a network of brain cells 

for 120,000 simulation steps, a time interval of 6 seconds is required. There is a data 

dependency between consecutive simulation steps, as the cell state of one step provides input 

to the next step. 

 

 Conclusion 

 

The chosen brain cell model application has data dependencies between simulation steps and 

is computationally intensive. Since each cell is connected to all other cells in a network, 

communication between cells can be a bottleneck for the simulation performance.  

 

 

 

2.2 Related works in Brain Modeling 

 

There have been many attempts in the past to simulate brain cells behavior. There are a 

couple of categories of models used to model the behavior of brain cells. Spiking Neural 

Network (SNN) and Synapses Learning are two well-known such approaches. The first one 

seems more convenient to be implemented and is more widely used. In this thesis a 

conductance model, represented by Hodgkin and Huxley in 1952 has been used [6]. The 

conductance model describes the behavior of neuronal compartments of spiking neurons. This 

model is complex enough and dynamic to be able to simulate accurately cells. Conductance 

models are known as the most accurate for simulating real life neuron behavior.  
 

Below we present some related works on accelerating brain simulation. We have to mention 

that all of the below mentioned related works used either Integrated-and-Fire (IaF) or Leaky-

IaF, which are not as accurate as conductance brain cell model. 
 

Ghani et al. implemented a neuron model on a Virtex2 FPGA [7]. The model simulates brain 

cells with a connectivity of 10 connections per cell and utilized 120 LUTs per cell. Cassidy et al. 

implemented a network of 32 cells on a Spartan3 FPGA [8]. Their model is 3125 times faster 

than real time. It is estimated that the maximum number of cells in a network can be increased 

to 64 cells.  
 

Schrauwen et al. proposed a design to implement a neural network using serial execution of 

arithmetic computations [9]. The network is comprised of 56 interconnected cells. Their model 

simulates the network 2930 times faster than the real time on a Spartan3 FPGA. In a Virtex4 

FPGA the number of cells in the network increased to 1400 cells and the speed increased to 

5860 times faster than real time. With the same architecture as Schrauwer, Glackin et al. in 

2005 presented an implementation of a network of 168 cells on a Virtex 2 FPGA [10]. With 
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simplest connectivity they implemented a network of 4200 cells at 12500 times faster than the 

real time. 
 

Shayani et al. implemented a network of 161 cells with 16 synapses [11]. They used a Virtex 5 

FPGA and their design runs 4210 times faster than real time. It is claimed that the design can 

implement 10000 cells in real time. Horacio Rostro-Gonzalez et al. presented a full connectivity 

network of 100 cells [12]. They implemented the models on a GPU and a Spartan 3 FPGA for 

comparison purposes. The GPU runs 3.3 times faster than real time and Spartan3 FPGA 

simulates 4.6 times faster than real time. 
 

Finally, Cassidy and Andreou introduced an implementation of neural simulation and creation 

of prostheses and neuromorphic system on a Spartan3 FPGA that runs 5000 times faster than 

the real time, the design contains a network of 32 cells, which are not connected to each other 

[13]. 

 

 

2.3 Maxeler reconfigurable machine 
 

In this section we describe the Maxeler machine in detail. The Maxeler system architecture is 

described and subsequently its dataflow programming model is explained. Then, a 

programming example is given. 

 

2.3.1 Maxeler system architecture 
 

The Maxeler system consists of a host CPU, one or more FPGA boards and high speed 

memories. CPU and FPGA(s) are connected through PCIe [14]. In case of existence of more 

than one FPGA boards, they are connected to each other via MaxRing [2]. Figure 2.5 illustrates 

the Maxeler architecture without a MaxRing. 

 

 

 

 

 

 

 

 

 

Figure 2.5 Maxeler architecture. 

 

The computationally intensive parts of the brain cell model at hand can be implemented in the 

FPGA, we call these parts kernels. Each kernel has its own inputs and outputs and may be 

connected to other kernels. Connections between one kernel to other kernels and memories 

are managed through another module called manager. One important point for achieving high 

performance in Maxeler machine is that it separates the computational part(s) as kernel(s) 

while communicational task between kernels, memories and the host CPU is done through the 

manager. This enables the system to have a deep pipeline for computational hardware part(s). 

Also the performance can be further improved since each kernel can be executed in parallel 

with others [15]. 
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 Kernel 
 

Kernels are responsible for computations inside the FPGA in a Maxeler machine. MaxCompiler 

includes a kernel compiler, which compiles the code written in JAVA, into a hardware FPGA 

configuration. The kernel compiler itself considers a JAVA software library of Maxeler JAVA 

syntaxes. Maxeler technologies has developed custom syntaxes to be used in kernel JAVA 

codes, to make it easier to code the dataflow hardware parts. 
 

Kernels are one-way streaming computational cores without any feedback. It is worth 

mentioning that one can support kernels (with feedbacks) by using memories such as FPGA’s 

BRAM or external DRAM or by using arrays. This type of kernels has been used in this thesis 

and is discussed later in Chapter 3. In case a kernel with feedback needs to be supported, for 

example a for-loop, the compiler fully unrolls the loop. This creates multiple copies of the body 

of the loop. These identical hardware copies operate in parallel. In case of data dependency 

between different iterations of the loop, the compiler uses FPGA’s BRAMs. Unfortunately, this 

is supported only for simple loops. One can find more information regarding loops in kernels in 

MaxCompiler Loop tutorial [16].  
 

Below blocks are used to make a kernel graph. The blocks are called nodes [15]. A complete 

graph is illustrated in Figure 2.7. 

 

Computational nodes, which can perform basic arithmetic and logic operations. 

 

Value nodes. These values can either be set by host application or pre-defined constants. 

 

 Stream offsets. These nodes enable one to have access to previous or later data in a data 

stream according to position of current data in same data stream. 

 

Multiplexer nodes for making decisions. 

 

 Counter nodes. Such a counter helps one to have access to a specific position in a data 

stream. 

 

Input and output ports for input and output data streams. 

 

It is possible to have one or more kernels implemented on FPGA(s) in a Maxeler system. Each 

kernel has inputs and outputs data streams, which are connected to the host code, other 

kernels or different types of memories. PCIe data bus provides fetching/sending data from/to 

the FPGA with the speed of 2GB/s between CPU and FPGA. The manager is a JAVA code that 

schedules and synchronizes every connection inside the hardware configuration. The 

MaxCompiler compiles the manager JAVA code into the corresponding hardware. In addition 

the manager configures design settings such as operating frequency. 
 

Host code is a part of the application that can be written in C/C++ or FORTRAN and runs on the 

host CPU. With host code one can send/get data streams and constant values to/from kernels 
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via the PCIe data bus. Other than setting the data streams, the host code plays another role in 

a Maxeler system; that is to load the .max file to FPGA(s). This file contains hardware 

configurations and is the result of compiling and building the manager and kernel(s) JAVA files. 

One can start the execution of kernel(s) by calling a kernel via the host application. If there is 

more than one kernel and one of them is called to be executed by host, all of them will start 

their execution. This is because all kernels have been implemented on the FPGA as a Data Flow 

Engine (DFE) and basically the host calls the DFE. A designer should note that data transfer 

over PCIe may take longer than the desired timing constraints of the design. Therefore it can 

be said that it is not a good idea to have lots of data transfers back and forth between host 

code and FPGA(s), since it may affect performance dramatically. 
 

