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c©MARCUS LAURILA, June 2014.
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Abstract

The ever-growing field of telematics spans over a wide array of heterogeneous peripherals
such as GPS units, accelerometers, alarms and smart cards. Gathering, handling and
storing data or transmitting it to a server over the air introduces demands on adaptabil-
ity, robustness and configurability of the central unit being used.

The MX-3 telematics platform series developed by Host Mobility AB has proven to
meet the functional demands placed upon it but features an unnecessary burden in the
form of a heavy and expensive GPRS modem running the customer application using
Java ME (Micro Edition) besides the C-flavoured core functionality of the contained PIC
microprocessor.

This project aims to improve the robustness, energy and cost efficiency of the system
by moving all of the custom application code to the microprocessor, eliminating the need
for an expensive modem able to support Java. Challenges to be faced include creating a
complete and robust C code base as well as identifying demands on the microcontroller
and modem in the new setup and matching them with appropriate hardware.

During this project we have made appropriate hardware changes as well as adapted
and augmented the former code base in order to develop a prototype for a new telematics
platform series based on the MX-3 called the MX Mini. The results section of this paper
presents the achieved architectural improvements and projected production cost savings.
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1
Introduction

The Global Positioning System (GPS) offers possibilities to localize objects with high pre-
cision anywhere on Earth. In combination with General Packet Radio Services (GPRS)
it is possible to provide real time tracking of vehicles through for example Short Message
Service (SMS). The system to be developed will be able to track a vehicle’s position in
real time or for a given time frame by analyzing data received from the GPS module. In
addition to location tracking, the system can also provide information about for example
velocity and temperatures depending on the peripherals being used.

Host Mobility AB is a company located in Gothenburg, Sweden specializing in devel-
oping telematics platforms used in ground based vehicles and naval vessels. There exists
today a platform series called MX-3, communicating over the MX protocol which is a
proprietary protocol courtesy of Host Mobility. The MX-3 unit is displayed in Figure 1.1
and a high level schema is illustrated in Appendix A. Presently, a Java-flavoured midlet
platform in the GPRS modem contains customer-specific software handling the connec-
tion to the server and the prioritization of data exchanged through this. Alongside the
modem there is a co-processor in the form of a PIC microcontroller based on C code.
This microcontroller handles all peripherals and I/O of the unit such as memory cards,
GPS units and accelerometers.

The microcontroller communicates with the modem using the MX protocol and the
customer application is made to facilitate the API featured by the modem.

1.1 Purpose

No standardized architectures exist for the applications targeted by MX-3 and the current
approach is limited in its flexibility. The MX-3 solution as a whole suffers from decreased
cost efficiency due to having to use a specialized GPRS modem in order to both handle
communication and arbitrary customer application code. It would instead be desirable
to make use of a simple and inexpensive modem only handling the communication and

1



1.1. PURPOSE CHAPTER 1. INTRODUCTION

Figure 1.1: The MX-3 unit.

not the application. Furthermore, a less complex modem would consume less energy as
well as simplify the sleep mode of the entire module. In a solution where the modem only
acts as a slave unit with no control over decision-making, the issue about synchronizing
sleeps and wake-ups between two processors vanishes, trivializing methods of handling
low energy modes. Low energy consumption is crucial when the only source of power is
a battery.

Allocating application logic to modem software not only enforces the use of an expen-
sive and specialized modem, but also burdens its processing capabilities and complicates
the overall architecture. Incorporating this unfitting burden in its entirety within the
microcontroller would be a preferable approach. The microcontroller will then act as a
master unit to the modem, as opposed to using the previous, codependent architecture.
Future customer applications will thus be run in the microcontroller, and make use of
the C programming language rather than Java.

Unfortunately, the lack of a preceding setup gives rise to multiple uncertainties.
One challenge paralleling the entire design process will be to assess if a PIC will be
able to handle the composite workload with regard to memory and processing capacity.
Handling both the customer application and the acquisition of data from peripherals
might give rise to a need for more customized scheduling of the clock cycles. While all
of the PIC’s processing power could previously be used for peripheral data connection
and responding to requests from the application in the GPRS modem, the very same
clock cycles will now be actually running the customer application. The program flow
thus needs to be carefully planned to ensure that mundane tasks are executed only
on demand, and the customer application may utilize processing power to the largest
possible extent.

1.1.1 Technical goals

The microcontroller needs to be able to interoperate with differing slave GPRS modems
in order to promote independence from specific vendors. The customer application shall

2



1.2. OBJECTIVES CHAPTER 1. INTRODUCTION

via the use of well-defined function calls be able to operate with all the peripherals the
MX-3 supports, and forward the data gathered from these to an external server. Writing
the server application receiving the aforementioned data also belongs to the set of goals,
and will be performed in a Linux environment using GPRS sockets. The architecture
needs to support arbitrary protocols for communicating with the PIC, with a default
implementation using a derivative of the MX protocol included in the product. If the
PIC proves to be inadequate, the type of microcontroller to be used as the central unit
shall be re-evaluated to fit the final needs.

1.2 Objectives

Ultimately, the aim of the project is to decrease the production cost of a complete MX
unit along with increasing its energy efficiency and thus increase its areas of application.

The energy consumption of the preceding MX-3 unit is not of highest concern. There
is support for Li-ion batteries, but the majority the customers run it with a power source
and hence use the battery as a backup source for short periods of possible power failures.
The challenge of the former system, in terms of power efficiency, was to synchronize the
sleeps between the Java ME1 application running in the modem and the C code running
in the microcontroller. When it comes to power efficiency, having the module sleep
during periods of inactivity is very important.

The new implementation, on the other hand, will make it possible to replace the
modem with an inexpensive and less power demanding variant. This will lead to lower
production costs and decreased power consumption which opens up for a whole new
market. Such a lightweight product used in detached small or hand-held tools like
assault or moped/motorcycle alarms would be feasible.

1.3 Related work

El-Medany et al. [1] and Lita et al. [2] discuss in their similarly themed papers how a low
cost localization system consisting of microcontroller, GPS and GPRS modem can be
implemented. El-Medany’s system communicates with a monitoring server connected to
a SQL database, plotting vehicle position information on Google maps. The latter puts
more effort in communication via SMS, e.g. notifications from a vehicle leaving a delim-
ited area, having its engine started/stopped or car alarm go off. Al-Khadher presents in
his paper [3] another similar solution featuring a GSM modem and tracking via Google
maps. Nevertheless, the emphasis of Al-Khadher’s paper lies in how a Kalman filter
may improve the accuracy of GPS coordinates through error correction. Yet another
implementation is presented in the paper of Zhang et al [4]. The authors compare the
data transmission protocols TCP and UDP and prefer UDP due to larger throughput
albeit at the expense of reliability. In the same paper, an analysis was also made about
transmission delays over GPRS.

1Java ME (Micro Edition) is a Java platform designed for embedded systems.
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1.4. REPORT OUTLINE CHAPTER 1. INTRODUCTION

As in El-Medany’s and Al-Khadher’s projects, Google maps is used in our implemen-
tation in order to plot GPS coordinates. An advantage of Google maps is that it is free
and supports most GPS devices’ data formats directly. When it comes to transmission
protocol, our choice was TCP, in contrast with Zhang’s implementation. None of these
unfortunately investigate the scenario of having several peripheral units connected to
the microcontroller. There is a certain complexity in handling the input, including TCP
packets, from the GPRS modem while simultaneously keeping track of the connected
peripherals. This brings another dimension to the project and the implementation is
subject to the challenges of parallelism and hardware assessment.

1.4 Report outline

The report is further outlined as follows:

• Chapter 2 describes the actual development process and its subcomponents in
detail.

