

Streaming Computations in Feldspar
Master of Science Thesis

MARKUS ARONSSON

Department of Computer Science & Engineering
Chalmers University of Technology
Gothenburg, Sweden, June 2014

The Author grants to Chalmers University of Technology and University of Gothen-
burg the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the
Work does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for
example a publisher or a company), acknowledge the third party about this agreement.
If the Author has signed a copyright agreement with a third party regarding the Work,
the Author warrants hereby that he/she has obtained any necessary permission from
this third party to let Chalmers University of Technology and University of Gothenburg
store the Work electronically and make it accessible on the Internet.

Streaming Computations in Feldspar

Markus Aronsson

c© M. Aronsson, 2014

Examiner: M. Sheeran

Supervisor: E. Axelsson

Department of Computer Science & Engineering
Chalmers University of Technology
SE-412 96 Gothenburg
Sweden
Telephone + 46 (0)31-772 1000

Abstract

We present a library for expressing digital signal processing algorithms using a deeply
embedded language in Haskell. It is an extension Feldspar’s stream library, which pro-
vides a data type for infinite sequences of values. Until now, streams have been confined
to a set of explicit functions for expressing recurrence equations, delays and sampling.
The extension we present removes the need for such functions, reducing the gap between
streaming algorithms and their mathematical description; efficiency is maintained by op-
timising the network structures. We demonstrate the usefulness of our library by giving
example implementations of common filters and control structures found in digital signal
processing.

Our library is built on top of Feldspar, a domain specific language for programming
digital signal processing algorithms, and, like our extensions, is implemented as a deeply
embedded language in Haskell. The Feldspar language itself offers high-level and func-
tional style for describing digital signal processing algorithms, where the final aim of
a Feldspar program is to generate high-performance low level code. Feldspar is based
around a low-level functional core language, which is semantically similar to machine-
oriented languages, such as C, and operates at around the same level of abstraction. A
number of libraries built on top of the core language are offered, enabling programming
in a higher-order manner, one of which is Feldspar’s stream library.

Feldspar stream library contains a modified version of co-iterative streams, a central
concept for reasoning about and optimising stream systems. In the co-iterative approach,
each stream consists of a transition function and an initial state, where the transition
function takes a state and produces a new state and an output value. The interesting
property of co-iterative streams is that they allow one to handle infinite streams in a
strict and efficient manner, instead of having to deal with them lazily. As the co-iterative
approach provides a good foundation for reasoning about streams, the contributions
of this project are based around such streams with added support various temporal
operations.

Acknowledgements

I would like to express my warmest gratitude to my supervisor Assistant Professor Emil
Axelsson for the many useful comments, observations and engagement throughout the
learning experience that has been this master’s thesis. Furthermore, I would like to thank
Professor Mary Sheeran for introducing me to the topic and giving me the opportunity
to conduct my study at her research group, as well as for all the support on the way.
Also, I like to thank all the members of the research group and visiting professors, who
willingly shared some of their own precious time to listen to and discuss my ideas.

I would also like to thank my family for the support they provided me through this
thesis and in particular, I must acknowledge my sweetheart and best friend, Emma,
without whose love and encouragement, this would have been so much harder.

Markus Aronsson, Gothenburg, Sweden, June 2014

Contents

1 Introduction 1
1.1 Problem Description . 2
1.2 Contributions . 4
1.3 Methodology and Limitations . 5

2 Background 6
2.1 Functional Reactive Programming . 7

2.1.1 Implementing Control Structures in Yampa 9
2.2 Synchronous Dataflow Languages . 10

2.2.1 Modeling Real World limitations in Lucid Synchrone 13
2.3 Feldspar . 14

2.3.1 Co-iteration and Streams . 16

3 Comparison of Approaches 19
3.1 Yampa and Lucid Synchrone . 20

3.1.1 Power in Yampa . 20
3.1.2 Bouncing Balls in Lucid Synchrone 21

3.2 FRP and SDF in Feldspar . 22
3.2.1 Streams in Feldspar . 22
3.2.2 Switching by Streams . 24
3.2.3 General Recurrence Equations . 27

4 Extending Feldspar 29
4.1 Arrows . 30

4.1.1 Generalised and Rebindable Arrows 33
4.2 Signals . 34

4.2.1 Meta-Programming using Haskell 37
4.3 Type-Safe Observable Sharing of Signals 39

4.3.1 Sharing in Signals . 43
4.4 Compiling Signals to Streams . 45

i

CONTENTS

4.4.1 Pre-processing the Graph . 48

5 Using Signals 53
5.1 The Signal Library . 54
5.2 An Example: IIR Filter . 56
5.3 An Example: Bouncing Balls . 57
5.4 An Example: Power . 58
5.5 Related Work . 60

5.5.1 Chalmers Lava . 60
5.5.2 Kansas Lava . 61
5.5.3 CAL . 63
5.5.4 Matlab . 64

6 Conclusions and Future Work 66

Bibliography 72

ii

1
Introduction

In recent years, the amount of traffic passing through the global communications in-
frastructure has been increasing at a rapid pace. Worldwide, total Internet traffic is
estimated to grow at an average rate of 32% annually, reaching approximately eighty
million terabytes per month by the end of next year [1, 2]. Mobile communications in
particular have been growing at a phenomenal rate, see Figure 1.1, which can be largely
attributed to the rising popularity of social networking services and mobile terminals
– such as smart-phones and tablets. To meet the growing demands of mobile users,
telecom carriers are striving to enhance service quality.

For telecommunications infrastructure, the consequences of such a rapid growth rate
have been a dramatic increase in the demand of network capacity and computational
power [1]. At the same time, telecom carriers are faced with an increasing need to de-
liver new services faster, while simultaneously adapting to the recent diversification in
available architecture, coupled with an emergence of new and powerful computational
platforms, such as multi-core machines. These factors, while positively influencing the
available computational power, have also significantly increased the complexity of devel-
oping new solutions for telecommunication systems.

Digital signal processing is a central concept for managing content delivery between
radio base stations and mobile terminals. Today, digital signal processing algorithms are
typically implemented in low level C [3], and often using hardware specific optimisations,
such as pragmas or build flags. Programming in a low-level language forces designers to
emphasise the use of hardware intrinsic, rather than focusing on describing an algorithm’s
core concepts. This makes such languages a poor fit for describing the mathematical
nature of most signal processing algorithms; C is used mainly because performance is
critical in the different applications of signal processing. Furthermore, code portability is
severely limited as a direct result of using hardware specific intrinsics, even when porting
between systems of the same manufacturer.

1

CHAPTER 1. INTRODUCTION

Figure 1.1: Global ITC Development, 2001-2014

The Feldspar project aims to counter the complexity inherent in using a low level
language for digital signal processing, by raising the level of abstraction at which its
algorithms are programmed – without sacrificing vital performance. Feldspar [4, 5] is
a domain specific language embedded in Haskell [6], it is a purely functional language
and provides a compositional approach for expressing algorithms in a higher order man-
ner. These descriptions can then be translated by Feldspar’s associated compiler into
sequential and hardware specific ISO99 C code.

1.1 Problem Description

Feldspar is designed for use in the digital signal processing domain, where stream compu-
tations are a common feature. Support for such computations is however quite limited.
The stream library [7] provided by Feldspar currently offers a slightly modified version
of generalised co-iteration [8], where all streams are restricted to operate according to
one global clock frequency.

Even though the use of a global clock is potentially beneficial to performance, it
limits the kind of system one can model. For instance, consider the likely scenario of
modeling a system running on a limited architecture. In such systems, where the archi-
tecture for example only allows a certain number of parallel operations, it is necessary
to replace parallelism with iteration. This affects the time instant when results become
available, and consequently the systems clock. As sub-components, now running at pos-
sibly different frequencies, must still communicate with each other, a model supporting
multiple clocks is required – where their synchronicity could be expressed. Furthermore,
introducing clocks permits stream processors to be statically scheduled, which could
potentially alleviate the need for control structures inherent to dynamic scheduling.

Another drawback of the current implementation is the lack of support for general
recurrence equations; a unique operator is instead supplied for each conceivable use case.
Restricting the feedback in such a way enables the use of memory efficient buffers. A

2

CHAPTER 1. INTRODUCTION

feedback network with a non-standard recurrence will however require arbitrary cuts,
refitting the graph for use with Feldspar’s recurrence equations and hence deviating
from its original description. Consider the mathematical definition for a finite impulse
response filter of rank N , where each value of the output stream is a weighted sum of
the most recent input values:

yn =
N∑
i=0

bi ∗ xn−i

This filter can be deconstructed into its three main components: a number of unit delays,
multiplications with some coefficients and a summation of the amplified signals. We can
represent the decomposed filter graphically as in Figure 1.2.

Figure 1.2: A direct form discrete-time FIR filter of order N

where each unit delay is expressed as a z−1 operation in Z-transform notation. As domain
experts in DSP tend to be comfortable with the idea of composing sub-components in this
way, using boxes and arrows, one would ideally capture this in the filter’s corresponding
Feldspar program. Feldspar does however not allow arbitrary streams to be delayed, we
are instead forced to express the filter as a vector computation using its set of recurrence
equations.

import Feldspar
import Feldspar.Stream
import qualified Feldspar.Vector as V

recurrenceI :: (Type a, Type b) ⇒
Vector1 a

→ Stream (Data a)
→ (Vector1 a → Data b)
→ Stream (Data b)

fir :: Vector1 Float → Stream (Data Float) → Stream (Data Float)
fir a inp = recurrenceI (V.replicate (V.length a) 0) inp

(V.scalarProd a)

3

CHAPTER 1. INTRODUCTION

1.2 Contributions

This project aims to investigate what kind of streaming model is needed by the intended
applications of Feldspar and implement support for it, both in terms of language con-
structs and compilation. In order to achieve this goal, the following contributions have
been made:

• We investigate current work in the area, developing a general view of related lan-
guages and their respective programming paradigms. By surveying a number of
languages from each paradigm we develop a broad sense of their respective benefits,
indicating which best fits the intended applications of Feldspar. We also perform
an in-depth review of a single language from each paradigm and one for Feldspar’s
stream library.

• We develop a new streaming model for use in Feldspar and implement support for
it. Our intent is to supply generic programming blocks, with which the various
composite streaming computations can be expressed, leaving as much of the opti-
misation as possible to be handled automatically during compilation. Our model
includes support for multi-clocked systems, allowing us to reason about program
correctness when applied to a real-world setting.

• We make use of type-safe observable sharing in our extension, an often critical
component for allowing deeply embedded languages to be effectively optimised
when compiled. By doing so, we allow for the sharing present in our abstract
syntax trees to be directly observed through a graph representation of the trees;
notating any sharing of computed results and recursively defined computations.
By inspecting the sharing present in program we successfully avoid the need for
explicit looping constructors.

• We support compilation of our new streaming model into monadic expressions,
which can then be turned into sequential C code by Feldspar’s compiler. We also
utilise several pre-processing stages to reduce and optimise the reified program’s
graph before compilation; pre-processing the program’s graph allows us to, for
example, support arbitrary feedback networks while still retaining the efficient
memory management offered by Feldspar’s recurrence equations. While the data
types support multiple clocks, we have yet to implement support for them during
compilation.

4

CHAPTER 1. INTRODUCTION

1.3 Methodology and Limitations

An initial feasibility study was conducted at the beginning of the project, where we
investigated what kind of streaming model would be desirable for use in Feldspar; where
desirable implies, for example, an emphasis on performance or an intuitive syntax. In
conjunction with the initial study, a review of several related languages, and their asso-
ciated programming paradigms, was performed. By considering languages from multiple
programming paradigms we hoped to find a combination of techniques which would al-
low for efficient compilation, while still retaining the higher order properties of Feldspar.
We also reviewed Feldspar and its stream library, comparing its approach to the other
models we reviewed.

The literature review consisted of a general study into each paradigm, analysing
how each approach handles the concept of signals, events, control structures, and other
common features in the digital signal processing domain. A single language from each
paradigm was selected for an in-study, during which we investigated how they imple-
mented the core concepts from their respective paradigms. This approach enabled us to
study the general theories underlying each paradigm in more detail, while also exploring
their respective benefits when applied to a functional programming setting. Results from
the literary review and initial study later served as inspiration when we developed our
own extensions to Feldspar’s stream processing library.

After the initial studies, a number of examples were implemented for each of the
studied languages. Applying each language to a common set of example circuits helped
us discern any advantages a specific approach may have over the others, as well as
further investigate the limitations of Feldspar’s streams in comparison to the others.
These examples were constructed in such a way as to model common scenarios in signal
processing: filters, control oriented systems, and modeling systems running on a limited
architecture. We then developed our own streaming model, suited for Feldspar and based
on the results from these comparisons and studies.

As digital signal processing is a well-explored area, a number of standard solutions
have been developed for use in a range of different programming paradigms. The ini-
tial literature reviews were therefore limited to encompass only the more established
paradigms; focusing mainly on that of synchronous data flow and functional reactive
programming. While we considered other paradigms, their reviews were limited to a
study of interesting language features. We further limited our studies to languages oper-
ating on signals in the time domain and reactive systems, as opposed to transformational
systems, where the entire input is present at the start of execution.

5

2
Background

Digital signal processing (DSP) is the mathematical manipulation of signals, that is,
DSP is all about taking a signal, applying some change to it, and then getting a new
signal out [9]. That change might be filtration or amplification, and is usually applied to
some sampled continuous signal originating from a real-world input – like voice or video
recordings [10].

Some time ago, anyone using DSP had to be quite the mathematician to be able to
implement and use the related algorithms. Today, several programming languages have
been developed specifically for use in the DSP area, which allows one to view signal
processors in a more abstract way. Seen in this abstract way, as a form of black box, the
DSP system might be composed of other sub-components, or it could be a low-pass filter,
or it could be some other complex integrated system. As long as the box accomplishes
its defined task, it doesn’t matter too much how the box works internally.

Due to the broad applicability of DSP, a number of models have been developed for
use in the area, each with its own advantages and limitations. Amongst these models,
the synchronous data-flow [11] and functional reactive models [12] are perhaps the most
established ones. These two paradigms will therefore be discussed in detail, where a well-
established language is chosen from each, to serve as a representative for that paradigm.
By thoroughly studying the languages in this initial study, we hope to identify advantages
to each approach, and ideally find a combination of the two which will best fit the needs
of Feldspar.

6

CHAPTER 2. BACKGROUND

2.1 Functional Reactive Programming

Functional Reactive Programming (FRP) is a paradigm for programming hybrid systems,
that is systems consisting of both continuous and discrete components, in a high-level and
declarative manner. The key ideas in functional reactive programming are its notions of
behaviors and events, where behaviors are continuous and time-varying, reactive values,
and events are time-ordered sequences of discrete-time event occurrences [12].

Behaviors and events are both first-class values in functional reactive programming,
and are accompanied by a rich set of operators to support the composition of new be-
haviours and events from existing ones. A reactive program is, simply stated, a collection
of mutually recursive behaviors and events, each built from static values or other behav-
iors and events or both.

The notion of functional reactive programming originated from Fran [13], a domain
specific language (DSL) for composing richly interactive, multimedia animations. The
language FRP [12, 14] then abstracted out the essence of reactive programming from
Fran, by simply ignoring its application specifics, leading to the notions of behaviours
and events. These core concepts of functional reactive programming were then applied
in a range of different domains, where each language embraced the paradigm in a way
suited to its own application. For example, Fruit [15], a graphical user interface library
for Haskell, and Elm [16], a functional language that compiles to HTML, CSS, and
JavaScript, are both designed using a reactive approach. In addition, variants of func-
tional reactive programming have also been used for modeling real-time systems [17],
which led to the development of Yampa [18, 19] - which will be our focus language when
studying FRP related languages.

Yampa is a refinement of FRP, realised in the form of a domain-specific language
embedded in Haskell (DSEL) and structured using arrows [20] – a generalisation of
monads. The language is based around the concepts of signals: continuous, time-varying
values. Signals can conceptually be thought of as having the type:

Signal a :: Time → a

In other words, a type of Signal a is a mapping from time – where time is a non-zero
real number – to the polymorphic type a. Signals can hence be used to capture the
behaviour of a system, but they can also be used to model discrete events when given
an appropriate choice of type parameter. For instance, by introducing a new data type

data Event a = NoEvent | Event a

A signal, given the above data type as its type parameter, will act as a source of discrete-
time events, in Yampa these are known as event sources: a signal that at any point in
time either yields nothing or an event carrying a given type. The distinction between
continuous values and discrete events is therefore rather small. Signals are, however,
not allowed as first class entities; they only exist indirectly through the notion of signal
transformers – which are called signal functions in Yampa.

7

CHAPTER 2. BACKGROUND

A signal function can conceptually be thought of as a mapping from signal to signal:

SF a b = Signal a → Signal b

Signal functions are required to be causal: the output can only depend on past or current
input, not future input. The actual type for signal functions is abstract in Yampa, which
prevents one from directly constructing signal functions – which could introduce time-
and space-leaks [21, p. 4]. Programming in Yampa is instead done by defining functions
compositionally, using a set of primitive signal functions, static streams and combinators.

