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Improving the Calibration Efficiency of an

Array Fed Reflector Antenna through

Constrained Beamforming
André Young, Marianna V. Ivashina, Member, IEEE, Rob Maaskant, Member, IEEE, Oleg A. Iupikov,

and David B. Davidson, Fellow, IEEE

Abstract—Calibrating for the radiation pattern of a multi-
beam Phased Array Feed (PAF) based radio telescope largely
depends on the accuracy of the pattern model, and the avail-
ability of suitable reference sources to solve for the unknown
parameters in the pattern model. It is shown how the efficiency
of this pattern calibration for PAF antennas can be improved
by conforming the beamformed far field patterns to a two-
parameter physics-based analytic reference model through the
use of a Linearly Constrained Minimum Variance (LCMV)
beamformer. Through this approach, which requires only a few
calibration measurements, an accurate and simple pattern model
is obtained. The effects of the model parameters on the directivity
and sidelobe levels of multiple scanned beams are investigated,
and these results are used in an example PAF beamformer
design for the proposed MeerKAT antenna. Compared to a
typically used Maximum Directivity (MaxDir) beamformer, the
proposed constrained beamforming method is able to produce
beam patterns over a wide Field-of-View (FoV) that are modeled
with a higher degree of accuracy and result in a significant
reduction in pattern calibration complexity.

Index Terms—Antenna Radiation Patterns, Array Signal Pro-
cessing, Calibration, Phased Array Feeds, Radio Astronomy.

I. INTRODUCTION

CALIBRATION of radio telescopes requires accurate

models of the instrumental parameters and propagation

conditions that affect the reception of radio waves [1]. These

effects vary over time and the model parameters have to be

determined at the time of observation through a number of

calibration measurements. Furthermore, the calibration mea-

surements should complete in a relatively short time and may

be repeated often over the course of an observation during

which the instrumental and atmospheric conditions can change

significantly. One of the instrumental parameters that needs

accurate characterization is the radiation pattern of the antenna,
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which is especially challenging in the arena of future array

based multiple beam radio telescopes [2]–[4], both due to the

complexity of these instruments, as well as the increased size

of the Field-of-View (FoV). Above the requirement that the

radiation pattern should be accurately known, currently devel-

oped techniques for the pattern calibration of these devices

also emphasize the need for beams1 over the FoV that are

similar in shape, and that each beam varies smoothly with

time, frequency, and over the main beam angular region [5].

Such beams can be described by simpler models, which reduce

the number of pattern model parameters that need to be solved

for, and also simplify the complexity of direction dependent

calibration which is vitally important for future radio tele-

scopes [6]–[10]. However, achieving patterns exhibiting these

qualities, while also meeting the already stringent sensitivity

requirements, presents a difficult task.

Previously, beamforming techniques have been used to

create similarly shaped beams over the FoV by conforming

them to an elliptical reference pattern, but at the cost of a

significant loss in sensitivity [6] (up to 25%). An initial study

has shown that this loss can be reduced by applying the

same beamforming technique, but using a reference pattern

that more closely matches the natural radiation characteristics

of large aperture antennas [11]. Therein, the first term of the

Jacobi-Bessel (JB) series solution of reflector antenna far field

patterns [12], [13] was used as a reference pattern to define

directional constraints in a Linearly Constrained Minimum

Variance (LCMV) beamforming Phased Array Feed (PAF).

It was found that this first JB-term is sufficient to model

the patterns of a prime focus single reflector antenna over

a wide FoV of up to 5 beamwidths, over which the sensitivity

reduction was less than 10%. However, when considering a

larger scan range, phase aberration effects cause deformation

of the radiation patterns to such an extent that this beam model

is no longer accurate. Furthermore, when applying this model

to an offset reflector antenna for which the asymmetric geom-

etry exacerbates the deformation of scanned patterns [14, cf.

Figs. 1 and 3], the inclusion of more physics-based information

is necessary.