• Chapter 3 clarifies gains from the old to the new product.

• Chapter 4 summarizes the findings of the project in its entirety as well as describes
items that were considered, but did not fit within our given time frame.

4



2
Implementation

Throughout the project, MPLAB1 [5] in conjunction with the XC16 C-compiler2 [6] has
been used as the primary IDE with which coding for the PIC microcontroller has been
done and the compiled code burnt into the flash memory. Git has been used as version
control system, see Appendix B.

AT-command testing via Tera Term3 and a serial-USB converter has been used to
complement the communication between the GPRS modem and the microcontroller.
Section 2.8.3 provides more detailed information about debugging.

A server managing the raw data sent from the MX Mini unit has been created, and
peripherals have been adapted to use one at a time and their respective data added to
the communication between the MX Mini and the server, see section 2.6.1. This data has
been continuously inspected to assure the correctness of each peripheral functionality,
and to verify the microcontroller’s ability to properly handle simultaneous use of them
all. The server is written in Java and Eclipse has been used as IDE.

2.1 GPRS Modem

The modem being used in the implementation, Cinterion TC65i, is based on GPRS
technology. GPRS is a packet-data technology that allows GSM operators to provide
wireless data services such as Internet access. GPRS is built on the GSM network
platform, so operators can keep but enhance their existing infrastructure. The GPRS core
network is based on Internet Protocol (IP) standards, yielding support for connection to

1MPLAB is a free Integrated Development Environment (IDE) for development of embedded appli-
cations on Microchip’s microcontrollers.

2The MPLAB XC16 C-compiler fully supports all Microchip 16-bit devices. The compiler optimizes
and translates standard ANSI C programs into 16-bit device assembly language.

3Tera Term is an open-source terminal emulator that emulates different kinds of computer terminals.
There is support for telnet, SSH and serial port connections.
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2.1. GPRS MODEM CHAPTER 2. IMPLEMENTATION

IP-based networks. There is support for PPP, which is used to tunnel IP to the device,
allowing an IP address to be dynamically assigned to the MX unit.

GPRS is a best-effort service, implying variable throughput and latency that depend
on the number of users sharing the service at the time. It supports download rates of
up to 115 kbps, which is adequate for the system being developed. GPRS provides an
always-on data connection, so the user does not need to reconnect every time they want
to access new data. Due to the packet-switched architecture, the users will only need to
pay for the data itself rather than the airtime to establish a connection and download
data.

Furthermore, GPRS is widely supported in the world and there is support for inter-
national roaming, making it possible to access data services at most places in the world.
Even though an area has not yet been upgraded to GPRS, many data services may still
be accessed through circuit-switched GSM 4.

2.1.1 Types of modem messages

Besides echo characters, there are two kinds of message to receive from the modem: AT-
replies and URCs. Every AT-reply starts with an echo of the request message, followed
by a response. URCs, on the other hand, are unexpected messages sourcing from the
modem, which have to be handled separately. URCs may arrive spontaneously, as with
the case of RING / SMS commands, or as asynchronous responses to certain AT requests,
primarily vendor specific such.

2.1.2 AT commands

With the modem being the slave unit in the new architecture, it no longer presents a Java
application capable of handling communication. Instead, the communication between
the PIC master unit and the modem will be done using an extension of the Hayes com-
mand set5 for GPRS modems and alike, i.e. AT commands. The TC65i AT Command
Set Manual offers detailed information about the specific set of AT commands [7].

AT commands are specific instructions used to control a modem. The ”at” prefix
must be provided in the beginning of each command line. The commands may be used
to get basic information about the GPRS modem such as name of manufacturer, model
number, IMEI number and software version. AT commands can also be used to change
modem configuration, setting up socket connections as well as getting current status
messages.

In order to terminate a command a <CR>, i.e. carriage return, must be present at the
end of the string. Since every response has to be parsed out and handled accordingly,
one needs to know where a specific message starts and ends. In most cases a command is
followed by a response following the format <CR><LF><response><CR><LF>. The modem
is expected to send a response to almost all requests it receives. These responses can

4Circuit-switched data is usually billed per minute rather than by data volume.
5The Hayes command set is a command language originally developed for the Hayes Smartmodem

300 in 1981.
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2.1. GPRS MODEM CHAPTER 2. IMPLEMENTATION

AT command Description

ATI Display product identification information

AT+CGMI Request manufacturer identification

AT+COPS Operator Selection

ATˆSICI Internet connection information

ATˆSISC Internet service close

ATˆSISR Internet service read data

ATˆSISW Internet service write data

Table 2.1: Examples of AT commands.

either be in the form of strings or numeric values. In most cases the response also ends
with either OK or ERROR.

AT commands include a standard set, characterized by having a ’+’ postfix or none at
all after the initial ’at’, for instance ’at+cops’ and ’ate0’. Furthermore, different vendors
may provide implementations with extended functionality commands. Cinterion6 uses
the ’ˆ’ character to denote their custom commands, for instance in ’atˆsiss’. There
are also commands that accept parameters. See Table 2.1 for a few examples of AT
commands.

Although it would be possible to turn off echo-replies to simplify parsing, it is recom-
mended to have them enabled in order to achieve a truly robust structure where every
echo is verified.

2.1.3 Unsolicited Result Codes

URCs (Unsolicited result codes) are messages sent from the GPRS modem that provide
certain information about the occurrence of an event. In contrast with regular AT replies,
those messages are not immediate results of an AT command and may therefore arrive
unexpectedly at any time. A few examples of URCs are call, SMS and (optionally)
Internet Service related commands7.

The difficulty of handling URCs lies mainly within the parser. Firstly, there are
plenty of different URCs that may arrive. Secondly, one does not know when to expect
a certain URC. A solution would be to provide support for a set of URCs and handle
them specifically. Then, URCs that are not present in this list will be ignored.

Another solution is to turn off the majority of URCs, although it is not possible to
turn off every URC. The benefit would be that they do not need to be handled in the
parser, but instead checks have to be done manually with periodic intervals, e.g. if an
SMS has arrived.

6Cinterion, or its Machine-To-Machine division Gemalto M2M, is a digital security company. Their
products allow vehicle and equipment communication over cellular networks.

7Internet Service URCs can be manually enabled or disabled.
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2.2. MICROCONTROLLER SUMMARY CHAPTER 2. IMPLEMENTATION

Unless somehow handled as special cases directly in the AT parser, the current state
of the MX unit necessitates action from the customer to handle URCs correctly. Received
AT data seemingly not belonging anywhere else is automatically sent to the customer
application’s URC handler function.

2.2 Microcontroller summary

Initially, the MX module was running a PIC24HJ128GP506A microcontroller. At one
point in time, a decision was made to replace it with the superior DSPIC33EP256MU806
model due to an inadequate amount of memory in the former. Both microcontrollers
feature a 16-bit Modified Harvard architecture8 CPU. See section 2.2.9 for further infor-
mation about the PIC upgrade.

2.2.1 Parallel I/O Ports

The majority of the device pins are shared between peripherals and the general purpose
I/O ports. The general purpose I/O ports allow the PIC to monitor as well as control
devices. Many I/O ports are multiplexed with various functions. The multiplexing
depends on the peripheral features and type of device. A pin diagram of dsPIC33E is
illustrated in Figure 2.1.

Every I/O port has four registers which are directly associated with the operations of
respective ports. The four registers are TRISx, PORTx , LATx and ODCx where ’x’ de-
notes the specific I/O port. Furthermore, each I/O pin on the device has a corresponding
bit in the TRIS, PORT and LAT registers.

The TRIS registers are used in order to determine whether each pin associated with
the I/O port is an input or output, e.g. setting the TRIS bit to ’1’ for a specific I/O pin
means that the pin is an input and the other way around. By default, all port pins are
defined as inputs.