Each Maxeler system consists of one or more FPGA(s). One can implement the 

computationally intensive parts of the application in reconfigurable hardware. Each FPGA is 

known as a DFE, which can be connected to other DFEs (if the Maxeler system consists of more 

than one FPGA board) through a high bandwidth MaxRing bus through manager. 
 

Maxeler provides a tool to simulate a design in their system. This simulator leads to a much 

faster development time and also enables the designer to view the execution of a kernel by 

using predefined debug syntaxes inside kernel JAVA code [2]. 
 

Finally, the MaxCompiler provides predefined syntaxes for optimizations, which can be applied 

in both the kernel and the manager JAVA codes [17]. One can perform pipelining and 

placement optimizations of the kernel hardware configurations inside kernel JAVA code. These 

optimizations are such as setting build configuration (as the same as “effort” in building a 

hardware configuration in Xilinx tools), stream, memory clock frequencies inside manager 

JAVA code and so on.  For more details we refer the reader to MaxCompiler optimization cheat 

sheet [17]. 

 

 

2.3.2 Dataflow programming 
 

In control-flow programming a program code converted into a list of different instructions to 

be fetched sequentially one by one from memories (instruction caches) then move to the 

processor and be executed. 
 

In dataflow programming, data flow into a chain of operational units in the form of streams. 

Operational units perform simple arithmetic/logic operations from memory until the whole 

computation is completed. In dataflow computing one is able to expand the number of 

operational units so the same processes can be done simultaneously. To make it more clear 

one can imagine dataflow programming as a factory production line in which each worker 

(operational unit/DFE) does a specific job. Data flows into those workers like a stream and 

each one does its job on the data. Each worker can handle a piece of the whole production job 

and many of those small pieces of works can be done at once. Figure 2.6 illustrates the 

principle of dataflow programming [2]. 
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Figure 2.6 Dataflow programming. 

 
 

2.3.3 Simple example 
 

To make all above descriptions more clear, a very simple example will be reviewed in this 

chapter. The example has been taken from Maxeler Compiler tutorial [2]. We tried to add 

everything described before to this example such as debugging, optimizations and so on, so 

one can be aware of how to use the above mentioned issues inside JAVA code. This simple 

example further defines how dataflow programming works. 
 

Consider that we want to implement the following function in a dataflow program. 

 

    

 
 
 

 
 
       

 
                                

       
 

                         

            
 

                 

  

 

This can be done easily in a C code as below: 

 
Void SimpleExampleCPU (int size, float dataIn, float expected) { 

expected[0] = (dataIn[0] + dataIn[1]) / 2; 

for (inti = 1; i < size − 1; i ++) { 

expected[i] = (dataIn[i −1] + dataIn[i] + dataIn[i + 1]) / 3; 

} 

expected[size − 1] = (dataIn[size − 2] + dat-aIn[size − 1]) / 2; 

} 

 

Operational Unit 

Memory 

Data stream 

Data stream 

Operational Unit 

Operational Unit Operational Unit 

Operational Unit Operational Unit 
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Now let us to review different steps needed for creating a dataflow kernel. At the beginning an 

input stream should be defined. In this case an input of C float type (8-bit exponent and 24-bit 

mantissa) values can be declared as the following. 
 

DFEVar x = io.input(”x” , dfeFloat(8, 24)); 

 

DFEVar is a MaxCompiler data type and has a DFE run-time value, while Java data types are 

compile-time values. One should consider that these two different data types cannot be 

converted to each other. DFEVar can be considered as a wire that points to an edge in the 

dataflow graph. Different data types can be assigned to DFEVar like Boolean, integer etc. For 

example in Java a Boolean can be assigned to a variable by writing the syntax below: 
 

bool x = 1; 
 

While in MaxCompiler it shall be written as follows: 
 

DFEVar x = constant.var(dfeBool(), 1)); 
 

DEFVars are more flexible than Java data types and can change frequently, depending on the 

type of operation being performed. 
 

Also a scalar input should be defined for declaring the upper boundary condition (i < size −1) 

while the lower boundary condition is (i = 0). This scalar inputs value is size with the type of 

32bit unsigned integer. 
 

DFEVar x = io.scalarinput(”size” , dfeUInt(32)) ; 
 

In Maxeler world, each cycle of kernel execution is called a tick. At each tick one datum from 

the input data stream enters the kernel. In this example counting ticks helps to detect that the 

boundary conditions are fulfilled or not. The MaxCompiler provides a counter which counts the 

number of kernel ticks (cycles). There is more information about counters available in 

MaxCompiler tutorial [2]. 
 

DFEVar count = control.count.simpleCounter(32, size); 
 

We can define logical flags for the lower bound and upper bound according to boundary 

conditions and if we are below upper bound and above lower bound it means that we are 

within the boundaries. 
 

DFEVar aboveLowerBound = count > 0; 

DFEVar belowUpperBound = count < size - 1; 

DFEVar withinBounds = aboveLowerBound & belowUpperBound; 
 

The designer needs to have access to the current data (  ), previous data (    ) and next data 

(    ) in the data stream. One can have access to the current data by just calling X, but the 

designer should use stream offsets to have access to the previous and next data in the data 

stream. 
 

DFEVar prevOriginal = stream.offset(x, -1); 

DFEVar nextOriginl = stream.offset(x, 1); 
 

If we are not within the boundaries then we have to put zero as the values of previous data 

and next data. This means we have to create a multiplexer, which selects between zero and 

previous/next data. This can be done with a conditional syntax in a Maxeler system. 
 

DFEVar prev = aboveLowerBound ? prevOriginal : 0 ; 

DFEVar prev = belowUpperBound ? nextOriginal : 0 ; 
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Also we should have another multiplexer for selecting the correct value for the denominator of 

the function since, it is 2 just when we are on boundaries but in other cases it is 3. 
 

DFEVar divisor = withinBounds ? constant.var(dfeFloat(8, 24),3): 2 ; 
 

Until now we declared the input stream and the previous and the next data as different DFE 

variables. Now we have to write a code regarding the computational part in JAVA. Sometimes 

it is needed to not make some parts of the code fully pipelined to overcome latency problems. 

In such a case one can put the computational parts between two different predefined 

optimization codes. This makes it possible to define how deeply we want the compiler to 

pipeline the part of code (which is in between of the optimization syntaxes) [17]. Since this is a 

very simple example using predefined optimization codes may not make any difference in the 

final performance but we mentioned it here just as an example. One may track the 

intermediate results. In that case a debug line of code can be used. 
 

optimization.pushPipeliningFactor(0.5); 

DFEVar sum = prev + x + next; 

debug.printf("\ sum=%d\n", sum ); 

DFEVar result = sum / 3; 

optimization.popPipeliningFactor(0.5) ; 
 

Now we can define the output of the kernel. 
 

io.input(”y” , result, dfeFloat(8, 24)) ; 
 

The kernel graph of such a design can be found in Figure 2.7. 
 

 
Figure 2.7 Simple example kernel graph [15]. 