Signal functions are made an instance of the Arrow class, and the combinators provided
by the arrow framework are used to compose new signals functions. Arrows serve much
the same purpose as monads, that is, they provide a common structure for libraries, but
are more general. In particular, they allow for notions of computation that may take
multiple inputs or be partially static. For instance, combinators for lifting functions,
composition, converting an ordinary signal function into a function on pairs, and a loop
combinator are all provided by the arrow library. These have the following types in
Yampa, when applied to signal functions:

arr :: (a → b) → SF a b
(>>>) :: SF a b → SF b c → SF a c
first :: SF a b → SF (a, c) (b, c)
loop :: SF (a, c) (b, c) → SF a b

The behavior of a system may evolve over time, for example by transitioning into
different states or an error handling mode. These behavioral changes of a system are
known as mode switches in Yampa and are achieved through event sources and a family
of switching combinators. Consider, for example, the event source

keyEvent :: SF KeyboardInput (Event Key)

which generates an event stream corresponding to the events of a key being pressed.
These event sources can be used in conjunction with Yampa’s library of switching com-
binators, to design control systems which change their behavior according to received
events. The simplest such switching combinator is the switch combinator, with the type:

switch :: SF a (b, Event c) → (c → SF a b) → SF a b

switch behaves as its first signal function until the event is produced; the event is then
used to construct a new behaviour which the system then switches into. Using this switch
operator, one could, for example, define a signal function which constantly outputs the
last key pressed:

last :: Key → SF KeyboardInput Key
last k = (constant k &&& keyEvent) ‘switch‘ λe → last e

8

CHAPTER 2. BACKGROUND

where (&&&) is another convenience method for the arrow framework, which sends its
input to both argument arrows and combines their output. It has the following type

(&&&) :: SF a b → SF a b’ → SF a (b, b’)

Yampa’s library also offers several other methods for switching behaviours, each one
based around the different semantics commonly used in DSP. For instance, there is
delayed switching, which changes behaviour in the time instant after the event occurred,
and recurring switching, where the behaviour changes each time an event occurs.

2.1.1 Implementing Control Structures in Yampa

As an example, consider the problem of modeling a ball bouncing off the floor, dropped
from some initial height. The height and velocity of a free-falling ball can be described
using the following formulas:

height = heigth0 +

∫
velocity ∗ dt

velocity = velocity0 +

∫
−9.81 ∗ dt

These behaviours can then be captured in Yampa by using signals for both formulas:

fallingBall :: Pos → Vel → SF () (Pos, Vel)
fallingBall y0 v0 = proc () → do
v ← (v0 +) ^<< integral −≺ -9.81
y ← (y0 +) ^<< integral −≺ v
returnA −≺ (y, v)

This declares a process that takes some initial height and velocity of the ball and pro-
duces a stream of pairs, representing the current height and velocity of the ball at each
time instance. The signals are defined using Yampa’s integral function and the (^<<)

combinator for post-composition of the integral with a pure function.
One should note that while the integral functions operates over a time interval, there

is no explicit mention of time in the function. This comes from the fact that Yampa
handles the notion of time internally using signals, and as signals are hidden in the signal
function type and not first class values we cannot access time directly.

To keep the ball from falling straight through the floor, and instead start bouncing off
it, we invert the ball’s current velocity whenever its height reaches zero. This describes a
typical application of switching in Yampa: a certain behaviour is used continuously until
some event occurs, upon which the behaviour switches into another. Expressing this in
Yampa can be done by first wrapping the previous function. The wrapper function adds
an edge detector to the output stream of our earlier function, triggering as soon as the
height reaches zero. This is done by writing:

9

CHAPTER 2. BACKGROUND

fallingBallEvent :: Pos → Vel → SF () ((Pos,Vel), Event (Pos,Vel))
fallingBallEvent y0 v0 = proc () → do
x@(y,_) ← fallingBall v0 v0 −≺ ()
bounced ← edge −≺ y ≤ 0
returnA −≺ (x, bounced ‘tag‘ x)

The produced events are tagged by the current state of the ball, as it allows us to
extract the ball’s current velocity when an event is produced. With this function, a
signal function for modeling a bouncing ball can then be expressed as:

bouncingBall :: Pos → SF () (Pos, Vel)
bouncingBall y0 = go y0 0.0
where go y0 v0 =
fallingBallEvent y0 v0 ‘switch‘ λ(y,v) → go y (-v)

2.2 Synchronous Dataflow Languages

Dataflow programming (DFP) is a paradigm which internally models applications as
directed graphs [22, 23], similar to a dataflow diagram. Nodes in the graph are then
executable blocks, representing the different components of an application: they receive
input, applies some transformation, and forwards it to the other connected nodes. A
dataflow application is then, simply stated, a composition of such blocks, with one
or more source and sink blocks. These nodes are linked together by directed edges,
representing the data dependencies between components.

While DFP is not too common as a programming paradigm, it does offer some ad-
vantages in certain scenarios. For instance, the availability of formal verification tools
is an important aspect for critical real-time control software [24]. Domain experts in
DSP tend to structure applications using boxes and arrows, and are hence comfortable
with the dataflow style of composing applications from sub-components. However, the
key advantage is that, in dataflow graphs, several sub-components can be executed si-
multaneously, that is, it offers implicit concurrency. This concurrency comes from the
representation of nodes as independent processing blocks in the internal graph. Since
nodes run without any side-effects, the execution model allows nodes to fire as soon as
they receive input. These are also run without any risk for deadlocking, since a node’s
input is also its only data dependencies [22, p. 3].

A later extension to DFP is the introduction of synchronous dataflow (SDF) [11].
SDF is a subset of pure dataflow, in which the number of tokens produced or consumed
by nodes during each step of evaluation is known at compile-time. The advantage of
this approach is that it can be statically scheduled [25]. This means that it possible to
convert the data flow graph into a sequential program, which does not require dynamic
scheduling. These sequential programs can, for instance, be finite state machines, which
in turn can be translated into efficient code. Due to this advantage, SDF has been of
particular use in the DSP domain where time is an important element of computations
[26, 27].

10

CHAPTER 2. BACKGROUND

The Lucid Synchrone language [28, 29] is a member of the family of synchronous
languages. This family includes languages such as ESTEREL [30], a restricted data-flow
language, suited for control-dominated model designs, LUSTRE [31], which is designed
to works almost as a specification language, and SIGNAL [32], an event-driven language.
These languages are designed to model reactive systems, in a way similar to Yampa, but
using a dataflow programming paradigm with a heavier focus on being able to prove
properties of a system. Lucid Synchrone was introduced as an extension of LUSTRE,
and demonstrated that the language could be extended with new and powerful features.
For instance, automatic clock and type inference was introduced, and a restricted version
of higher-order formalism was added, while still retaining basic properties of LUSTRE.

In Lucid Synchrone, every type or scalar value imported from the host language,
OCaml, is implicitly lifted to streams. These streams can be represented as chronograms,
showing the sequence of values produced at each time instance. For example,

x x0 x1 x2 x3 ...

y y0 y1 y2 y3 ...

x + y x0 + y0 x1 + y1 x2 + y2 x3 + y3 ...

shows the values produced by the expression x + y, where x and y are two streams.
Stream functions, such as (+), are separated into combinatorial and sequential func-

tions. A combinatorial functions may only depend on the current input to produce its
result, while sequential functions are causal and may depend on earlier input. One could,
for example, define the combinatorial half- and full-adder circuits by

let half_add (x,y) = (s,co) where
s = xor (x,y) and co = x & y

let full_add (x,y,z) = (s,co) where
rec (s1,c1) = half_add(x,y)
and (s, c2) = half_add(z,s1)
and co = c2 or c1

We use the let keyword to introduce a new functions, and in this example, two functions
named half_add and full_add are introduced. half_add takes a pair as input and produces
another pair, defined by the xor and conjunction of the input pair – where the xor and
(&) operators are lifted versions of the same operators imported from the host language.
Two half-adders and an or gate are then used to define the full-adder, where the rec
keyword is used to indicate that the output of one half-adder is used as input for the
other.

In addition to those operators lifted from the host language, a set of stream specific
ones are given as well. Amongst these are the delay operator pre, which delays its input
and is unspecified at its first time instance, and the initialization operator (→), which
combines two streams by taking the first stream’s value at the first time instant followed
by the second stream’s values.

11

CHAPTER 2. BACKGROUND

These two operators are commonly used together, often to simply delay a stream by one
instant and initialise it with some value. A third delay operator, called fby, is therefore
introduced, and is defined as: x fby y = x → pre y. The behaviours of these operators can
also be understood by looking at their chronograms:

x x0 x1 x2 x3 ...

pre x nil x0 x1 x2 ...

1 → x 1 x1 x2 x3 ...

1 fby x 1 x0 x1 x2 ...

Delay operators can be used to create recursively defined streams. One could, for exam-
ple, implement a sequential function such as a counter by:

let node counter start = x
where rec x = start → pre x + 1

where node is a syntactic indication that the expression is sequential, that is, the expres-
sion involves previous values and hence state.

Our definition of the counting function is length preserving, that is, it consumes as
many tokens as it produces. However, Lucid Synchrone also support functions which
produce and consume a variable number of tokens at each time instant, which allows
one to sample and merge streams, even if they are operating different frequencies. This
is achieved through the notion of clocks. One such function for sampling a stream is the
when operator, which samples a stream according to some boolean stream. To sample our
counter we write:

let node sampled_counter start c = (counter start) when c

which will produce the following chronogram

start 0 0 0 0 ...

c F T F T ...

counter 0 1 2 3 ...

scounter 1 3 ...

The clock type of our sampled counter will hence depend on the boolean stream c. One
could also construct an over-sampling function: a function which produces more tokens
than it consumes; the stuttering function is an example of such a function. Such sam-
pling and oversampling appear naturally in multi-clock systems when one, for example,
considers the communication between subsystems operating on different clocks.

Synchronous dataflow languages, such as Lucid Synchrone and LUSTRE, are first-
order languages, that is, a synchronous stream function corresponds directly to a finite

12

CHAPTER 2. BACKGROUND

state machine and there is a clear distinction between values and such functions. Higher-
order in Lucid Synchrone comes instead from the ability to parameterize functions by
other functions. However, the language only provides a restricted form of higher-order,
since the function taken as a parameter, or returned as a result, is determined statically
and cannot be dynamically altered while running. This allows the compiler to transform
the system, by for example inlining, to a first-order system.

2.2.1 Modeling Real World limitations in Lucid Synchrone

Consider the case of implementing a power function in hardware. For example, if one
wanted to compute the fifth power of a value, and the system had at least four multipliers,
then a function could be defined as:

let node power x = y where y = x * x * x * x * x

val power : int ⇒ int // function type
val power :: ’a → ’a // clock type

But what if there only was one multiplier available? Then the fifth power cannot possibly
be computed in a single clock cycle. Instead, a function which operates at a slower pace
must be defined, where the result is computed incrementally. This is a common example,
and a solution to the problem is presented in the manual for Lucid Synchrone [28, p. 24]
as:

// defines a clock which is four times slower than the global clock
let clock four = sample 4

let node power x = y where
rec i = merge four x ((1 fby i) whenot four)
and o = 1 fby (i * merge four x (o whenot four))
and y = o when four

val power : int ⇒ int
val power :: ’a on four → ’a on four

The output stream, y, is composed of two smaller streams, i and o, which holds the
current sample and incrementally computed result, respectively. In both streams the
merge combinators are used to fetch the current working value, and the result is then
obtained by sampling the value stream whenever it has reached the correct power rank.
Their behaviour can also be understood by inspecting their chronograms:

four T F F F T F F F T

x x0 x1 x2

i x0 x0 x0 x0 x1 x1 x1 x1 x2

0 1 x20 x30 x40 x50 x21 x31 x41 x51

y 1 x50 x51

13

CHAPTER 2. BACKGROUND

2.3 Feldspar

Feldspar1 [4, 5] is a domain-specific language for numerical array processing, designed
for use in the performance sensitive domain of digital signal processing, where it enables
platform independent descriptions of DSP algorithms. It is implemented as a deeply
embedded language in Haskell, and is strongly typed with pure semantics and has support
for both scalar and vector computations.

Feldspar is based around a low-level functional core language, which is semantically
similar to machine-oriented languages, such as C, and operates at around the same level
of abstraction. A number of libraries built on top of the core language are offered,
enabling programming in a higher-order manner. As is common for deeply embedded
DSLs, programs written using these libraries generate an intermediate abstract syntax
tree (AST) representing a core language program. Feldspar is then able to interpret
these ASTs, translating them into some other language suitable for the target systems.
While Feldspar offers full control over the core language, typical high-level programs are
usually expressed using generators which enable optimizations to be performed on the
fly.

Programming primitive functions in Feldspar works much in the same way as in
their corresponding Haskell version. However, programs in the core language have the
constructor Data added to all types. For example, the standard Haskell functions

(&&) :: Bool → Bool → Bool
(==) :: Eq a ⇒ a → a → Bool
(≤) :: Ord a ⇒ a → a → Bool
(+) :: Num a ⇒ a → a → a

have the following types in Feldspar:

(&&) :: Data Bool → Data Bool → Data Bool
(==) :: Eq a ⇒ Data a → Data a → Data Bool
(≤) :: Ord a ⇒ Data a → Data a → Data Bool
(+) :: Numeric a ⇒ Data a → Data a → Data a

where the type classes are Feldspar’s representation of the corresponding classes in
Haskell. The resemblance between Feldspar and Haskell remains even in larger examples;
Feldspar is however more restricted than Haskell. By restricting the allowed constructs
Feldspar enables code generation with predictable performance, as well as permitting
control over important low-level details. One such major restriction is lack of recur-
sion in the core language – such operations must instead be expressed using Feldspar’s
libraries.

1Version 0.7 of Feldspar was used during this report, available at [33]

14

CHAPTER 2. BACKGROUND

The following example is a simple Haskell program which computes the bit-wise or
of a mask with all numbers in the range of zero to some specified limit, summing the
resulting numbers:

func :: Int32 → Int32 → Int32
func x y = sum $ map (y .|.) [0..x]

We can define a corresponding function in Feldspar using Haskell’s function abstraction:

func :: Data Int32 → Data Int32 → Data Int32
func x y = sum $ map (y .|.) (0...x)

Notice that removing the word Data gives the same definition as in ordinary Haskell.
The functions themselves differ only through the use of vectors instead of lists in the
Feldspar version, where (...) is used to introduce a vector over a specified range. func

does however no longer have a type of the form Data a, it is therefore no longer a core
program. Conceptually, it is instead a macro which builds a program from the two
programs x and y.

Feldspar’s printExpr function allows us to inspect the core language generated from
functions, by reifying the AST they generate. Applying printExpr to our earlier function,
as defined above, produces a result similar to the following one; however, in order to
increase readability its layout has been modified and explanatory comments have been
added:

(λvar0 → // x, range limit
(λvar1 → // y, the mask
(forLoop
(i2n (condition (var0 < 0) 0 (var0 + 1)))
0
(λvar2 → // values in array
(λvar3 → // accumulator
(var3 + (var1 .|. (i2n var2))))))))

where i2n is a conversion from integer to numerical values and forLoop represents a func-
tional iteration construct, similar to the standard for-loops found in C, with the number
of iterations, initial value and function body given as arguments.

Inspecting the core language above reveals that a number of vector operations have
been fused into a single loop, where any intermediate data structures have been elimi-
nated. Fusing operations is one of the most important features of vectors, guaranteeing
that whenever two vector functions are composed, the intermediate vector is always re-
moved. Vector fusion hence yields predictable compilation, given its strong guarantee of
optimization, and has the additional effect of enabling a compositional style of writing
programs, by using many small functions that are fused together.

Compilation into platform dependent ANSI C code is currently supported by Feldspar,
where the icompile function is used to produce C code; running it on our earlier function
func produces the following C program:

15

CHAPTER 2. BACKGROUND

#include "feldspar_c99.h" // some includes are omitted

void test(int32_t v0, int32_t v1, int32_t * out)
{
uint32_t len0;
int32_t e1;
int32_t v3;

if((v0 < 0))
{
e1 = 0;

}
else
{
e1 = (v0 + 1);

}
len0 = ((uint32_t)(e1));
(* out) = 0;
for(uint32_t v2 = 0; v2 < len0; v2 += 1)
{
v3 = ((* out) + (v1 | ((int32_t)(v2))));
(* out) = v3;

}
}

The compiled code is similar in structure to that of its core language, with the core’s
forLoop translated into the flattened version above; its conditional statement and initial
value have been moved outside of the loop while the function makes up the loop’s body.
While it is certainly possible to write programs using Feldspar’s core language, it is a
cumbersome process and the produced code can be rather opaque. One should instead
take advantage of the many abstractions and optimizations provided by Feldspar’s li-
braries. The core language does however provide finer control and gives opportunity for
manual optimisations.

2.3.1 Co-iteration and Streams

In the framework of dataflow programming, co-iteration has been a central concept for
reasoning about and optimising stream systems for quite some time [34]. It consists of
associating a transition function and initial state to each stream, where the transition
function takes a state and produces a new state and an output value. Feldspar contains
a modified version of these streams, where the initial state and output are wrapped in
monads, and has the following type:

Stream a :: Syntax state ⇒ (state → M a) → M state → Stream a

M is a monad for mutable state in Feldspar, and the Syntax constraint implies that the
type supports conversion into an abstract syntax tree [35]. An interesting property of
the above definition is that it allows us to handle infinite streams in a strict and efficient

16

CHAPTER 2. BACKGROUND

manner, instead of having to deal with them in a lazy way – as in the arrow paper [20,
p. 87].

Streams can be used to represent the continuous behaviours of a system, similar
to how signals are used in Yampa, but they can also be used to model discrete event
occurrences when given an appropriate choice of type parameter. Signals in Yampa were
used in conjunction with the Event data type to model event sources. Feldspar has a
corresponding type called Option, which either carries some value or is empty, and has
the following definition:

data Option a = Option { isSome :: Data Bool, fromSome :: a }

A stream, when given the above data type as its type parameter, will act in a similar
manner as event sources from Yampa: at each step it either yields nothing or some event
carrying a given type. Options can be constructed using the some and none functions,
which are semantically similar to the Just and Nothing constructors for Haskell’s Maybe
type.