To access data on an I/O pin one may perform a read from the PORT register.
Writing to the PORT register writes the data to the port data latch. One should be
careful when performing a read-modify-write operation on the PORT register. A write
to a port implies that the port pins are read, this value is modified and then it is written
to the port data latch. If a read-modify-write operation is done on the PORT registers,
with the associated I/O pins set as input, and then at a later stage changed to output,
an unexpected value may be output on the I/O pin.

The advantage of using the LAT registers associated with I/O pins is to avoid the
issues that may occur when performing read-modify-write instructions. This is because
a read from the LAT registers returns the values in the port output latches rather than
the actual values on the I/O pins. Hence, read-modify-write operations on the LAT
registers eliminate the possibility of writing the input pin values into the port latches.
The LAT registers behave in the same way as PORT registers when it comes to writes.

8The Modified Harvard architecture is a derivative of the Harvard computer architecture, which allows
access to the instruction memory as if it were data.
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2.2. MICROCONTROLLER SUMMARY CHAPTER 2. IMPLEMENTATION

The ODC registers are used for data control purposes. Every port pin can be indi-
vidually configured for digital or open-drain output.

Furthermore, there are ANSELx registers controlling the operation type of port pins
that may be used as analog instead of digital. According to the datasheet the default
value of the ANSELx register is 0xFFFF, meaning that all pins that share analog func-
tions are analog by default [8].

Figure 2.1: Pin diagram of dsPIC33E [8].

2.2.2 Peripheral pin select

In order to independently map the input/output of digital peripherals to digital I/O
pins, the Peripheral Pin Select configuration feature should be applied. There is a fixed
subset of digital I/O pins available for this purpose. The Peripheral Pin Select is done

9
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in software.
The actual amount of available pins depends on the particular device and its pin

count. Pins that support this feature are named ”RPn”, where ”RP” means remappable
peripheral and ’n’ is the number of the remappable pin.

In the MX mini configuration, the GPS communicates via UART1, the modem via
UART2 and the SD-card via SPI. CAN could be used for various purposes such as
communication with other computers and peripherals within the vehicle, but also for
dealing with vehicle data via the CAN bus, for example velocity, revolution numbers
and error codes. The mentioned interfaces were mapped to remappable pins according
to Peripheral Pin Select configuration. See Figure 2.2 for an illustration of the mapping.

Figure 2.2: Example of remappable input for UART1 Receive [8].

2.2.3 UART

The Universal Asynchronous Receiver Transmitter (UART) is full-duplex, asynchronous
communication channel9 that is used for communication with peripheral devices [8].
Various communication protocols are supported by the UART, e.g. RS-232 is used for
communication with the modem. Figure 2.3 demonstrates a simple overview over the
communication between the modem and the PIC, using UART.

9In asynchronous communication, a start signal is sent before each block of data and a stop signal
denotes the end of data.
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Figure 2.3: Modem UART communication.

2.2.4 SPI

Serial Peripheral Interface is a synchronous serial data link10, that operates in full duplex
mode. SPI is useful for communication with other peripheral or microcontroller devices.
The peripherals may for example be EEPROMs, display drivers, sensors and SD cards [8].

2.2.5 CAN

The dsPIC33E supports Enhanced Controller Area Network (ECAN), that implements
the CAN specification 2.0B [8]. This implementation is used mainly in industrial and
automotive applications. Benefits of this asynchronous serial data communication proto-
col include reliable communications in an electrically noisy environment. See Figure 2.4
for an illustration of a CAN bus network.

2.2.6 Digital and Analog I/O

Contrary to analog transducers sensing continuous variables such as temperature and
pressure, many transducers provide an output of two different states; high or low. This
could for example be useful if the temperature gets too high or the pressure reaches
below a level. The digital and analog I/O are connected to the MX unit via a 12-pin
connector, as exhibited in Appendix C.

Due to the binary language of computers, digital (discrete) signals of inputs and
outputs are much easier for the microprocessor to deal with in contrast to analog signals
where an analog-to-digital converter is needed in order to be able to interpret the signals.

Digital I/O

Digital Inputs allow the microcontroller to detect logical states while digital outputs
allow output of logical states. A digital input compares the voltage level to a certain
threshold. If the voltage is above the threshold, the computer will interpret the digital
input as ’1’ or high. On the other hand, if the voltage is below the threshold, the digital

10In synchronous serial communication, data is sent in a continuous stream at constant rate. A clock
is required and the transmitting and receiving devices have to be synchronized, using the same rate.
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Figure 2.4: Example of a CAN bus network [9].

input is set as ’0’ or low. When it comes to digital outputs, one is able to control the
voltage of the pin. Assigning a high value to a pin will produce a certain voltage to it,
while setting it to low implies connecting it to zero volt ground value.

Analog I/O

As computers only speak binary language consisting of ones and zeroes, interpreting
analog signals is a bit more complicated than digital such. However, manufacturing
processes and natural phenomena tend to vary gradually over time, rather than alter-
nating between two distinct states. Hence, such analog signals have to be translated into
a digital representation. The smooth continuous values must be converted to discrete
numbers, which is done by the Analog-to-digital converter. Essentially, the conversation
involves quantization11 of the input, implying that a small amount of errors unavoidably
will be introduced. The input is then sampled and the result is a sequence of digital
values. Having a sufficiently high sample rate is important in order to avoid errors such
as aliasing. The PIC processor features a built-in A/D converter able to measure the
input voltage on any analog input pins. More information about ADC can be found in
the ADC section of the DSPIC33E datasheet [10].

11Quantization is mainly applied in mathematics and digital signal processing. It involves a process
of mapping a large set of values into a smaller set.
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2.2.7 Baud rate

Baud rates are used to measure the transmission speed in asynchronous communications.
Units sharing a bus must agree on the same speed of information, i.e. symbols per second.
Otherwise communication will become jittery, or more likely, completely dysfunctional.
Typically, a device will function either with a set baud rate or be configurable within a
certain range. To exemplify, the outgoing debug port has been used with a configured
rate of 115200 baud, while the incoming data from the GPS UART is read at a rate of
9600 baud.

2.2.8 Interrupts

Several functions in the code body of the microcontroller are dependent on interrupts.
Hereafter follow descriptions of a few such.

Timed interrupts

There is a timed interrupt function which is called every 10ms. This serves to increment
an internal clock value used in a number of locations, and cascades onto a 100ms subrou-
tine every tenth iteration, which in its turn cascades onto a 1000ms subroutine. These
subroutines periodically toggle LEDs and instruct the main program flow to perform
certain peripheral data acquisition tasks. If there are subscriptions to the gathered data,
outgoing TCP packets may be queued here. Clock cycle heavy tasks such as actually
sending TCP packets are not performed within timed interrupt routines.

UART interrupts

The UARTs generate interrupts upon transmitting and receiving data [8]. These can be
configured to trigger in a variety of ways by setting the corresponding bits in the UxSTA
(UART x Status and Control register) registers accordingly, see Figure 2.5.

While polling12 for UART data is possible, facilitating interrupts and performing
reads within interrupt handlers helps to simplify the code somewhat, and per extension,
improve performance.

Trap interrupts

A trap interrupt is triggered as the cause of an exception or fault such as a division by
zero, invalid memory address access attempt or stack related issues. In such an event,
a specific interrupt bit is set and the corresponding trap handler is called. An example
of a trap handler is illustrated in Figure 2.6. Notice that the last line of the function
runs an endless loop, causing the watchdog13 to kick in, which results in a reboot of the
device after a certain amount of time.