Here, the reference pattern of [11] is extended to model

the widening of the scanned beam as well as the change

in the phase distribution for an offset dual-reflector antenna

1Often referred to as the direction-dependent gain or primary beam in the
radio interferometer community.
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by introducing two additional model parameters. It will be

shown that this model allows for the accurate characterization

of multiple beams over a wide FoV without the need to

perform additional calibration measurements. The effects of

the model parameters on the directivity and sidelobe levels

are investigated for a proposed design of the MeerKAT radio

telescope reflector antenna [15]. An LCMV beamformer is

designed based on the results of this study, and its performance

evaluated through comparison with a Maximum Directivity

(MaxDir) beamformer.

II. ANTENNA PATTERN MODEL

The reference pattern employed in [11] to constrain the main

beam shape of a scanned reflector is based on the JB-series

solution for modeling reflector antenna far field patterns. The

first term in this series is the near-boresight approximation of

the co-polarized far field pattern radiated by a circular aperture

with a uniform amplitude and phase distribution [16], i.e.,

FA(θ, φ) ∝
J1(ka sin θ)

ka sin θ
≡ jinc(ka sin θ) (1)

where a is the aperture radius, k is the free space wavenumber,

and J1 is the Bessel function of the first kind of order one.

Patterns radiated by more general aperture field distributions,

including off-axis patterns of a scanned reflector are repre-

sented as a sum of (possibly) many more JB-terms. However,

the first term in the series is still dominant over an angular

region around the beam maximum. To obtain a pattern function

that applies to more general aperture field distributions, certain

modifications to the reference pattern (1) are required as

detailed below.

In order to control the beamwidth of the pattern model, an

angular scaling parameter s is introduced by letting a → sa,
which enables accounting for widening of the beam due to

under-illumination of the reflector aperture or coma aberration

when scanning [17], [18]2. In this sense a distinction can be

made between the physical aperture radius a, and an effective

aperture radius sa, where s . 1.
Another limitation of (1) is that it assumes a constant phase

distribution of the beam pattern. This implies that the phase

reference of the pattern coincides with the phase center of the

antenna, defined here for a small angular region of the far field

around the main beam center. Whereas this condition is easily

satisfied for an on-axis beam of a prime focus reflector, the

proper choice for the phase reference is not straightforward

for scanned beams. In the latter case it is more convenient to

keep the phase reference fixed at the center of the projected

aperture and to account for a phase variation over the main

beam through multiplying the pattern model by

Fψ(θ, φ) = exp (jΨsin θ cos(φ− φ0)) (2)

in which Ψ is a constant that determines the phase gradient,

and φ0 defines the direction of the phase center shift. The value
of φ0 can be determined by noting that for a scanned beam

2The pattern deformations for off-axis scanning are known to be asymmet-
rical, and since the analytic model is used here to constrain the pattern shape
so that it is easily modeled, we elect to use a circularly symmetric pattern
model.

the phase center shift is in the scan plane. It can be shown

that the value of Ψ is proportional to the phase center shift

projected orthogonally to the direction of observation [19].

Combining (1) and (2) gives the extended reference pattern

model3

F (s,Ψ; θ, φ) = jinc(ksa sin θ)ejΨ sin θ cos(φ−φ0) (3)

in which the the amplitude and phase distributions of the ref-

erence pattern are controlled independently by the parameters

s and Ψ, respectively. Note that (3) will serve as a reference

pattern for deriving the directional constraints in an LCMV

beamformer, as well as a pattern calibration model to describe

the realized beamformed pattern.

III. BEAMFORMING STRATEGY

An LCMV beamformer is implemented which minimizes

the power received by the antenna due to noise subject to linear

constraints that conform the co-polarized pattern shape to the

reference pattern in (3). The beamformer weights applied to

the elements of the PAF are calculated according to [20] [21,

p. 526]

wH
LCMV = gH

[

GHC−1G
]

−1
GHC−1 (4)

in which xH means the complex conjugate transpose of x, C

is the noise covariance matrix, g is the constraints vector, and

G is the directional constraint matrix. For L elements in the

array and constraints enforced in the K different directions

{Ω1,Ω2, . . . ,ΩK}, G is an L × K matrix in which the ith
column contains the signal response vector of the array due to

a plane wave incident from direction Ωi, and the corresponding
element gi in the vector g is the constraint value enforced on

the pattern in that direction. The choice of these constraint

parameters is discussed in the following subsections.