 

2.3.4 Benefits of Maxeler over general-purpose machines 
 

 

Maxeler machine provides high performance computing solutions using reconfigurable 

hardware acceleration. The architecture of such a machine was explained above. Using 

dataflow programming (versus control-flow programming in general purpose machines) with 

exploiting of different levels of parallelism and optimizations make Maxeler machine one of 
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the first choices for high performance computing. Maxeler machines has large amount of high 

bandwidth memory which make the machine suitable for computationally intensive 

applications. MaxCompiler provides data encoding, data compression and analytical 

optimization which is also beneficial in speeding up the computations by lowering size of data 

transfer. Since the application used in this thesis is computationally intensive, the analytical 

optimization of MaxCompiler is a benefit of using this machine for us.  

 

 

2.4 Conclusion 
 

The Inferior Olive brain model is chosen to be implemented in this thesis due to its accuracy. 

This accuracy comes with an expense of complexity. In addition of the application complexity, 

another challenge is the feedback of the application. This feedback means a data dependency 

between consecutive simulation steps.  

 

In General Purpose Machines, such simulation with the same brain model is performed 

successfully with a few tens of cells. The goal of this thesis is to accelerate the simulation and 

simulate few hundreds of brain cells. In this approach the Maxeler machine is chosen due to its 

high performance and the reconfigurable hardware acceleration potential. 
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Chapter 3: Brain modeling in Maxeler reconfigurable machine 
 

In this chapter, different designs, which have been implemented on the Maxeler machine, is 

discussed. These designs have been used to accelerate the IO brain model and are evaluated 

by their advantages and disadvantages.   

 

3.1 Alternative design options 

 

In all our designs we use the same inferior olive cell model implemented on the FPGA as a 

neuron hardware kernel. This kernel is executed N times to simulate a complete network of N 

cells. A complete simulation is done by consecutive execution of the kernel i.e. N times by the 

number of simulation steps. To simulate a network, time multiplexing is used. The operating 

frequency of the FPGA is much higher than the brain model timing constraint per simulation 

step. It shows that the kernel can be executed several times within the 50 µSec, and therefore 

simulate larger networks of cells. 
 

It needs to be mentioned that the simulation of one cell needs more than one cycle. The 

number of pipeline stages is an important factor to determine the number of cycles needed to 

simulate a cell. 

 

 

 Bottlenecks 

 

One bottleneck of simulating IO brain model is the communication between different brain 

cells in a network. It comes from the demand of full connectivity in the network of brain cells. 

To compute the IC value (defined under “A network of cells” in section 2.1.2) for one cell in the 

simulation step t, Dendrite voltages of all other cells from simulation step t-1 are needed. This 

causes demanding connectivity between cells.  
  

Second bottleneck is the data dependency between consecutive simulation steps. In each 

simulation step a cell needs to be fed with the parameters generated in previous step. In other 

words intermediate results have to be passed from one step to the next one. 
 

Third bottleneck is the FPGA area consumption due to the heavy computations of the IO brain 

cell model. 
 

In this thesis different designs have been tried out to find the most efficient way to increase 

the performance and decrease resource utilization. 
 

By taking advantage of time-multiplexing we overcame the intensive connectivity problem. 

Once a cell is computed its Dendrite voltage is kept into a block of memory and after 

computing all cells is completed, there is a memory containing all Dendrite voltages. In doing 

so, to compute IC value for one cell all Dendrite voltages are available in the block of memory 

without needing to connect all cells to each other. 
 

Next problem with IC computation is that it requires a significant amount of resources. Listing 

3.1 shows the code for computing IC value: 
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For (i = 0 ; i< N ; i++){ 

 V = prevV_dend - neighVdend[i]; 

 f = 0.8 * exp(-1*pow(V, 2)/100) + 0.2; 

 IC = IC + (CONDUCTANCE * f * V);} 
 

Listing 3.1: IC computations. 

 

As can be seen from listing 3.1, for a network of N cells, a significant amount of computation is 

repeated for generating the IC value of only one cell. 
 

Last but not least is, the large amount of computations needed to compute parameters (the 

state) of one cell. One can observe that the brain model utilizes complex arithmetic 

operations. It makes the application very resource demanding, as can be seen in the coming 

sections one cell without IC computations, consumes about half of the FPGA resources. 
 

Therefore, we can conclude that exchanging the intermediate results between consecutive 

simulation steps is a major bottleneck for brain cell modeling. In this thesis, this has been 

addressed in four different ways:  
 

1- Exchange data between host and DFE through PCIe for each simulation step (DFE fed 

by the Host) , 

2- Using DRAM on FPGA board (Using DRAM) , 

3- Using FPGA’s BRAM (Using on-chip BRAM),  

And finally … 

4- Taking the advantage of all pipeline stages, using data stream offset (Full Pipeline). 

 

3.1.1 DFE fed by the Host 

 

In this approach, the host sends all initial values for a complete network to the kernel, kernel 

computes all new parameters for cells and once all cells are completed, the kernel sends back 

all new parameters to the host. 
 

The host computes the IC values for all cells and sends a complete set of parameters 

containing IC values back to the kernel as inputs for the next simulation step. Figure 3.1 

illustrates the block diagram of this solution. 
 

 
Figure 3.1: Exchange and IC computation in Host. 
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 Summary 

 

Figure 3.2 and Table 3.1 illustrate the time measurement for transfer data through PCIe to the 

DFE. They illustrate execution time for transmitting parameters for a network of N cells 

without any computation. It includes time for set-up, send and receive data between the 

kernel and the host and tear-down the FPGA. In this design, the kernel needs to be called by 

the host code at each simulation step. The time for calling the kernel and transfer data for a 

network of 8 cells is 262.8 µSec while the time constraints for the brain cells simulation is 50 

µSec. Consequently, this solution cannot fulfill the time restriction for a network of brain cells. 

 

 
Figure 3.2: Data transfer time measurement for PCIe to FPGA and vice versa.  

 

 

 

N 8 80 800 8000 14500 

T(µSec) 262.8  376 1743.8 11836.6 23106.4 

Table 3.1: Data transfer through PCIe. 

 

 

3.1.2 Using DRAM 

 

In this approach a DRAM is available in the FPGA board is used. It is utilized to store 

intermediate results and send them back to the DFE in the next simulation step. The DRAM 

(also called LMem, Large Memory), is used as a continuous memory in the system and is read 

or written in burst mode. Figure 3.3 illustrates the DRAM solution. In this part, firstly a very 

short introduction to the LMem is provided, then the solution based on LMem and its 

bottlenecks are discussed. 

 

 LMem 

 

MaxCards have a large external DRAM on board, it can be used to store large amount of data 

and provide input to the DFE. The DRAM can be read or written directly by the host without 

requiring special code in the manager or kernel. It is convenient for loading initial data into the 

DRAM before the kernel and the manager start running. The same DRAM contents, which have 

been written or read by host, can be read or written by the DFE as well, this is done using the 

same API (Application Programming Interface) for the host code and the DFE. 
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Kname_Lmem_writeLMem(size, 0 *size, inA); 

Kname_Lmem_writeLMem(size, 1 *size, inA_1); 

… 

Kname_Lmem_readLMem(size, 0 * size, oA); 

Kname_Lmem_readLMem(size, 1 * size, oA_1); 
 

Listing 3.2: Writing and reading data into and from LMem from host code. 