Given the above types for signals and events, coupled with the assumption of stream
functions as simple mappings from stream to stream, we can implement some simple
stream generators and transformers. For instance, we can define the following operators

repeat :: (Syntax a) ⇒ a → Stream a
repeat a = Stream return (return a)

fby :: (Syntax a) ⇒ a → Stream a → Stream a
fby a (Stream next init) = Stream newNext newInit
where
newInit = init ‘with‘ (newRef a)
newNext (st, r) = do v ← getRef vr

setRef vr =<< next st
return v

map :: (Syntax a, Syntax b) ⇒ (a → b) → Stream a → Stream b
map f (Stream next init) = Stream (next >=> return . f) init

zip :: (Syntax a, Syntax b) ⇒ Stream a → Stream b → Stream (a, b)
zip (Stream next1 init1) (Stream next2 init2) = Stream next init
where
init = init1 ‘with‘ init2
next (st1, st2) = next1 st1 ‘with‘ next2 st2

with :: Monad m ⇒ m a → m b → m (a, b)
with = liftM2 (,)

repeat is an example of a simple signal generator, as it creates a stream which outputs
the same value indefinitely. The fby operator, inspired by Lucid Synchrone, is slightly
more complicated as it requires the use of references to store values between iterations.
Feldspar’s mutable references are similar to Haskell’s IORef, and are used to create a
persistent state which can be altered during execution of the stream. Feldspar provides
functions for managing such references through, for example, newRef, for creating new

17

CHAPTER 2. BACKGROUND

references, getRef, which fetches their contents, and setRef, for updating them. map and
zip are the stream version of their corresponding functions in Haskell. Using these stream
functions, we can define, for example, an edge detector:

edge :: Stream (Data Bool) → Stream (Data Bool)
edge str = map (uncurry (==)) $ zip str $ False ‘fby‘ str

18

3
Comparison of Approaches

In the previous chapter we introduced the two languages Yampa and Lucid Synchrone,
which we selected as representatives for the functional reactive and synchronous dataflow
paradigms, respectively. It is now our intent to further study these two languages through
the implementation of a common set of examples.

The previous examples, power and bouncing balls, captured two important aspects
of DSP, namely control oriented systems and clocks. Including them in our comparisons
will allow us to study how each language tackles these common scenarios, and more
importantly: how their approaches differ. The aim of these comparisons will be to
discern any favorable attributes one approach may posses over the others, especially
when considering their application in the DSP domain.

Following these comparisons, we will investigate the current state of Feldspar’s stream
library. In doing so we hope to determine the feasibility of introducing any promising
features, discovered during the earlier comparisons, to Feldspar. We also intend to
evaluate Feldspar’s current streaming library. In order to do so, we try and implement
a subset of Yampa’s operators in Feldspar using its current stream library, allowing us
to evaluate whether the concepts of signals and events can be supported using streams.

Another common concept in DSP is that of feedback networks, that is, streams de-
fined using either earlier input or output, or a combination of the two. Feldspar’s stream
library currently exports a number of recurrence equations for modeling recursively de-
fined streams so we implement some basic feedback networks in order to examine these
operators.

19

CHAPTER 3. COMPARISON OF APPROACHES

3.1 Yampa and Lucid Synchrone

The power and bouncing balls function were implemented using Lucid Synchrone and
Yampa, respectively, in the previous chapter. Therefore, in order to compare the two
languages, we implement the same examples again, this time using the opposite language
instead. We start out with the power example in Yampa, followed by the bouncing balls
example in Lucid Synchrone.

3.1.1 Power in Yampa

When defining the power function in Yampa, one might incorrectly start out by writing
something with a type similar to:

power :: Num a ⇒ SF a a
power = ?

which fails to capture the behaviour of the function, as it forces us to return a value
during each time instant. Rather than a constant stream, the power function’s discrete
behaviour is closer to that of an event source in Yampa.

Redefining the power function, to instead make use of events, gives us the ability to
return either nothing or some value at each step, that is, we are free to not return a value
until one has been calculated. This discrete behaviour, coupled with the use of sampling
and recursively defined signals, allows us to define the power function in a similar way
as to how it was defined using Lucid Synchrone:

power :: Num a ⇒ SF a (Event a)
power = sample 5 >>> recur $ proc x → do
i ← hold 1 −≺ x
o ← loopPre 1 (arr $ λ(i,c) → (c, i * c)) −≺ i
y ← sample 5 −≺ o
returnA −≺ y

While a smaller definition could be achieved by using the recursive arrow notation instead
of an explicit loop, its similarity to the corresponding version in Lucid Synchrone makes
it easier to compare the two. As before, the output is constructed using three smaller
streams; where the first stream, i, holds the current value of x and the second stream,
o, incrementally computes the correct power. This second stream is recursively defined,
as it keeps track over previous output, and is realised using the loopPre operator:

loopPre :: c → SF (a, c) (b, c) → SF a b

The operator expresses computations in which an output value is fed back as input, this
internal state is initialised by its first argument. recur is then used to flush the state of
the loop each time an output event is produced, restarting any internal computations in
a way similar to Lucid Synchrone’s sampling operator.

20

CHAPTER 3. COMPARISON OF APPROACHES

Even though a number of sampling operators were used in the above power example,
the actual notion of time is still handled implicitly by Yampa, that is, the function’s type
does not reflect the orderly behaviour of the system. By inspection it becomes apparent
that the function operates at a pace five times slower than that of its input, but the
Event type hides this information. Losing such information might not be much of a
concern when programming in Yampa; in Feldspar however, discarding such information
is a bad idea, as it could be used to generate a static schedule for the slower streams
[25].

3.1.2 Bouncing Balls in Lucid Synchrone

As Lucid Synchrone lacks the switch operators of Yampa, state machines are instead
used to describe control dominated systems. A state machine, or automaton, is simply
a collection of states and transitions, where a state is made of a set of equations and
can be parametrised. To implement the bouncing balls example in Lucid Synchrone,
we need to define such an automaton with two states; as these two states will represent
the control structure imposed by the switch operator. The first, and initial state, will
simply initialise the automaton’s output and then immediately transition into the second
state. This second state will then handle all the logic associated with bouncing a ball:
this includes monitoring the moving ball and continuously outputting a stream of its
position and velocity, until the height reaches zero, upon which it transitions into the
same state with its velocity negated.

let static t = 1.0 // sampling frequency
let node integr x0 dx = let rec x = x0 → pre x +. t *. dx in x

let node fallingBall (y0,v0) = (y,v) where
rec v = integr v0 (-9.18)
and y = integr y0 v

let node bouncingBall y0 = o where
rec automaton
Init →
do o = (y0, 0.0) then Bounce(o)

Bounce((yI,vI)) →
let (y,v) = fallingBall (yI,vI)
do o = (y,v) until (y ≤ 0) then Bounce((y,-v))

end

As Lucid Synchrone does not have any built in integral function, we defined our own
using delays and the lifted versions of OCaml’s standard floating-point operators. Then
we defined the two functions, fallingBall and bouncingBall, and gave them same behaviour
as their corresponding functions in the Yampa version.

The use of automata in the above example certainly yields compilation into efficient
code, as it can be converted to a loop with a simple switch-statement inside; avoiding
interference between states would however require a limitation on the effects of streams,
which currently is not present in Yampa. It should also be possible for a clever compiler
to unroll the main loop, taking advantage of the knowledge that the first state is only

21

CHAPTER 3. COMPARISON OF APPROACHES

run once. However, the family of switch operators provided by Yampa offers far more
modularity than automata, as a specialised automaton needs to be designed for each
unique control structure. Even though automata provide some desirable attributes,
such as performance, one would ideally combine them with a syntax closer to the switch
operators of Yampa.

3.2 FRP and SDF in Feldspar

While the expressive power of both languages seems relatively even, the FRP paradigm
and Yampa seems to be the preferable choice, as its semantics is closer to Feldspar than
that of SDF and Lucid Synchrone. It is also possible to implement automata in Feldspar
or Yampa, as one could implement a simple Mealy-styled automaton [36] using tuples
and streams; the converse is however not true, as one cannot define a state machine in
Lucid Synchrone with an infinite number of states. An infinite number of states might
not however have many practical applications, unless one intends to use formal models
for checking side-effects.

Ideally, one would include clock types in our extensions as well, since they give access
to optimisations such as static scheduling. The method of associating each function with
an additional clock type [37], as done in Lucid Synchrone, cannot however be easily
ported to Feldspar: functions in Haskell are only associated with a single type and we
cannot simply add another. This could be solved by merging the function- and clock-
type, which would require the use of type level programming. However, as Feldspar
already consists of multiple levels we would prefer to avoid introducing yet another one.
Clocks could instead be associated with stream functions themselves, and used to identify
whenever changes in frequency occur between two composed transformers.

Now, armed with the knowledge gained during our comparisons, we examine to which
extent the concepts and ideas we developed can be supported using streams.

3.2.1 Streams in Feldspar

As we saw in the previous chapter, Feldspar’s stream library could already support the
notion of signals and events from FRP. It is now our intent to further explore to what
extent the concepts from Yampa can be realised using streams, and in order to do so,
we implement a subset of Yampa in Feldspar, including a modified version of the switch
operator.

22

CHAPTER 3. COMPARISON OF APPROACHES

Given our earlier assumption of signal functions, it turns out that Feldspar’s stream
library is expressive enough for most of Yampa’s operators to be realised using it. For
example, the following functions from Yampa’s libraries

identity :: SF a a
constant :: b → SF a b
sscan :: (b → a → b) → b → SF a b
never :: SF a (Event b)
now :: b → SF a (Event b)
after :: Time → b → SF a (Event b)
repeatedly :: Time → b → SF a (Event b)

can be given corresponding implementations in Feldspar with streams:

identity :: Stream a → Stream a
identity = id

constant :: (Syntax b) ⇒ Stream a → Stream b
constant b = λ _ → repeat b

sscan :: (Syntax b) ⇒ (b → a → b) → b → Stream a → Stream b
sscan f b = mapAccum (λ b a → let x = f b a in (x, x)) b

never :: (Syntax a) ⇒ Stream (Option a)
never = repeat none

now :: (Syntax b) ⇒ b → Stream a → Stream (Option b)
now b = λ _ → some b ‘fby‘ never

after :: (Syntax a) ⇒ Data Length → a → Stream (Option a)
after l a = afterEach $ indexed (1 :: Data WordN) (const (l,a))

repeatedly :: (Syntax a) ⇒ Data Length → a → Stream (Option a)
repeatedly l a = mapNth (const (some a)) (l + 1) l $ never

These functions successfully mimic the behaviour of their Yampa versions, and most of
them could be realised using functions provided by Feldspar’s stream library. Those
signal functions that could not be supported – at least not using the existing stream
functions – were those with an irregular behaviour. For instance, the after function
generates a single event after a variable amount of time. In order to support the after

function’s irregular behaviour, and others like it, we defined a function that generates
events according to some schedule. For simplicity, this schedule is represented as a
vector of pairs, where each pair contains an event and the time until the event should
be produced:

23

CHAPTER 3. COMPARISON OF APPROACHES

afterEach :: (Syntax a) ⇒ Vector (Data Length, a) → Stream (Option a)
afterEach xs = Stream next init
where
init =
do vr ← newRef xs

ir ← newRef (0 :: Data Index)
tr ← newRef (0 :: Data Index)
return (vr, ir, tr)

next (vr, ir, tr) =
do v ← getRef vr

i ← getRef ir
t ← getRef tr
ifM (length v ≥ t)
(do let (l, x) = v ! i

ifM (i == l)
(do setRef ir 0

modifyRef tr (+1)
return $ some x)

(do modifyRef ir (+1)
return none))

(return none)

While afterEach does make use of vector operations, we avoid going into how Feldspar
handles vectors; conceptually, we can think of vectors as immutable lists, and its oper-
ations are semantically similar to those on lists as well. The function itself behaves as
a counter, since it continuously counts down until the next events should occur. When
an event finally is produced, the function moves on to the next item in the schedule and
starts over.

As we do not yet have access to a switch operator, implementing the bouncing balls
example for streams is still infeasible. However, we can implement some simple streams;
for example, clocks could be represented as streams by:

minutes :: Stream Bool
minutes = repeatedly 60 true

hours :: Stream Bool
hours = sscan countdown 0 minutes
where
countdown n True = (n + 1 ‘mod‘ 60, n == 60)
countdown n False = (n, false)

3.2.2 Switching by Streams

Even though Yampa’s signal functions could be realised straightforwardly as streams,
it proves difficult to implement its family of switch operators as problems arise when
considering their possible definitions in Feldspar and how existential types are used in
the construction of streams.

24

CHAPTER 3. COMPARISON OF APPROACHES

The first problem encountered when implementing switches is the fact that a stream
is partly static: a stream’s state can be updated, but not the transition function. This
means that the stream’s behaviour cannot be dynamically modified while running. In-
stead, a new stream will be constructed whenever an event occurs, which will in turn
require typecasting of the created stream’s state – as their types will not necessarily be
equal. Typecasting does however imply that we know beforehand which type we are
casting to. Since the type of a stream’s state is existential, as shown in chapter 2.3.1,
and hence only known after construction, we are forced to construct an initial stream
without access to any events. It is possible to use undefined values for this purpose,
which are represented using undef in Feldspar, and by writing:

switch :: ∀a c. ... ⇒ Stream (a, Option c)
→ (c → Stream a)
→ Stream a

switch (Stream next (init :: M state1)) f
| Stream _ (_ :: M state2) ← f undef = ...

we can define a switch operator that type-checks. It will however allow for the con-
struction of ill-typed streams, since we cannot restrict the type of a created stream’s
existential type, and therefore risks breaking the correctness of our typecasting.

A better approach to switching in Feldspar is to implement a fixed-point-esque switch
operator instead, where the initial state is given as an argument – thus avoiding any ini-
tialisation with undefined values. We can define such a switch operator by, for example,
writing:

switch :: ∀a c. (Syntax a, Syntax c) ⇒ c → (c → Stream (a, Option c)) → Stream a
switch initC f | Stream _ (init :: M state) ← f initC =
let
newInit :: M (Ref state, Ref c)
newInit = (init >>= newRef) ‘with‘ newRef initC

newNext :: (Ref state, Ref c) → M a
newNext (rs, rc) =
do c ← getRef rc

case f c of
(Stream next _) → do
st ← getRef rs
(x, ev) ← next (unsafeCoerce st)
optionM
(return x)
(λ c’ → case f c’ of
(Stream next init’) → do
st’ ← init’
(x’,_) ← next st’
setRef rc c’
setRef rs (unsafeCoerce st’)
return x’)

ev
in Stream newNext newInit

25

CHAPTER 3. COMPARISON OF APPROACHES

The internal state consists of the current state used, coupled with the last event which oc-
curred; initially, the internal state will contain the given event and the state constructed
from it. During execution, the internal state is then used to recreate the streams and
extract their produced elements. Each time an event occurs, we simply update the in-
ternal state; we did choose to ignore the first event produced after a switch, as it would
otherwise have required a, possibly infinite, loop unrolling.

Unsafe type casting is still required in the above version, since the created streams’
states are bound in the case alternative rather than at a top level; as we cannot access the
streams’ types, and thereby constrain them, we also cannot assert that their types will
be equal. This is however a minor inconvenience, since the switching function, f above,
needs to inspect its argument in order to break casting, which is abuse of Feldspar.
Also, while it may seem inefficient to reconstruct a stream for each iteration, remember
that these programs are simple generators and streams are abstractions which will be
removed during compilation.

Using the switch operator defined above, the bouncing balls example can finally
be implemented in Feldspar as well. Mimicking the Yampa version, we implement the
example by writing:

type DPair a = (Data a, Data a)

falling_ball :: (Ord a, Numeric a, Syntax a) ⇒ DPair a → Stream (DPair a)
falling_ball (initV, initY) = zip currV currY
where
currV = iterate (9 ‘addNum‘) initV
currY = scan (λacc v → acc ‘subNum’‘ v) initY currV
where subNum’ a b = (a ≤ b) ? (0, a ‘subNum‘ b)

falling_ball_ev :: (Ord a, Numeric a, Syntax a)
⇒ DPair a → Stream (DPair a, Option (DPair a))

falling_ball_ev start = zipWith mergeF currPair currOpt
where
currPair = falling_ball start
currOpt = edge $ map ((≤ 0) . snd) currPair
mergeF a b = option (a, none) (λ_ → (a, some a)) b

bouncing_ball :: (Ord a, Numeric a, Syntax a) ⇒ Data a → Stream (DPair a)
bouncing_ball initY = loop (0, initY)
where
loop start = switch start $ λ(v,y) → falling_ball_ev (negate v, y)

iterate iteratively applies a function to a starting element, the successive results are then
used to create a stream. scan produces a stream by successively applying a function to
each element of the input stream and the previous element of the output stream. zipWith

pairs together two streams using a function to combine the corresponding elements at
each time instant. option constructs elements of Feldspar’s Option type, and behaves as
maybe does in Haskell for its Maybe type.

26

CHAPTER 3. COMPARISON OF APPROACHES

3.2.3 General Recurrence Equations

As we saw in the two previous chapters, the better part of Yampa’s signal functions could
already be realised in Feldspar as stream functions. Its family of switching operators
could however not be implemented in a satisfactory manner – as they required the use
of unsafe type casting. A better approach to switching in Feldspar, as it turned out,
was to instead employ fixed-point styled combinators. Such recurrence equations, where
a stream’s output is determined by a combination of previous input and output values,
is a necessary component in any network where feedback is present. Feldspar’s current
stream library therefore offers support for such recurrence equations, or feedback loops,
through the following combinators.

recurrenceO :: (Type a) ⇒
Vector1 a

→ (Vector1 a → Data a)
→ Stream (Data a)

recurrenceI :: (Type a, Type b) ⇒
Vector1 a

→ Stream (Data a)
→ (Vector1 a → Data b)
→ Stream (Data b)

recurrenceIO :: (Type a, Type b) ⇒
Vector1 a

→ Stream (Data a)
→ Vector1 b
→ (Vector1 a → Vector1 b → Data b)
→ Stream (Data b)

where the type Vector1 represents a non-nested vector.
The first of the three combinators above, recurrenceO, takes a vector, containing the

initial values of the stream, and a function for computing the stream’s new output values.
Its function may refer to previous outputs of the stream, but only as many as the length
of the input vector. Restricting the access of previous values in this way enables efficient
memory management, as the combinators need only use memory proportional in size to
the input vector. Each time a new value is produced, the internal vector is updated to
replace the oldest value with the new one.