In this study the performance of the LCMV beamformer is

compared to that for the standard MaxSNR beamformer (no

directional constraints). In this case the beamformer weights

are calculated according to [22] [21, p. 450]

wMaxSNR = C−1v (5)

where v is the signal response vector of the array due to a

plane wave incident from the direction of interest. In this study

a noiseless system is assumed which means that the noise

correlation matrix C can be taken equal to the identity matrix,

and therefore the weights in (5) maximize the received signal

power. It can be shown that this is approximately equivalent

to maximizing the directivity, if the antenna exhibits low loss

and low scattering, as is the case for the PAF used herein.

Therefore the beamformer using the weights in (5) shall

hereafter be referred to as a MaxDir (Maximum Directivity)

beamformer.

3Henceforth we assume that (θ, φ) are defined in a local coordinate system
for each beam in which the maximum is at θ = 0.
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A. Number of Constraints and Pattern Calibration Measure-

ments

Each of the weights applied to the PAF elements presents

a complex Degree of Freedom (DoF) available for optimizing

the beamformed pattern, and for each constraint enforced on

the pattern shape the number of DoFs available to maximize

the directivity is reduced. The implication of this is that

constraints should be selected carefully to obtain the desired

pattern shape while retaining enough freedom in the system

to achieve a sufficiently high directivity.
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Fig. 1. Beams arranged over the FoV to enable reuse of constraint
directions between adjacent beams. Nominal half-power contours (HPBW =
1◦) and constraint positions of each beam shown as solid lines and crosses,
respectively.

Furthermore, the number of constraints has an impact on

the calibration efficiency because a pattern calibration mea-

surement is required for each constraint direction to determine

the signal response vector of the PAF [22]. Since these mea-

surements can become time consuming, we need to minimize

the number of constraint directions to ensure that the system

parameters do not drift significantly during this procedure. It

is worth pointing out that since both the amplitude and phase

of the signal response vectors are needed, this may require the

use of an auxiliary antenna to recover the phase information

in addition to a natural celestial calibration source [23].

B. Constraint Positions

We aim to conform the beam to the reference pattern down

to a certain level below the beam maximum, so we choose

to position the constraints within the corresponding angular

region. Also, the total required number of pattern calibration

measurements may be reduced by positioning the constraint

directions at the centers of adjacent beams, as shown in

Fig. 1. This allows the reuse of measurement data between

multiple beams which is readily available in this type of

measurement. In this example six constraints are enforced in a

circularly symmetric fashion around, and an angular distance

θc from the beam center for each beam. This arrangement

results in a fine enough sampling of the FoV since the half-

power beams overlap [22], and the constraints are enforced

around the -8 to -5 dB level. In this case only 37 pattern

calibration measurements are needed to realize a total of 19

constrained beams over the FoV, which is a minor increase

over that for unconstrained beamforming as in (5). The 18

additional measurements are necessary for the constraints

enforced around the edge of the FoV.

C. Constraints Vector

The constraints vector g in (4) is formed by evaluating the

reference pattern in (3) at the beam center and the directions

of constraints Ωi = {θc, φi}, i.e.,

gi =

{

F (s,Ψ; 0, 0) for i = 1

F (s,Ψ; θc, φi) for i = 2, 3, . . . , 7,
(6)

where the selection of the model parameters s and Ψ has to be

made for each scan direction to account for the beam widening

and the increasing phase gradient over the main lobe region.