 

Listing 3.2 shows the commands to read and write data from and to the DRAM. size is the 

size of data, to be read or written, next argument into the parenthesis is the start address of 

reading or writing data and the last argument is the port name. Same port name and same 

start address are used in the kernel. Manager connects the host and the kernel by defining 

ports, which are the same as in the host and the kernel. 
 

There is a memory controller in the DFE component of the MaxelerOS that generates a 

command-based interface to the DRAM. There is also a command queue and a data buffer, 

which are used to read and write data from or to the DRAM. The memory controller reads 

commands and contents of the data buffer, then writes the data to the appropriate location 

(address) in memory or reads data from the appropriate location in the memory and then 

writes them into a data buffer. This can be seen in Listing 3.3. 

 
 

LMemCommandStream.makeKernelOutput("AcmdStream", 

  wordCount === 0 &burstCount<totalBursts,  

  totalBursts * offsetA + burstCount,       

  constant.var(dfeUInt(8), 1),        

  constant.var(dfeUInt(1), 0),        

  constant.var(dfeUInt(1), 0),        

  constant.var(false)); 

 

LMemCommandStream.makeKernelOutput("oAcmdStream", 

  wordCount === 0 &burstCount<totalBursts,  

  totalBursts * offsetoA + burstCount,       

  constant.var(dfeUInt(8), 1),         

  constant.var(dfeUInt(1), 0),         

  constant.var(dfeUInt(1), 0),         

  outEn);     

 

Listing 3.3: Command stream structure for DRAM. 

 

The FPGA and the DRAM are connected to each other through input and output streams, each 

input or output stream is assigned to one command stream by the manager. It is shown in 

listing 3.4A and 3.4B. 
 

DFEVector<DFEVar>inA = io.input("inA", Type, enableIO); 

io.output("oA", oA, Type, enableIO); 
 

Listing 3.4A: input and output connect FPGA to the DRAM. 
 

 

DFELinkinA = addStreamFromOnCardMemory("inA",k.getOutput("AcmdStream")); 

DFELinkoA = addStreamToOnCardMemory("oA",k.getOutput("oAcmdStream")); 

 

Listing 3.4B: manager assigns input and output stream of DRAM to appropriate command 

streams. 
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Each portion of DRAM has its own command stream and ports. The MaxCompiler supports 

only up to 16 streams or 16 blocks of DRAMs at once. Once data is completely processed by 

the kernel, command stream generates an interrupt to the host, which indicates the data are 

ready to be read by the host. 
 

LMem is also able to operate at a frequency higher than the FPGA, for the Max3424A it is 

about 400 MHz. There is also a bus of 384 bits that connects the FPGA to the DRAM, the 

combination of the wide bus and the DRAM frequency provides a bandwidth of 38.4 GB/s 

which simply is computed as BW = 400 MHz * 384 bits = 153.6 Gb/s. If the FPGA operates at 

100 MHz and the DRAM operates at 400 MHz, 1536 bits can be transferred each cycle between 

the DRAM and the FPGA. The other option would be 768 bits/cycle if the FPGA operates at 200 

MHz. 

 

 
 

Figure 3.3: Exchange using LMem. Each simulation step one DRAM provides input another 

keeps the results their rolls are changed next simulation step. 

 

To transfer more than one word per cycle, it is needed to define ports between the FPGA and 

the DRAM as arrays or vectors. In this case an interrupt signal and enableIO have to be 

carefully generated. This is shown in Listing 3.5. 
 

DFEVectorType<DFEVar> vectorType = new DFEVectorType<DFEVar>(Type, PIPES); 

DFEVector<DFEVar> inA = io.input("inA", vectorType, enableIO); 

 

Listing 3.5: generating interrupt signal and enableIO. 

 

PIPES are the number of data, which is expected to be transferred each cycle. Since the 

DRAM and the FPGA are connected through a 384-bit data bus, each 384 bit of data transfer 

would take one cycle. 
 

In this approach initial values for a network of cells have been written into the LMem directly 

by the host code through PCIe, before the kernel and the manager start executing. Two 

segments of LMem with the size of 1920 words are defined as DRAM1 and DRAM2. Initial 
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values for a network of 80 cells are written into the DRAM1. Figure 3.4 shows the structure of 

a LMem segment. After completing initialization, the kernel runs and fetches data from 

DRAM1; new parameters will be written into the DRAM2. These results will be fetched again as 

the input for the next simulation step.  

 

 
 

Figure 3.4: The structure of LMem segments to keep the intermediate results for 80 cells. 

 

A counter has been defined to count the simulation steps. It has also been used to define 

which DRAM block provides the input for the kernel and which one keeps the new parameters. 

The counter is defined as the following. 

 
simStep = chain.addCounter(steps,1); 

 

The counter is called simStep, it is incremented by one after N cells are computed. It has a 

maximum value of “steps”, which defines the number of simulation steps. 

 

 Bottleneck 

 

The MaxCompiler is not responsible for the delays that are generated because of the pipelining 

stages. According to the Maxeler loop tutorial with regard to the result, the input in each 

simulation step is not entered to the kernel in the row as it should be [16]. In a kernel which its 

input is the output of the previous step, the output will not be ready at the appropriate time 

that is supposed to be applied as the input in the next step. To make this clear consider Figure 

3.5. 
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Figure 3.5: problem with the delay of pipelining stages. 

 

The corresponding result to the input x1 (i.e. y1), which is supposed to be applied to the 

system as input x2 will not be ready at the exact time that it is expected by the system, but 

after a delay of D. The delay D comes from the fact that the kernel needs D unit of time to 

compute the output y1. The MaxCompiler avoids compiling such a design, because the results 

are not correct. To make the program compile-able a number of delays have to be added to 

the design in order to break the loop, as it is illustrated in the Figure 3.5. The delays are 

provided by adding offsets to the feedback path (red line). 
 

In data flow programming the number of input streams and the number of cycles have to be 

exactly the same for the design to be executable. Adding D number of offsets (delays) makes 

the design compile-able but to have an executable design the kernel needs to be executed for 

D more cycles.  
 

DRAM reads and writes a block of data, to have access to a certain part of it we need to read a 

block of data and then extract the desired one. This makes DRAMs less suitable for our design. 
 

Additionally DRAM is slow in comparison to on-chip BRAM. The maximum speed of data 

transfer between the DRAM and the FPGA is 38.4 GB/s while the speed of data transfer from 

BRAM is about 20 TB/s. It leads us to attempt a design that uses on-chip BRAM instead of 

DRAM. 

 

 Summary 

 

As illustrated in Figure 3.6, the execution time of this design is short enough to be a good 

candidate design for simulating the brain cell modeling. It has to be mentioned that this design 

is tested for a small application (only a memcopy with no computations). Adding the brain 

modeling computations to the design, would make the kernel more complicated and adding 

more pipeline stages. In addition, it would lead to incorrect results due to the fact that 

MaxCompiler does not manage delays which come from pipelining. This problem has been 

resolved in the Full Pipeline design described later in this chapter. 
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Figure 3.6: The results for DRAM memcopy test Time is in micro seconds. 