12Polling means continuously checking if the device is ready, at which point it is accessed. Often used
synonymously with busy-waiting.

13A watchdog is a built-in feature running in parallel with other code that may react to special
circumstances.
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Figure 2.5: UARTx Status and Control Register [8].

Figure 2.6: Interrupt handler of address error.

2.2.9 Microcontroller upgrade

Throughout the project, observations were made about the initial microcontroller being
inadequate for the new implementation. In particular, stack errors were encountered as
a consequence of an insufficient amount of RAM. There was a need for a microcontroller
with larger amounts of memory, and for this we consulted our workplace supervisor.
We found the DSPIC33EP256MU806 to be a fitting match given the fairly similar pin
setup in combination with superior RAM and Flash memory. Obviously, upgrading to a
superior microcontroller comes with a price. See section 4.1 for an elaboration regarding
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PIC24HJ128GP506A dsPIC33EP256MU806

Architecture 16-bit 16-bit

CPU Speed (MIPS) 40 70

Memory Type Flash Flash

Program Memory (kB) 128 256

RAM Bytes 8192 28,672

Internal Oscillator 7.37MHz, 32.768 kHz 7.37MHz, 32.768 kHz

I/O Pins 53 51

Pin Count 64 64

Communication Peripherals 2 UART, 2 SPI, 2 I2C 4 UART, 4 SPI, 2 I2C

CAN 1 2

Table 2.2: specification comparison between PIC24HJ128GP506A and
dsPIC33EP256MU806.

costs of components.
Upgrading the microcontroller implied effort in terms of porting the old code. The

I/O pins had to be remapped and the communication interfaces such as UART had to
be set up accordingly. The boot sector, oscillator and baud rates had to be checked
over. Furthermore, the TRIS and ANSEL bits needed to be re-configured. Port pins
functioning as analog inputs must have their corresponding ANSEL and TRIS bits set.
In order to use port pins for digital I/O functionality, the corresponding ANSEL bit has
to be cleared, according to the datasheet of DSPIC33EP256MU806. See Table 2.2 for a
specification comparison between the two microcontrollers.

2.3 PIC-communication

The PIC controller can communicate through different channels. The internal commu-
nication can preferably be done via UART and SPI as well as programmable I/O pins.
The PIC is, for example, communicating with the modem via a UART port. This UART
interface is also the PIC’s primary channel to outside communications via the modem’s
capabilities.

The TC65i modem has an embedded TCP/IP stack that is driven by AT commands
and enables the host application to easily access the Internet. The advantage of this
solution is that the system engineers do not have to implement their own TCP/IP and
PPP stacks. The modem has support for usage as a TCP socket client/server, UDP
client, FTP client, HTTP client, SMTP client and POP3 client.

There are basically two strategies for using Internet Services AT commands, URC
mode or polling mode.
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In URC mode the progress of an Internet session is URC driven. This means that
URCs notify whether data can be sent or received, when the transfer is finished or when
the service can be closed. If an error occurs it will be reported as well. The benefits of
this method are that the PIC does not need to continually poll the service until a result
has appeared.

Polling mode, on the other hand, disables the URCs related to Internet Services. The
responsibility of checking status information and errors lies on the host. The host has to
send a sequence of commands periodically in order to poll for newly arrived information.
The benefit of this approach is to get better control of what is happening. One may for
instance assume that there is no need to check for data or errors more often than e.g. a
few times per minute during times when no data is sent from the PIC, and hence can
plan to do other tasks during this time. This also reduces workload when it comes to
specifying possible URCs and the PIC’s responses to them.

Other ways of communication include calling or sending SMS with the modem as
receiver.

2.4 Setting up TCP/IP connection

Initially one has to decide which mode to use, URC or polling. The next step is to create
a GPRS connection profile with the AT-command at^sics. The command takes various
parameters to set e.g. the type of connection. When a connection profile has been set,
proceed to to set up a service profile using the command at^siss. This profile is based on
one of the previously defined connection profiles. Once the profiles are set, a connection
can be established with at^siso. In URC mode, the ^SISW and ^SISR indicate that the
service is ready to receive or send data. Afterwards the data can be read or written with
ˆsisw or atˆsisr. In polling mode one may have to run at^sisw (receive) or at^sisr

(send) repeated times until a confirmation message has been received. A flow chart is
exhibited in Figure 2.7, where parts of the of the procedure is demonstrated.

During a TCP connection, the information retrieved from SISR and SISW commands
is useful for tracking the connection’s status. They return the number of bytes that can
be read or written, respectively - and a return value of -2 indicates that the connection
has been terminated in one way or another. Continuous reads and writes thus provide
a solid basis for real-time connection status information.
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Figure 2.7: Socket Listener TCP Initialization [11].
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2.5 The MX protocol

2.5.1 Protocol overview

The protocol that has been used by default in the communication between MX units
and other endpoints such as servers is a proprietary protocol called the MX protocol.

All in all, the premises are quite simple. The protocol includes a short fixed size
header with a length indicator, see Table 2.3, and a variable size data payload.

A MX unit receiving packets will then be able to respond properly according to the
given parameters. Available commands are:

• Read - Perform a single read of the requested information.

• Write - Perform a single write to the specified target.

• Function call - Call the specified function.

• Subscribe - Inform that you want unsolicited information of this type to be sent
from now on.

• Unsubscribe - Stop subscribing to an event type.

• Event - The unsolicited packet type subscriptions return.

• Error - Informs about failed commands.

It should be noted that all of these, except Event and Error, also have a corresponding
Reply type that is used to return the status of each operation. For example, performing
a successful CMD_WRITE will return a CMD_WRITE_REPLY packet.

Name Length (bytes) Description

LOM 2 Length of message including complete
header and body. Big-endian format is
used.

FLAGS/SEQ 1 FLAGS (4 high bits) are reserved. SEQ
(4 low bits) represent an incremented se-
quence number, wrapping back to 0 after
15.

SRC 1 Source of packet.

DST 1 Destination of packet.

CRC 1 A checksum that is calculated by adding
all bytes in the message (including LOM,
excluding CRC). This sum, modulo 256,
is the CRC. A sending node generates the
CRC which is then verified by the receiver.

Table 2.3: MX protocol header description.
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The message bodies vary for each command, and may stretch from zero bytes to the
maximum packet size allowed by the implementation. The default value is 256 bytes
but the two byte LOM field allows for a size up to 64 kilobytes, provided that the TCP
and AT layers are also configured to handle this. In practice, with the RAM of the PIC
limited to a few ten kilobytes to be shared by all of the code, the actual packet size limit
lands in the order of a few kilobytes. On the other hand, very few MX commands ever
require a message size of more than 256 bytes. An example of a command requiring
quite some data is the Micro Code Over The Air command - but this is handled by
splitting up the data into multiple individual MX packets. Table 2.4 displays a list of
all of the possible endpoints commands may be received from or sent to.

Do note that while many endpoints are defined, not all actions are applicable on all
destinations - one may for example not perform a write to the CAN module, or subscribe
to PIC information.

Function name Identifier Description Comment

FUNC APPLICATION 0x01 TC65i application DEPRECATED

FUNC PIC 0x02 PIC controller Read, write

FUNC CAN 0x03 CAN interface Read,
(un)subscribe,
function

FUNC GPIO 0x04 Input, output, tempera-
ture reading

Read, write,
(un)subscribe

FUNC ANALOG 0x05 Input voltage and PB
battery voltage

Read,
(un)subscribe

FUNC GPS 0x06 GPS interface Read,
(un)subscribe

FUNC MEMORY 0x07 SD-card Read, write, func-
tion

FUNC TILT 0x08 Accelerometer Read,
(un)subscribe

FUNC AT 0x09 AT communication Communication
between the PIC
and the modem.