In order not to compromise the beam sensitivity too much, it

is natural to derive the initial physics-based values s = s0 and

Ψ = Ψ0 from the reference patterns realized by the MaxDir

beamformer, i.e.,

s0 =
aeff,MaxDir

a
=
λ
√
DMaxDir

2πa
(7a)

Ψ0 =
∂ψMaxDir

∂θ

∣

∣

∣

∣

θ=0,φ=φ0

(7b)

where aeff,MaxDir is the effective aperture radius, and DMaxDir

and ψMaxDir are the directivity and phase pattern over the

main lobe region, respectively, of the MaxDir beam. Using

thus obtained values for the parameters s and Ψ result in

rotationally symmetric beams that have sensitivities close to

the MaxDir beams. However, this choice leads to a sidelobe

level (SLL) that can be relatively high for certain (off-axis)

beams. Hence, the optimum values for s and Ψ may be slightly

different from s0 and Ψ0 depending upon the required antenna

beam performance, such as minimum beam sensitivity and

maximum allowable SLL, as explained below for a numerical

example.

IV. NUMERICAL RESULTS

In this section we investigate the trade-off effects of the

beam model parameters s and Ψ on the directivity and SLL.

After choosing s and Ψ, the beam model accuracy is examined

as the difference between the resulting LCMV-beamformed

pattern and the reference beam. As a numerical example, we

present results for an offset Gregorian geometry based on the

MeerKAT radio telescope reflector antenna [15] by employing

simulated primary far-field patterns of the APERTIF PAF [6].

The reflector has a projected diameter of 13.5 m (64λ at

1.42 GHz) and an equivalent focal length to diameter ratio

(F/D) of 0.55. The APERTIF PAF is a dual-polarized array

composed of 121 tapered slot antenna elements. Here all

elements in the array (both polarizations) are employed to

produce patterns on the sky for each nominal polarization (as
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Fig. 2. Effect of model parameters on beam pattern performance. (a) and (c) show the directivity of scanned LCMV patterns relative to that of the on-axis
MaxDir pattern for various values of s and Ψ, respectively; (b) and (d) show the highest SLL of scanned LCMV patterns for various values of s and Ψ,
respectively. Markers indicate the results for s = s0 and Ψ = Ψ0 for each scan direction.

opposed to a bi-scalar beamfomer wherein only elements of

one polarization are used, cf. [24]). Results presented here are

for only one nominal polarization, as the results for either

polarization are very similar. The numerical results are shown

for the operating frequency of 1.42 GHz at which the half-

power beamwidth (HPBW) is approximately 1◦, and results

were obtained using a toolbox interface [22] to the GRASP

software.

A. Beam Directivity and Side Lobe Levels

Fig. 2(a) shows the directivity of the LCMV-scanned pat-

terns relative to the corresponding MaxDir patterns as a func-

tion of s (with Ψ = Ψ0) over a scan range of 3 beamwidths

in the symmetry plane4. Markers indicate the results for the

initial values s = s0 that were derived from the MaxDir

beams. As expected, the highest directivity is achieved if s
is close to s0, except for far off-axis patterns where it occurs

for slightly smaller values of s. This is attributed to the fact

that the computation of s0 is based solely on the directivity of

the MaxDir elliptically-shaped pattern, while s0 is applied to

4Although results are only shown for scanning in a single plane, the
conclusions are valid for scanning in all φ-directions.

rotationally symmetric patterns pertaining to the same effective

aperture size. It is also observed that when choosing s = s0,
the loss incurred by constrained beamforming is relatively

small (< 0.4 dB) over the entire FoV. Letting s→ 1 results in

the edge illumination taper approaching 0 dB as the primary

(feed) pattern widens, and a subsequent decrease in directivity

due to increasing spillover loss.

The effect of s on the 1st SLL performance of the LCMV

patterns is shown in Fig. 2(b). As one can see, the choice

of s = s0 leads to a significant variation of the SLLs of the

scanned beams where the minimum (for the on-axis direction)

and maximum (for a scan angle of 3 beamwidths) are around

-17 dB and -12 dB, respectively. Decreasing the value of s
improves the SLL, albeit at a moderate cost of a reduction in

directivity. This is in accordance with the familiar trade-off

between directivity and SLL for reflector antennas. The 2nd

SLL is affected similarly to the 1st SLL when s is varied, and
these results are therefore not shown.