 

In this every simple memcopy 24 floating-point numbers for each cell are written into DRAM 

by the host. The Kernel reads floating-point numbers and copies them into another segment of 

the DDR. For a network of 800 cells (just data communication and no cell computations) the 

time for set-up, run and tear-down is about 72 µSec which is higher than our 50 µSec timing 

constraint. 

 

 

3.1.3 Using on-chip BRAM 

 

In this design, BRAM embedded in the FPGA, is utilized to store intermediate results and feed 

them back in the DFE at each simulation step. BRAM (also denoted as FMem, Fast Memory) is 

an on-chip static RAM which can hold several MBs of data. Virtex-6 (XC6VSX475T) FPGA that 

has been used in MAX3424A, has 1064 or 2128 dual-port Block RAM of 36 Kbits or 18 Kbits 

respectively [18]. Each block RAM has two completely independent ports that share nothing 

but the stored data. 
 

When using FMem, there is no need to move intermediate data in and out of the chip. Using 

FMem will increase the performance of the application by keeping data transfers inside the 

DFE. 

 

 

 FMem 

 

The kernel needs to be fed with active streams to stay alive. As all inputs and output to FMem 

are streams it can be utilized as a source of stream to feed the kernel. 

There are three steps to utilize a block of FMem i.e. allocating, writing and reading, it is shown 

in listing 3.6. To allocate FMem a basic declaration is used, it takes two parameters, the type of 

the data which is stored into the FMem and the number of items i.e. the depth of the memory. 

 
Memory<DFEVar> cellP0 = mem.alloc(dfeFloat(8,24), N); 

cellP0.write(inputAddress, data, enable); 

DFEVar dataP0 = cellP0.read(outputAddress); 
 

Listing 3.6: Fast memory allocation. 
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The mem.alloc function returns a memory object that can be used to access the FMem. A 

Java generic DFEVar parameterizes the memory and indicates the type of stream that is saved 

in the FMem. 

First line in listing 3.6 shows an allocated memory with a depth of N and the type of floating 

point. It is called cellP0 and can be read and written independently. 
 

To write into a block of FMem there should be an address of DFEVar, a data of proper type and 

an enable of DFEBool. 
 

To read from a block of FMem there should be an address and a DFEVar to store data. In the 

third line, the data, which has been stored in the outputAddress of the cellP0, is restored 

into the dataP0, which is a variable of DFEVar. Reading and writing one parameter into or 

from FMem happens in one cycle. 
 

Figure 3.7 illustrates the structure of a set of BRAMs to keep parameters of a network of N 

cells. As can be seen all parameters that have the same character are kept into one BRAM, for 

example dendrite voltage of cell number 0 which is the first parameter of a cell is stored in the 

first address of cellP0 and the dendrite voltage of the cell number 1 is stored in the second 

address of cellP0. This structure enables us to extract easily all dendrite voltages to compute 

the IC. 
 

 
 

Figure 3.7: BRAM structure to store intermediate results. 

 

 

 
 

Figure 3.8: Illustrates BRAM solution in details. 
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Figure 3.8 illustrates the block diagram of our BRAM design, in which 20 blocks of FMem have 

been used as input blocks i.e. BRAMP and 20 as output blocks i.e. BRAMN.  
 

In this design all computations are performed in the DFE and the process of the simulation of a 

network is mainly controlled by a simulation step counter i.e. ss or so called simStep.  

 
DFEVar simStep = chain.addCounter(steps, 1); 

 

BRAMP receives initial parameters for a network of cells at simulation step zero, MUX0 which is 

a ternary if statement, selects input stream which comes from the host to initiate the BRAMP 

in the first simulation step. 
 

The input stream of the kernel is an array (pcs), which is initialized in the beginning of the 

computations. 

 
interReg = simStep> 0 ? ncs2 : pcs ; 

 

A ternary if statement chooses the first argument after question mark if the condition placed 

between "=" and "?” is true and chooses the second argument if the condition is false.  
 

In the first simulation step (simStep = 0) initial parameters coming from PCIe for a complete 

network are written into the BRAMP without being read by the kernel yet. In the next 

simulation step when the simStep is odd (simStep = 1) initial values are written into the 

input register which is called ncs. The design sends ncs contents to the computational part 

and new parameters which have been computed by the computational part are stored into the 

output intermediate register ncs1. Finally the content of ncs1 are written into the BRAMN. 

In each simulation step the computational part iterates N times to compute a complete 

network of N cells. In this way, all new parameters in the first step will be computed and the 

results are written into the BRAMN.  
 

After computing a complete network in simStep = 1, simStep is incremented by one and it 

will become an even number, now the route for moving data is changed to: from BRAMN to 

BRAMP. To control the correct route for the streams, the simulation step counter controls 

MUX0, MUX1, MUX2 and MUX3. MUX2 steers parameters to the host after a complete set of 

simulation steps are done. The final parameters move to the host code from output register 

ncs3 through an output port: 

 
io.output("newCellState", ncs3, VectorType,finalstep); 

 

The manager, like all other output streams that are connected to the host, connects the output 

newCellState to the host code; it is defined as a DFELink as below: 

 
DFELink newCellState = addStreamToCPU("newCellState"); 

 

IC computation is actually a part of cell computation but to optimize the application and 

achieve better performance, two separated kernels are defined; they operate in parallel to 

compute IC value and the rest of the cell computations. A separate kernel, which is called 

Kernel IC (kIc), computes IC; it is defined in the manager and is connected to the kCell 

(Kernel Cell).  
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To move dendrite voltages from kCell to the kIc and send back IC value from kIc to the 

kCell there are two controlled ports connecting two kernels as is shown in the listing 3.7. 

 
DFEVar icin = (simStep> 2); 

DFEVar vdout = (simStep>0); 

 

DFEVar IC = io.input("IC", dfeFloat(8,24), icin); 

… 

io.output("vDend",newCellState1[0], dfeFloat(8,24), vdout); 
 

Listing 3.7: ports kIc to/from KCell. 

 

In doing so, while the kCell is busy with cell computations, kIc is busy with gathering 

dendrite voltages and compute the IC values. 

 

 

 

 Bottlenecks 

 

The drawback of this design is that it does not take advantage of full pipelining. This design 

sends one cell for being computed and waits until the result is ready and then sends next cell. 

Since the application has a pipeline of 334 stages only for cell computation except IC, and due 

to the limited FPGA resources, there cannot be a network size bigger than 32 cells 

implemented on the FPGA. Under these circumstances, in this design the IO network is 

computed in groups of 32 cells which have the latency of 334 cycles. In this case we take 

advantage of less than 10 percent of the pipelining. This is depicted in Figure 3.9 which shows 

a kernel with four pipeline stages [16].  

 

 Summary 

 

In this approach BRAM is used to store intermediate results to send them back as inputs to the 

beginning of the next simulation step. Although, BRAM is fast and provides high bandwidth, 

the design is not able to take advantage of pipelining. Additionally, due to the complex 

structure of multiplexers, arrays, ternary ifs and BRAMs the design is more difficult to debug. 

To overcome these issues the next solution is introduced. 
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Figure 3.9: underutilized pipeline for our application there is #pipes stages [16]. 