0x0A-0xFF Reserved

Table 2.4: MX protocol endpoints.
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2.5.2 Projected changes

Previously, with the application residing in the modem, MX packets were necessary to
propagate data from the PIC and peripherals to the application in the modem. With
the new architecture, the data can instead be directly delivered to the application in the
microcontroller. Thus, the FUNC_APPLICATION endpoint becomes obsolete. On the other
hand, as the external server gains access to commands and receives various types of data
from the MX unit, it might be reasonable to make use of this and add a FUNC_EXTERNAL

endpoint to denote that type of communication.

2.6 System architecture

A top level view of an architecture featuring a server is displayed in Figure 2.8. A server
will typically be preconfigured to send subscriptions to the relevant types of data flows,
likely at least GPS data. The MX units in vehicles gather the data and send it to the
server. Users may then view the data in a frontend. A PHP frontend plotting routes
based on GPS data from the old MX-3 units using the Google Maps API14 is displayed
in Figure 2.9.

Figure 2.8: Information flow chart.

2.6.1 The test server

It makes sense to have a multifaceted server to display to a customer rather than a
simplistic one. To the list of goals to be met belong sufficient performance and robustness

14Google provides an interface where coordinates may be graphically displayed on a map view.

20



2.6. SYSTEM ARCHITECTURE CHAPTER 2. IMPLEMENTATION

Figure 2.9: A trip plotted on a PHP frontend.

to handle thousands of concurrent connections proficiently as well as demonstrating
functionality of the currently existing features in the MX API.

While the protocol to be used for the interaction on top of the TCP/IP stack will
vary from customer to customer, it is likely that many will choose the MX protocol or
something closely related. The test server is shipped with a default implementation of
the MX protocol.

The choice of programming language for the server included a number of different
possibilities. As it is expected that customers’ needs will vary, it is out of scope for
this project to create a one-size-fits-all server. Rather, heed was be taken to portability,
scalability and ease of setting it up. Some important differences between a select few
language possibilities we chose from are as follows:

• C: Efficient and eases up MX protocol usage since the counterpart in the MX Mini
unit is already implemented in C.

• Java: Highly portable with easily modifiable functionality. (Our choice)

• Python: Easy to get working fast on a small scale.

Due to Java’s portability and our familiarity with socket programming in the lan-
guage, this was our language of choice. It should be noted that while using C would
have freed up resources from having to implement and maintain the MX protocol in a
separate language, it might be appreciated by some customers to have multiple versions
readily available. It is not infeasible to imagine releasing several versions in the future
from which a customer may choose a version in their preferred language.

Furthermore, a database shall be used in connection with the server. This eases up
extensive testing of units both on the customer and the developer side, and also enables
for connecting a PHP frontend where results (e.g. trips) can neatly be displayed in a
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browser. Presently, the environment is setup to use PostgreSQL15. Java provides a driver
for easy interfacing with PostgreSQL database handling.

2.6.2 Design overview

With the customer application no longer being handled by the modem, planning the
code architecture inevitably becomes more challenging. Not only must the PIC be able
to handle the built-in customer application and external (TCP) commands, the bus
through which AT communication with the modem is handled is the very same we have
to use to read in TCP packets to the PIC.

The program flow can roughly be divided into three parts: The main loop, the
customer application loop, and interrupt routines. No true parallelism is used, so in
practice the customer application code is explicitly called within every iteration of the
main loop. An interrupt function is entered every 10ms, and cascades to 100ms and
1000ms functions respectively. While placing heavy functions within the timed interrupt
routines is a poor idea due to possible program flow obstruction, these perform well for
periodical lightweight data reads from peripherals and setting flags for timed events to
be handled within the main flow.

Customer application

A user-friendly interface is provided, making it straightforward for the customer to spec-
ify what is done in the customer application. The interface provides features such as
server port and IP address configuration, periodic task setup, peripheral data subscrip-
tions and enabling or disabling the GPRS functionality.

AT parsing

Parsing the AT communication is essential to make the system function as a whole.
The parser interprets incoming messages, forwards them to buffers read by the user
application and provides an interface for sending AT commands. The send commands
can be blocking or non-blocking16, and nonblocking such may include a pointer to a
callback function to handle the expected data. To exemplify, it may be prudent to send
a SISI AT command with a callback function that then parses out and handles the
presently interesting parts of connection status information. See Figure 2.10 for a flow
chart of how the AT parsing is done.

The parser presents to the outside a status that needs to be checked before AT
commands are sent, and that may be used to view the status of the last request if it
finished. at_check_status() returning AT_STATUS_READY implies that data can be sent,
AT_STATUS_SENDING or AT_STATUS_PENDING imply commands currently being processed.
Reading AT_STATUS_OK or AT_STATUS_ERR reveals that the last command has finished

15PostgreSQL is a widely used open source database.
16A blocking request will halt the program flow until the request is served, whereas non-blocking

requests may be handled asynchronously.
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Figure 2.10: AT parser flow chart.
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executing, and the status read also resets the flag to AT_STATUS_READY. Thus, continuous
checking of an if (at_check_status() == AT_STATUS_OK) will silently discard OK or
ERROR, which may be preferable in some cases.

A function that is continuously called from the main loop reads available bytes, if
any, from the modem bus and places them into a designated buffer. Upon reaching a
carriage return indicating the end of a single AT line or having read an explicitly stated
amount of TCP bytes, the data is parsed. TCP data is sent directly to the application’s
protocol handler (using the MX protocol by default), while AT lines have a number of
possible cases:

Echoes from sent AT commands are silently discarded. OK or ERROR indicate that
the command is finished, and change the status of the parser to AT_STATUS_OK or
AT_STATUS_ERR. If there is a pending command and a callback function was given,
send all data in between the echo and OK/ERROR to the callback. If data is received
with no command presently pending, it is treated as an URC and sent to the customer
application’s URC handler.

Evidently, not all commands may behave as expected. The send commands must
thus always include a timeout value. A command is treated as finished either upon
receiving an OK or ERROR from the modem, or if its timer runs out. Furthermore,
while data is continuously read from the modem, sending AT commands necessitates
that the application first makes sure the parser indicates it is in an AT_STATUS_READY

state.

Callbacks

The basic premise is that supporting all possible cases of responses within the AT parser
would be infeasible due to the multitudes of possible such. It may even be impossible due
to dynamic responses, and it is bad practice to assume that only a subset of functions
will be used. Because of this, it makes sense to instead make the function call dynamic.
A caller of at_send_command_callback can include any correctly typed function to be
called later when data perceived to belong to the sent AT command is received.

Protocol handler

Besides having a functional TCP layer, there needs to be a specified protocol through
which the application may communicate with external units. Presently, the system is
based on the aforementioned MX protocol. This protocol, however, stands separated
from the other code. The handler works on top of the tcpsock functionality using its
interface to send data as arbitrary byte sequences, abstracting the protocol from the
underlying functionality. Thus replacing the protocol would be a straightforward process
- merely making sure the protocol handler can correctly parse out information from
the raw data the TCP layer hands to it and react to it accordingly. Of course, the
correspondent needs to be using the same protocol. There is no inherent support for
using multiple protocols simultaneously, but this could be achieved either within a large,
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dynamic protocol handler or a ’routing’ function of sorts, identifying protocol types and
sending data to the correct individual protocol handlers.