The recurrenceI combinator operates in a similar manner as recurrenceO does. They do
however differ through the addition of an input stream and its function restriction, as
the function may now only refer to previous input values instead. The input stream of
recurrenceI is then used in combination with the previous values stored to compute its
next output. Lastly, recurrenceIO is simply a combination of recurrenceO and recurrenceI: it
has an input stream, vectors for storing both previous inputs and outputs, and a function
which may refer to both previously computed input and output values.

Given these feedback combinators, it is possible to express some simple recursively
defined streams. For example, the Fibonacci sequence and a moving average filter can
be defined as:

27

CHAPTER 3. COMPARISON OF APPROACHES

import qualified Feldspar.Vector as V

fib :: Stream (Data WordN)
fib = recurrenceO (V.vector [0,1]) (λ fib → fib!0 + fib!1)

slidingAvg :: Data WordN → Stream (Data WordN) → Stream (Data WordN)
slidingAvg n str = recurrenceI (V.replicate n 0) str $

λ input → V.sum input ‘quot‘ n

Vectors are used internally in both examples for storing values. However, as their se-
mantics are equivalent to that of lists, we once again refrain from explaining them in
detail; interested readers could instead refer to the Feldspar tutorial [38].

It is also possible to define finite and infinite impulse response filters using recurrence
equations:

fir :: Vector1 Float → Stream (Data Float) → Stream (Data Float)
fir a inp = recurrenceI (V.replicate (length a) 0) inp

(V.scalarProd a)

iir :: Data Float → Vector1 Float → Vector1 Float
→ Stream (Data Float)
→ Stream (Data Float)

iir a0 a b inp = recurrenceIO (V.replicate (length b) 0) inp
(V.replicate (length a) 0)

(λ i o → 1 / a0 * (scalarProd b i
- scalarProd a o))

where scalarProd calculates the scalar product of two vectors, and replicate creates a vector
of the specified length and each element value.

While the stream’s recurrence equation allows for feedback loops in circuits to be
described, they are somewhat unintuitive to work with. This approach also quickly gets
cumbersome as each recurrence equation only allows for a fixed number of buffer vectors;
that is, a unique combinator is required for each conceivable use case.

28

4
Extending Feldspar

In the previous chapters, we discussed benefits and limitations of some current ap-
proaches for modelling streaming computations, which paradigms those were imple-
mented in, and the current state of Feldspar’s stream library. Based on the results
of these studies, we now develop a model for expressing various streaming computations.

Since the current stream library is already capable of modeling the core concepts
of FRP, we build our extension on top of the current stream library. Ideas from SDF
that we found to be beneficial, such as clocks, are then incorporated into our extension
as well. The functionality provided by our extension will however be closer to that
of Yampa, whilst the ideas taken from Lucid Synchrone will be applied mainly during
the compilation phase. We focus mainly on Yampa since we are lacking the ability to
introduce some of the special syntax rules used in Lucid Synchrone; Lucid Synchrone
relies on its syntax to make the design of automata easier and implementing them without
it is unwieldy at best.

As Yampa adopted the use of arrows for its design of signal transformers, we start
out by investigating the possibility of using them in our extensions as well. Afterwards,
our own model of signal transformers is developed, combining ideas from FRP and
SDF to achieve a healthy mix of performance and usability. Once the model has been
introduced, we develop a means to compile signals into monadic programs, which can
be further translated by Feldspar’s compiler.

29

CHAPTER 4. EXTENDING FELDSPAR

4.1 Arrows

Arrows are a generalisation of monads, as every monad produces an arrow, but not all
arrows can be turned into monads. In particular, they allow notions of computation that
may be partially static or take multiple inputs, while still retaining a disciplined style of
composition similar to monads.

There are several reasons to prefer our language extension design to be based on
arrows over, for example, an approach such as the one currently used in Feldspar’s stream
library. For instance, arrows are modular and introduce a meta-level of computation,
helping us reason about program correctness. Another, and equally important, property
of arrows is that they grant us access to the special arrow syntax. For example, consider
the mathematical definition for describing the height of a free-falling ball

height = heigth0 +

∫
velocity ∗ dt

In Yampa, we defined this using arrow syntax as

f y0 = proc v → do
y ← (y0 +) ^<< integral −≺ v
returnA −≺ y

Even if one is not familiar with the arrow syntax, the close correspondence between the
formula’s mathematical definition and the Yampa program should be clear. In Feldspar,
as is common in most high-level language designs, this is the primary motivation for
developing an embedded language: reducing the gap between an algorithm’s specification
and its corresponding program. Arrows also have a strong theoretical foundation in
category theory, as they represent an alternative, and more general, formulation of Freyd
categories [39].

In Haskell, arrows are given the following type class declaration

class Category cat where
id :: cat a a
(.) :: cat b c → cat a b → cat a c

class Category a ⇒ Arrow a where
arr :: (b → c) → a b c
first :: a b c → a (b, d) (c, d)

Operations from the Category type class provide generalised versions of Haskell’s identity
and function composition operators, that is, categories define things connecting two
types in a particular direction. The Arrow type class extends Category, but the underlying
theory is the same: arrows are things that have an identity constructor and can be
composed. The additional operators provided by the Arrow class define a way to lift
arbitrary functions into arrows and how arrows can be promoted to operate on tuples,
respectively. The general idea behind the second function, called first, is to feed the

30

CHAPTER 4. EXTENDING FELDSPAR

first component through the argument arrow, where the second part of the input is fed
directly to the output.

Suppose that we would like to support the arrow class for our signal functions. A
possible definition would then look something like:

data SF a b
where
SFarr :: (Stream a → Stream b) → SF a b
SFfirst :: SF a b → SF (a, c) (b, c)
SFcomp :: SF a b → SF b c → SF a c
...

with the intention that SF allows one to build networks whose nodes are stream trans-
formers. Support for the arrow interface can now be implemented in a straightforward
manner as:

import qualified Prelude as P
import qualified Feldspar.Stream as S

instance Category (SF a b) where
id = SFarr P.id
(.) = flip SFcomp

instance Arrow (SF a b) where
arr f = SFarr (S.map f)
first = SFfirst

This approach does however require us to relax the mapping function for streams, by
dropping the syntax requirement; during construction one can do without the Syntax

restriction, it is however necessary during compilation. This relaxation is necessary due
to Haskell’s arrow and monad type classes assuming that the guest language is a super-
set of Haskell’s, because every Haskell function can be promoted to a guest language
expression: an arrow’s arr lifts arbitrary Haskell functions to an arrow and a monad’s
return lifts into the monad. Unfortunately, first-class functions are not viable in most
embedded languages. While having to implement our own version of the monad and
arrow type classes is superable, losing their associated syntax is not; as arrow syntax
alleviates the cumbersome nature of writing programs in the point-free style demanded
by arrows.

To model recursion, i.e. allowing cycles in the computational graph, we introduce
another of the arrow type classes: ArrowLoop, which defines a generalised loop combinator
for arrows. In Haskell, it has the following definition

class Arrow a ⇒ ArrowLoop a where
loop :: a (b, d) (c, d) → a b c

The loop operator expresses computations in which an output value is fed back to become
part of its own input in the next iteration, with the intent that any actual computation
only occurs once. For our signal functions, this type class is once again too general to

31

CHAPTER 4. EXTENDING FELDSPAR

support: in order to feed back values between iterations they need to be stored. Storing
values in Feldspar requires them to support the Syntax type class. Given that the type
admits Syntax, a possible implementation of a loop combinator for streams would be

loop :: ∀a b c. (Syntax c) ⇒ (Stream (a,c) → Stream (b,c))
→ Stream a
→ Stream b

loop f s = let r = newRef (undef :: c)
ss = f $ S.zip s $ Stream getRef r

in case ss of
(Stream next init) → Stream next’ (init ‘with‘ r)
where next’ (st, r) = do (b, c) ← next st

setRef r c
return b

where the value to feed back is stored in a reference. There is however no apparent
way of feeding back values without the Syntax requirement, the ArrowLoop type class can
therefore not be supported by our signal functions. Access to the arrow syntax for loops
is therefore lost, and any recursively defined streams have to be manually specified,
rather than by using the rec keyword.

Another important feature, as required by signal processing, is the ability to de-
scribe control dominated systems. In the arrow framework, this is known as conditional
statements, and is described using the ArrowChoice class

class Arrow a ⇒ ArrowChoice a where
left :: a b c → a (Either b d) (Either c d)

Unfortunately, we are once again hindered by the class’s restrictive definition: Haskell’s
Either type cannot be made an instance of Syntax, since when we want to convert it to
an internal representation there is no way of knowing, at least until the program is run,
whether the value is constructed using Left or Right.

An interesting property of arrows can be observed when both choice and feedback are
supported: the way control structures are described moves closer to the state machines
of Lucid Synchrone, rather than the switching combinators of Yampa. A Mealy-styled
automaton, as mentioned earlier, is basically a collection of states and transitions. As
the arrows’ choice combinators allow for control dominated structures to be described,
it would be possible to manage the transitions of an automaton using them.

One important feature of state machines is however that only one set of equations is
executed during one time instant, a property that is not enforced by the current choice
operators. Additional constraints on the effects of streams are therefore required, in
order to avoid interference when using the choice operators. For example, a mechanism
for storing the current state of a stream for later retrieval is required, in order to ensure
that no side-effects occurred. Finally, the threading of state, both local and global, in
the automaton could be handled by arrows’ recursion operator.

Haskell’s arrows present many compelling arguments for their use in streaming com-
putations, as well as the small gap between an algorithms description and its imple-

32

CHAPTER 4. EXTENDING FELDSPAR

mentation using arrows. We are however unable to support arbitrary functions being
promoted into Feldspar, as is demanded by arrows. Instead, we turn to language ex-
tensions to further examine the possibility of adopting arrows for use in our stream
extensions.

4.1.1 Generalised and Rebindable Arrows

Like Haskell’s arrows, generalised arrows [40] provide a means for meta-programming,
that is, they enables one to write programs which generate other programs. Unlike
Haskell’s arrows, they allow for heterogeneous meta-programming. They achieve this by
removing the assumption that any Haskell function can be promoted to an expression
in the guest language.

Generalised arrows are a subclass of the Category class, and obey its laws of asso-
ciativity and neutrality – as required of any category. The new arrow class defines a
ga_first and ga_second function, almost identical in type and behaviour to their corre-
sponding standard arrow functions. The use of tuples is however abstracted out, as a
second type parameter of kind (∗ → ∗ → ∗) is used instead. This type parameter is
called the tensor of a generalised arrow, and its role is analogous to that of tuples in
Haskell’s arrows. Missing from the class interface is the arr function, used for lifting
arbitrary functions into the arrow. In its place are instead a number of functions for
rearranging the inputs and outputs of a generalised arrow. Conceptually, as the arr
function was used in describing the laws and behaviour of arrows, these functions are
required for upholding those laws. The type class itself is given the following definition:

class Category g ⇒ GArrow g (**) u
where
ga_first :: g x y → g (x**z) (y**z)
ga_second :: g x y → g (z**x) (z**y)
ga_cancell :: g (u**x) x
ga_cancelr :: g (x**u) x
ga_uncancell :: g x (u**x)
ga_uncancelr :: g x (x**u)
ga_assoc :: g ((x**y)**z) (x**(y**z))
ga_unassoc :: g (x**(y**z)) ((x**y)**z)

Subclasses are also provided, accounting for languages with, for example, recursion:

class GArrow g (**) u ⇒ GArrowLoop g (**) u
where
ga_loop :: g (x**z) (y**z) → g x y

Generalised arrows solve some of the problems we encountered while trying to sup-
port arrows for our stream transformers. For instance, we no longer need to support
promotion of arbitrary functions, and the strict types are substituted with a type param-
eter. These restrictions are however not enough, as we also require the contexts to only
accept types admitting Syntax. There is in fact a recent language extension to GHC
which allows us pass constraints as type arguments, allowing us to arbitrarily restrict

33

CHAPTER 4. EXTENDING FELDSPAR

the types that arrows accept. A version of arrows that fits our requirements could then
be defined as:

{-# LANGUAGE ConstraintKinds #-}

class Category a ⇒ Arrow a (**) ctx
where
arr :: (ctx x, ctx y) ⇒ (x → y) → a x y
...

class Arrow a (**) ctx ⇒ ArrowLoop a (**) ctx
where
loop :: (ctx z) ⇒ a (x**z) (y**z) → a x y

class Arrow a (**) ctx ⇒ ArrowChoice a (**) ctx (++)
where
left :: (ctx z) ⇒ a x y → a (x++z) (y++z)

Lifting is possible since we only permit a possibly restricted set of types.
Sadly, however, by writing our own versions of arrows we are prohibited from using

their associated syntax. While GHC allows most of its built-in syntax to be rebound by
the user, through the rebindable syntax language extension, it is too restrictive for our
proposed version, as the types of the new arrow functions must match the original types
very closely.

4.2 Signals

As Haskell’s arrows proved to be incompatible with Feldspar’s restricted language, we
instead focus on developing our extensions through pure Haskell code. Arrows, and
the meta- programming they offered, did however introduce a nice way of expressing
streaming computations, which we will aim to mimic in our model.

As we build our extension on top of Feldspar’s stream library, we require a way to
promote stream functions into our language – similar to how arrows provides the arr
operator for lifting arbitrary functions into arrows. Unlike arrow’s lift operator, it is
necessary to restrict the types for which promotion is possible. Failure to do so would
enable the construction of streams without any internal representation in Feldspar, that
is, it would create streams which are impossible to compile. This reasoning leads us to
the following definition of lift:

lift :: (Syntax a, Syntax b) ⇒ (Stream a → Stream b)
→ Signal a
→ Signal b

as lift represents our way of promoting stream functions into signals. We can define our
first constructor for Signal, and, based on the type of lift, we give the initial definition
of:

34

CHAPTER 4. EXTENDING FELDSPAR

data Signal a
where
Arr :: (Syntax a, Syntax b)

⇒ (Stream a → Stream b)
→ Signal a
→ Signal b

Like arrows, the need for an underlying Category class becomes evident when imple-
menting signal generators. Consider, for example, the repeat generator, which produces
a constant stream of some value:

repeat :: (Syntax a) ⇒ a → Signal a
repeat a = Arr (S.repeat a ‘asTypeOf‘) $...

Currently, we have no input signal to feed the Arr constructor with, and neither would we
want to add one as it would defeat the purpose of having generators in the first place. The
introduction of another construct is therefore necessary, modeling the identity morphism
of categories:

data Signal a
where
...
Bot :: Signal a

This construct will be hidden in the final library, effectively stopping users from creating
their own signal generators and the potential memory issues those may incur.

Defining signals, and map, in this way introduces a subtle ambiguity to signals: how
to distinguish between pairs of values and a pair of two independently constructed types.
This difference is perhaps of lesser importance when considering streams as seen from the
user’s perspective, as they are semantically equivalent. During the complation process,
the ability to distinguish between the two becomes significantly more important. For
instance, while a tuple of values is bound to be evaluated simultaneous, the product of
two independently created signals can be computed in parallel and later joined when
both are needed. Furthermore, given a way to distinguish between the two types of
pairs, it is possible to optimise and balance operations which only affect one element by,
for example, rearranging combinatorial functions.

For deeply embedded data types, such as our Signal type, library operations only
build an interim representation of the data structure that reflects the expression tree,
that is, programs written using signals produce a tree over the network, which we can
later inspect and optimise. Tracing a network’s graph would reveal whether the pair
is a result from a use of the map function or pair of combined signals, originating from
a certain constructor. Introducing a constructor for pairing signals allows us to detect
opportunities for parallel evaluation. It is however not enough to allow transformations
on pairs to be rearranged in some favourable order. Consider, for example, the mapping
over a signal of pairs using map:

35

CHAPTER 4. EXTENDING FELDSPAR

fst :: (...) ⇒ (Stream (a,b) → Stream (a,c))
→ Signal (a,b)
→ Signal (a,c)

fst = map

While the type may appear to be appropriate, it does not guarantee that the function’s
effect is contained to only the tuple’s second element. For example, consider the following
function

bad :: (...) ⇒ Signal (a, a) → Signal (a, a)
bad = fst $ S.map $ λ(x, y) → (y, x)

The addition of another constructor is therefore necessary, and we introduce the following
signal transformers:

zip :: (Syntax a, Syntax b) ⇒ Signal a → Signal b → Signal (a, b)

fst :: (Syntax a, Syntax b) ⇒ Signal (a, b) → Signal a

accompanied by a corresponding extension to our Signal type

data Signal a
where
...
Zip :: (Syntax a, Syntax b) ⇒ Signal a → Signal b → Signal (a, b)
Fst :: (Syntax a, Syntax b) ⇒ Signal (a, b) → Signal b

Using the Arr constructor it is possible to express arbitrary combinatorial circuits, as it
gives us access to Feldspar’s stream library.