 

 

3.1.4 Full Pipeline 

 

To overcome the problem in the BRAM design (limitation of pipeline usage) we need to have a 

new design in which the DFE is able to fetch one cell each cycle instead of one cell each PIPES 

cycles (where PIPES is equal to the number of pipeline stages) like in the BRAM design. In this 

approach a network of cells are sequentially pushed to the DFE to be processed, if the network 

size is the same as the number of pipeline stages, then it takes full advantage of pipelining. But 

it should be kept in mind that more cells need more time to be processed. The real-time of 50 

µSec is the restriction on applying more cells. 
 

Cells in a network are independent from each other while cells in consecutive simulation steps 

are dependent to each other. If the network size is large enough, while the first cell is being 
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simulated, the pipeline can be fed by other cells, in this way pipeline stages can be fed 

consecutively every cycle. 
 

The problem we need to address is to increase the capacity of IC computation. Listing 3.8 

illustrates the optimized IC code. In optimized IC any operation that is common for all 

iterations have been removed outside the loop [1]: 

 
for(inti = 0 ; i< #cells ; i++) 

{ 

oneSliceAdd[i] = constant.var(dfeUInt(9),i); 

vdiAdd = icCond_t * (cellLength/unFac) * sliceCnt_t + 

oneSliceAdd[i].cast(ramAddType); 

V = vdp - vdi; 

f = V * KernelMath.exp(-0.001 * V * V); 

Facc = f + Facc; 

Vacc = V + Vacc;} 

IC =CONDUCTANCE * (.8 * Facc + .2 * Vacc); 
 

Listing 3.8: Modified IC computation. 

 

The amount of FPGA resources needed to implement the IC computation is lower than in 

previous designs. Non-modified IC computation consumes 44% of FPGA resources for a loop 

with 32 iterations while after the optimizations described in Listing 3.8 the IC computation 

utilizes 34% for a loop of 40 iterations. By comparing Listing 3.8 and Listing 3.1, it can be 

observed that the modified IC needs fewer computations. 

 

 

 Unrolling IC computation 

 

Reducing the required area from 44% to 34% for the IC computation is not enough to cover the 

required number of cells for a network of hundreds of cells. The solution is to only partly unroll 

the IC computation. By unrolling we mean that to repeat in space a smaller for-loop for several 

times to complete the for-loop in listing 3.8. For example if a for-loop of 40 iterations is 

implemented, for a network of 400 cells, the for-loop in listing 3.8 has to be unrolled for 10 

times, each time computes 40 cells and passes Vacc and Facc to the next 40.  
 

The implemented partly unrolled IC utilizes an array to keep intermediate results of Vacc and 

Facc after each iteration, add all elements of the array to each other to find the final Vacc 

and Facc. In the end, IC value is computed by the last line of Listing 3.8.  
 

Designs with partly unrolled IC are able to simulate a few hundreds of cells and the usage of 

pipeline is increased. For example for a network of 600 cells there are 800 pipeline stages, 

consequently, the usage of pipeline is 6/8 compared to 32/334 in the BRAM design.  
 

# of Cells 80 160 320 400 440 480 520 560 600 640 680 720 800 1120 

Unrolling Factor 2 4 8 10 11 12 13 14 15 16 17 18 20 28 

# of Pipeline 
Stages 

644 668 716 740 752 764 776 788 800 812 824 836 860 982 

# of iterations of the 
IC loop 

2 4 8 10 11 12 13 14 15 16 17 18 20 28 

# of required cycles 
per simulation step 

884 1468 3596 5140 6032 7004 8058 9190 10400 11692 13064 14516 17660 33462 

Table 3.2: The network size and related unrolling factor and pipeline stages for a for-loop of 40. 
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Table 3.2 shows the dimension of the network and the number of IC-loop iterations needed 

when partly unrolled (that is unrolling 40 IC-loop iterations). Required cycles are the number of 

cycles for each dimension that are needed to simulate one complete network. These numbers 

are described later on, in the Implementation section. 
 

The optimized number of for-loop iteration we reached is 40, less than 40 decreases resource 

utilization, and more than 40 decreases the operating frequency. For example for the same 

number of cells (720 cells) a for-loop of 48 iterations can operate at 180 MHz while one with 

40 runs at 205 MHz. Having a for-loop of 40 iterations, about 88% of the resources are used 

while 48 iterations for-loop, utilizes 98% of resources. 

 

 

 Implementation 

 

In this approach there is only one kernel for all needed computations. This means that the cell 

computations are performed in sequence with the IC computations. Execution time is split into 

two parts, in the first part, all parameters except IC values are computed and in the second 

part IC values are computed. In the first part all Dendrite voltages are provided and are kept 

into a BRAM, called vdRam. In the second part vdRam is read and IC values are computed, 

each IC value is written into a BRAM called icRam. In the next iteration all parameters are read 

from the previous iteration using stream-offset and IC values are read from corresponded 

icRam address. 
 

In this design there is a port from the host to the kernel to send the number of steps. Adding 

this port enables us to run the simulation for different numbers of simulation steps without 

rebuilding the design. Since the number of cells and the number of unrolling factor requires 

modifications of the design and affects the hardware, it is not possible to apply these variables 

from the host; they need to be hard coded and by changing any of them requires to rebuild the 

design.  
 

Figure 3.10 illustrates the design, which has been implemented to maximize the benefit of 

pipelining. 
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Figure 3.10: Full Pipeline schematics. 

 

To control the process there are three enable signals. The first one is vdwrEn by which writing 

the Dendrite voltages (vd) in the appropriate addresses of vdRam is controlled. According to 

the compiler the first vd is generated after a number of cycles equal to the number of pipeline 

stages (# of pipes), thus after # of pipes cycles vdwrEn is enabled and stays active for the 

number of cycles equal to the number of simulated cells to all vds are being written into 

vdRam. From this point onwards, all vds are written and the second part of kernel starts 

processing. After all vds are written, the second enable is activated, vdreEn, it shows that 

previously written vds, have to be read to IC phase. In this part in each number of cycles equal 

to the unrolling factor (unFac), one IC value is generated and is written into the icRam. After 

(unFac * network size) cycles, all IC values are generated and the second part of the kernel is 

performed. 
 

The third enable signal, cellCond, shows that IC values and the rest of parameters need to be 

fetched to compute cells' parameters. The diagram in Figure 3.11 illustrates the process and 

how enable signals control different inputs and outputs: 

Figure 3.11: enables and process for one simulation step, red line shows the number of cycles. 
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There are four address generators to compute the write and read addresses to and from 

icRam and vdram. 

 

 

Figure 3.12: computing phases of simulating a network of IO brain cells. 

 

As shown in Figure 3.12, needed parameters for a simulation step are provided from the 

previous step, IC value is generated during IC phase (the phase where the IC value is 

computed) and the others are computed during cell phase (the phase where the cell 

parameters are computed which is equal to the # of pipes cycles + network size). Cell 

parameters are transferred to the next simulation step using stream offset and IC values go to 

the next simulation step by reading IC values from the icRam. Generated parameters in the 

cell phase are kept in “new cell state” array, which is a DFEVar, and then the contents of 

“previous cell state”, is replaced by the contents of “new cell state” to provide input stream 

for the next step. 
 

Figure 3.13, illustrates the process of fully-used pipeline stages for a simple adder with four 

stages of pipeline. IO brain model has pipeline stages according to the Table 3.2. 
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Figure 3.13: the process for a simple adder (cell kernel implementation has 334 stages) [16]. 