NMEA protocol

The GPS receiver is one of the most central components in the MX module. NMEA
(National Marine Electronics Association) is the protocol which the GPS communicates
over [12]. Every message consists of a maximum of 80 characters, not including line
terminators. The message begins with a ’$’ and ends with a line feed. The data is
contained in a single line and every data item is separated by commas. The amount
of data items may vary in each message, e.g. if data is unavailable the corresponding
field remains blank. Hence, one should determine the field boundaries based on commas
rather than character position. The asterisk is followed by a checksum consisting of a
two-digit hexadecimal number. The checksum is calculated through bitwise exclusive
OR operation over the ASCII codes of all characters between the dollar ($) and asterisk
(*) character. The checksum is optional for most data messages although there are cases
where it is compulsory, e.g. RMA and RMB.

An example of an NMEA message would look like:

$GPGGA,161229.487,3723.2475,N,12158.3416,W,1,07,1.0,9.0,M, , , ,0000*18

where GPGGA means Global Positioning System Fix Data. The second field holds
a timestamp, third field the latitude, fourth field the longitude and so on.

2.6.3 Internet connectivity

Choice between TCP / UDP

The basic characteristics of TCP and UDP are clear; the connection-oriented17 TCP
offers a more reliable delivery but at the cost of larger overhead, especially for data
traffic consisting of many small-sized packets. Let us have a look at what the protocols
have to offer in the context of this project.

TCP is easy to set up in both directions - with a known endpoint (i.e. a server to
which the MX unit sends its data), the unit can simply open a TCP connection to it
and have access to full-duplex18 communication. If connection problems arise, it is easy
to notice errors from the TCP layer.

UDP provides simple transportation with considerably less overhead. The MX units’
movement may prove to be troublesome when it comes to dynamic IP addressing19,
though, as the server communicating with the MX unit cannot ascertain that it knows

17In contrast to a connectionless protocol where messages are handled individually, establishes sessions
where sequences of messages can be sent.

18Data can freely flow in both directions simultaneously. In half-duplex communication, only one
direction can be active at a time.

19Instead of having one statically assigned IP address, the address may change based on geography
and timing.

25



2.7. POWER SAVING MODES CHAPTER 2. IMPLEMENTATION

the current IP address, making only MX to server communication stable. Furthermore,
UDP connectivity issues are harder to track as there are no built-in ACKs.

It should be noted that regardless of the choice, the MX protocol will have its own
ACK system in place on the application layer. However, the customer is free to use any
protocol, and thus UDP use would require such an implementation for the given upper
layer protocol. Thus, TCP is our favoured option here.

TCP send queue & Packet acknowledgements

Every time a peripheral wants to send data to the server, e.g. GPS sending position co-
ordinates, an MX packed is created, which is enqueued in a circular buffer. The elements
in the queue are fetched periodically. In order to ensure that a packet has arrived at its
destination, there is a desire to apply acknowledgements. Note that the implementation
uses the TCP protocol when sending and receiving data, where acknowledgements are
already used. However, it was desirable to customize various parameters such as timeout
and number of resends, hence these features were re-implemented.

When a packet is sent, a timer is started. If an ACK is received before the timer
expires, the next enqueued packet will be sent. On the other hand, if no ACK has arrived
when the timer ends, a re-transmit will be performed. In the scenario of the maximum
number of re-transmissions has been reached, the packet will be discarded, and the next
packet in the queue is going to be sent, if there is any. An ACK includes the acked
packet’s sequence number and a CRC. This combination should be sufficient to uniquely
identify a packet.

The downside of this so called ”ping pong approach” may imply low throughput of
data. Another approach would be to asynchronously send packets one after another and
keep track of incoming ACKs for every packet sent, similar to how TCP is implemented.
Such an implementation would provide speed, but this will not be a bottleneck in our
system as the volume of the data traffic will be minimal.

2.7 Power saving modes

There are several ways to reduce power consumption on the PIC, as explained in further
detail in the datasheet [13].

It is possible to reduce the system clock frequency, statically or dynamically and
achieve savings roughly proportional to the frequency decrease. This may, especially
within the field of telematics, not be so useful due to the problems this introduces with
avoiding peripheral communication errors due to baud rate discrepancies.

Perhaps more interestingly, the PIC can be put to sleep through the use of simple
instructions. Using the PWRSAV #SLEEP_MODE and PWRSAV #IDLE_MODE assembly com-
mands will make the PIC enter Sleep and Idle mode, respectively. Sleep mode disables
both the system clock source and all peripherals operating on it, effectively making it
the lowest power mode available. Idle mode disables the PIC’s CPU but leaves the
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system clock source on. In idle mode, all peripheral modules are on by default but can
optionally be disabled.

There is also Doze mode, which means reducing the CPU and Flash memory clock
rate while retaining the system clock frequency for peripherals. Doze mode is set through
manipulating the CLKDIV register:

• CLKDIV<11> is the DOZEN, i.e. Doze Enable bit.

• CLKDIV<14:12> are also known as the DOZE<2:0> bits, and decide the ratio
between the clock speeds. The eight possibilities represent ratios of 1:1 to 1:128.

• CLKDIV<15> is the Recover On Interrupt bit. As opposed to default behav-
ior where interrupts do not affect Doze mode, setting this bit and receiving any
interrupt makes the CPU clock resume normal operation speed.

There are also the PMD (Peripheral Module Disable) bits, allowing for peripheral mod-
ules such as SPIs and UARTs to be deprived of all power and clock input.

2.8 Robustness

2.8.1 Hardware

Obviously, robustness is crucial in such a system. The unit does not operate with any
redundant units, which implies that a hardware collapse will most likely result in a failure
of service delivery. A remedy would be to connect several identical units via the CAN bus
and continuously verify that the master unit is still functioning, if not, the malfunctioning
unit will simply be replaced by one of the other units. There are several known solutions
that could be applied if availability is of high concern, clustering being the most common.
Depending on requirements, there are alternatives including cold standby, warm standby,
hot standby and TMR (Triple Modular Redundancy) configurations. In his book, Storey
discusses considerations about obtaining high availability in a system [14].

Evidently, having such a redundant setup would raise the price of the entire product.
One has to assess the risk of failure, compare it to the price and then determine if it
is worth the cost. Consequently, the trade-off between availability and cost has to be
taken into account.

2.8.2 Software

While hardware robustness is of some concern, in this context the software is arguably the
most vital part. It would not be acceptable for the code to end up stuck in an infinite loop.
To prevent that from happening, there is a watchdog interrupt handler that performs
a reboot if the program gets stuck in a place for too long. Another important task is
to keep the TCP connection up and reconnect in case of a lost connection, for example
due to a server going down or a mobile unit having poor connectivity in the current
location. Furthermore, in order to ensure that a correct packet arrives at its correct
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destination mechanisms such as acknowledgements, source- and destination fields and
error codes are applied. As every packet is sent or received, a CRC is calculated based on
the header fields and payload to ensure that the packet is not corrupt. Upon discovering
multiple subsequent CRC errors, the software clears the modem’s TCP buffer. Were
this to happen multiple times, the modem is rebooted following the assumption that an
internal error has occurred.

2.8.3 Debugging

When it comes to programming in general, debugging the code has always been a central
ongoing process. Debugging is needed in order to help determine the reason of an error.

During the startup period of the project the buzzer and LEDs were utilized as simple
debug tools. A LED lighting up could be used to indicate that the code flow was working
as expected. However, this approach is hardly verbose enough for effectively debugging
large systems.

A more convenient debugger is the built-in debugger in the MPLAB IDE. In order to
run the debug mode in MPLAB, small modifications had to be made to the hardware.
In practical terms, a capacitor had to be removed from the board. By using the debug
mode in MPLAB one could e.g. set breakpoints, step into code and check values of
variables. Sadly, the downside of the debugger was that it would occasionally provide
ambiguous results. Hence, there was a desire for an additional debugging tool.