In Feldspar’s stream library, sequential circuits are currently expressed using the
recurrence equations and sampling operator. However, for reasons discussed in earlier
chapters, we would prefer to avoid using them entirely. Dedicated constructors for
sequential operations are therefore introduced, one for delay and another for sampling.

delay :: (Syntax a) ⇒ a → Signal a → Signal a

sample :: (Syntax a) ⇒ Data Length → Signal a → Signal a

These are added with the intent to enable the use of memory efficient buffers in feedback
networks, where the size and access patterns for each buffer would be determined by
inspection of the program’s graph. Both functions are inspired by their corresponding
versions in Lucid Synchrone, where delay produces a signal initialised to some value,
similar to the fby operator, and sample simply samples a signal at a specified rate. These
transformers are once again accompanied by a corresponding extension of the Signal type:

36

CHAPTER 4. EXTENDING FELDSPAR

data Signal a
where
...
Delay :: (Syntax a) ⇒ a → Signal a → Signal a
Sample :: (Syntax a) ⇒ Data Length → Signal a → Signal a

which gives us the final definition of our Signal type:

data Signal a
where
Arr :: Stream b → Stream a) → Signal b → Signal a
Zip :: Signal a → Signal b → Signal (a, b)
Fst :: Signal (a, b) → Signal a
Delay :: a → Signal a → Signal a
Sample :: Data Length → Signal a → Signal a
Bot :: Signal a

where constraints have been elided in order to improve readability.

4.2.1 Meta-Programming using Haskell

When we defined our signals any pure Haskell code was carefully separated from our
signal functions. Having such a division between the languages, coupled with the dis-
tinction between Feldspar types and Haskell types, has the nice property that we can
use pure Haskell code as a form of meta-programming language for our signal programs.

The general idea is that any recursion created by using functions from our signal
library results in feedback, while recursion created by using pure Haskell code produces
repetitive code instead. For example, consider the following sequential function

f :: (Syntax a, Num a) ⇒ Signal a → Signal a
f sig = sig + delay 0 sig

Recursion is present here through the delay operator, creating a function whose output
depends upon previous input values. This is reflected in the graph representation, and
by observing the sharing present, the graph can be viewed in Figure 4.1.

Figure 4.1: Small feedback network with delay

37

CHAPTER 4. EXTENDING FELDSPAR

Figure 4.2: Summation of signals

Conversely, by defining a pure Haskell function for summing the outputs from a list of
signals as, for example:

import qualified Prelude as P

sums :: (Syntax a, Num a) ⇒ [Signal a] → Signal a
sums = P.foldr1 (+)

the recursion is instead introduced through the folding operator. This repetitive applica-
tion of the plus operator is reflected in the network generated, which takes the structure
shown in Figure 4.2. Pure Haskell code can hence be used to create repetitive signal
programs, enabling it to be used as meta-programming language for signals.

The ability to use pure Haskell in this way presents several benefits, as it improves
the syntax and ease of programming signals significantly. For instance, in order to define
complex networks, the user is only required to be versed in Haskell’s standard library
operators, thereby reducing the complexity of developing new networks. An additional
benefit is that delays can now be applied to any expression, unlike the previous recurrence
equation. The effect of these benefits can be observed when we, for example, redefine
the FIR filter to use our new signals instead. Before we do that however, we define two
additional helper functions:

delays :: (Syntax a) ⇒ [a] → Signal a → [Signal a]
delays (a:as) sig = P.init $ P.scanl (flip delay) (delay a sig) as

muls :: (Syntax a, Num a) ⇒ [Signal a] → [a] → [Signal a]
muls = P.zipWith $ λsig c → sig * repeat c

delays creates a list of successively delayed signals, and muls applies point-wise multipli-
cation to a list of signals. These functions allow us to express the FIR filter in a rather
eloquent manner as:

fir :: Int → [Data Float] → Signal (Data Float) → Signal (Data Float)
fir bs sig = sums $ muls bs $ delays ds sig
where
ds = P.replicate (length bs) 0

38

CHAPTER 4. EXTENDING FELDSPAR

Even though we have now managed to define a FIR filter using signals, we have
yet to implement any support for its compilation. In fact, trying to naively compile
the data structures created by any of the above examples would most likely produce
very inefficient code. This is due to the fact that we cannot observe any sharing that is
taking place, and any piece of shared code will hence be run once for each invocation.
For instance, in the above example of a FIR filter, each delayed signal in the list created
by delays would contain an unique copy of the entire input signal. To circumvent this,
we employ the techniques of type-safe observable sharing.

4.3 Type-Safe Observable Sharing of Signals

A common problem in pure and lazy functional programming languages, and especially
so when manipulating data types representing embedded languages, is observing any
sharing present in the syntax trees. While an embedded language is commonly imple-
mented as finite graphs over its base types, viewing it as an algebraic data type makes
it indistinguishable from an infinite tree.

Observable sharing in trees extracted from some embedded language, is a well- es-
tablished problem: how to allow trees extracted from some deeply embedded language
to have observable back-edges; such sharing is currently invisible to any function which
traverses the tree. One possible solution to the problem, as proposed by [41], is the use
of explicit labels. By associating every component in the language with a unique tag
it is possible to recover an expression’s graph structure, as we can keep track of visited
nodes when traversing the tree. This does however obfuscate the original data structure
and introduces the problem of supplying the source of unique names.

Monads present another solution to the problem of allowing observable sharing, where
some underlying machinery is used to guarantee unique tags. This is the solution used in
early implementations of Chalmers Lava [42], where a changing piece of state is threaded
through the computations and used to generate unique tags. Introducing monads –
or any other categorical structure – does however impact the types of the primitive
components; it implies that they become monadic, that is, functions are restricted to
returning monadic types. Restricting the functions in such a way affects the manner in
which one writes expressions. For instance, when using monadic types it is no longer
possible to use normal recursion or function abstraction, one is instead forced to use
their monadic variants, such as mdo and bind.

Another approach to observable sharing, as proposed by [43], relies on the GHC-
specifics of stable names to provide an IO function capable of observing sharing directly.
Stable names are used in order to identify shared nodes in a data structure, as they
provide pointer equality for Haskell objects. Supporting observable sharing only requires
us to provide a way to reference into a specific type and map over its dereferenced internal
constructs. This is done by instantiating the following class for all related data types:

39

CHAPTER 4. EXTENDING FELDSPAR

class MuRef a where
type DeRef a :: * → *

mapDeRef :: (Applicative f) ⇒
(∀b . (MuRef b, DeRef a ~ DeRef b) ⇒ b → f u)

→ a
→ f (DeRef a u)

mapDeRef takes as parameter a higher-ranked function and an abstract syntax tree of the
original data type, from which it returns a value of the associated type family where
each recursive value is mapped through the function to produce a materialised version
of the graph. This process is commonly known as reification: to take something abstract
and regard it as material instead; a reified type is simply a value that represents a type.

Given the mapDeRef function, it is possible to reify any syntax tree admitting MuRef

through the use of the reifyGraph function, which is given the following type:

reifyGraph :: (MuRef t) ⇒ t → IO (Graph (DeRef t))

reifyGraph takes a syntax tree and returns a graph representation of the dereferenced
node’s, where a nodes children are abstract references rather than recursive values. The
actual graph is represented as a sort of linked list, and has the following type:

type Unique = Int
data Graph e = Graph ([(Unique, e Unique)], Unique)

Employing observable sharing does in general imply a recursive data type is used
to represent the embedded language, together with a mirror type, where the points of
recursion have been replaced by abstract references. For example, consider the following
example of a small embedded language for arithmetic operations, modeled after the one
used in [44]:

data Exp
where
EAdd :: Exp → Exp → Exp
ENeg :: Exp → Exp
EInt :: Int → Exp

Constructing the mirror type is then as simple as writing:

data Tree ref
where
TAdd :: ref → ref → Tree ref
TNeg :: ref → Tree ref
TInt :: Int → Tree ref

If we then want to enable reification of our small language, we need only implement
support for the above MuRef class:

40

CHAPTER 4. EXTENDING FELDSPAR

import Control.Applicative

instance (...) ⇒ MuRef Exp
where
type DeRef Exp = Tree
mapDeRef f node = case node of
(EAdd x y) → TAdd <$> f x <*> f y
(ENeg x) → TNeg <$> f x
(EInt i) → pure $ TInt i

While it may seem as though mapDeRef simply traverses the syntax tree, translating nodes
as it goes, it also manages to detect any sharing present during its traversal. It does
so by wrapping each node in the applicative, f, which is then used to keep track of the
translated nodes. Conceptually, this process is similar to using a lookup table, where
nodes that have already been referenced are fetched from the table, rather than being
translated again.

Given these types and instances, and a suitable instance of Haskell’s Num class for
Exp, we can finally reify expressions in our little language. For instance, the following
expression can be successfully reified into its graph representation:

reifyGraph (let i = (TInt 2) in negate (i + i) :: Exp)

> let [(1, TNeg 2), (2, TAdd 3 3), (3, TInt 2)] in 1

where the references are represented as integers. While it certainly is neat to detect
sharing in simple expressions, we also require observable functions in order to observe
the sharing present in signal transformers. Luckily, it turns out that observing functions
is possible using the same machinery as for simple expressions.

Traditionally, functions have been observed by applying them to a dummy argument,
and observing where the argument occurs inside the resulting expression. This was the
approach used by Kamin and Elliott [44, 45], where they adopted the host language’s
functions and simply extended their base types with support for variables1. Using vari-
ables to support observable functions, as done in Elliott’s paper [44], requires threading
a namespace to all points where functions are examined. With observable sharing, we
can observe the sharing present in functions without needing to introduce unique names,
by instead observing the sharing created by let bindings inside the observed functions.
This idea is captured by the following class and function:

1While using exceptions as dummy arguments seems to be a simpler solution, they could potentially
yield expressions which have been evaluated in an unsound way.

41

CHAPTER 4. EXTENDING FELDSPAR

import Data.Dynamic

class NewVar a
where
mkVar :: Dynamic → a

capture :: (Typeable a, Typeable b, NewVar a) ⇒ (a → b) → (a, b)
capture f = let a = mkVar (toDyn f) in (a, f a)

where capture takes a function and returns the function’s argument and result; Dynamic is
used to create unique labels for input signals. While these labels do not admit equality,
they are used internally during reification to check whether any two variable expressions
can be declared comparable. In order to support observable functions for our earlier
little language, Exp, we simply need to extend the data type with a variable constructor.
For its graph representation, Tree, we add nodes for both variables and lambda terms:

data Exp
where
EVar :: Dynamic → Exp
...

data Tree ref
where
TLambda :: ref → ref → Tree ref
TVar :: Tree ref
...

Observing functions is then simply a matter of supporting the required type classes:

instance NewVar Exp
where
mkVar = EVar

instance (...) ⇒ MuRef Exp
where
type DeRef Exp = Tree
mapDeRef f node = case node of
(EVar _) → pure $ TVar
...

instance (...) ⇒ MuRef (a → b)
where
type DeRef (a → b) = Tree
mapDeRef f fn = let (v, g) = capture fn in TLambda <$> f v <*> f g

We can now observe the sharing present in functions:

reifyGraph (λx → negate (x + x) :: Exp)

> let [(1, TLambda 2 3), (2, TVar), (3, TNeg 4), (4, TAdd 2 2)] in 1

42

CHAPTER 4. EXTENDING FELDSPAR

4.3.1 Sharing in Signals

In order to adapt the techniques of observable sharing for use with our signal type, the
introduction of an additional data type is required. This will be signal’s version of the
mirror type, as it is used during the reification process to represent our signals as a
directed graph over signal constructors. Also, for the sake of detecting sharing present
in single functions, our signal type will require an additional constructor for dynamic
types to support the NewVar class.

Introducing a new variable constructor to signals turns out to be a simple enough
endeavour. As none of the signal transformers attempts to inspect, i.e. pattern match, on
its inputs signals, an additional constructor will not affect the current implementation.
Signal can thus be safely extended in the following manner:

data Signal a
where
...
Var :: Dynamic → Signal a

The matter of supporting an instance declaration of NewVar for Signal is then solved by a
simple use of the variable constructor:

instance NewVar (Signal a)
where
mkVar = Var

Now that our Signal type supports variables, the next step to enable observable
sharing is to introduce a mirror type. Constructing such a mirror type from Signal is
easy enough, as each one of Signal’s constructors is simply translated into node form by
replacing all the recursive types with an abstract reference. Streams functions are kept as
leaves in the mirror type rather than having them translated as well, since keeping them
around allows us to later fuse them by joining nodes of consecutive Arrs. We then define
our mirror type from these translated nodes, with additional ones added for lambda
abstractions and variables. This results in the following type:

data Tree ref
where

-- Notating functions
TLambda :: ref → ref → Tree ref
TVar :: Tree ref

-- Signal specific
TArr :: (Stream a → Stream b) → ref → Tree ref
TZip :: ref → ref → Tree ref
TFirst :: ref → Tree ref
TDelay :: a → Tree ref
TSample :: Data Length → Tree ref
TBot :: Tree ref

43

CHAPTER 4. EXTENDING FELDSPAR

Defining a MuRef instance for Signal is then done in essentially the same way as for our little
arithmetic language from the previous chapter: each constructor is translated into its
corresponding version in the mirror type, applying the given function to each recursive
type parameter.

instance (Syntax a) ⇒ MuRef (Signal a)
where
type DeRef (Signal a) = Tree
mapDeRef f signal = case signal of
(Arr g sig) → TArr g <$> f sig
(Delay a sig) → TDelay a <$> f sig
(Sample i sig) → TSample i <$> f sig
(Zip x y) → TZip <$> f x <*> f y
(Fst x) → TFst <$> f x
(Bot) → pure $ TBot
(Var _) → pure $ TVar

instance (MuRef a, Typeable a, NewVar a
, MuRef b, Typeable b
, DeRef a ~ DeRef (a → b)
, DeRef b ~ DeRef (a → b)) ⇒ MuRef (a → b)

where
type DeRef (a → b) = Tree
mapDeRef f fn = let (v, g) = capture fn in TLambda <$> f v <*> f g

The constraints are required in order to assert that our signals provide the required func-
tionality demanded by, for example, the capture function. Our data types are therefore
extended with Syntax and Typeable constraints on their quantified types, wherever such
constraints are necessary.

Once the correct constraints are in place, we are finally able to reify any signal
expression or function, and observe their resulting graph structure. For example, consider
the following sequential signal function:

fir1 :: Signal (Data Float) → Signal (Data Float)
fir1 sig = sig + delay 0 sig

Reification of this function is certainly possible, since Data Float admits all the necessary
type constraints, and produces the following graph representation:

reifyGraph fir1

> let [(1, TLambda 2 3)
> , (2, TVar)
> , (3, TArr _ 4)
> , (4, TZip 2 5)
> , (5, TDelay 0 2)
>] in 1

Relying on non-recoverable sharing can however be quite fragile, as the original net-
work is lost after reification and should therefore in general be used with care when
detecting additional sharing may introduce errors. In the case of signals, the effects

44

CHAPTER 4. EXTENDING FELDSPAR

of introducing more sharing would not observably change the evaluation of signals and
is therefore an acceptable tool. It is however possible to construct signal transform-
ers where additional sharing would negatively affect performance. For instance, in the
following example, unrolling the computationally heavy function into both the left and
right signals means it will be computed twice – hurting its performance.

f :: Signal (Data Float) → Signal (Data Float)
f sig = zip left right
where sig’ = compute_meaning_of_life sig

left = sig’ + 1
right = sig’ - 1

4.4 Compiling Signals to Streams

Compiling our signal transformers is the act of transforming them into monadic expres-
sions within Feldspar, where the expressions represent the computations necessary to
retrieve a transformed version of the input data which, in most cases, comes from an-
other compiled signal. Nevertheless, the compilation process amounts to a traversal of
the signal transformers’ reified graph structure, where nodes are recursively computed
and then connected together.

Relying solely on Feldspar’s monad during compilation is however a fragile approach,
as the monad makes no guarantees for how expressions are shared. One solution to this
problem, which we chose to pursue, is to store the compiled expressions in references. As
references allow us to name shared expression, they give a finer control over how values
are accessed and stored. However, as the return types may differ between nodes, this
requires the use of dynamic values.

Haskell’s Dynamic type, previously used in the observable sharing section, provides a
potential solution to generalising the types of compiled nodes. However, observing the
types of references and dynamic values reveals a shortcoming of this approach: their type
constraints do not align. For instance, consider the functions for creating and reading
the values in references and dynamic types, respectively.

newRef :: Syntax a ⇒ a → M (Ref a)
getRef :: Syntax a ⇒ Ref a → M a

toDyn :: Typeable a ⇒ a → Dynamic
fromDynamic :: Typeable a ⇒ Dynamic → Maybe a

References require that their type argument admit Feldspar’s Syntax class, while dynamic
types require types admitting Typeable. Sadly, references do not instantiate Typeable, and
dynamic types certainly do not instantiate Syntax. It is therefore necessary to introduce
a new data type, modeling dynamic references:

45

CHAPTER 4. EXTENDING FELDSPAR

data Dyn
where
Dyn :: Typeable a ⇒ Ref a → Dyn

We build these around the Typeable class, and provide the following functions for con-
structing new and dynamically casting Dyn types:

toDyn :: Typeable a ⇒ Ref a → Dyn
toDyn = Dyn

fromDyn :: Typeable a ⇒ Dyn → Maybe (Ref a)
fromDyn (Dyn a) = gcast a

The casting function, fromDyn, uses the generalised casting operator gcast, from Haskell’s
Dynamic library, in order to cast a type inside a constructor – a reference in this case.