 

 

3.2 Conclusion 

 

The goal of the thesis is to accelerate the IO brain cell model with the demand of full 

connectivity between all cells in a simulated network. In this chapter we described four 

different designs, which have been implemented on the Maxeler machine. Each design has its 

own advantages and disadvantages. The last design that uses stream offset in a sequential way 

is the best one and as can be seen from the results (Chapter 4) meets the timing constraints 

for a network of 400 cells. It does not transfer intermediate results through PCIe or DRAM, 

which are much slower than the internal BRAMs. 
  

In addition, using BRAM is significantly simpler and more flexible than DRAM. Using PCIe has a 

cost of set-up and tear-down time of the FPGA for each simulation step and that is about 25 

milliseconds. In addition, data transfer through PCIe, which is about 2GB/s, is much slower 

than the BRAM connection, which is about 20TB/s. 
 



Chapter 3: Brain modeling in Maxeler reconfigurable machine 

42 
 

The key point in the our last design is that all data transfers and computations take place 

within the same kernel using very fast data transfer techniques provided by FPGA.  
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Chapter 4: Evaluation 

 

This chapter presents the evaluation of our last design, described in Chapter 3, implemented 

on a Maxeler MAX3424A machine. We further make a comparison between our approach and 

design that uses Vivado HLS. Finally, this chapter provides a qualitative comparison between 

the brain cell simulation output produced by our Maxeler implementation, the output of the 

Vivado design as well as the output of a software implementation (C code and MATLAB) 

running on a general purpose computer. 

 

4.1 Parameters 
 

There are four design parameters for the brain models. 

A. netSize: The number of cells in a simulated network (known as dimension). 

B. unFac: The unrolling factor of the IC for-loop. unFac 40 in a for-loop of 400 (Network 

Size 400) means that 40 iterations are unrolled and need to be executed 10 times to complete 

to 400 iterations. 

C. pipes: the number of cycles that the kernel needs to execute the computations of one cell.  

D. cellParameters: the number of parameters which represent the behavior of a brain cell.  

 

 

4.2 Results 
 

The accelerator achieves real-time execution for a network of 400 brain cells with 100% 

connectivity at an operating frequency of 110 MHz. Table 4.1 shows the results for the Full 

Pipeline design. It illustrates the execution times of the design for different network sizes, their 

operating frequency and unrolling factor. Second row shows the execution time for a complete 

simulation of 120,000 steps in seconds while third line contains the execution time of a single 

simulation step of the network in µSec. As can be seen, each network according to its size 

operates up to a specific frequency. The frequency drops slightly as the number of cells 

increases. 
 

Our design can simulate a network of 400 cells for 120,000 steps in 5.71 seconds at 110 MHz. 

This translates to 47.5 µSec per simulation step. 

 
N 80 160 320 400 440 480 520 560 600 640 680 720 800 1120 
T/S(s) .920 1.3 4.13 5.71 7.29 8.02 9.78 10.51 12.54 14.1 15.7 17.5 21.2 40.1 
T/N(µs) 7.66 10.8 34.4 47.5 60.7 66.8 81.5 87.58 104.5 117.5 130 145 176 334 
F(MHz) 120 140 130 110 105 105 100 105 100 100 100 100 100 100 
unFac 2 4 8 10 11 12 13 14 15 16 17 18 20 28 

Time-
Score 

0 0 0 0 0 0 0 0 0 0 0  0 0 

Table 4.1: Execution time vs. operating frequency and unrolling factors. 

 

Figure 4.1 shows the execution time for different network sizes in µSec. For each network size, 

several frequencies were tested to find the maximum one without timing errors. The most 

effort has been put on the sizes of about 400 cells. To have an estimation of open, close and 

sending initial parameters for a network of 400 cells, it has been executed for different 

simulation steps and the results are illustrated in Figure 4.2. According to the Table 4.2 for only 

one simulation step, the execution time is 32.2 mSec. The execution time of a network of brain 

model, without opening and closing the FPGA and data transfer, is the number of cycles, which 
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are needed for a complete execution, divided by the operating frequency. For a network of 

400 cells it is 46.72 µSec (i.e. according to the Table 3.2, 5140/110 MHz). For a complete 

simulation of 120,000 steps the delay of opening and closing the device and the time for data 

transfer of each simulation step is 0.8 µSec (i.e. 47.5 – 46.7 = 0.8). 

 

 
Figure 4.1: Execution times for fully pipelined solution. 

 

 
Figure 4.2: execution times for a network of 400 cells for different simulation steps. 

 

Steps 1 10 100 10000 40000 60000 80000 100000 120000 

Time (Second) 0.0322 0.03327 0.03432 0.4266 1.6243 2.4168 3.2137 4.0088 4.80 

Table 4.2: Execution time for a network of 400 cells and different simulation steps.  
 

 

4.3 Design space observations 
 

The machine used to accelerate the IO model of brain cells is a MAX3424A of Maxeler 

Technologies with 24GB DRAM on its Virtex-6 (XC6VSX475T) FPGA board. According to Xilinx 

documentation, Virtex-6 XST is one of their largest FPGAs with fast IO, implemented by 40 nm 

technology [18].  
 

The brain model requires a large number of floating point computations. Such computations 

need a large amount of FPGA resources which of course varies depending on the dimension of 

the network. In other words, larger networks need more resources. Table 4.3 shows final 

resource usage for a network of 400 cells. 
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Block memory (BRAM18) 475 / 2128   (22.32%) 

Logic utilization 255135 / 297600 (85.73%) 

LUTs 226764 / 297600 (76.20%) 

Primary FFs 232751 / 297600 (78.21%) 

Secondary FFs 61177 / 297600 (20.56%) 

Multipliers (25x18) 1004 / 2016   (49.80%) 

DSP blocks 1004 / 2016   (49.80%) 

Table 4.3: final resource usage for a network of 400 cells. 

 

Our last design, Full Pipeline, consumes 475 Block RAM each block storing 18 kb, for a network 

of 400 cells. Since there are only two blocks of BRAM, which are explicitly declared to keep 

Dendrite voltages and IC values, the rest of used BRAM blocks are used to transfer 

intermediate results between consecutive steps. icRam and vdRam are declared in the code as 

follows:  

 
Memory<DFEVar>icRam = mem.alloc(dfeFloat(8,24), netSize); 

Memory<DFEVar>vdRam = mem.alloc(dfeFloat(8,24), netSize); 

 

 

4.4 Comparison 

 

In this section a comparison is made between our solution implemented in the MAX3424A 

Maxeler machine and an FPGA design implemented with Vivado HLS. The main goal of both 

solutions is to improve the performance of brain cell model, both have developed the same 

model and both provide full connectivity in the network. There are also results of executing 

the model on a general purpose computer with a 4-core Xeon 2.66GHz and 20GB RAM [1]. The 

performance of our design is about x3041 better than MATLAB implementation, about x253 

better than C code implementation and about x4 better than Vivado HLS implementation at a 

network size of 400 cells. It is possible to do this comparison in performance for any network 

size which both designs can support, such as 480. For this network size, our design is about 

x3655 better than MATLAB implementation, about x149 better than C code implementation 

and about x5 better than Vivado HLS implementation. Table 4.4 shows these speed-ups. Table 

4.5 shows execution time for different network sizes implemented in our Full Pipeline design, C 

code implementation and the implementation uses Vivado HLS. 