In the next approach one of the UART TX registers was facilitated, exhibited in
Figure 2.11. A RS232 - USB adapter was used to read output from the PIC UART
on a PC, see Figure 2.12. By doing this, it was made possible for us to use a terminal
emulator supporting serial port connections, e.g. HyperTerminal or Tera Term to output
data directly from the microcontroller. A logger was created which made it possible to
debug the code using prints - a major aid indeed. For an example of how the debugging
prints could look like, see Figure 2.13.

2.9 Peripheral testing

While certain features such as motion triggered sleeps and alarms have not been feasible
to test within the confines of our workspace, peripherals have been tested to the extent
permitted by the equipment at hand. Tera Term has been used to display values the
PIC receives directly, and having passed the first checks the test server was modified
to subscribe to the various functions to verify their correctness over time. Below follow
accounts of the various tests performed.

2.9.1 GPS

The GPS module was tested by simply checking the incoming values from the pin as-
signed to GPS to the PIC. While initial tests displayed a valid incoming timestamp,
the module reported a zeroed out location. An external antenna was connected to the
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Figure 2.11: UART1 TX (black wire) connected to a RS232 serial cable.

Figure 2.12: A demonstration of the serial-USB adapter debugging setup.
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Figure 2.13: Debugging output from Tera Term.

GPS, whereafter the reported latitude and longitude corresponded to the location of the
workplace.

2.9.2 Digital I/O

Digital I/O was tested using a multimeter and an adaptable power supply as aids. In
this context, observed values of 5V or higher represent a logical one and lower values
a zero. For the input, the adaptable power supply was connected to a digital input
pin and set to output a voltage of 20V. During the testing, it was soon discovered that
the application would display a steady zero. Software inspection revealed no errors. It
was observed through the use of an oscilloscope that the incoming signal was not only
distorted but also as low as in the range of millivolts rather than the expected 20V,
leading to the discovery of faulty soldering in the MX test unit. Having repaired this,
the application consistently reported correct logical input values corresponding to the
manually alternately enabled and disabled input voltage.

Output was tested by connecting a multimeter to a digital output pin and a reference
ground from the MX unit’s power supply. The tests consistently displayed a near-zero
voltage from logical zero output and 20V from logical one, implying correct functionality.

2.9.3 Analog I/O

A 100Ω resistor is situated at every analog input. This is where the voltage is measured
by the ADC and represents the input current of the analog input port. Furthermore,
the components of the board scale down the input voltage, ensuring a value that can be
measured by the 12-bit ADC (A/D Converter) within the interval of 0V and the reference
voltage (Vref ). The reference voltage of the MX-3 unit is 2.5V, hence the maximum value
that the ADC can convert. The voltage range is divided into 4096 values (i.e. 12 bits)
where each value is given by Vref/4096. In this particular case, with a voltage reference
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of 2.5V, each value is 2.5V/4096 = 0.6 mV. This is the resolution of the ADC, meaning
the smallest voltage change that can be measured by the ADC. Any input voltage below
0.6mV will be converted to 0. Voltage values between 0.6mV and 1.2mV results in a 1
as output. Effectively, values between 1.2mV and 1.8mV result in a 2 and so on.

Tests of the analog input included voltage measurement of the power source and
current measurement of an external adaptable power supply. Additionally, the voltage
of the Li-ion battery was measured.

2.10 Security concerns

While care has been taken throughout the project when it comes to maintaining high
code quality, fully securing the system from malicious attackers remains outside the
scope of this project. Still, even a brief overview reveals multiple interesting attack
vectors worth mentioning.

2.10.1 Physical access

The MX unit provides multiple auxiliary physical interfaces in forms of UARTs, SPIs
and USB. While their usage is highly dependent on the customer application handling
these respective input sources, an attacker with physical access could potentially be able
to mount a stealth attack using any of these.

2.10.2 TCP/IP

The default implementation uses the TCP/IP stack of the modem as is, without any
additional security layer used. The PIC connects to an address set in the custom ap-
plication code, and keeps communicating using TCP. Security is limited to what GPRS
in itself can offer. Furthermore, it cannot be guaranteed that the PIC is speaking with
the intended recipient as an attacker may be spoofing her IP address and acting as
the endpoint, or performing a MITM (Man-In-The-Middle) attack20. All of this could
potentially be remedied by applying a public key cryptography scheme21.

2.10.3 SMS/RING

Customer applications can choose to offer functionality through calling the modem, or
sending an SMS to it. Presently, no checks are in place for validating the initiator of such
communications. It might be prudent to ascertain that only specific, known numbers
are able to perform actions in these ways. Looking into the possibilities of spoofing these
types of communication remains outside the scope of this project.

20When an adversary is able to intercept and potentially modify information flowing between legitimate
participants.

21A commonly used, strong form of cryptography that does not require secret keys to be shared
beforehand.
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2.10.4 Implications

Assuming an attacker gets through and manages to send malformed TCP data the PIC
accepts, what is the potential impact? The first thing to watch out for is presuming data
is valid. Not doing this can easily result in unpredictable behavior. It has been our aim
to always validate data and discard malformed such - not only is this necessary from a
security point of view, but also protects from erroneous input sent by malfunctioning soft-
or hardware. Furthermore, bound checking needs to be performed in all places handling
data derived from user input. Failure to do this may end up in buffer overflows22, which
have the potential of revealing data or denying service by making the processor crash.

22A security flaw where supposedly protected memory locations may be overwritten.
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Results

3.1 Architecture

The entirety of the custom user application has been removed from the GPRS modem and
instead incorporated in the microcontroller. The previously used PIC24 microcontroller
has been replaced with a more powerful dsPIC33 variant. While the actual modem in
use remains the same, everything is set up for a smooth transfer to a more economically
viable alternative. Peripherals in the form of UART modules, digital and analog I/O
have been tested and confirmed to work within a controlled, stationary environment.

The new architecture brings with itself a welcome improvement in the form of reduced
code size. The modem now carries with it no Java code at all, and the code interfacing
to the peripherals that now lies in the microcontroller is smaller in size thanks to its
now closer proximity to the hardware and the inherently more compact nature of the C
language.

Sleep modes have not been used throughout this project, but we acknowledge their
existence in the forms described in section 2.7 and would like to emphasize their impor-
tance in the future.

3.2 Cost efficiency

The two significant factors when it comes to cost are expectedly the PIC and the modem.
The price largely depends on the size of the order, i.e. buying a quantity of one thousand
microcontrollers yields a great cut of the price per unit. Therefore, the prices listed in
this chapter are based on a standard order size consisting of between 200 and 500 units.
Also, the cost of the components will most likely differ over time, hence the listings in
this chapter will only reflect the current (2014) prices on the market. When it comes to
modems there are several alternatives to choose from, however, in this section only two
of them recommended by our workplace supervisor are considered.
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Microcontroller Price per unit Price difference

PIC24HJ128506A-I/PT 4.40$ - -

DSPIC33EP256MU806-I/PT 5.73$ +1.33$ +30.2%

Table 3.1: Microcontroller price comparison.

Modem Price per unit Price difference

TC65 39.78$ - -

BGS2 20.75$ -19.03$ -47.8%

M72 14.29$ -25.49$ -64.1%

Table 3.2: Modem price comparison.

Referring to Table 3.1, upgrading the microcontroller resulted in an increased cost of
1.33$. The change of modem would, assuming the TC65 is replaced by a BGS2 from the
same manufacturer, decrease that particular cost by 19.03$. There are also possibilities
to change manufacturer from Cinterion to Quectel, replacing the modem with a M72
and resulting in a decreased cost of 25.49$. See Table 3.2 for modem pricings.