The effects of Ψ on the relative directivity and SLL of

the LCMV beamformed patterns were also investigated and

the results are shown in Figs. 2(c) and (d). In these figures,

the abscissae represent the difference Ψ − Ψ0 calculated for

each scan direction. Over the FoV, the value of Ψ0 decreases
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monotonically from 0 rad for the on-axis pattern to -33 rad

for the farthest off-axis scanned pattern, indicating a steady

shift of the antenna phase center from the phase reference

point. Choosing Ψ close to Ψ0 – as opposed to setting it

to zero, thereby effectively reducing the pattern model to

(1) – resulted in a significant improvement in directivity of

far off-axis scanned patterns. This underlines the importance

of using a proper reference pattern function such as (3)

which represents a more accurate description of the (off-axis)

radiation characteristics of the antenna. The effect of small

variations of Ψ around the value Ψ0 on the relative directivity

and SLLs was found to be less pronounced than the effect of

parameter s, so that, generally, the choice Ψ = Ψ0 yielded the

best results.

B. Calibration Performance

A deviation of the actual beam shape from the one predicted

through calibration measurements sets constraints on the dy-

namic range of the mosaicked images. Although the relation-

ship between the desired dynamic range and pattern calibration

error is very complex (and typically requires the analysis of

the error propagation effects in the image plane [25], [26]), the

required accuracy of the pattern model can be approximately

derived from the required image fidelity [27] which is limited

by the maximum error present in the beam model. In this

section we will therefore use the maximum normalized error

in the complex voltage pattern within the 10 dB region when

approximating realized beam patterns with (3) as a measure

of beamshape calibratibility.

The effect of s on the calibratibility of LCMV beamformed

patterns is shown in Fig. 3(a). Using the MaxDir equivalent

value s = s0 the maximum error ranges from 0.7 % for on-

axis up to 4 % for the widest scan angle. Decreasing the

parameter over the range s . s0 is seen to slowly increase

the model error, whereas increasing s > s0 is seen to have

a more dramatic effect on the model accuracy for wider scan

directions due to the increase of the 1st SLL above the 10 dB

level. In Fig. 3(b) the effect of Ψ on the calibratibility is shown

and for this figure of merit the optimal choice for the phase

gradient is as before Ψ = Ψ0.

Since the constrained beamformer ensures that the realized

beam conforms exactly to (3) at the constraint positions the

model error is smallest in the vicinity of these points and the

placement of constraints may be optimized to minimize this

error within a certain angular region. The effect of θc on the

pattern calibratibility is shown in Fig. 3(c). Markers indicate

the power level relative to pattern maximum that correspond

to the values of θc. The optimal placement of constraints is

seen to be around the -5 dB to -7 dB level.

Furthermore, to examine how the technique performs over a

range of frequencies we repeated the above described analysis

at several frequencies within the antenna array operation

band from 1 to 1.75 GHz. In this study, frequency-dependent

parameters were scaled for each of these frequencies (scan

directions, positions of constraints for LCMV beamforming,

etc.). The results obtained have shown that at the lower

frequencies the FoV is limited by the size of the array (that
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Fig. 3. Maximum normalized error over the 10 dB beamwidth of the LCMV
beamformed patterns when approximated by the analytical function (3), and
using the same parameter values as was used to define directional constraints.
The error is shown as a function of the parameter (a) s, (b) Ψ−Ψ0, and (c) θc.
Default values for these parameters are s = s0, Ψ = Ψ0, and θc = 0.75◦ .

is the case for any type of the PAF beamformers), although

the results for the on-axis and closer scanned directions are

similar to those at 1.42 GHz. Hence, the advantages of using

the proposed LCMV-based beamforming are also applicable at

lower frequencies over a relatively smaller FoV. For higher fre-

quencies, the results for all scan directions (within the FoV of
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Fig. 4. Comparison of LCMV and MaxDir beamformers over a θ ≤ 3◦ angular region based on (a) aperture efficiency, (b) maximum beam model error, (c)
1st SLL, and (d) 2nd SLL. Figures of merit are shown as functions of beam steering direction over the FoV. Solid lines on all plots indicate the FoV within
which aperture efficiency is above 70% for each beamformer. The asymmetry in the results is due to the offset geometry of the antenna.