Dynamic references provide us with the generalised type we needed for unifying return
types of compiled nodes, which in turn allows us to sketch the skeleton of a recursive
compiler:

import qualified Data.Map as Map

type Node = (Unique, Tree Unique)

compGraph :: (...) ⇒ Graph Tree → M a → M b
compGraph (Graph gnodes groot) input =
fromJust $ fromDyn $ compNode (find groot) empty
where
compNode :: Node → Map Unique Dyn → M Dyn
compNode (i, node) nodes
| Just dyn ← lookup i nodes = return dyn
| otherwise = case node of
...

insert :: Unique → x → Map Unique x → Map Unique x
insert = Map.insertWith (λ _ x → x)

lookup :: Unique → Map Unique x → Maybe x
lookup = Map.lookup

find :: Unique → Node
find = ... // Find node in graph, assume that it exists

The intention is that compGraph starts the compilation process by calling compNode on the
root node, after which compNode recursively compiles the entire graph. As different nodes
may refer to the same sub-nodes, due to sharing being observed, all nodes are compiled
once and then placed in a look-up table. Further references to already compiled nodes
will then be redirected to use those stored in the table instead.

The compilation process of each individual node follows the same general pattern:
firstly, the node fetches its input, it then computes an output value, and lastly a reference

46

CHAPTER 4. EXTENDING FELDSPAR

to said output is returned. For instance, variables, which simply return a reference to
the input, are compiled in the following manner:

compNode ... = case node of
(TVar) → input >>= newRef >>= return . toDyn

where input refers to the outer input method, brought into scope by the compGraph function.
While other nodes may contain function application, several inputs, etc., the general
compilation strategy remains the same. For example, nodes for lambda and function
abstraction are compiled in the following manner:

compNode ... = case node of
(TLambda var fun) →
do var’ ← compNode (find var) nodes

fun’ ← compNode (find fun) (insert var var’ nodes)
return fun’

(TArr fun sig) →
do sig’ ← compNode (find sig) nodes

let x = fromJust $ fromDyn $ sig’
y = ... // Apply fun to a stream of references into x

// and return the stream’s next function
r ← y >>= newRef
return $ toDyn r

...

We can now reify signals into their graph representations and turn those graphs into
monadic expressions; furthermore, Feldspar’s compiler allows us to turn those expressions
into compiled code. The last step required, in order to support compilation for our signal
transformers, is therefore to combine the above techniques. We start out by combining
the first two of these techniques into a single function, giving it the following type:

comp :: (...) ⇒ (Signal (Data a) → Signal (Data b))
→ IO (Data [a] → Data [b])

comp receives a signal transformer as input and produces as result a monadic function.
While the produced function represents the signal transformation, it operates over chunks
of data rather than a continuous stream. The use of chunks, or lists, is required due to
a constraint in the current version of Feldspar’s compiler, which we use in combination
with our comp function to generate compiled code:

import Feldspar.Compiler

compSF :: (...) ⇒ (Signal (Data a) → Signal (Data a)) → IO ()
compSF sf = comp sf >>= icompile

Since chunks represent a new kind of abstraction, we will introduce the concept of
mutable arrays before implementing comp.

47

CHAPTER 4. EXTENDING FELDSPAR

Mutable arrays are conceptually similar to references, only they contain multiple
values instead of one. The type constructor for mutable arrays is MArr, and operations
which create, update and query these arrays all belong to Feldspar’s M monad:

newArr :: Type a ⇒ Data Length → Data a → M (Data (MArr a))
setArr :: Type a ⇒ Data (MArr a) → Data Index → Data a → M ()
getArr :: Type a ⇒ Data (MArr a) → Data Index → M (Data a)

There are also operations that convert between mutable and immutable arrays of the
same type, namely

freezeArray :: Type a ⇒ Data (MArr a) → M (Data [a])
thawArray :: Type a ⇒ Data [a] → M (Data (MArr a))

They are however still inside the M monad. In order to escape the mutable monad,
Feldspar provides the following run function:

runMutableArray :: Type a ⇒ M (Data (MArr a)) → Data [a]

Using mutable arrays, we can represent the chunks required by our comp function and
implement it in the following way:

comp sfun = do
graph ← reifyGraph sfun
return $ λ input → runMutableArray $
do let inarr = arrify input

len = getLength input
fun = compileGraph graph inarr

// As required by Feldspars compiler,
// we process the input in chunks
out ← newArr_ len
forM len $ λ ix → fun >>= setArr out ix
return out

where
arrify :: (...) ⇒ Data [a] → M (Data a)

Compilation consists of three stages: reification of the input graph, constructing a
monadic expression from the reified graph and finally transforming each input chunk
by applying the transformer to it.

4.4.1 Pre-processing the Graph

Even though we managed to implement a compiler for our Signal class, the efficiency of the
compiled code is still unsatisfactory. In order to fix this, it is important that we address
the problem of creating memory efficient buffers for use with delayed signals, which we
lost when replacing recurrence equations with the more general Delay constructor.

48

CHAPTER 4. EXTENDING FELDSPAR

Using individual delays for each single value does allow for efficient memory manage-
ment, as the combined size of each delay element is proportional in size to those of the
buffers used by Feldspar’s recurrence equations. The main problem with storing delayed
values in such a decentralised manner is that each element has to be updated each time
a new input value is read. As delays typically appear in chains, a better approach is to
instead associate each delayed signal with a circular buffer – when using buffers, we only
update one value and its counter. These buffers could then be given individual sizes,
each one proportional to the number of delays applied to their respective signals. The
intent is that we put new values into the buffer whenever input is fetched, while delayed
values are accessed by simply indexing backwards in the buffer. Buffers are given the
following generalised type:

data Buffer a = Buffer {
getBuf :: Data Index → M a

, putBuf :: a → M ()
}

Given this type, we can create circular arrays by, for example, writing:

newBuffer :: Syntax a ⇒ Data Length → a → M (Buffer a)
newBuffer l init = do
buf ← newArr l $ desugar init
ir ← newRef (0 :: Data Index)
let get j = do i ← getRef ir

fmap sugar $ getArr buf ((l+i-j-1) ‘mod‘ l)
put a = do i ← getRef ir

setRef ir ((i+1) ‘mod‘ l)
setArr buf i $ desugar a

return (Buffer get put)

where sugar and desugar translate types between Feldspar’s internal representation and
the frontend types commonly used in programs. The circular behaviour is achieved by
using the mod operator, which is used to traverse the internal array.

Even though circular arrays allow for memory efficient storage, forcing users to write
delays with circular buffers in mind would clutter the algorithm descriptions. We would
much rather stick to using delays as before, and have the creation of buffers taken care of
during a stage before compilation. A pre-processing stage is therefore added, executed
before compilation, with the intent to transform and optimise a reified signal’s graph
before it is compiled. All the necessary buffers are created during this stage, and all leaf
nodes referring to delayed signals are translated into pointers to such buffers.

Variable nodes still reads input as usual, but they will now also put the newly read
values into their associated buffers as well; referencing variable nodes is then the same
as reading the head value of its associated buffer. Delayed nodes are replaced with
references to the delayed signal’s buffer, along with a number corresponding to their
position in the delay chain. This number is then used to index into the correctly delayed
value of the buffer.

49

CHAPTER 4. EXTENDING FELDSPAR

The Tree type is extended with two constructors in order to support these new buffer
nodes:

data Tree ref
where
...
TBVar :: ref → Tree ref
TBDelay :: ref → Data Index → Tree ref

where TBVar and TBDelay are the translated version of TVar and TDelay, respectively.
The process of translating nodes of a graph, into their buffered versions, is performed

in three steps: first we detect and mark chains of delays, all referencing some common
variable node; marked nodes are then translated into their pointer versions, with buffers
created for each chain; the new nodes are then substituted into the graph and the buffer
is filled with its initial values. We extend our previous compiler to use buffers in the
following way:

compGraph :: (...) ⇒ Graph Tree
→ Map Unique (Buffer a)
→ M a
→ M b

compGraph (Graph gnodes groot) buffers input = ...

We also add the following cases to the recursive compiler:

compNode ... = case node of
(TBVar r) →
do let buf = fromJust $ lookup r buffers

v ← input
putBuffer v buf
r ← getBuffer 0 buf >>= newRef
return $ toDyn r

(TBDelay r i) →
do let buf = fromJust $ lookup r buffers

r ← getBuffer i buf >>= newRef
return $ toDyn r

...

Armed with this new compiler, it is now possible to define signal transformers in a
true DSL style and have them generated as target specific code with similar efficiency to
Feldspar’s stream library. For instance, the earlier FIR filter, as defined in chapter 4.2.1,
can now be compiled into C code when given an appropriate input list of coefficients.
One such use case of the filter, coupled with a call to the compiler, could be:

comp (fir [1, 2, 3 :: Data Float]) >>= icompile

Which yields the following C code when run, where parts not relevant to the filter have
been elided in order to improve readability:

50

CHAPTER 4. EXTENDING FELDSPAR

void fir(struct array * v0, struct array * out)
{

...
v53 = getLength(v0);

// buffer, stored at ’e1’, is filled with its initial values
e2 = ((e2 + 1) % 3);
at(float,&e1,e2) = 3.0f;
e2 = ((e2 + 1) % 3);
at(float,&e1,e2) = 2.0f;
e2 = ((e2 + 1) % 3);
at(float,&e1,e2) = 1.0f;

// output array is allocated and filled with zeroes.
initArray(&e9, sizeof(float), v53);
for(uint32_t i = 0; i < v53; i += 1)
{

at(float,&e9,i) = 0.0f;
}

for(uint32_t v14 = 0; v14 < v53; v14 += 1)
{

// set index pointers
e0 = ((e0 + 1) % v53);
e2 = ((e2 + 1) % 3);

// index into the buffer
e14 = at(float,&e1,(((e2 + 3) - 1) % 3));
e15 = e14;
e17 = at(float,&e1,((((e2 + 3) - 1) - 1) % 3));
e18 = e17;

// perform the transformation
e19 = 1.0f;
e20.member1 = e18;
e20.member2 = e19;
e21 = (e20.member1 * e20.member2);
e23 = at(float,&e1,((((e2 + 3) - 2) - 1) % 3));
e24 = e23;
e25 = 2.0f;
e26.member1 = e24;
e26.member2 = e25;
e27 = (e26.member1 * e26.member2);
e29 = at(float,&e1,((((e2 + 3) - 3) - 1) % 3));
e30 = e29;
e31 = 3.0f;
e32.member1 = e30;
e32.member2 = e31;
e33 = (e32.member1 * e32.member2);
e34.member1 = e27;
e34.member2 = e33;
e35 = (e34.member1 + e34.member2);
e36.member1 = e21;
e36.member2 = e35;
e37 = (e36.member1 + e36.member2);

// set output value
at(float,&e9,v14) = e37;

51

CHAPTER 4. EXTENDING FELDSPAR

}

initArray(out, sizeof(float), getLength(&e9));
copyArray(out, &e9);
freeArray(&e1);
freeArray(&e9);

}

The generated code is concise in its content and makes use of a circular buffer for efficient
memory storage. There are however some variables having constant values assigned to
them inside the for-loop, which should ideally be put before the loop – any standard C
compiler should however be capable of solving this. Even the initialisation of some arrays
might be beneficial to have performed outside of the actual function, given that we know
that the function will be called often, and the array will probably live throughout the
program’s entire lifetime. An improvement would therefore be have the initialisation,
transformation, and termination stages of a signal transformer separated. This extension
would possibly result in three new functions: fir_init, fir, and fir_term, separating the
signal transformer’s algorithm from its memory management.

There is also a number of C-structures, used here for modeling tuples, appearing
throughout the generated code, but there is no mention of tuples ever being used in the
function’s Haskell code. Tuples are however used during the compilation process to join
together two references in a zip node, and, unfortunately, they remain in the generated
code. The use of tuples are in no way required and should ideally be substituted for
some data structure which is only used during compilation. A possible solution is to use
an abstract data type instead, which models the virtual pairs of references used during
compilation:

data VRef a
where
Leaf :: Ref a → VRef a
Tup :: VRef a → VRef b → VRef (a, b)

These virtual references will then be unpacked each time a node needs access to the
actual references inside. The unpacking and packing process of virtual references will
however be done during compilation, which means the generated code will be free of
unecessary constructs.

Furthermore, the program contains a number of renaming operations, that is, it
contains empty operations where new variables are created with the single purpose of
having an already computed value assigned to them. This is due to Feldspar’s compiler
interpreting each monadic statement as a executable program, with an associated vari-
able assignment. Hence, whenever a line of Haskell code occurs in a monadic expression,
which will eventually be flattened out by the compiler – like reading a reference or pat-
tern matching using a case-statement – it results in a new variable. These superfluous
variables are however also removed by an C compiler later on, as most compilers are
capable of reducing expressions through simple copy propagation.

52

5
Using Signals

In the previous chapters we have looked at some of this project’s related work, compared
different approaches to find the one which fit Feldspar’s requirements, and then finally
implemented our own data type for modeling signals. It is now our intention to illustrate
how the new data type can be used for writing various signal processing algorithms. We
will do so by introducing some of the signal library’s core functionality and show how to
derive complex signal transformers from them. A number of examples from the previous
sections will be implemented using our new library as well.

By implementing previously used examples, such as bouncing balls and the power
function, we can compare their implementation using our signals to their corresponding
versions in related languages. The examples will also serve as a means to analyse the
current signal library and its abilities to handle irregular streams – which is necessary
for modeling the changing behaviour of the bouncing balls example.

In Yampa and Lucid Synchrone, signals with irregular behaviour were model by
special operators: Yampa used a family of switching functions and Lucid Synchrone
used functions dedicated to merging streams. Feldspar’s stream library does however
lack support for irregular streams, as we saw in chapter 3.2.1, where the introduction of
a new function was necessary in order to model such streams. We will show that these
examples can be implemented in the signals library without the need to introduce new
functions, as they can be modeled by using recursively defined streams and a multiplexer
instead.

Furthermore, we introduce some of the related languages which weren’t mentioned
during the background discussion. These are all languages that served as inspiration
during the development of our library, but were omitted from the earlier discussion in
order to keep it concise. They are therefore presented at the end of this chapter instead,
where we discuss any similarities they share with our library and their intersting language
features.

53

CHAPTER 5. USING SIGNALS

5.1 The Signal Library

Before we begin implementing the aforementioned examples, we introduce the signal
library – as viewed by a user – and derive some useful combinators from its core con-
structs.

The signal library is mostly based around the same concepts of FRP as, for example,
Yampa is: Signals represents a mapping from time to values of some type and are based
on the reactive approach, that is, signals are only run when their results are needed. All
of FRP’s concepts are however not directly present in the signal library. For example,
the notion of events have been treated slightly differently and are based on ideas from
SDF instead. Event sources are therefore not the continuous streams of, possibly empty,
values as they are in Yampa. Instead, they make use of variable clocks to determine
when an output is produced.

Much of the core functionality provided by the signal library comes from the functions
we introduced during the creation of the Signal type, and have been given the following
type declarations:

lift :: (Syntax a, Typeable a
, Syntax b, Typeable b
) ⇒ (Stream a → Stream b)
→ Signal a
→ Signal b

zip :: (Syntax a, Syntax b) ⇒ Signal a → Signal b → Signal (a, b)
fst :: (Syntax a, Syntax b) ⇒ Signal (a, b) → Signal a

delay :: (Syntax a, Typeable a) ⇒ a → Signal a → Signal a
sample :: (Syntax a, Typeable a) ⇒ Data Length → Signal a → Signal a
bot :: (Syntax a, Typeable a) ⇒ Signal a

While these functions are no more than short-hand constructors for Signal, they are quite
general and allow arbitrary streaming computations to be expressed by simply lifting
them into signals; most of the signal library’s functionality does actually come from
simply lifting functions from Feldspar’s stream library into signals. For example, the
following functions are implemented almost entirely by lifting stream functions:

repeat :: (Syntax a, Typeable a) ⇒ a → Signal a
repeat a = lift (S.repeat a ‘asTypeOf‘) bot

iterate :: (Syntax a, Typeable a) ⇒ (a → a) → a → Signal a
iterate f a = lift (S.iterate f a ‘asTypeOf‘) bot

snd :: (Syntax a, Typeable a, Syntax b, Typeable b) ⇒ Signal (a, b) → Signal b
snd = fst . map (λ(a, b) → (b, a))

map :: (Syntax a, Typeable a, Syntax b, Typeable b) ⇒ (a → b) → Signal a → Signal b
map f = lift $ S.map f

54

CHAPTER 5. USING SIGNALS

scan :: (Syntax a, Typeable a, Syntax b, Typeable b)
⇒ (a → b → a) → a → Signal b → Signal a

scan f a = lift $ S.scan f a

zipWith :: (Syntax a, Typeable a
, Syntax b, Typeable b
, Syntax c, Typeable c
) ⇒ (a → b → c)
→ Signal a
→ Signal b
→ Signal c

zipWith f = merge $ S.zipWith f

merge :: (Syntax a, Typeable a
, Syntax b, Typeable b
, Syntax c, Typeable c
) ⇒ (Stream a → Stream b → Stream c)
→ Signal a → Signal b → Signal c

merge f as bs = lift (uncurry f . S.unzip) $ zip as bs

The fact that it is possible to lift the entire stream library into signals is a testament to
the benefits of having a lifting operator.

In fact, the usefulness of lifting is in no way limited to functions from Feldspar’s
stream library, but can be used in conjunction with other libraries as well. For instance,
the fast Fourier transform (FFT) algorithm can be implemented as a signal transformer
by simply lifting the existing FFT function from Feldspar’s algorithm library:

import qualified Feldspar.Algorithm.FFT as F (fft)
import qualified Feldspar.Vector as V

deriving instance Typeable1 V.Vector

fft :: Signal (V.Vector1 (Complex Float)) → Signal (V.Vector1 (Complex Float))
fft = lift $ S.map F.fft

The ability to reuse existing Feldspar functions in this way significantly reduces the
complexity of developing new signal processing programs.