 

Design Improvement 

MATLAB implementation 3041.91 

C Code implementation with single float 253.01  

FPGA Accelerator using  Vivado HLS 4.16 

Table 4.4: Performance improvement of Maxeler MAX3424A design comparing to MATLAB, C 

code and Vivado HLS implementations.  

 

N 80 96 160 192 288 320 384 400 440 480 520 560 

Maxeler 7.66  10.88   34.4  47.5 60.7 70 81.5 92.41 

Vivado  48.54  104.15 173.42  254.22   346.54   

PC (C code)  583.55  1903.7 4014.7  6863.2   10430.45   

Table 4.5: Execution time for different size on Maxeler, Vivado and GPP. 
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N 576 600 640 672 680 720 768 800 864 960 1056 1120 

Maxeler  104.5 117.5  130 145  176    334 

Vivado 45.38   565.74   692.62  821.2 970.94 1132.38  

C code 14841   19811   25705.6  32556.85 39786 47803  

 

 

 
Figure4.3: Execution time Vivado vs. Maxeler machine. 

 

Figure 4.3 shows execution time of our last design with columns in red compared to execution 

time of the solution uses HLS Vivado with columns in red. 

 

Table 4.6 shows the break down to the processing throughput dedicated in different 

arithmetic and logical operations for a network of 400 cells.  

 

Op type Rest of computations 

for 1 cell 

IC for 1 cell Rest of computations 

for 400 cells 

IC for 400 cells 

<= 124 96 49600 38400 

Negate 7 95 2800 38000 

< 2 0 2 0 

Truth-and 96 0 38400 0 

== 192 0 76800 0 

+ 276 285 110400 114000 

- 39 95 15600 38000 

/ 50 95 20000 38000 

* 76 475 30400 190000 

Total 862 1141 344800 456400 

Table 4.6: Floating point operations for one cell and for a network of 400 cells. 

 

The maximum throughput for a network of 400 cells operating at 110 MHz is 801200 FLOPS. 

 

 

4.3 Result verification 

 

To evaluate the correctness of the simulation results, extracted from our Maxeler 

implementation the outputs of our implementation have been compared against the reference 

C code output. Since all cells are initialized with the same parameters at the beginning of the 

simulation, all cells should have the same state in each simulation step. The equality of cells’ 
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state is verified in the host code, if there is any difference, an Error Flag will be set to “1” and 

the position of the cell in the network is kept in an Error Address register. 
 

Figure 4.4 and 4.5 show vAxon (Axonal voltage), which are generated using C code and 

Maxeler MAX3424A respectively. The test-bench simulates about 6 seconds of brain modeling, 

which is equal to 120,000 simulation steps (each step 50 µSec). After 20,000 simulation steps, 

an input signal (iApp) with a level of 6 mVolt is applied to all cells for a duration of 500 

simulation steps. As can be seen in Figure 4.4 and Figure 4.5 the cells' state before returning 

back to their state, respond by producing a spike.  
 

As can be seen both figures are quite similar, Figure 4.6 plots the absolute deviation. Maximum 

deviation between two results happens at the moment of the spikes due to the iApp 

changing. According to the Figure 4.6, maximum deviation is 0.14 mV. This occurs when vAxon 

reaches -31 mV that yields an error of 0.92%. This error does not affect the simulator 

functionality and proves that Maxeler results are acceptable [1]. 
 

 
Figure 4.4: Axon Voltage simulated by C code. 

 

 
Figure 4.5: Axon Voltage simulated by Maxeler. 
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-  

Figure 4.6: Absolute deviation (Msaxeler vs. C Code). 

4.4 Conclusion 
 

Our last design discussed in Chapter 3 achieves real-time execution for a network of 400 brain 
cells with 100% connectivity at an operating frequency of 110 MHz. It executes a complete 
simulation of 120,000 steps in 5.71 seconds which translates to 47.5 µSec per simulation step. 
Our design improved the performance of the MATLAB, C code and Vivado HLS simulations of 
the IO brain cell model, by about x3041, x253 and x4 respectively. 
 

Correctness of the results generated by the Maxeler is evaluated by comparing them against 
the results of the C code implementation. Results from Maxeler have a maximum deviation of 
%0.92 from the results of C code that is less than the acceptable maximum deviation.  
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Chapter 5: Conclusion 
 

The detailed conclusions and future work are discussed next. We first present the summary 

and thesis contributions and then suggest future directions. 
 

5.1 Summary 

 

The overall goal of this thesis was to improve the performance of a brain cell model using 

reconfigurable acceleration. This model was first developed in C by a group of researchers to 

model the behavior of the IO brain cells [1]. We accelerated the simulation of the IO cell using 

Maxeler machine. 
 

First we analyzed the C code and understood the computations needed. To go through the 

application, we used some tools like Netbeans and GPROF to understand its arithmetic 

functions, the dependences between different computations, memory utilization, CPU usage, 

etc. 
 

Since the application was planned to be executed on a Maxeler machine, we further studied 

the architecture of the machine and its tool chain (i.e. MaxCompiler). In doing so, we ported 

the application on the machine after recoding it in JAVA. 
 

Various alternative designs were implemented on the machine were studied and evaluated to 

see which one suits best our timing constraints. More precisely, the following designs were 

developed: PCIe, DRAM, on-chip BRAM and Full Pipeline. Finally a fully pipelined "Full Pipeline" 

design was chosen as the best way to accelerate the application. 

 

 

5.2 Thesis contributions 

 

The targeted thesis goal which was to accelerate the simulation of the IO model has been 

achieved by using a Maxeler machine. We successfully improved the performance of 

simulation of the IO model by 4.16 times more than the Vivado HLS implementation. The 

architecture of the design allows two different parts of the application to execute sequentially 

in time (i.e. time division) while they are fully pipelined. The implementation is a 

reconfigurable design since one can change design parameters such as network size, cell input 

current and number of simulation steps to observe different results. 

 
 

 

5.3 Future work 
 

The design can be improved in two ways; the first one is to increase the performance by the 

two different kernels operating in parallel. By doing so, there is one kernel for IC and one 

kernel for the rest of the cell computations.  The IC values are computed and subsequently 

passe to the Cell kernel. Cell kernel can receive one IC value through FPGA’s BRAM and 

computes the parameters for one cell. Meanwhile the IC kernel can continue processing 

another IC value. The bottleneck of this approach could be that the IC kernel computations are 

more time consuming than Cell kernel, although, this can be overcome by making a better 

synchronization between the two kernels. Figure 5.1 illustrates this suggestion. 
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Figure 5.1: Parallel execution of Ic and Cell kernels architecture. 

 

A second improvement could be to increase the number of cells by using a Maxeler machine 

with a larger number of FPGA devices. Maxeler machine allows connecting several MAX cards 

to each other through a special connection, which is called MAXRING. By adding more MAX 

cards to the design it is possible to simulate more cells. One should consider communication 

latency between different MAX cards since it will affect the overall performance gradually in 

case of full connectivity of cells. 
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