Let us assume that the final product makes use of the superior microcontroller
DSPIC33EP256MU806 in conjunction with the cheapest alternative of modem explored,
i.e. Quactel M72. These changes would, all in all, sum up to a 24.16$ save per MX unit.
With a total cost of around 300$ for a MX-3 unit depending on the exact model, the
MX Mini unit would be roughly eight per cent cheaper.

3.3 Physical characteristics

As the MX unit as a whole is delimited by its protective case, the hardware changes we
have made will not impact its dimensions.

The TC65i modem weighs in at 7.5 grams, while the two modem alternatives explored
both weigh just over 4 grams. The microcontrollers themselves have negligible weight
difference, and indeed, weight altogether. Considering the MX unit’s total weight of
280 grams, this roughly one percent change from the three grams’ difference is rather
miniscule.

3.4 Component power consumption

The currently used modem, TC65i [15], consumes 1.5mA in GPRS sleep mode while the
M72 [16] and BGS2 [17] modems consume 1.2mA respectively. Changing the modem
to one of the latter would therefore decrease the power consumption by 20% in sleep
mode. Furthermore, with the new master-slave architecture, the issue about synchro-
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nizing sleeps and wake-ups between the two processors has vanished. This would imply
that the overall power consumption of the unit can be decreased even further. However,
due to a limited time frame, no measurements have been done regarding the difference
in sleep modes.

The microcontroller DSPIC33EP256MU806 will be run at the same clock frequency
as the previously used PIC and will therefore not affect the power consumption.

3.5 Limitations

3.5.1 Testing the equipment

While testing has been performed throughout the development process, it has been quite
limited in scope. There is still a need to perform lengthy testing of the system. Not only
need the single modules be checked for errors, the system in its entirety must be made
certain to perform efficiently and robustly in a real world environment (vehicular use).

3.5.2 Change of modem

At the time of writing, the TC65i modem used in the previous MX-3 model remains
in the MX Mini prototype. Alternatives have not been explored in practice due to
time limitations. Thus, a change may facilitate unforeseen difficulties. That being said,
changing to a modem from some other manufacturer than Cinterion/Gemalto will most
likely end up with more work as the set of AT-commands differ between manufacturers.
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Conclusions

Upon the closure of this project, we have acquired an architecture and code base that
promotes vendor independency with regard to the communications GPRS modem. This
remedies the issues of hardware choice limitations, and per extension, cost efficiency,
since the simplest possible modem can be used according to specific needs. Furthermore,
we have concluded that the new dsPIC33 microcontroller is sufficient for simultaneously
handling all peripheral I/O, operating the GPRS modem and running a customer appli-
cation.

Another important task during the project has been to improve the energy efficiency.
While a new lightweight modem will consume less energy per se, there are now possi-
bilities to trivialize low energy modes as a result of the new architecture, which opens
up for a significant reduction of power consumption. This is preferably done via sleep
and idle management, but has been left outside the scope of this project due to limited
amount of time.

4.1 Discussion

All in all, our project has touched upon a large number of differing areas related to both
software and hardware where we’ve honed our skills or even transgressed from having no
prior experience to actually being able to make qualified decisions. While not focusing
as much on GPS and Google Maps as El-Medany [1] and Al-Khadher [3], the inclusion
of this aspect within our work (See Chapter 2.6) has given us a great real life example
of telematics device usage involving multiple processing steps and subcomponents. It
is worthwhile to notice that Zhang’s [4] findings about UDP throughput retain their
veracity pertaining to applications primarily focusing on network communication, but
with our lesser sending frequency and packet sizes typically in the order of a hundred
bytes we concluded the slight overhead increase from TCP was more than well offset by
the stability and ease of two-way communication offered.
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Upon embarking on the project, it was thought that the capability of the PIC mi-
crocontroller to handle all of the peripherals, GPRS modem control as well as running a
typical user application simultaneously was to be evaluated in a rather late phase of the
whole process. Indeed, it was uncertain if the PIC change and code migration would even
be handled within the project’s scope. It was however to be discovered that as early as
a week into the actual work, we could derive from the MPLAB memory usage bars that
RAM was almost exhausted. At first, code optimization was considered but projected
gains were very limited and a PIC upgrade instead was made very appealing not only
by the much larger memory amounts but also the rather insignificant price increase, as
evidenced by section 3.2. This lead to quite the change in the time plan as items got
switched around - but simultaneously, the early access to extra RAM simplified testing
significantly for the remainder of the project and gave leeway to much more available
memory for customer applications.

Initially, we had concerns about the distribution of clock cycles between the cus-
tomer application and the remainder of code. But time would show that no complicated
solutions such as interrupt and timer controlled scheduling were needed - the well de-
signed program flow where care is taken to ensure that computations are only performed
when necessary (e.g. when flags are set) was sufficient. Early in the development pro-
cess, we carelessly executed certain heavy tasks in the timed interrupt routines due to
convenience. This led to bad overall performance and erroneous timings, giving us an
important lesson to carry with us throughout the remainder of the project.

4.2 Future work

All in all, the features present in the unit are just tested in a safe office environment.
Releasing the product into production will necessitate meticulous testing in real world
circumstances, with mobile vessels facilitating the MX platform with various peripherals
and also taking heed to energy consumption in cases where only battery power is used.
It would of course be highly desirable to provide a simple interface for all sleep mode
management.

The new architecture will be able to support more peripherals, most notably related
to the new usages a solely battery-powered approach will support. These will not be
outlined nor tested in the scope of this project, but examples of interesting such may
be motion detector triggered alarms, automatic emergency call devices in vehicles and
assistance buttons for the elderly.

A more than necessary feature for the product is the possibility to patch the software
over the air. This feature is crucial before releasing the product on market. If a major
bug is discovered to be present in thousands of units on the roads, there will be a need
to easily find a way to apply a fix. Doubtless, in such a big system bugs will appear in
one way or another. Having the company manually upgrade the software in every unit
would be infeasible in terms of workload, time and subsequently cost. A solution could
be to install an EEPROM or SD-card and then periodically check if there is a new patch
available. The patch will be downloaded into the memory and the device will reboot
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and apply the patch through the bootloader upon finishing the download.
In addition, the SMS and RING response capabilities have not been explored in

practice. Inclusion of these should be straightforward; setting the AT parser to recognize
these commands and having the customer application react accordingly, for instance by
enabling or disabling power saving mode.

Furthermore, it would be desirable to support the SPI and CAN communication
interfaces. For instance, abroad usage of GPRS connections often carries with it high
roaming fees. This could be alleviated by having support for memory cards through
SPI on which peripheral data could be stored. A GPRS connection would not have to
be up all the time but could be used on demand, triggered by for example reaching a
predefined quantity of saved data.
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B
Version control system

It is highly recommended to use a version control system when working on larger project
with several people involved. Git has been a helpful version control tool throughout the
development process.

A version control system is a software that is able to track changes that occur to
any file in a given project. It has an ability to take “snapshots” of the current state of
your files and one will be able to return to that state whenever you wish. A history is
also provided which includes the person making the change, a timestamp of when the
changes were done and what changes that was made.

There are many advantages of using a version control system. First, it provides
possibilities to create test branches from a certain state. If the changes appear to be
successful one may merge the newly created branch with the original one. On the other
hand, if the changes ended up with a poor result, it is easy to go back to the original
branch with a fully working state. Second, the tool is handy when tracking bugs, knowing
what person made a change and for what reason. Another benefit would be that you can
work on the project locally, i.e. in a “sandbox”, without interfering with other peoples’
work on the same project. Furthermore, you do not have multiple backup files to handle
and keep track of.

Additionally, by using a version control system, the supervisors at Host Mobility may
easily track and monitor progress that has been made. Hence, it provides a natural way
of getting feedback of the actual state of the project.
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