While the above functions are often enough to let users to define the DSP algorithms
they want, a number of commonly used signal transformers are also included in the
signal library. For example, an edge detector and a multiplexer are provided with the
following implementations:

edge :: Signal (Data Bool) → Signal (Data Bool)
edge sig = zipWith (/=) sig (delay false sig)

mux :: (Syntax a, Typeable a) ⇒ Signal (Data Bool) → Signal a → Signal a → Signal a
mux = zipWith3 (λ b s1 s2 → b ? (s1, s2))

The current implementation of the multiplexer does however suffer from the interference
and efficiency problems discussed in chapter 3. Introducing a conditional construct,

55

CHAPTER 5. USING SIGNALS

similar to the common if-statements, could potentially alleviate these problems, and the
idea is discussed further in chapter 6.

5.2 An Example: IIR Filter

Infinite impulse response (IIR) filters are digital filters with an infinite impulse response
and, unlike FIR filters, contain feedback. They are therefore known as recursive digital
filters, as they contain a recursively defined parts. These filters will serve as an example
of how the signal library handles recursively defined signals, that is, signals whose output
depends on a combination of previous input and output values.

The IIR filter, or at least its digital version, is often described and implemented in
terms of a difference equation, which defines how the output signal is related to the input
signal:

yn =
1

a0

 P∑
i=0

bi ∗ xn−j −
Q∑
j=1

aj ∗ yn−j

where P and Q are the feedforward and feedback filter orders, respectively; aj and bi
are the filter coefficients.

This description is convenient for software realisation, as it can easily be broken
down into a couple of main components: a number of unit delays, multiplications with
some coefficients, a summation of the two amplified signals, and a singel subtraction and
division. We can represent the decomposed filter graphically, as in Figure 5.1.

Figure 5.1: A direct form discrete-time IIR filter of order P and Q

Besides the subtraction and division, the deconstructed variants of the IIR and FIR filters
are quite similar. This similarity seem to imply that the IIR filter could be expressed
in a similar manner as the FIR filter was. As it turns out, the same helper functions
used to implement the FIR filter can be used to implement the IIR filter as well; the

56

CHAPTER 5. USING SIGNALS

one major difference between the two kinds of filters is the use of a recursively defined
signal, as the rightmost sum is defined in terms of previous output values:

iir :: [Data Float] → [Data Float] → Signal (Data Float) → Signal (Data Float)
iir as@(a:_) bs sig = repeat (1 ‘divFrac‘ a) * (left - right)
where
left :: Signal (Data Float)
left = sums $ muls bs $ delays (inits bs) sig

right :: Signal (Data Float)
right = sums $ muls as $ delays (inits as) right

inits l = (P.replicate (P.length l) 0)

Due to the lazy nature of the delay operator, the recursive component of the filter can
be expressed in the same way as one would do with an input signal.

5.3 An Example: Bouncing Balls

The task of modeling a bouncing ball is an example in how the different languages handle
behavioural switches in a signal, as the ball’s velocity changes direction each time it
touches the ground. Since the signal library does not offer support for Lucid Synchrone’s
state machines or Yampa’s family of switch operators, we are instead required to solve
the problem in a different manner.

While it is certainly possible to implement a skeleton of the example, with similar
functions as those used in the previous implementations of the problem, any such attempt
would get stuck on the bouncing logic. For example, if we begin implementing the
example as:

type Pos = Data Float
type Vel = Data Float
type Ev = Data Bool

falling_ball :: (Pos, Vel) → Signal (Pos, Vel)
falling_ball (initY, initV) = zip currV currY
where
currV = iterate (9 ‘addNum‘) initV
currY = scan (λ acc v → acc ‘subNum’‘ v) initY currV
where subNum’ a b = (a ≤ b) ? (0, a ‘subNum‘ b)

falling_ball_ev :: (Pos, Vel) → Signal ((Pos, Vel), Ev)
falling_ball_ev init = zip currP currE
where
currP = falling_ball init
currE = edge $ map ((≤0) . snd) currP

bouncing_ball :: Signal (Pos, Vel)
bouncing_ball = . . .

it would be difficult to fill in the bouncing_ball function by using the current signal library’s
functions. The signal library does offer a multiplexer for these kinds of situations, which

57

CHAPTER 5. USING SIGNALS

one can use to control a signal’s behaviour. However, we cannot control the signals
behaviour from the bouncing_ball function, since the multiplexer doesn’t restart a stream
like Yampa’s switch operators does. The problem therefore needs to be solved in a
different way.

A normal course of action in these circumstances is to replace the logic with arith-
metic expressions instead, where a function is created in order to mimic the bouncing
behaviour. In the case of the bouncing balls example, a simple step function is sufficient:

bouncing_ball :: Signal (Pos, Vel)
bouncing_ball = iterate fall (100, 0)
where
fall :: (Pos, Vel) → (Pos, Vel)
fall (p,v) = (p’,v’)
where v’ = (p == 0) ? (negate v, v ‘addNum‘ 9)

p’ = (p ≤ v’) ? (0, p ‘subNum‘ v’)

checking at each step whether the ball has reached the floor, negating its velocity when-
ever it does.

5.4 An Example: Power

The power function required the use of sampling, as the output stream produces events
at a slower pace then its input. Simply using the signal library’s sample operator to sample
the input stream, as was done in the Yampa implementation, will not have the desired
effect: the internal computations, which depend on the sampled signal, will then also run
at a slow pace. To remedy this, a stuttering function could be introduced. The function
would then be used in order to increase the clock rate of the internal computations by
repeating the sampled streams value. This would however require additional compilation
checks to assert that the clock speed never goes above the global limit.

A simpler solution to the sampling problem is to instead solve the problem in a
similar way as Lucid Synchrone did, using one of its merging operators. The signal
library does not offer any such merging operator, but it does have a multiplexer and a
lifting operator, with which one can create any such merging operator with. For instance,
Figure 5.2 illustrates the kind of merging function needed in order to express the power
function. Where the multiplexer is used to sample the input stream and the counting is
done modulo the power rank.

58

CHAPTER 5. USING SIGNALS

Figure 5.2: Circuit representation of a merging function

Given this circuit representation of the merging function, an implementation of the power
function can be realised in a straightforward manner. First, we introduce a couple of
helper functions in order to model the counter, and give them the following declarations:

count :: Data WordN → Data WordN → Signal (Data WordN)
count start max = o
where o = delay start $ map (λc → c + 1 ‘mod‘ max) o

timer :: Data WordN → Data WordN → Signal (Data Bool)
timer start max = map (==0) $ count start max

We can then express the power function as:

power :: Data Length → Signal (Data Float) → Signal (Data Float)
power pow sig = y
where
i :: Signal (Data Float)
i = mux (0 ‘timer‘ pow) sig (delay 0 i)

o :: Signal (Data Float)
o = delay 1 $ (i *) $ mux (0 ‘timer‘ pow) i o

y :: Signal (Data Float)
y = sample pow o

which is quite similar to its corresponding version in Lucid Synchrone. The general
concept is the same as well: a stream, i, holds the current value while another stream, o,
performs the incremental multiplications. The output stream is then created by simply
sampling the internal streams at the correct intervals.

59

CHAPTER 5. USING SIGNALS

5.5 Related Work

In this section we present some of the related work which was left out from the earlier
background chapter but still served as inspiration for our design of signals. These lan-
guages will only be briefly explained, and we instead focus on comparing any similarities
they may share with our own signals or presenting their interesting language features.

5.5.1 Chalmers Lava

Lava is a family of Haskell EDSLs designed for expressing hardware descriptions [42, 46],
and is commonly a design pattern for constructing EDSLs that try to capture some
common concerns of hardware design. The general idea in Lava languages is that one
can describe circuits as Haskell functions, which gives us a nice way of expressing how
larger circuits can be composed from a number of sub-components.

Chalmers Lava [47] is an experimental tool designed to assist circuit designers with
hardware design, specification and verification. The language itself is embedded in
Haskell and allows hardware circuits to be described by simply writing ordinary Haskell
functions.The general idea is then that these descriptions can be analysed in a number
of different ways. To illustrate this, consider the following description of a half and a
full adder:

import Lava

type Bit = Signal Bool

half_add :: (Bit, Bit) → (Bit, Bit)
half_add (a, b) = (s, co)
where
s = xor2 (a, b)
co = and2 (a, b)

full_add :: (Bit, Bit, Bit) → (Bit, Bit)
full_add (ci, a, b) = (s, co)
where
(s1, c1) = half_add (a, b)
(s, c2) = half_add (ci, s1)
co = xor2 (c1, c2)

where the Signal type represents an infinite stream of symbols. Input wires are grouped
together into tuples by convention, so that circuits always have a single output and input
value. Given suitable input data, we can simulate the full adder:

simulate full_add (high, low, high)

> (high, low)

The approach used in our definition of Signal for embedding data flow using observable
sharing is very similar to that of Chalmers Lava. Signal is however more general when
considering the kinds of operators one can express in the two languages: Chalmers Lava

60

CHAPTER 5. USING SIGNALS

does not permit lifting of arbitrary streaming computations into the language; functions
are instead constricted to use a set of primitive gates. Observable sharing is also handled
differently by Chalmers Lava, as they introduce their own references and use the following
interface to manually handle references:

type Ref a = Ref (IORef [(IORef (), Dyn)]) a

instance Eq (Ref a) where
Ref r1 _ == Ref r2 _ = r1 == r2

ref :: a → Ref a
deref :: Ref a → a

Each signal is then wrapped in these references and we can create new references, com-
pare them for equality and de-reference them. For instance, in the below example we
create one reference to an undefined value and compare it with itself, which yields true.

let x = "Hello Reader"
r = ref x

in r == r

> True

Sequential operations are also expressed differently using Signal, since Lava relies on
circuit transformations to slow down signals instead of providing a specific sampling
function. Furthermore, Signal’s make use of some compilation tricks in order to optimise
a program’s graph – which Lava does not. This is mainly due to that fact that Lava
targets gate-level hardware, where one can afford more computations because they are
all done in parallel.

5.5.2 Kansas Lava

Kansas Lava [46] is another member in the Lava family of hardware description lan-
guages. It is designed to express hardware-oriented descriptions of computations, from
which it can generate VHDL code. The language itself is an EDSL hosted in Haskell,
and its programs are simple descriptions of hardware components – as is standard in
Lava languages.

A Signal in Kansas Lava represent an infinite sequence of values over time, and encodes
the typical representation of a signal in VHDL: a vector of wires. It is semantically
modeled as

Signal a :: Time → a

where Time is a clock cycle count – note the similarity to the semantics of signals in
FRP. One noteworthy aspect of Signal in Kansas Lava, which differs from how circuits
are usually built using gate-level operations in Lava, is the way its Signal type embeds
both the synthesizable circuit and its model, that is, Kansas Lava’s Signal serves as a

61

CHAPTER 5. USING SIGNALS

representation for both the shallow and deep embeddings of circuits. It is realised in the
form of a pair, operating in the clock domain clk:

data Signal (clk :: *) a = Signal (Stream (X a)) (D a)

Where a phantom type [48] is used to express the clock domain; phantom types were
considered during the implementation of Signal for Feldspar, but the idea was abandoned
in order to avoid type-level programming. The clocks are however global in the current
version of Kansas Lava1, restricting their use to single-clock systems.

The deep embedding of Signal, named D, is a typed entity which usually corresponds
to some real entity in VHDL. An Entity is a globally scoped name representing a specific
logical function, some type information about the entity, and a set of input ports and
their respective drivers; a driver is a representation of a wire, originating from a input
pad, some constant, or another entity. The shallow portion of a Signal is represented
as a Stream, operating over a sequence of unknown values; conceptually, these unknown
values, X, work in a similar way as Haskell’s Maybe does. Stream is given the following
implementation in Kansas Lava:

data Stream a = Cons !a (Maybe (Stream a))

and is defined as a infinite sequence of values, since if the tail is empty, then the last
value is repeated. Elements of the stream are made strict, in order to prevent space
leaks.

While programming in Kansas Lava means a shallow and deep embedding of the
circuit is built in parallel, the actual construction is hidden by its operators. Its syntax
is therefore quite similar to other Lava languages, for instance, consider the half and full
adders we previously defined in Chalmers Lava. These can be implemented in Kansas
Lava as well by writing:

half_add :: (Clock clk, sig ~ Signal clk Bool) ⇒ (sig, sig) → (sig, sig)
half_add (a, b) = (s, co)
where
s = a ‘xor‘ b
co = a .&. b

full_add :: (Clock clk, sig ~ Signal clk Bool) ⇒ (sig, sig, sig) → (sig, sig)
full_add (ci, a, b) = (s, co)
where
(s1, c1) = half_add (a, b)
(s, c2) = half_add (ci, s1)
co = c1 ‘xor‘ c2

which is quite similar to their corresponding Chalmers Lava version. The major differ-
ences between the two Lava implementations of these adders are their type signatures
and the two, slightly differently named, logical operators.

1The version of Kansas Lava that was used during this report was the one available at Github [46] in
June - 2014

62

CHAPTER 5. USING SIGNALS

The two languages do however lose their close resemblance when considering their
internal representations of circuits. For example, Kansas Lava makses use of type-safe
observable sharing – as our own signal library does – to support feedback networks,
rather than explicit references such as those used in Chalmers Lava.

5.5.3 CAL

The Cal Actor Language [49] is a high-level programming language for defining data-
flow actors, where actors are stateful operators which transform their input and forwards
it to the output stream – similar to the nodes of a DFP graph. Actors perform their
transformation in steps, as they first may consume some values from their input streams,
modify their internal states, and lastly, produce values at their output streams.

Defining actors is therefore done by describing their interface to the outside world,
their input and output streams, the structure of any internal state they may use, and
the transformation they perform on their inputs. For example, a two input adder can
be defined as:

actor Add[T] () T in1, T in2 =⇒ T out1
:
action in1:[a], in2:[b] =⇒ out1:[a + b] end

end

The actor line at the top defines the port signature of the Add actor with a generic type
parameter T and no value parameters. There are two input ports, in1 and in2, each of
type T, and an output port, out1, also of type T. Each action construct defines a, possibly
partial, pattern of input values and a consequent response at some outputs whenever the
input pattern appears. More complicated actors may involve state functions or pattern
guards on their actions, it is also possible to have different actions consume or produce
different amounts of tokens in the same actor. For instance, the following definition is a
valid actor in CAL:

actor Sum () in =⇒ out
:
sum := 0;

action in:[a, b] =⇒ out:[sum] guard a ≥ sum
do
sum := sum + a + b;

end

action in:[a] =⇒ out:[sum, a] guard a ≤ sum
do
sum := sum - a;

end
end

where actions work at different rates and a local state, called sum, is shared between the
two. There is also non-determinism in this actor since both actions could fire at the

63

CHAPTER 5. USING SIGNALS

same time if two input tokens are available and both guards are true – and the output
will look different depending on which action fires. CAL does not offer a definitive rule
for how such non-determinism should be handled; it is instead up to the actor’s author
to implement a scheduling for the activities in the actor network.

5.5.4 Matlab

Matlab [50] is an interactive and matrix-based tool for scientific and engineering number
computations, analysis and visualisation. Its strength lies in the fact that it can express
rather complex numerical problems relatively easily and then visualize the results, all
while using only a fraction of the effort required with a more complicated programmning
language like C. It is also powerful in the sense that it may behave as both a calculator
and a programming language, which means that it can be easily extended with new
functions.

Digital signal processing in Matlab is supported by its ‘DSP Systems Toolbox’ pack-
age [51], which provides algorithms for designing and simulating signal processing sys-
tems. The toolbox also includes various design methods for specialised FIR and IIR
filters, FFTs, and other DSP techniques for processing streaming data. Tools for spec-
tral analysis and visualisation of signals are provided as well, enabling users to analyse
a systems behaviour and performance.

Filter design in Matlab can be conceptually simplified to a process consisting of four
steps, where an optional step can be added in order to specialise the filter further with
implementation details. The first four steps of the filter’s design process all relate to its
specification: a filter response is selected, this is needed to initiate the filter and allows
one to specify its type to, for example, a bandpass filter; a filter specification is chosen,
by setting a number of design parameters for the filter; an algorithm for the filter is set,
these algorithms are chosen from a predefined set and affect the filter’s implementation
details; lastly there is an optional step for filter customisation. If any of the last two
steps are skipped, then Matlab is kind enough to select to optimal settings for the given
filter type.

The following example shows how to design low pass FIR filters in Matlab, using
only a few lines of code.

Fc = 0.4; % filter cutoff frequency
N = 100; % FIR filter order

% step 1: selecting a filter response
d = fdesign.bandpass

% step 2: set the specification paramaters
set (d, ’specification’, ’N,Fc’, N, Fc)

% step 3: selecting the filter algorithms
f1 = design(d, ’window’, ’window’, @hamming, ’SystemObject’, true);
f2 = design(d, ’window’, ’window’, {@chebwin,50}, ’SystemObject’, true);

The two filters, f1 and f2, are created using the Dolph-Chebyshev and Hamming window

64

CHAPTER 5. USING SIGNALS

functions, respectively; the fourth step was omitted in order to have Matlab optimise the
settings for us. We can then analyse the filters using the tools provided. For instance,
we can visualise the two window functions by writing

fp = fvtool(f1, f2, ’Color’, ’White’);
legend(fp, ’Hamming window design’, ’Dolph-Chebyshev window design’)

which results in Figure 5.3.

Figure 5.3: Analysis of two FIR filers by graph visualisation

Filter design in Matlab is, simply stated, a process of selecting a pre-existing filter
and tweaking its parameters. This means that relatively specialised filters can be defined
quickly and in a straightforward manner. It does however lack the expressive power of
the more complicate programming languages, the produced filters are also slower in most
cases since Matlab is an interpreted language.

65

6
Conclusions and Future Work

Due to the time constraints, limitations on the scope and depth of this project were
required and meant that the final implementation is closer to a proof of concept than a
fully-fledged streaming library. Nonetheless, we managed to transform Feldspar’s current
stream library into a true DSL for signal processing, while still retaining its old efficiency
through optimisations of the network graphs.