±3 beamwidths) are very similar to those at 1.42 GHz. Based

on these observations, we can conclude that the proposed

beamforming technique ensures the smooth characteristics of

the resulting FoV calibration over a wide frequency band,

and does not require additional constraints due to frequency

variation.

C. Comparison of MaxDir and LCMV beamformers

Using the results from Section IV-A, an LCMV beamformer

was implemented to produce a number of beams over a dense
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grid within an angular region θ < 3◦. For each LCMV beam

the value of s was chosen such that the 1st SLL is below

-17 dB, and Ψ = Ψ0 as calculated from a MaxDir beam

towards the same scan direction. The performance of the

MaxDir and LCMV produced beams were then compared for

every scan direction within the angular region of interest.

In Fig. 4(a) the aperture efficiencies achieved with the

respective beamformers are shown as a function of scan

direction. The asymmetry of the results over the FoV is a

consequence of the offset geometry and wide scanning towards

φ = 0◦ is seen to result in the largest reduction in efficiency.

A FoV was defined for each beamformer as the region within

which the aperture efficiency is greater than 70%, the size of

which was 23.6 and 19.3 square degrees for the MaxDir and

LCMV beamformers, respectively. The boundary of each FoV

is indicated on the plots in Fig. 4 as a solid black line, and the

results presented below were calculated within the respective

regions for the two beamformers.

The beamformers were compared by considering the max-

imum pattern calibration model error for each of the defined

beams over the FoV, which is shown in Fig. 4(b). For the

MaxDir beamformer this error ranges from 1.6% up to 10.4%,

whereas for the LCMV beamformer the same error ranges

from 0.5% up to 4.3% and presents a considerable improve-

ment in accuracy. One prominent factor contributing to the

relatively large model error for MaxDir beams, especially at

wider scan angles, is the asymmetry of these patterns. As

a comparison, the aspect ratio of the half-power contours

of the MaxDir beams may be as high as 1.15:1, whereas

for the LCMV beams this ratio is less than 1.01:1 for all

scan directions. The symmetry of constrained beams therefore

also present a significant advantage in terms of reducing the

complexity of direction-dependent calibration [6].

Finally, the maximum 1st and 2nd SLLs are shown as a

function of scan direction in Figs. 4(c) and (d), respectively.

Compared to the MaxDir beams, the LCMV beams have 1st

SLLs that are 0.8 dB lower and 2nd SLLs that are 1.0 dB

lower, on average over the FoV. The 2nd SLL is of particular

interest in the case of MeerKAT, for which the maximum

is specified as -23 dB (L-band). The LCMV beamformer

meets this specification over most of the FoV (except for

wide scanning in the φ ≈ 135◦, 225◦ directions), whereas the

MaxDir beams exceed this limit over a much larger region. In

order to quantify the trade-off in sensitivity for this reduction

in sidelobes through constrained beamforming, LCMV beams

were also realized to yield 1st SLLs within 0.2 dB of that for

the MaxDir beams. Following this approach the size of the

FoV could be increased by 4.6% to 20.2 square degrees.

V. CONCLUSIONS AND RECOMMENDATIONS

A constrained beamforming technique that conforms mul-

tiple patterns on the sky to a physics-based analytic far field

function was presented as a method to improve the calibration

efficiency of an array fed reflector antenna. The effects of

the two parameters in the analytic model on the pattern

performance were investigated, and a procedure by which

these parameters could be optimized was proposed. This beam-

forming approach was shown to have several performance

benefits including circularly symmetric scanned beams over

a wide FoV, even for non-symmetric reflector antennas. For

the example of the MeerKAT offset Gregorian antenna, this

strategy resulted in multiple beams with aperture efficiency

above 70% that could be approximated down to the 10 dB

level as a single analytic function with an error of less than

5%. In comparison with a conventional MaxDir beamformer,

this would reduce the average pattern calibration model error

by more than 50%. Finally, the proposed beamforming strategy

was found to be effective across a wide frequency band by

simply scaling all frequency dependent parameters.

Future work will include the assessment of the proposed

beamforming in the presence of external and internal noise

sources, as well as experimental demonstration for a practical

system.
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