The currently employed optimisations are however quite far from utilising the full
potential of our pre-processing stage, as we only optimise delayed signals. For instance,
it is entirely feasible to implement a reordering phase, similar to the one used for causal
commutative arrows (CCA) [52], in order to further optimise a network’s graph. Several
constraints are placed on the effects of arrows in the CCA paper, they do so in order to
guarantee that any two arrows will not interfere with each other if both are executed.
Given these constrained arrows, it is possible to reorder combinatorial and sequential
parts of an arrow in a beneficial way.

In our Signal class we already have different representations combinatorial and se-
quential operators, represented using the Arr or Delay and Sample constructors, respectively;
reordering these nodes could potentially open up for fusing more of the combinatorial
nodes. Missing is the restriction on effects, as both signals in a pair may refer to some
common sub-signal, we cannot therefore execute one and expect the other to be un-
changed. This could however be solved in part by inspecting the two signals’ graphs,
detecting any common sub-signal used by both; replacing those shared nodes with, for
example, dummy arguments or local copies could potentially solve the problem.

Even though the automatons from Lucid Synchrone require a special kind of syntax
extension, they do present an efficient way of modeling control structures for signals.
In order to port these automatons to our signals we would either require special syntax
extension, as introduced by the Sugar Haskell library [53], or implement support for
conditionals; since we usually prefer to use as pure Haskell code as possible, the second
alternative is the preferred one. Using conditionals, we could model the flow control

66

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

from automatons, switching between states, and the various triggers they make use of.
The states can already be represented using recursively defined signals; the introduction
of some helper functions, for implicitly passing around states, is however necessary to
minimise the overhead.

Another feature currently missing from signal is the ability to use variable clocks.
Sampling is currently only possible at regular intervals and should ideally be extended
to allow for sampling according to some variable rate, where the rate is specified by
some stream of booleans and sampling occurs each time the stream returns true. While
variable clocks might not be too common of a requirement, it is still a limitation of the
current signal type which we would like to remove. In order to support variable clocks
we have to move closer to Lucid Synchrone’s concept of sampling according to the when

and whennot functions. These would force us to do an analysis of the networks in order
to determine clock frequencies.

Even though the library may have some future work, we feel that it manages to
capture the ideas of signal processing in a nice way: FPR’s notion of signal behaviour
and transformations form the basis of the library, while temporal operators from SDF
are used to model sub-signals running at different speeds. We feel that this mixture of
ideas have lead to an intuitive model for signal processing. Furthermore, the ability to
use pure Haskell as a meta-programming language for the signal library makes rather
complex programs easy and intuitive to implement. The fact that our library’s functions
are semantically similar to Haskell’s standard operations on lists further helps users
to reason about streams, since they can simply treat them as infinite lists. The lack of
proper support for automatons is however regrettable, as they provide a nice and efficent
way of describing control dominated systems.

67

Bibliography

[1] Cisco, Cisco visual networking index: Forecast and methodology, 2012–2017 (May
2012).
URL http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-
next-generation-network/white paper c11-481360.html

[2] ITU, Global itc development, 2001-2014 (2014).
URL http://www.itu.int/en/ITU-D/Statistics/Documents/statistics/2014/stat page
all charts 2014.xls

[3] A. Persson, Towards a functional programming language for baseband signal pro-
cessing.

[4] E. Axelsson, K. Claessen, G. Dev̀ai, Z. Horvat̀h, K. Keijzer, B. Lyckeg̊ard, A. Pers-
son, M. Sheeran, J. Svenningsson, A. Vajda, Feldspar: A domain specific language
for digital signal processing algorithms, in: Formal Methods and Models for Code-
sign (MEMOCODE), 2010 8th IEEE/ACM International Conference on, 2010, pp.
169–178.

[5] E. Axelsson, K. Claessen, M. Sheeran, J. Svenningsson, D. Engdal, A. Persson, The
design and implementation of feldspar, in: J. Hage, M. Morazán (Eds.), Imple-
mentation and Application of Functional Languages, Vol. 6647 of Lecture Notes in
Computer Science, Springer Berlin Heidelberg, 2011, pp. 121–136.
URL http://dx.doi.org/10.1007/978-3-642-24276-2 8

[6] S. L. P. Jones, Haskell 98 language and libraries: the revised report, Cambridge
University Press, 2003.

[7] E. Axelsson, A. Persson, J. Svenningsson, Feldspar’s streams (2014).
URL https://github.com/Feldspar/feldspar-language/blob/master/src/Feldspar/
Stream.hs

[8] P. Caspi, M. Pouzet, A co-iterative characterization of synchronous stream functions
(1997).

68

http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.html
http://www.itu.int/en/ITU-D/Statistics/Documents/statistics/2014/stat_page_all_charts_2014.xls
http://www.itu.int/en/ITU-D/Statistics/Documents/statistics/2014/stat_page_all_charts_2014.xls
http://dx.doi.org/10.1007/978-3-642-24276-2_8
https://github.com/Feldspar/feldspar-language/blob/master/src/Feldspar/Stream.hs
https://github.com/Feldspar/feldspar-language/blob/master/src/Feldspar/Stream.hs

BIBLIOGRAPHY

[9] B. Mulgrew, P. M. Grant, J. Thompson, Digital signal processing: concepts and
applications, Macmillan Press, 1999.

[10] A. Oppenheim, Applications of Digital Signal Processing, Prentice-Hall Signal Pro-
cessing Series, Prentice-Hall, 1978.

[11] E. Lee, D. Messerschmitt, Synchronous data flow, Proceedings of the IEEE 75 (9)
(1987) 1235–1245.

[12] Z. Wan, P. Hudak, Functional reactive programming from first principles, SIGPLAN
Not. 35 (5) (2000) 242–252.
URL http://doi.acm.org/10.1145/358438.349331

[13] C. Elliott, P. Hudak, Functional reactive animation, SIGPLAN Not. 32 (8) (1997)
263–273.
URL http://doi.acm.org/10.1145/258949.258973

[14] H. Nilsson, A. Courtney, J. Peterson, Functional reactive programming, continued,
in: Proceedings of the 2002 ACM SIGPLAN Workshop on Haskell, Haskell ’02,
ACM, New York, NY, USA, 2002, pp. 51–64.
URL http://doi.acm.org/10.1145/581690.581695

[15] A. Courtney, C. Elliott, Genuinely functional user interfaces, in: Haskell Workshop,
2001, pp. 41–69.

[16] E. Czaplicki, Elm (2011).
URL https://github.com/elm-lang/elm-lang.org

[17] Z. Wan, W. Taha, P. Hudak, Real-time frp, SIGPLAN Not. 36 (10) (2001) 146–156.
URL http://doi.acm.org/10.1145/507546.507654

[18] A. Courtney, H. Nilsson, J. Peterson, The yampa arcade, in: Proceedings of the
2003 ACM SIGPLAN Workshop on Haskell, Haskell ’03, ACM, New York, NY,
USA, 2003, pp. 7–18.
URL http://doi.acm.org/10.1145/871895.871897

[19] G. Giorgidze, H. Nilsson, Switched-on yampa, in: P. Hudak, D. Warren (Eds.),
Practical Aspects of Declarative Languages, Vol. 4902 of Lecture Notes in Computer
Science, Springer Berlin Heidelberg, 2008, pp. 282–298.
URL http://dx.doi.org/10.1007/978-3-540-77442-6 19

[20] J. Hughes, Generalising monads to arrows, Science of Computer Programming
37 (1–3) (2000) 67 – 111.
URL http://www.sciencedirect.com/science/article/pii/S0167642399000234

[21] P. Hudak, A. Courtney, H. Nilsson, J. Peterson, Arrows, robots, and functional re-
active programming, in: J. Jeuring, S. Jones (Eds.), Advanced Functional Program-
ming, Vol. 2638 of Lecture Notes in Computer Science, Springer Berlin Heidelberg,

69

http://doi.acm.org/10.1145/358438.349331
http://doi.acm.org/10.1145/258949.258973
http://doi.acm.org/10.1145/581690.581695
https://github.com/elm-lang/elm-lang.org
http://doi.acm.org/10.1145/507546.507654
http://doi.acm.org/10.1145/871895.871897
http://dx.doi.org/10.1007/978-3-540-77442-6_19
http://www.sciencedirect.com/science/article/pii/S0167642399000234

BIBLIOGRAPHY

2003, pp. 159–187.
URL http://dx.doi.org/10.1007/978-3-540-44833-4 6

[22] W. M. Johnston, J. R. P. Hanna, R. J. Millar, Advances in dataflow programming
languages, ACM Comput. Surv. 36 (1) (2004) 1–34.
URL http://doi.acm.org/10.1145/1013208.1013209

[23] T. B. Sousa, Dataflow programming concept, languages and applications, in: Doc-
toral Symposium on Informatics Engineering, 2012.

[24] N. Halbwachs, F. Lagnier, C. Ratel, Programming and verifying real-time systems
by means of the synchronous data-flow language lustre, Software Engineering, IEEE
Transactions on 18 (9) (1992) 785–793.

[25] E. Lee, D. Messerschmitt, Static scheduling of synchronous data flow programs for
digital signal processing, Computers, IEEE Transactions on C-36 (1) (1987) 24–35.

[26] P. Caspi, D. Pilaud, N. Halbwachs, J. A. Plaice, Lustre: A declarative language
for real-time programming, in: Proceedings of the 14th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, POPL ’87, ACM, New York,
NY, USA, 1987, pp. 178–188.
URL http://doi.acm.org/10.1145/41625.41641

[27] A. Gamatié, Designing embedded systems with the SIGNAL programming lan-
guage, Springer, 2010.

[28] M. Pouzet, Lucid synchrone, version 3, Tutorial and reference manual. Université
Paris-Sud, LRI.

[29] J.-L. Colaço, A. Girault, G. Hamon, M. Pouzet, Towards a higher-order synchronous
data-flow language, in: Proceedings of the 4th ACM International Conference on
Embedded Software, EMSOFT ’04, ACM, New York, NY, USA, 2004, pp. 230–239.
URL http://doi.acm.org/10.1145/1017753.1017792

[30] G. Berry, G. Gonthier, The esterel synchronous programming language: design,
semantics, implementation, Science of Computer Programming 19 (2) (1992) 87 –
152.
URL http://www.sciencedirect.com/science/article/pii/016764239290005V

[31] N. Halbwachs, Synchronous programming of reactive systems, no. 215, Springer,
1992.

[32] P. Le Guernic, A. Benveniste, P. Bournai, T. Gautier, Signal–a data flow-oriented
language for signal processing, Acoustics, Speech and Signal Processing, IEEE
Transactions on 34 (2) (1986) 362–374.

[33] Functional programming group at Chalmers University of Technology, Feldspar-
language (May 2014).

70

http://dx.doi.org/10.1007/978-3-540-44833-4_6
http://doi.acm.org/10.1145/1013208.1013209
http://doi.acm.org/10.1145/41625.41641
http://doi.acm.org/10.1145/1017753.1017792
http://www.sciencedirect.com/science/article/pii/016764239290005V

BIBLIOGRAPHY

[34] P. Caspi, M. Pouzet, A co-iterative characterization of synchronous stream func-
tions, Electronic Notes in Theoretical Computer Science 11 (0) (1998) 1 – 21,
{CMCS} ’98, First Workshop on Coalgebraic Methods in Computer Science.
URL http://www.sciencedirect.com/science/article/pii/S1571066104000507

[35] A. Persson, E. Axelsson, J. Svenningsson, Generic monadic constructs for embed-
ded languages, in: A. Gill, J. Hage (Eds.), Implementation and Application of
Functional Languages, Vol. 7257 of Lecture Notes in Computer Science, Springer
Berlin Heidelberg, 2012, pp. 85–99.
URL http://dx.doi.org/10.1007/978-3-642-34407-7 6

[36] G. H. Mealy, A method for synthesizing sequential circuits, Bell System Technical
Journal 34 (5) (1955) 1045–1079.
URL http://dx.doi.org/10.1002/j.1538-7305.1955.tb03788.x

[37] J.-L. Colaço, M. Pouzet, Clocks as first class abstract types, in: R. Alur, I. Lee
(Eds.), Embedded Software, Vol. 2855 of Lecture Notes in Computer Science,
Springer Berlin Heidelberg, 2003, pp. 134–155.
URL http://dx.doi.org/10.1007/978-3-540-45212-6 10

[38] E. Axelsson, A. Persson, M. Sheeran, J. Svenningsson, G. Deval, A tutorial on
programming in feldspar (2011).

[39] R. Atkey, What is a categorical model of arrows?, Electronic Notes in Theoretical
Computer Science 229 (5) (2011) 19 – 37, proceedings of the Second Workshop on
Mathematically Structured Functional Programming (MSFP 2008).
URL http://www.sciencedirect.com/science/article/pii/S157106611100051X

[40] A. Megacz, Multi-level languages are generalized arrows, CoRR abs/1007.2885.

[41] J. O’Donnell, Generating netlists from executable circuit specifications in a pure
functional language, in: J. Launchbury, P. Sansom (Eds.), Functional Programming,
Glasgow 1992, Workshops in Computing, Springer London, 1993, pp. 178–194.
URL http://dx.doi.org/10.1007/978-1-4471-3215-8 16

[42] P. Bjesse, K. Claessen, M. Sheeran, S. Singh, Lava: Hardware design in haskell,
SIGPLAN Not. 34 (1) (1998) 174–184.
URL http://doi.acm.org/10.1145/291251.289440

[43] A. Gill, Type-safe observable sharing in haskell, in: Proceedings of the 2Nd ACM
SIGPLAN Symposium on Haskell, Haskell ’09, ACM, New York, NY, USA, 2009,
pp. 117–128.
URL http://doi.acm.org/10.1145/1596638.1596653

[44] C. Elliott, S. Finne, O. De Moor, Compiling embedded languages, J. Funct. Pro-
gram. 13 (3) (2003) 455–481.
URL http://dx.doi.org/10.1017/S0956796802004574

71

http://www.sciencedirect.com/science/article/pii/S1571066104000507
http://dx.doi.org/10.1007/978-3-642-34407-7_6
http://dx.doi.org/10.1002/j.1538-7305.1955.tb03788.x
http://dx.doi.org/10.1007/978-3-540-45212-6_10
http://www.sciencedirect.com/science/article/pii/S157106611100051X
http://dx.doi.org/10.1007/978-1-4471-3215-8_16
http://doi.acm.org/10.1145/291251.289440
http://doi.acm.org/10.1145/1596638.1596653
http://dx.doi.org/10.1017/S0956796802004574

BIBLIOGRAPHY

[45] S. Kamin, et al., Standard ml as a meta-programming language, Tech. rep., Tech-
nical report, University of Illinois at Urbana-Champaign (1996).

[46] A. Gill, T. Bull, G. Kimmell, E. Perrins, E. Komp, B. Werling, Introducing kansas
lava, in: M. Morazán, S.-B. Scholz (Eds.), Implementation and Application of Func-
tional Languages, Vol. 6041 of Lecture Notes in Computer Science, Springer Berlin
Heidelberg, 2010, pp. 18–35.
URL http://dx.doi.org/10.1007/978-3-642-16478-1 2

[47] K. Claessen, Embedded languages for describing and verifying hardware, Ph.D.
thesis, Chalmers University of Technology (2001).

[48] M. Rhiger, A foundation for embedded languages, ACM Trans. Program. Lang.
Syst. 25 (3) (2003) 291–315.
URL http://doi.acm.org/10.1145/641909.641910

[49] J. Eker, J. Janneck, Cal language report, University of California at Berkeley, Tech.
Rep. UCB/ERL M 3.

[50] MATLAB, version 7.10.0 (R2010a), The MathWorks Inc., Natick, Massachusetts,
2010.

[51] J. N. Little, L. Shure, Signal processing toolbox: for use with MATLAB; user’s
guide, Math Works, 1992.

[52] H. LIU, E. CHENG, P. HUDAK, Causal commutative arrows, Journal of Functional
Programming 21 (2011) 467–496.
URL http://journals.cambridge.org/article S0956796811000153

[53] S. Erdweg, F. Rieger, T. Rendel, K. Ostermann, Layout-sensitive language exten-
sibility with sugarhaskell, in: Proceedings of the 2012 Haskell Symposium, Haskell
’12, ACM, New York, NY, USA, 2012, pp. 149–160.
URL http://doi.acm.org/10.1145/2364506.2364526

[54] H. Thielemann, Audio processing using Haskell, Zentrum für Technomathematik,
2004.

72

http://dx.doi.org/10.1007/978-3-642-16478-1_2
http://doi.acm.org/10.1145/641909.641910
http://journals.cambridge.org/article_S0956796811000153
http://doi.acm.org/10.1145/2364506.2364526

	Introduction
	Problem Description
	Contributions
	Methodology and Limitations

	Background
	Functional Reactive Programming
	Implementing Control Structures in Yampa

	Synchronous Dataflow Languages
	Modeling Real World limitations in Lucid Synchrone

	Feldspar
	Co-iteration and Streams

	Comparison of Approaches
	Yampa and Lucid Synchrone
	Power in Yampa
	Bouncing Balls in Lucid Synchrone

	FRP and SDF in Feldspar
	Streams in Feldspar
	Switching by Streams
	General Recurrence Equations

	Extending Feldspar
	Arrows
	Generalised and Rebindable Arrows

	Signals
	Meta-Programming using Haskell

	Type-Safe Observable Sharing of Signals
	Sharing in Signals

	Compiling Signals to Streams
	Pre-processing the Graph

	Using Signals
	The Signal Library
	An Example: IIR Filter
	An Example: Bouncing Balls
	An Example: Power
	Related Work
	Chalmers Lava
	Kansas Lava
	CAL
	Matlab

	Conclusions and Future Work
	 Bibliography

